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DNA VACCINES 

 

Immunization is regarded as one of the most significant successes in medical 

development of the past two hundred years. When Edward Jenner, in 1786, 

performed the first vaccination on an eight year old boy, he deliberately applied 

the first live attenuated vaccine. Since then other remarkable developments have 

resulted in successful vaccines against small pox, polio, measles and rubella. In 

total, twenty-six infectious diseases are preventable by vaccination, leading to an 

estimated 10 - 15 years longer average lifetime of men in the 20th century.  

Live attenuated vaccines still represent the most successful vaccines. They often 

induce a life long protection by an active infection of the attenuated pathogen 

resulting in the development of an effective immunologic memory. However, 

infectious diseases, such as malaria, tuberculosis and especially HIV, cannot be 

controlled using these vaccines. This is either due to by the possibility of 

restored pathogen virulence, the difficulty to vaccinate immunodefficient 

patients or the frequent mutation of some pathogens, thereby escaping anterior 

immunizations.  

Developments of the past 30 years have led to vaccines, such as subunit 

vaccines (Fluad®, Chiron Behring), recombinant protein vaccines (Engerix-B®, 

GlaxoSmithKline) and protein-polysaccharide conjugate based vaccines 

(Meningitec®, Wyeth). Despite the new potentials arising from the broader 

possibilities to immunize safely compared to live vaccines, these vaccines are 

less immunogenic. Especially the reduced capacity to induce cell mediated 

immune responses of the protein and peptide antigens could not be completely 

overcome by adjuvant systems. Therefore, the challenges remain to develop 

potent, but safe vaccines against infectious diseases, cancer and autoimmune 

diseases, whereas the latter are mostly dependent on a cytotoxic T-cell response. 

The potential of using DNA as a vaccine was discovered by gene therapists. 

They detected immune responses against the proteins that had been genetically 
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delivered in the form of plasmid DNA. This knowledge was only used for the 

purpose of DNA vaccination in the early 90´s. Several studies in mice then 

revealed protection against pathogen challenge, mainly influenza.  

The mechanisms of the induction of cellular and humoral immune response are 

summarized in Figure 1. 

 

 

 

 

 

 

Fig.1: Mechanism of antigen-specific humoral and cellular immune response 

[1]. (a) Recognition of exogenous antigen by APC and activation of a humoral 

immune response. (b) T-helper cell activation by antigen presentation via MHC 

II molecules of the transfected APC. (c) Activation of cytotoxic T- lymphocytes 

(CTL) by the presentation of foreign peptides synthesized and processed by the 

transfected cell.   

 

a 

b 

c 
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The levels of immune response generated by the different immunization 

strategies are summarized in Table 1. The similarity of the immune response 

obtained by DNA -and live attenuated vaccines, as well as the increased safety 

of DNA vaccines are highlighted in the Table 1. 

 

Immune 
response 

 DNA 
vaccine 

Live 
attenuated 
vaccine 

Protein/ 
Subunit/ 
Inactivated 

Humoral 
 
Cellular 

B cells 
CD4+ 
CD8+ 

+++ 
++ 
++ 

+++ 
+/- Th1 
+++ 

+++ 
+/- Th1 
- 

Antigen 
presentation 
  
 

 
Humoral 
Cellular 

MHC I / II 
+++ 
++ 

MHC I / II 
+++ 
+++ 

MHC II 
+++ 
+/- 

Manufacturing  

Ease of 
development 
Costs 
Transport /storage  

 
++++ 
++ 
++ 

 
+ 
+ 
+ 

 
++ 
+ 
+++ 

Safety  +++ ++ ++++ 

 

Table 1: Quality of immune responses obtained with DNA vaccines, live 

attenuated vaccines and protein / subunits or inactivated vaccines.  

 

The great advantage of DNA vaccines is their ability to induce a humoral as well 

as a cellular type of immune reaction. 

The encoded antigenic protein can be either processed via the intrinsic 

presentation pathway and presented by MHC I (major histocompatibility) 

molecules. Alternatively the antigen can be presented by MHC II molecules, 

which are specific for antigen presenting cells and some endothelial cells. This 

provides the opportunity of a vaccine corresponding better to a live vaccine type 

of response without the dangers associated with an infection of attenuated 

bacteria or viruses. The ability of DNA vaccines to generate potent cytotoxic T-
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lymphocyte (CTL) responses is a major advantage. The activation of CTL 

depends on in-situ protein synthesis and subsequent presentation via the MHC I 

molecule. The in-situ synthesis results in posttranslational modifications, such as 

glycosylation, proteolytic processing, as well as lipid conjugation. Thus, the 

“naïve” form of the antigenic protein is produced and leads to a better 

recognition of the upcoming antigen after pathogen infection. The generation of 

T-cell responses by genetic vaccines was identified as a promising strategy to 

act against intracellular bacteria and parasites, as well as viral infections and 

cancer.  

DNA immunizations were performed by either direct intra-muscular injection of 

naked DNA or by the use of a gene gun, with DNA coated gold microprojectiles 

(Fig.2) [2-6]. 

  

Fig.2: Application and T-cell activation mechanisms of DNA vaccines [1]. (a) 

Gene gun application or injection of naked plasmid DNA into the skin or the 

muscle. Direct transfection of antigen presenting cells (APC), either dendritic 

cells or dendritic cells of the skin, Langerhans cells, and presentation to T-cells. 

(b) Transfection of myocytes and ‘cross priming’, the transfer of the antigen to a 

APC, and further activation of T-cells. 

 a 

b 
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It has not been clear for some time by which mechanism DNA immunization 

occurred. 

The two possibilities for the induction of a CTL response consist of either direct 

DNA uptake into antigen presenting cells and the expression of the antigen. 

Alternatively, the protein synthesis occurs in non-antigen presenting cells with 

subsequent uptake into antigen presenting cells, referred to as ‘cross priming’ 

[7-9]. A third pathway comprising of the simple transfection of muscle cells 

could be ruled out. This mechanism would not induce humoral, antibody based 

reactions, because of the lack of MHC II presentation and because the lack of 

co-stimulatory molecules. The MHC II antigen presentation is restricted to 

antigen presenting cells and some endothelial cells. 

In vitro studies have demonstrated the difficulty of transfecting antigen 

presenting cells and other phagocytes [10,11]. Still, Denis-Mize et al. 

demonstrated gene expression in dendritic cells by reverse transcriptase-PCR 

and by measuring the activation of an epitope-specific T-cell hybridoma by Il-2 

expression [12]. This mechanism is of great importance as antigen presenting 

dendritic cells have the ability to prime naïve T-lymphocytes, resulting in 

significantly stronger T-cell responses [13]. Moreover, dendritic cells can 

directly activate CTL by the MHC I antigen presentation of phagocytosed 

apoptotic bodies [14].However, this mechanism is not fully understood and will 

have to be elucidated to effectively use plasmid DNA for vaccination. A 

protective immunization of small animal models, as well as some non-human 

primates has shown promising results.  

Human clinical trials, including several against HIV and cancer have been 

initiated. An example of current human clinical trials is given in Table 2. The 

results of completed trials, however, could not confirm the effectiveness of 

DNA vaccines unless very high DNA doses were used [15,16]. Viral gene 

delivery has been used most frequently for gene therapy and has shown 

promising effects for DNA vaccination, as well. 
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Vaccine/ 
Condition 

Clinical Phase Plasmid Dose Administration 

HIV / 
healthy 
volunteers 

Phase I 
NIAID 
Study: HVTN048 

EP HIV-1090 
21 specific 
CTL epitopes 
 

3 x 
i.m. injection + PVP 
protects / facilitates 
DNA uptake 

 
Phase I  
NIAID 
Study: AVEG 031 

APL 400-047 
+ Bupivacaine 
HCL 

0.1 mg 
0.3 mg 
1 mg 
3 mg 
 

i.m. by needle or 
Biojector 2000 
Needle-Free Jet 
Injection 

 
Phase I  
NIAID 
Study: HVTN 044 

VRC-
HIVDNA009-
00-VP 
 + IL-2/ 
Ig DNA 
adjuvant 
 

4 x 

needle-free i.m. 
injection 
DNA encoding IL-2 
fused to the Fc 
portion of IgG for 
enhanced stability.  

 

Phase I 
NIAID 
Study: N01-
AI05394 
 

HIV-1 DNA 
vaccine with 
protein vaccine 
boost 

3 x 
DNA 
2 x 
protein 

Polyvalent HIV-1 
DNA plasmid 
prime/env protein 
boost vaccine 

Melanoma 
Neoplasm 
Metastasis 

Phase I  
NCI 
Study: 980086; 98-
C-0086 
 

gp100 DNA 
 

4 x + IL-2 

Leukemia, 
Chronic 

Phase I/II 
M.D. Anderson 
Cancer Center 
Study: DM99-412 
 

plasmid vector 
and DNA  
fragments 

 
containing the 
sequence of their own 
immunoglobulin gene 

Ebola / 
healthy 
volunteers 

Phase I 
Vical / 
NIAID 

VRC-
EBODNA012-
00-VP 
 

  

 

Table 2: Examples of current clinical trials of DNA vaccines consisting 

predominantly of Phase I trials for immunization against HIV and cancer. The 

adjuvants used are IL-2, polyvinylpyrrolidone (PVP) and bupivacaine. The DNA 

is applied via i.m. injection or a Biojector®. Gene delivery via bacteria, viruses, 

and ex vivo transfection of cells were not analysed. 
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However, viral delivery systems have led to fatal adverse immune reactions in a 

patient [17]. Therefore, we will focus on non viral adjuvants and delivery 

systems. Many other trials were conducted using viruses, which have not been 

found to be extensively effective [18]. 

Despite the disappointing results in humans until now, great successes in small 

animals and the theoretical possibilities, arising from the use of DNA vaccines 

legitimate further research and developments. 

 

 
 
Table 3: Advantages and drawbacks of DNA vaccines. 

 Advantages  Drawbacks 
 

• 
 
 
 

• 
 
 

• 
 
 
 

• 
 
 

• 
 

• 
 
 

• 
 
 

• 
 

 
• 
 
 

• 
 

 

Possibility to immunize against obligate 
intracellular bacteria such as Myco-
bacterium tuberculosis and Listeria m.  
 

Supports CTL priming despite deficient 
T helper cells 
 

Antigens are equal to the antigenic 
proteins of a viral infection, due to post- 
translational modifications  
 

Plasmid are easily manufactured in 
large amounts  
 

DNA is more stable than proteins 
 

Fast adaptation of DNA vaccines is 
possible  
 

Mixtures of plasmids encoding for 
multiple protein fragments are possible 
 

Only the protein of interest is 
expressed.  
 

No immune reaction against naked 
DNA or synthetic vectors. 
 

Antigen does not have to be a pathogen 
surface characteristic for CTL response. 

 

• 
 
 
 
 

• 
 
 

• 
 

 
• 
 

• 

 

Potential integration of the 
plasmid into host genome leading 
to insertional mutagenesis  
 
 

Induction of autoimmune responses 
(e.g. pathogenic anti-DNA antibodies)  
 

Effects of long-term expression 
unknown  
 

Concept restricted to protein antigens  
 

Induction of immunologic tolerance  
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Therefore, DNA vaccines have to be improved. This is achieved using diverse 

possibilities such as genetic adjuvants, immuno-stimulatory agents encoded by 

the plasmid vector or the development of molecular adjuvants, such as 

cytokines. 

Another promising tool to improve the immune response of DNA vaccines is the 

development of delivery systems that enhance the efficiency of gene delivery 

and provide a targeting of antigen presenting cells. 

 

VACCINE ADJUVANTS 

 

Adjuvants, e.g. substances that can enhance an immune response without being 

immunognic themselves, have been used since the early 1920 to improve 

vaccine efficacy [19,20]. Adjuvants demonstrate several properties. They 

 

- increase the immune response of weakly immunogenic antigens 

- decrease the dose necessary for successful immunization and reduce the 

number of boosts needed 

- prolong the duration and speed-up the onset of the immune response  

- modulate the immune response inducing different antibody isotypes or 

inducing mucosal immunity 

- stimulate cytotoxic T lymphocytes  

- facilitate the immunization with combined vaccines 

- allow the immunization of elderly 

 

The immune reaction induced by simple injection of plasmid DNA cannot 

achieve a sufficient immune response for protection against pathogenic 

challenge. Therefore, very early in the development of DNA vaccines the co-

application of adjuvants was investigated.  
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Non-Particulate Adjuvants 

The first, in the beginning undeliberately applied adjuvant of DNA vaccination 

were CpG (cytidine–phosphate–guanosine) dinucleotide motives of the 

procaryontic genetic material. CpG motives can be allocated within the group of 

non-particulate, soluble, adjuvants, in contrast to particulate adjuvants [27]. 

These sequences are sur-represented in procaryontic cells and occur four to five 

times more frequently than in eucaryontic cells. Thus, eucaryontic immune 

systems have evolved to recognize these sequences as danger signals of bacterial 

infections. Hence, the simple injection of plasmid DNA generated in bacteria, 

resulted in the activation of the immune system, namely the innate, unspecific 

type, by CpG-binding to the toll-like receptor (TLR) 9 [21,22]. The toll-like 

receptor family represent components that recognize evolutionarily conserved 

pathogen patterns. There are currently 10 known TLRs.  

CpG motives further play an important role in the T helper cell pathway. They 

have been found to induce activation of the T helper cell 1 (TH1) pathway on the 

disfavor of a TH2 pathway, by up-regulating cytokines such as Il-12 [25,26]. TH1 

cells induce a CTL immune reaction, whereas TH2 cells activate a humoral 

immune response.  

Another adjuvant danger signal arising from bacterial genetic material is the rate 

of methylation of the nucleotides. Bacterial nucleotides are not methylated 

compared to a 75 % methylation to 5-methylcytosine in eucaryontic cells 

[23,24]. These differences in DNA composition result in relatively high immune 

responses of injected naked DNA.  

 

Other non-particulate adjuvants are mainly immuno-modulators, such as 

cytokines (Il-2 and Il-12 up-regulate the TH1 pathway [26,28]; Il-4 up-regulate 

the TH2 pathway) and isolated substances from LPS (lipopolysaccharide), 

especially lipid A and MPL (monophosphoryl lipid A) which induce strong TH1 

responses, for example in hyposensibilizing injections (Pollinex® Quattro, 
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Bencard) [29-31]. Saponins, natural glycosides, are used in micellar 

preparations, such as Quil A in veterinary vaccines. These boost the TH1, as well 

as the TH2 pathway [32].  

 

Particulate Adjuvants 

An early in the development in genetic vaccines used DNA coated on gold 

microprojectiles which were propelled into the skin of mice by the so-called 

‘gene gun’. This was the first method used to increase gene delivery into 

keratinocytes and especially into Langerhans cells, which are specific dermal 

dendritic cells [5,33]. This induced a shift of the immune response towards the 

TH2 pathway, inducing a humoral type of immune response.  

The only approved adjuvants for human use are i) alum, aluminum salts and 

calcium salts, ii) MF 59, a microemulsion, composed of the mixture of surface 

active components and iii) virosomes, phospholipid particles carrying 

hemaglutinin and neuraminidase moieties on their surface. Many other adjuvant 

systems have proven their efficacy in human trials, however these were 

predominantly associated with non-tolerable toxicities. 

 

Alum is the most commonly used adjuvant in humans. It is composed of 

aluminum hydroxide (AlO (OH)) or aluminum phosphate (Al - PO4 in different 

ratios). This adjuvant system consists either of pre-formed particles or a gel 

(Alhydrogel). The antigen is adsorbed by electrostatic forces onto the surface of 

the Alum particles or particles form in-situ when the antigen is added to the gel 

[34,35]. Alum is used for a great variety of vaccines, such as the combined 

diphtheria-tetanus (Td) or the combination of five or six antigens in a 

preparation (Hexavac®, Aventis Pasteur MSD). The reproducible production of 

alum and its adsorption characteristics are a crucial part of the vaccine 

composition [36,37]. The mode of action is primarily the sustained desorption of 

the antigen or the toxoid from the Alum particles, resulting in an enduring 
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contact of the antigen with the immune system. Secondly, Alum enhances the 

immune response by activating the humoral immune response. Additionally, an 

increase in CTL reactions has been observed, compared to antigen preparation in 

solution [38]; however, strong IgE reactions and the toxicological concerns 

raised by use of aluminum represent the major drawbacks of these formulations 

[39,40]. 

Another mineral salt used for some vaccines is calcium phosphate, which has 

been shown to be better tolerated than alum, leading to fewer hypersensitivity 

reactions and an improved entrapment of antigens [41]. Other mineral, have also 

been investigated with minimal success, such as colloidal iron hydroxide, 

calcium chloride. 

 

MF 59 (micro-fluidized emulsion) has been recently approved in Europe for use 

in subunit flu vaccines [42]. It is composed of 0.5 % Tween 80, 0.5 % Span and 

4.3 % squalens forming an O/W-emulsion with a droplet size of 150 nm. This 

adjuvant is used in the influenza vaccines Fluad® (Chiron-Behring) und 

Addigripp® (Aventis Pasteur MSD). These vaccines are especially 

recommended for elderly, which frequently exhibited insufficient immune 

response using other conventional vaccines. 

 

Virosomes are reconstituted influenza virus envelopes with inserted purified 

influenza glycoproteins (hemaglutinin and neuramindase). They are further 

representatives for particulate adjuvants. They serve as delivery tool for 

inactivated viruses [43]. These adjuvants are used in Berna Pharm´s hepatitis A 

vaccines (Epaxal®, Niddapharm / Havpur®, Chiron-Behring) [44]. Antigen 

presenting cells recognize the influenza epitopes and phagocytose the 

inactivated virus associated with the hepatitis antigen.  

Other adjuvants retain only a scientific character. They are not used in humans 

because of frequent adverse reactions; some of these substances have been 
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approved for the use in animals. The effect of adjuvant mechanism and 

examples thereof are presented in Table 4. 

Action Adjuvant Type Example Benefit 
 

Presentation 
 

Amphiphilic molecules, 
complexes which interact 
with the immunogen  

 

ISCOM's, 
liposomes, 
Quil, Al(OH)3 

 

Increased antibody 
response and 
duration 
 

 

Targeting 
 

Particulate adjuvants 
which bind the 
immunogen  
 
Carbohydrate adjuvants 
which target lectin 
receptors on macrophages 
and DC  
 

 
 

Efficient use of the 
antigen: 
Antigen localization 
in the lymph nodes 
 
TH1 

 

Depot effect 
 

W/O emulsions  
         

�
 short term 

Particles  
         

�
 long term 

 

Microparticles 
Nanoparticles  
Oils, Al(OH)3, 
gels 

 

Prolonged antigen 
presentation 
Increased efficiency 
single dose vaccine ? 
 

 

Danger 
signals 

 

Oil emulsions, surface 
active agents, Al(OH)3, 
IFN's, hsp 
 

 
 

Tissue destruction, 
stress TCL binding 
on APC 

 

Immuno - 
modulation 

 

Small molecules or 
proteins which modify the 
cytokine network:  
co-stimulatory molecules, 
cytokines, chemokines  

 

Complement 
CpGs, LPS 
cytokines 

Up-regulation of the 
immune response.  
Selection of TH1 or 
TH2 balance 
Danger signal to 
innate immune cells. 
Inflammatory stimuli 
 

 

Table 4: Effects of different adjuvants on the immune system.  

 

Freund´s adjuvants are well-known and very potent immunostimulators. They 

can be divided into two groups, e.g. the complete (FCA) and the incomplete 

(FIA) adjuvants. Both consist of a mixture of a mineral oil with a surfactant 
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(Arlacel A). The complete adjuvant additionally contains mycobacteria 

components. The mechanism of action can be ascribed to a depot effect arising 

from the application of the antigen in a w/o emulsion. Further on, the activation 

of antigen presenting cells by the surfactant is achieved. The mycobacteria 

components in the FCA were found to be efficient adjuvant substances, due to 

the earlier mentioned CpG motives present in their genetic material. However, 

this complete Freund´s adjuvant was associated with severe inflammatory, 

painful and even harmful reactions [45]. 

Iscoms™ (Immune stimulating complexes) consist of saponins, phospholipides 

and cholesterol that form particles of approximately 40 nm into which the 

antigen can be incorporated. They induce TH2 as well as TH1 immune responses 

and are used for veterinary vaccines [46]. 

 

The adjuvants of interest in this work are particulate adjuvants, more specifically 

microparticles and nanoparticles prepared from biodegradable polymers. 

  

The great advantage arising from these systems is their structural variability, the 

low toxicity arising from most of the synthetic, as well as natural polymers used 

and the possibility of further modification of the delivery system to target 

specific cells and tissues. 

 

MICROPARTICLES  

 

Microparticles are characterized primarily by their size, ranging from 1 to 1000 

µm, although ideally > 100µm. In most cases, they are prepared of polymers. 

The mechanism of action of microparticles in vaccination is not entirely 

understood yet. However, similar to other particulate adjuvants they induce the 

activation of antigen presenting cells, due to the irritation of foreign particulate 
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matter in a size range similar to that of pathogens. It is further hypothesized that 

an inflammatory reaction results in danger signals. These signals attract antigen-

presenting cells, which, in consequence, phagocytose the particles. 

Microparticles exhibiting diameters of less than 10 µm are susceptible to 

phagocytosis [47]. Additionally, the uptake of particles containing high 

concentrations of antigen results in higher levels of antigen delivered to 

phagocytes, including dendritic cells, as compared to the pinocytotic uptake of 

antigens in solution. After phagocytosis, antigen presenting cells, in particular 

dendritic cells, mature and migrate to the local lymph nodes [48]. Here, direct 

contact can be made with the residing lymphocytes [49]. Antigens associated to 

microparticles have been shown to induce cytotoxic T lymphocyte reactions in 

small animal models, in contrast to aluminum hydroxide adsorbed antigens [50].  

 

The ideal microparticulate system should possess several characteristics: It 

should  

 

- provide a depot effect of the antigen and its release over a certain time 

period, thus prolonging the presence of antigen in the organism.  

- stabilize the antigen in the physiological environment against enzyme 

degradation. 

- be easily and reproducibly formulated.  

- be stable during storage. 

- be free from toxic degradation products. 

- be cost effective. 

 

 

 

 

 



16                                                                                                             Chapter 1 
_________________________________________________________________________________________________________________ 

 
Preparation Techniques 

 

The development of microparticle formulations using biodegradable polymers 

was described by Bungenberg de Jong in 1930 and numerous other groups [51-

54]. The polymers used consisted of natural polymers, such as gelatin [55] and 

polysaccharides [56]. The disadvantages of natural products were their 

variability of the polymer quality, instabilities as well as safety concerns. 

Therefore, synthetic, biodegradable polymers have been preferentially studied 

for pharmaceutical use. The aim was to develop new drug delivery systems with 

defined and prolonged release profiles, especially for drugs susceptible to 

degradation in a physiological environment. The polymers for these 

formulations were strongly involved in the pharmacokinetics of the preparation. 

The type of polymer influences the rate of degradation, the type of degradation 

and the resulting degradation products and thereby the dug release. The most 

frequently used synthetic polymers were polyesters, poly(amides), poly(alyl-� -

cyano acrylates) and poly(orthoesters). Polyesters have found a widespread use, 

due to their excellent biocompatibility and biodegradability leading to their 

approval by regulatory authorities [57,58]. Depending on the process 

parameters, the payload, the physicochemical drug characteristics, polymers and 

solvents, a multitude of structures could be developed.  

The techniques most commonly used for the preparation of microparticles are 

spray drying, double emulsion methods and phase separation. 

 

Spray Drying 

The most popular method for microencapsulation is the spray drying technique. 

Particles of polyesters can be formulated by dissolving the polymer in a volatile 

organic solvent, such as methylene chloride or acetone. The polymer solution is 

nebulized inducing a fast evaporation of the solvent. The nozzle used for this 

purpose, the concentration and the viscosity of the solution, as well as the 
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boiling point of the solvent mainly determine the resulting size of the dried 

particles. Drugs can be incorporated by i) dissolving the drug in the organic 

solvent, ii) dispersing the solid, micronized drug in the polymer solution or iii) 

dispersing an aqueous solution of the drug in the polymer solution, either by an 

emulsion process or by high speed homogenization. As a result the drug 

becomes entrapped in the polymer matrix or it is covered by the polymer shell.  

Important advantages of the spray drying technique are the ease of formulation 

and particle isolation. This results in parameters especially important for the 

industrial preparation, such as cost effectiveness, reproducibility and a 

widespread knowledge of the technique. Moreover, the process can be operated 

under sterile conditions, which is extremely favorable for the formulation of 

parenteral delivery devices. The temperatures used for the process depend on the 

boiling point of the solvent. For example, the preparation of PLGA particles 

from a methylene chloride solution can be achieved at a maximal temperature of 

46°C. The polymer and the drug reach this temperature only for a very short 

period, as the evaporating solvent quickly cools the polymer solution and the 

droplets formed thereof. The exposure to organic solvents represents a noxious 

stress for many drugs, especially proteins. To stabilize the active components 

they can be lyophilized with cryoprotectants and dispersed a solid state in the 

polymer solution. DNA is less susceptible to degradation in organic solvents, 

therefore it is possible to use a dispersing process of the aqueous DNA solution 

in the organic solvent. A disadvantage of the spray drying technique is the 

relatively low yield, when small amounts of material are used. In large-scale 

productions this effect is reversed leading to very high yields.  

 

Solvent Evaporation / Double Emulsion Methods (W/O/W) 

These methods are based on the formation of small polymer solution droplets 

using a water immiscible organic solvent in an aqueous solution [59]. The 

double emulsion method has also been referred to as “in water drying method”. 
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The organic solvents mainly used for this process are methylene chloride and 

chloroform. When the solvent evaporation technique is used for the 

encapsulation of drugs, the drug substances have to be dissolved in the organic 

phase. For the encapsulation of drugs in aqueous medium a double emulsion 

method, e.g. a water - in oil - in water (W/O/W) technique has to be used. The 

primary emulsion is prepared by homogenizing a small volume of the aqueous 

drug solution into the organic solution containing the polymer by high-speed 

homogenization, sonication or vortexing. The primary dispersion is further 

rapidly injected into an aqueous stabilizer solution during simultaneous 

homogenization. Poly (vinyl alcohol) in concentrations ranging from 0.1 % to 

0.5% is a frequently used stabilizer of the external phase. Others, such as 

poloxamers and gelatin have previously been used as well. The organic solvents 

have to exhibit a low solubility in water to permit the diffusion into the large 

external phase and further their evaporation.  

During this process the polymer solidifies, resulting in microparticles containing 

small droplets of the aqueous drug solution. This implies that the solidification 

of the polymer occurs fast enough to inhibit the coalescence of the two, inner 

and external, aqueous phases. To achieve this, the volume of the external phase 

has to be large enough to rapidly extract the organic solvent from the polymer. 

The microparticles can be isolated and lyophilized for appropriate storage and 

stability. This technique provides the possibility to encapsulate hydrophilic 

drugs, including peptides and proteins, e.g. growth factors, LH-RH agonists [60-

63], vaccines [64,65], as well as small molecular compounds, such as 

pseudoephedrine [66,67]. However, the interaction of proteins with hydrophobic 

surfaces may lead to alterations of their quaternary structure. The release 

kinetics of small hydrophilic molecules as well was difficult to control. Thus, 

this technique remains a challenge as it highly depends on the drug used.  
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Phase-Separation 

The phase separation technique takes advantage of the decreasing solubility of a 

polymer in a solvent through the addition of a third non-solvent of this polymer. 

At a defined point of the process the polymer precipitates. This occurs 

particularly at surfaces and interphases. In this manner, the dispersed or 

dissolved drug is coated with the polymer. This method can be used for either 

hydrophilic compounds in aqueous solution, which are homogenized in the 

polymer solution, as well as for drugs that are dissolved or dispersed in a solid 

state in the polymer solution. The removal of the organic solvent, as well as the 

preservation of protein quaternary structures, however, have been shown to be a 

major difficulty related to that technique [68]. The preparation of organic, 

solvent-free systems using polymers such as chitosan for the preparation of 

microparticles may provide new possibilities [69]. 

 

Recently it has been demonstrated that microparticles have a great potential as 

DNA vaccine adjuvants [70-72]. Different strategies were pursued to exploit this 

property. Plasmid DNA was either encapsulated into the microparticles or was 

adsorbed onto the surface of cationic microparticles. Each system has shown 

both advantages and drawbacks.  

 

DNA Encapsulation into Microparticles 

Modern vaccines consist of proteins, peptides or polysaccharides, which have to 

be administered parenterally to circumvent degradation in the gastrointestinal 

tract. However, multiple injections have to be given to fully induce an effective 

immunization. Hence, the aim of many researchers was to develop a vaccine 

delivery system that would provide a modulation of antigen release, resulting in 

the `single shot´ vaccine [73,74]. These devices, in consequence, would exhibit 

prolonged immune responses [75-77]. Additionally, encapsulated antigens could 

be applied orally, thereby increasing the compliance and, more importantly, the 
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mucosal immunity. Particles < 10µm can be taken up by the gastrointestinal 

associated lymphatic tissue (GALT), which directly delivers the antigen to a 

mucosal tissue rich in dendritic cells [78]. Generally, the mucosa represents the 

main entry gate of pathogens into the organism. Thus, a strong mucosal immune 

response can directly neutralize the pathogen at the site of its entrance into the 

organism [70,79,80].  

In most of the studies, DNA has been encapsulated into microparticles using a 

double emulsion technique, due to the hydrophilicity of the molecules. 

However, to obtain particle sizes suitable for GALT, as well as APC uptake 

high-speed homogenization or sonication had to be used. Compared to peptides 

and proteins, DNA is a relatively stable molecule in organic solvents, however it 

is degraded and looses its bioactivity rapidly when sheared [81,82]. Moreover, 

DNA encapsulated in poly (D,L-lactide-co-glycolide) (PLGA) polymers is 

exposed to an acidic environment created by glycolic- and lactic acid PLGA 

degradation products in the core of the particle [83,84]. Under these conditions, 

DNA is damaged by acid-catalyzed depurination and chain breaks [81]. Several 

methods have been proposed to circumvent the detrimental effects of 

encapsulation, such as i) the complexation of DNA with cationic polymers prior 

to encapsulation [85-87], ii) the homogenization in a frozen state 

(cryopreparation) [82], iii) the addition of buffering excipients [88] and iv) the 

preparation by self-emulsification processes [89]. Walter et al. moreover used a 

spray drying approach to prepare DNA microparticles adding buffering agents 

[86,88]. While the formulation concerns could possibly be solved, the effect of 

DNA release kinetics on the immune response has not been fully elucidated yet. 

The synchronization of the danger signal, practically the injection of 

microparticles, and DNA release were shown to be crucial on the induction of a 

potent immune response [90]. 
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DNA Adsorption on the Surface of Cationic Microparticles  

DNA can be adsorbed onto cationic surfaces, due to the overall negative charge 

arising from anionic phosphate groups, situated every 0.17 nm throughout the 

molecule [91,92]. Therefore, DNA can be associated with pre-formed cationic 

microparticles via electrostatic forces.  

 

Fig.3: Scheme of DNA adsorption on microparticles containing PEI 

(polyethylenimine) as a model cationic agent.  

 

In such a system DNA is only added to the preparation after the particle 

formation. Thus, DNA is not damaged during the formulation by high-speed 

homogenization or sonication. 

Singh et al. successfully used these microparticles for in vivo immunization. The 

cationic surface properties of the microparticles were introduced by CTAB 

(Hexadecyltrimethylammonium-bromide), a cationic detergent, used as an 

external stabilizer [72]. CTAB thereby integrated into the surface of the particle. 

Immunizations against HIV gag and env proteins in small animals and rhesus 

macaques exhibited very promising results [93,94]. This system has different 

advantages over DNA encapsulation, i) DNA is not degraded during the 

formulation process, ii) a supplementary adjuvant effect arises from the CpG 

motives, presented on the surface of the system and iii) the interval between the 

injection of the particulate matter and release, or accessibility of DNA is much 

shorter than for encapsulated delivery systems.  
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NANOPARTICLES 

 

Nanoparticles are characterized by definition, ranging from 1 to 1000 nm, 

however typically most formulations range from 1 to 500 nm in size. It has been 

shown by several groups that the cellular uptake, especially into non-phagocytic 

cells, is facilitated by small particle sizes [95]. Therefore, the preparation of 

nanoparticulate antigen delivery devices was hypothesized to achieve better 

immune reactions. The uptake in both phagocytic, as well as non-phagocytic 

cells, could increase the overall efficiency, as there are two modes of action 

proposed for the induction of DNA immunization. The two pathways are either 

the direct transfection of antigen presenting cells or ‘cross-priming’ by the 

transfection of cells. Similar to the microparticles, antigens can be either 

encapsulated into nanoparticles or adsorbed on the surface of cationic 

nanoparticles.  

 

Preparation Techniques 

 

Nanoparticle formation can be achieved using the same methods used to prepare 

microparticles by adjusting process parameters to obtain smaller particles.  

 

Solvent Evaporation 

It has been described previously that this technique requires on the formation of 

a disperse system composed of an immiscible organic polymer solution within 

an external stabilizer solution. The formulation of nanoparticles, as compared to 

microparticles, requires higher homogenization speeds or sonication, which both 

produce smaller droplets. Other parameters, such as the polymer concentration, 

exhibiting lower viscosities or surface active stabilizers in the external phase, 

facilitate the formation of nanoparticles. Hydrophilic drugs can be encapsulated 
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in nanoparticles using this method [96]; however, the resulting encapsulation 

efficiency of the hydrophilic substances is low, due to an increased diffusion of 

the hydrophilic molecules into the outer stabilizer phase. This diffusion 

increases, due to a delayed precipitation of diluted polymer solutions, a larger 

surface area of the nanoparticles and decreased diffusion barriers. Moreover, the 

high-energy sources used for the homogenization are detrimental to most 

protein, peptide and DNA drugs. 

A modification of the solvent evaporation technique developed, is represented 

by the spontaneous emulsification / solvent diffusion method. In this case, a 

water soluble organic solvent is added to the water immiscible solvent 

containing the polymer [97]. Upon dispersion into the aqueous stabilizer 

solution, the water soluble organic compound diffuses into the aqueous phase. 

This leads to interphase turbulences resulting in smaller droplets and finally to 

the precipitation of the polymer. This method is effective for the encapsulation 

of lipophilic drugs. In contrast, hydrophilic drugs display low encapsulation 

efficiencies, due to their diffusion into the external phase. Several variations of 

this method exist, including the preparation in oil [98]. 

 

Solvent Displacement 

This technique has further evolved from the spontaneous emulsification / solvent 

diffusion method [98]. The polymer is dissolved in a water soluble organic 

solvent, for example acetone, and the solution is injected into a stirred, aqueous, 

stabilizer solution. Upon contact of both solutions, the acetone immediately 

diffuses into the water, creating interphase turbulences. These interphase 

turbulences lead to the rupture of the interphase and to the formation of droplets 

that can further disrupt, resulting in smaller droplets containing the polymer. 

This process continues until precipitation of the polymer occurs. The described 

interfaced turbulences and disruption are known as Marangoni effect [99-101]. 

The turbulences in the interphase occur from convection of acetone as mass 
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transport into the aqueous phase and back into the vicinity of the interphase. The 

rate of acetone diffusion, and thus droplet disruption tendencies are dependent 

on the gradient of the diffusing solvent. As this system is in direct contact with 

water, the encapsulation of hydrophilic drugs generally results in very poor 

encapsulation efficiencies [101]. An advantage however is the quasi absence of 

high-speed homogenization and the absence of chlorated organic solvents.  

 

 

 

Fig.4: Schematic process of nanoparticle formation by solvent displacement 

through the mass transport of the solvent acetone in the water phase. 

 

Salting out 

This technique is based on the competition of compounds for solvents. A highly 

concentrated salt solution, containing a stabilizer, is added to a stirred acetone 

solution containing the polymer. The high salt concentration leads to a phase 

separation. Further addition of the salt solution leads to the reversal of the 

emulsion. The obtained oil-in-water emulsion is added to a larger volume of 

water, which finally results in the precipitation and complete diffusion of the 

organic solvent into the water [102]. Again, this process can only be efficiently 

used for the encapsulation of lipophilic substances.  
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DNA Encapsulation  

The encapsulation of hydrophilic molecules into small hydrophobic polymer 

nanoparticles has been shown to be a rather inefficient process. As a result, 

several groups have encapsulated DNA into hydrophilic molecules such as 

chitosan. This process can be managed using a complexation-coacervation 

technique, where both a chitosan solution at pH 5 and a DNA solution are 

heated to 55°C and mixed together resulting in coacervation [103]. This 

technique circumvents the use of organic solvents, however replaces them with 

other potentially degrading conditions. 

Several research groups have performed immunizations with these systems via 

oral administration. The immunizations resulted in elevated IgG antibodies 

against toxoplasma gonidii. However, a mucosal type of immunity indicated by 

IgA antibodies would be more beneficial [104]. Another group successfully 

modulated a peanut antigen-induced anaphylactic reaction in mice by converting 

high IgE levels to IgA and serum IgG antibodies using the oral allergen-gene 

immunization [105].  

 

DNA Adsorption onto Nanoparticles 

As discussed above, the encapsulation of hydrophilic molecules, such as DNA is 

difficult to achieve when using common nanoparticle preparation methods. 

Therefore, several research groups have adsorbed DNA onto the cationic surface 

of nanoparticles. The ideal ratio of DNA to nanoparticles depends on the 

nanoparticle size and charge. A prerequisite for the association of DNA with the 

particle surface through electrostatic interactions is the introduction of a cationic 

charge onto the nanoparticle surface. This has been achieved using CTAB, as 

was already mentioned for the preparation of cationic microparticles [72,106]. 

CTAB was internalized into the particles to generate a cationic surface of wax 

nanoparticles as well [107]. Other cationic polymers have recently been used for 
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the preparation of nanoparticles for DNA adsorption, e.g. poly (L-lysine) graft-

polysaccharides [108] and chitosan nanoparticles [109]. 

DNA can further be adsorbed onto inorganic, surface-modified nanoparticles. 

The preparation of surface - tethered DNA - gold-dendron nanoparticles [110], 

or amino modified silica nanoparticles [111] has been described. Aggregation 

and flocculation, resulting in impeded endocytosis is a frequently observed 

drawback of colloidal nanoparticle systems onto which DNA has been adsorbed 

[110,112]. Still, the immunizations with DNA nanoparticles of 300 nm have 

shown promising IgG levels, similar to those achieved with the CTAB modified 

microparticles studied by Singh et al. [72]. Cationic wax nanoparticles of 100 

nm containing the endosomolytic agent, DOPE (dioleoyl phosphatidyl-

ethanolamine), have demonstrated better immunization results as compared to 

naked DNA [113]. 

 

CONCLUSION  

Numerous methods have been proposed to increase and modulate immune 

responses of DNA vaccines. Particulate, as well as non-particulate adjuvants 

have been investigated. Protective vaccination in small animal models has been 

successful, however, neither the traditional adjuvants nor new developments 

have successfully led to protection in human trials [18]. Therefore, further 

developments in vaccine adjuvants and certainly the well-advised combination 

of adjuvants, such as particulate adjuvants with non-particulate, 

immunomodulators is necessary to succeed. Recently, it has been proposed that 

the combination of DNA vaccines and protein antigen boosts would result in 

more promising immune responses [94]. However, DNA vaccine adjuvants 

leading to better gene delivery, depot effects, targeting of antigen presenting 

cells and activation of the desired type of immune response have to be further 

improved. The exact mechanism of such systems is not yet fully understood and 
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further investigations will be necessary to continue the progress and 

developments for more effective vaccines  
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AIMS AND SCOPE 

 

 

The great potential of DNA vaccines could not yet be used as efficiently, as 

hoped for in the beginning of DNA vaccine development in the 90’s. Adjuvant 

systems are needed to (1) increase the DNA delivery, (2) achieve targeting to 

antigen presenting cells and (3) induce the activation of the immune response to 

reach protective levels. Although encapsulation of DNA in particulate systems 

has demonstrated promising results, numerous drawbacks of such systems 

persist.  

Firstly, DNA is degraded by high-speed shear forces during the encapsulation 

into polymeric particles.  

Further, DNA is exposed to acidic degradation products, such as lactic and 

glycolic acids of the polymer, which, in consequence, reduce the DNA 

bioactivity.  

Finally, the gene delivery efficiency of most of the particulate systems is low.  

 

We hypothesized that protecting DNA during the encapsulation process would 

increase DNA stability and bioactivity. The stabilizing agents should further 

modulate the DNA release kinetics from the formulation, to reduce DNA 

degradation by acidic polyester degradation products.  

 

Adsorption onto pre-formed particles could circumvent DNA degradation during 

particle formation. As polyethylenimine (PEI) is a very efficient non-viral 

transfection agent we expected that the incorporation of PEI into particles could 

result in highly efficient DNA adsorption onto microparticles and gene delivery.  

 

 



Aims and Scope  39 
_________________________________________________________________________________________________________________ 

 
We hypothesized that the efficiency of DNA delivery systems could be greatly 

increased using polymers with specifically designed properties for that use.  

Hence, to inhibit the acidification of the particle core the polymer should be fast 

degrading, it should ideally protect the DNA during and after the formulation of 

particles and promote gene delivery.  

It was aimed to develop and characterize process parameters for DNA 

encapsulation using such a system. The formulation should then be optimized 

with respect to physico-chemical properties, such as small particle sizes and 

DNA stabilization, as well as efficient endocytosis and high gene delivery 

efficiencies by in vitro investigations.  

Promising formulations should prove their potency as adjuvants for DNA 

immunization in vivo.    
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SUMMARY 

 

Recently, several research groups have shown the potential of 

microencapsulated DNA as adjuvants for DNA immunization [1]. The 

techniques generally used for the encapsulation of hydrophilic molecules into 

hydrophobic polymers are the modified double emulsion method and spray 

drying of water in oil dispersions. We investigated the possibility to encapsulate 

DNA avoiding shear forces which readily degrade DNA during these processes. 

DNA microparticles were prepared with polyethylenimine (PEI) as a 

complexing agent for DNA. Polycations are capable of stabilizing DNA against 

enzymatic, as well as mechanical degradation. Further, complexation was 

hypothesized to facilitate the encapsulation by reducing the size of the 

macromolecule. In this study, we additionally evaluated the possibility of 

encapsulating lyophilized DNA and lyophilized DNA / PEI complexes. For this 

purpose, we used the spray drying and double emulsion techniques. The size of 

the microparticles was characterized by laser diffractometry and the particles 

were visualized by scanning electron microscopy (SEM). DNA encapsulation 

efficiencies were investigated photometrically after complete hydrolysis of the 

particles. Finally, the DNA release characteristics from the particles were 

studied.  

Particles with a size of < 10 µm which represents the threshold for phagocytic 

uptake, could be prepared with these techniques [2]. The encapsulation 

efficiency ranged from 100 % to 35 % for low theoretical DNA loadings. DNA 

complexation with PEI 25 kDa prior to the encapsulation process reduced the 

initial burst release of DNA for all techniques used. Spray-dried particles 

without PEI exhibited high burst releases, whereas double emulsion techniques 

showed continuous release rates. 
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INTRODUCTION  

 

Microencapsulation of hydrophilic bio-molecules has gained increasing interest 

in the past decades as more peptide, protein, oligonucleotide and DNA drugs 

have become available for pharmaceutical use. These bio-molecules are 

frequently characterized by instabilities in physiological environments resulting 

in very short half-lives, especially due to their susceptibility to acidic or 

enzymatic degradation. The encapsulation in biodegradable polymers was found 

to be a promising approach to protect these drugs from nocuous factors. Further, 

the possibility of a controllable and sustained release, resulting in prolonged 

application intervals presents a major advantage. As most of the molecules of 

interest are hydrophilic, the favored method of encapsulation is the modified 

double emulsion method, referred to as “in water drying” [3]. This method 

allows the encapsulation of aqueous drug solutions within a hydrophobic 

polymer. One significant disadvantage of this process is the possible degradation 

of bio-molecules during the homogenization step of particle formation. Several 

groups have investigated alternative methods for homogenization, such as 

cryopreparation, used by Ando et al [4]. In addition to the harsh environment 

created during microparticle preparation, subsequent polymer degradation can 

also induce a destructive environment. For example, a typical feature of 

polyester microparticles is the decrease of the pH in the particle core. This 

results in the deterioration of encapsulated compounds [5,6].  

Hence, we investigated the feasibility of several microencapsulation techniques, 

which, in our opinion, could be candidates for the protective encapsulation of 

bio-molecules, such as DNA. The encapsulation techniques used in this study 

were i) water in oil in water and ii) solid in oil in water techniques (Fig.1), as 

well as iii) spray drying water in oil and iv) solid in oil preparations (Fig.2). The 

effect of DNA complexation with PEI on the encapsulation efficiency and the 

DNA release were investigated in this study. 
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MATERIALS AND METHODS 

 

Microparticle Preparation  

Modified Double Emulsion Method  

Particle formation was performed by a modified double emulsion technique [7]. 

250 µl of an aqueous herring testes DNA (HT DNA) solution 2 mg/ml were 

homogenized in 5 ml methylene chloride solution containing 500 mg of a 

commercial PLGA (50:50), (Resomer® 503, Mw 41,000 g/ mol, specifications 

supplied by the manufacturer, Boehringer Ingelheim, Ingelheim, Germany). A 

scheme of the microparticle preparation is shown in Figure 1. The dispersion 

was formed by primary homogenization at 13,500 rpm for 30 s using an IKA 

10G homogenizer (IKA, Staufen, Germany). This product was immediately 

injected into 400 ml of a stirred 0.1% poly (vinyl alcohol) (PVA) (Mowiol® 3-

83, Mw 14,000; Clariant, Frankfurt) stabilizer solution in ultrapure water at pH 

7. This final dispersion was formed using an IKA 25F homogenizer (IKA, 

Staufen, Germany) at 20,500 rpm for 30 sec. The particle suspension was stirred 

with a propeller mixer at 200 rpm for three hours for methylene chloride 

extraction and evaporation. Microparticles were isolated by centrifugation at 

10,000 rpm for 10 min in a Sorvall high-speed centrifuge (LB-5, Haereus, 

Hanau, Germany). DNA/PEI 25 kDa (BASF, Ludwigshafen, Germany) 

complexes were encapsulated by the same method. The complexes were 

prepared in ultrapure water at a nitrogen to phosphate (N/P) ratios of 5 and 10. 

The PEI/DNA complexes in 250 µl water were dispersed in the organic polymer 

solution for the formation of microparticles. The centrifuged particles were re-

suspended and washed three times and finally redispersed in 2 - 5 ml of 

ultrapure water. The preparation was lyophilized in a Modulyo freeze dryer 

(Edwards, Sussex, UK). Microparticles were stored at 4 °C until further use.  
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Fig.1: Scheme of the modified double emulsion method (W/O/W) and the solid 

in oil in water method (S/O/W). 

 

Solid in Oil in Water  

Solid in oil in water microparticles were prepared by homogenizing dispersions 

of lyophilized HT DNA or PEI/DNA complexes combined with the 

lyoprotectants, glycin (Merck, Darmstadt, Germany) or lactose (Hoechst, 

Frankfurt, Germany)(Fig.1). 

For that purpose, a 0.1% DNA solution containing either 5 % lactose or 5 % 

glycin was lyophilized. In parallel, PEI 25 kDa / DNA complexes at a N/P ratio 

of 5 were lyophilized with a 0.1% DNA content in 5% lactose or glycin aqueous 

solutions. Both formulations were micronized in a mortar for 20 minutes. The 

powders were dispersed in 2 ml of the organic methylene chloride solution 

containing 200 mg RG 503. The amount of the powdered substance was 
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calculated to obtain a theoretical loading of 0.1 % DNA / polymer [m/m]. The 

dispersion was prepared by homogenizing the solids in the methylene chloride 

solution using an IKA 10G homogenizer (IKA, Staufen, Germany) at 13,500 

rpm for 30 seconds. The product was immediately injected into 200 ml of a 

stirred 0.1 % PVA stabilizer solution in ultrapure water at pH 7. The final 

dispersion was formed with an IKA 25F homogenizer (IKA, Staufen, Germany) 

at 20,500 rpm for 30 sec. The particle suspension was finally stirred at 200 rpm 

for three hours with a propeller mixer in order to extract and evaporate the 

methylene chloride. Microparticles were isolated by centrifugation at 10,000 

rpm in a Sorvall high-speed centrifuge LB-5 for 10 minutes. The particles were 

re-suspended and washed three times and redispersed in 2 – 5 ml volume of 

ultrapure water. Lyophilization was performed in a Modulyo freeze dryer. The 

microparticles were stored at 4 °C until further use. 

 

Spray Drying  

Microparticles were formed by spray drying either a water in oil dispersion or a 

solid in oil dispersion using a Büchi 190 laboratory Mini Spray dryer (Büchi, 

Flawil, Switzerland) (Fig.2). For the water in oil method, 1.47 ml aqueous phase 

was used either containing 1 mg/ml of an aqueous DNA solution or 1 mg/ml 

DNA complexed with PEI at a N/P ratio of 5. For the solid in oil method, 

powdered DNA or PEI/DNA complexes containing either lactose or glycin were 

used. Both of these internal phases were dispersed in 39.62 ml of a methylene 

chloride solution of 1.47 g RG 503. The dispersions were formed by high-speed 

homogenization with an IKA 25F homogenizer (IKA, Staufen, Germany) at 

13,500 rpm for 30 seconds. The resulting dispersion was stirred continuously 

and was spray dried immediately using a 0.5 mm outer mixing two-fluid nozzle 

and an inlet temperature of 45-46 °C. The outlet temperature was set to 32-35 °C 

by the pump rate, which was set to the lowest possible velocity.  
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Fig.2: Scheme of the spray drying techniques using a water in oil (W/O) and a 

solid in oil (S/O) technique for DNA encapsulation. 

 

The spray flow, representing the velocity of the air transport in the spray 

cylinder, was set to its maximum with the aspirator settings of 5 / 20, in order to 

reduce the escape of small particles through the cyclon. Particles were collected, 

lyophilized for remaining water elimination and stored at 4°C until use.  

 

Particle Size 

The microparticle size was analyzed by laser diffractometry in a Mastersizer X 

(Malvern Instruments, Germany) equipped with a magnetically stirred cell. 

Measurements were carried out with a 100 mm lens, covering a particle size 

range of 0.5 – 180 µm. The samples were diluted with 0.1% Tween 20 in 

ultrapure water. For data analysis the refractive index of ultrapure water (1.33) 
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was used. The calculation of particle sizes was carried out using the standard 

modus of the Malvern software according to the theory of Mie. The weighted 

average of the volume distribution [4.3] was used to describe the particle size. D 

[4.3] is defined by 
�

nd4 / 
�

nd3 ( n = number of particles in each area of particle 

sizes, d = medium particle diameter in the area of particle sizes). All 

measurements were carried out in triplicate. 

 

Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was performed using a Hitachi S 510 

(Hitachi, Tokyo, Japan) in vacuum at a voltage of 25 kV after gold sputter 

coating using an Edwards/ Kniese Sputter Coater S150 (Edwards, Germany).  

 

DNA Encapsulation Efficiency 

DNA encapsulation efficiency was measured by complete hydrolysis of the 

weighted particles in 1 ml 0.4 N NaOH. The concentration of DNA was 

measured photometrically using a Shimadzu UV-160 (Shimadzu, Duisburg, 

Germany) at a wavelength of 260 nm. Concentrations were calculated from 

calibration curves of degraded DNA.  

 

DNA Release 

DNA release was studied by suspending triplicates of 5- 10 mg of microparticles 

exactly weighted in 1 ml of ultrapure water at pH 7. Water was chosen to 

circumvent solubility problems of DNA in buffers containing divalent ions. The 

samples were incubated at 37°C and agitated once a day. For DNA release 

analysis, the sample triplicates were centrifuged at 2000 rpm for 5 min in an 

Eppendorf 5415C centrifuge (Wesseling, Germany), according to Gebredikan et 

al. [8]. The supernatant was analyzed for DNA at 260 nm. 
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RESULTS AND DISCUSSION  

 

Microparticle size for gene delivery to antigen presenting cells or to the mucosal 

associated lymphocyte tissue is limited to 10 µm, which represents the threshold 

for phagocytic uptake [2]. Therefore, microparticles for this purpose have to be 

smaller that those usually formulated for controlled drug delivery [9]. In most 

cases, this implies the use of high-speed shear forces to better disrupt the 

aqueous phase, as well as the oil droplets. As a consequence, the effectiveness of 

encapsulation is reduced resulting from an increased diffusion of the hydrophilic 

compound into the external phase. Other possibilities to reduce the particle size, 

such as the use of a less viscous polymer solution, higher concentrations of 

stabilizers in the external phase cannot prevent this phenomenon [10,11]. 

Therefore, we investigated several methods of microparticle preparation with the 

aim of formulating microparticles <10 µm exhibiting efficient drug loadings and 

sustained drug release profiles.  

The size of the microparticles obtained by spray drying were similar, 

independently of the formulation variation in this study, ranging from 2.55 µm 

to 8,15 µm (Table 1). This is in accordance with the literature [12,13]. The 

particle size mainly depends on the viscosity of the organic phase, the boiling 

point of the organic solvent and the geometry of the nozzle [11]. 

W/O/W microparticles exhibited particle sizes smaller than 10 µm making them 

suitable for phagocytosis. In contrast, S/O/W microparticles exhibited diameters 

larger 10 µm. The microparticles prepared using solid in oil (S/O) techniques 

did not display increased diameters, although the micronized solid components 

were in part larger than the polyester particles (Fig.3). These larger solid 

fragments however did not appear to influence the size measurement. This could 

either be attributed to the dissolution of uncoated particles in the aqueous 

medium during laser diffractometry or, alternatively, this phenomenon could be 

attributed to the very low amount of the larger, polymer coated particles. 
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Microparticle  Method Size [µm] Content [%] 

DNA 0.1 % W/O 4.74 ± 0.15 0.104 ± 0.011 

DNA/PEI  0.1 % W/O 8.15 ± 1.09  0.111 ± 0.011  

DNA 1 % W/O 5.53 ± 0.42 0.665 ± 0.011 

DNA/PEI (5) 1 % W/O 2.87 ± 0.09 0.681 ± 0.016 

DNA/PEI (10) 1 % W/O 5.15 ± 1,54 0.673 ± 0.048 

DNA / glycin 0.1% S/O 3.32 ± 0.03 0.104 ± 0.011 

DNA / lactose 0.1% S/O 2.55 ± 0.18 0.049 ± 0.005 

DNA/PEI / glycin 0.1% S/O 3.97 ± 0.01 0.105 ± 0.014 

DNA/PEI / lactose 0.1% S/O 4.03 ± 0.17 0.035 ± 0.004 

DNA/PEI / glycin 1% S/O 6.68 ± 0.82 0.683 ± 0.027 

DNA 0.1% W/O/W 8.61 ± 2.87 0.086 ± 0.001 

DNA/PEI (5) 0.1% W/O/W 4.09 ± 1.01 0.112 ± 0.007 

DNA/PEI (10) 0.1% W/O/W 6.09 ± 0.66 0.085 ± 0.004 

DNA / glycin 0.1% S/O/W 15.84 ± 2.89 0.048 ± 0.008 

DNA / lactose 0.1% S/O/W 16.55 ± 1.88 0.107 ± 0.007 

DNA/PEI / glycin 0.1% S/O/W 7.44 ± 0.03 0.085 ± 0.003 

DNA/PEI / lactose 0.1% S/O/W 13.96 ± 8.73 0.064 ± 0.01 
 

Table 1: Characterization of microparticles formulated using the four 

preparation techniques described. Particle size was measured by laser 

diffractometry in triplicate and described by the weighted average of the volume 

distribution [4.3] as average and standard deviation. HT DNA content was 

assessed by photometric measurement at 260 nm after particle hydrolysis in 0.4 

N NaOH and presented as average and standard deviation. 
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Fig.3: SEM micrographs of 0.1% DNA loaded RG 503 (PLGA) particles. (a) 

PEI/DNA complexes lyophilized in a 5 % glycin solution. (b) S/O spray dried 

microparticles with DNA lyophilized in glycin, (c) S/O spray dried 

microparticles of PEI/DNA complexes lyophilized in glycin, (d) W/O 1% DNA 

spray dried particles with PEI/DNA complexes in solution. (e) W/O/W particles 

of DNA and (f) W/O/W particles of PEI/ DNA complexes. 

a b 

d c 

e f 
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The SEM micrographs showed large, non-spherical components mixed with the 

microparticles. This finding indicates an incomplete incorporation of the solid, 

due to insufficient size reduction. Other methods of particle size reduction, such 

as stirred ball mills would potentially be more appropriate. We considered that 

particles may have also been disrupted by the high-speed homogenization 

process. All other microparticle sizes measured by laser diffractometry were 

confirmed by SEM. Furthermore, SEM revealed microparticles with regular 

shapes and a smooth surfaces. 

The DNA content of all preparations was assessed by complete hydrolysis of the 

particles (Table 1). A low theoretical drug loading of 0.1%, resulted, as 

expected, in efficient encapsulation of most of the formulations, using the water 

in oil in water (W/O/W) technique [14]. The S/O/W preparations demonstrated 

encapsulation efficiencies ranging from 64 % of theoretical drug loading to 

complete encapsulation. However, the S/O/W-glycin-DNA particles had low 

encapsulation efficiencies. This was attributed to the incomplete encapsulation 

of the lyophilized components. The microparticles formulated by spray drying 

exhibited high drug loading efficiencies with the exception of the lactose solids. 

  

The DNA release was investigated for all preparations and presented as the 

fraction of DNA released into the medium. The release properties of W/O spray 

dried particles depended, to a great extent on the formulation parameters. For 

example, the microparticles prepared with 1% theoretical DNA loading released 

the complete dose within hours (Fig.4). In comparison, microparticles with a 

0.1% DNA theoretical loading exhibited an initial burst of approximately 40% 

and a slow release, reaching a maximal level of 70 %. High burst effects of 

small spray dried microparticles prepared from similar polyesters as used in this 

study have been previously reported [15,16]. Interestingly, the complexation 

with PEI 25 kDa resulted in an 80% retention of the DNA within the particle 

formulation.  
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Fig.4: HT DNA release from RG 503 microparticles using a water in oil spray 

drying technique.  DNA 0.1%; �  PEI/DNA 0.1% (N/P= 5); �  DNA 1%; �  PEI 

/DNA 1% (N/P= 5) �  PEI/DNA 1% (N/P = 10) 

 

This was surprising, as it was assumed that polymer degradation would be 

accelerated by PEI, due to a basic catalyzed polyester hydrolysis [17].  

One possible explanation may be the enhanced dispersion of the DNA/PEI 

complex in the polymeric matrix, due to the lower hydrophilicity of the complex 

or due to its reduced size. Another reason for the low release could be the 

aggregation of the DNA complexes in the particle core, which could arise from 

the swelling of PEI following its protonation in the acidic core of the particle. 

Due to strong electrostatic interactions of the complex, DNA will not get 

separated from PEI and retained in the particles.  

The S/O spray dried formulations with a theoretical DNA loading of 0.1% were 

compared to the 0.1% W/O particles (Fig.5). Both the lactose and glycin 

containing DNA microparticles released DNA instantly. This effect was 

explained by the high content of water soluble components, comparable to the 

1% DNA W/O formulation.  
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Fig.5: HT DNA release from RG 503 microparticles prepared by a solid in oil 

spray drying technique with a theoretical DNA loading of 0.1%. �  DNA lactose; �  PEI/DNA lactose; �  DNA glycin; ∆  PEI/DNA glycin;  DNA (W/O); �  

PEI/DNA (W/O) 

 

The high content of small, water soluble molecules resulted in the formation of 

large pores in the particle followed by an immediate release of the DNA [18]. 

The formulations with DNA/PEI complexes, in contrast, again exhibited slower 

DNA release profiles. The lactose DNA/PEI formulation showed a faster release 

as compared to the glycin containing particles. This could be explained by a 

lower interaction of the sugar, lactose, with the DNA/PEI complex, as compared 

to that with the amino acid. 

The S/O/W and W/O/W microparticles were characterized by relatively constant 

release kinetics, exhibiting low burst releases of approximately 20% (Fig.6). The 

W/O/W formulations, either DNA alone or complexed with PEI, were 

characterized by very slow release profiles. This can be explained by the good 
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polymer shell formation over of the inner water droplets. Surprisingly, the 

glycin-S/O/W particles exhibited a faster release of the complexed DNA 

compared to DNA alone with the amino acid.  

Although, these release kinetics appear to be the most suitable, the particle sizes 

of these formulations were larger than the phagocytosis threshold.  

 

Fig.6: HT DNA release of RG 503 microparticles using a solid in oil in water 

encapsulation method and the water in oil in water method for 0.1% DNA 

encapsulation. �  DNA lactose; �  PEI/DNA lactose; �  DNA glycin; ∆  PEI/DNA 

glycin; + PEI/DNA W/O/W; x DNA W/O/W 

 

CONCLUSIONS  

 

In this study we investigated potential techniques for DNA microencapsulation 

and possibilities to circumvent shear forces by lyophilizing the unstable 

component prior to its exposure. Still, the size of solid particles has to be further 

reduced before homogenous particles and efficient encapsulation could be 
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achieved. The concentration of the lyoprotectants should be reduced to decrease 

the amount of water soluble components in the spray dried formulation in order 

to allow a higher drug loading. In this study, PEI 25 kDa obviously acted as 

retardation agent, in contrast to results reported by de Rosa et al. [17], who 

observed increased oligonucleotide release levels after PEI complexation. The 

extremely high N/P ratios (N/P 15 and 45) used in this study could be one 

explanation for this discrepancy. This could increase the DNA release, possibly 

by inducing pore formation or catalysis of polyester degradation. Further the 

decomplexation rate of oligonucleotides compared to DNA is considerably 

higher. Although the S/O/W and the W/O/W formulations exhibited the most 

regular release properties, the S/O formulations showed the greatest potential to 

modulate the release kinetics of DNA by allowing the addition of complexing 

agents and lyoprotectants.  
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CATIONIC MICROPARTICLES CONSISTING OF 

POLY (LACTIDE-CO-GLYCOLIDE) AND 

POLYETHYLENIMINE AS PARENTERAL CARRIERS 

SYSTEMS FOR DNA VACCINATION 
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SUMMARY 

Microparticles were formulated by blending the polymer, poly (lactide-co-

glycolide) (PLGA) (50:50), with different amounts of cationic agents, either PEI 

25 kDa (polyethylenimine) or CTAB (hexadecyltrimethylammonium-bromide). 

The aim was to create microparticles with cationic surface characteristics for 

DNA adsorption. Microparticles formulated with 10% PEI exhibited a highly 

positive ζ-potential, small particle sizes, in contrast to particles prepared with 

CTAB, which showed highly aggregated structures in the scanning electron 

micrographs. PEI 10% microparticles very efficiently adsorbed DNA and 

protected DNA from enzyme degradation.  

Microparticles with up to 10% PEI did not exhibit LDH levels considered as 

toxic, whereas CTAB particles showed higher membrane toxicities. Gene 

delivery efficiencies were assessed via quantification of the reporter gene, 

luciferase, and compared to PEI/DNA complexes. The PEI formulations with 

10% and 50% PEI exhibited elevated transfection efficiencies. The mechanism 

of gene delivery to non-phagocytic cells was studied via covalent fluorescence 

labeling of both the DNA and PEI by confocal microscopy. In vivo 

immunizations were performed with plasmids encoding Listeria monocytogenes 

antigens adsorbed onto PEI 10% microparticles. The efficiency was tested by 

the challenge with an i.v. injection of a lethal dose of the Listeria 

monocytogenes. Mice immunized with three booster injections of 10 µg DNA 

adsorbed onto the particle formulation exhibited a slightly better protection than 

naked DNA. 

 

 
 
 



Adsorption of DNA onto cationic Microparticles 61 
_________________________________________________________________________________________________________________ 

 
INTRODUCTION  

 

Vaccines can be considered to be one of the most effective developments in 

modern medicine. A considerable drawback of non-live vaccines, however, is 

their lack of effectiveness against intracellular and viral pathogens, such as 

tuberculosis or HIV. A strong immune response against these pathogens 

depends on the induction of a potent cellular immune response and cytotoxic T-

lymphocyte (CTL) reactions. During the past decade, DNA vaccination has been 

increasingly employed in an attempt to achieve simpler, safer, and more 

effective CTL reactions. DNA vaccination involves the inoculation with an 

expression vector that encodes an antigenic protein. The encoded antigen is then 

produced in situ and elicits an immune response [1]. Several studies have shown 

that the induction of more efficient immune responses from DNA vaccination 

could be generated by the use of adjuvant delivery systems [2]. More 

specifically, the adsorption of DNA on the surface of pre-formed cationic 

microparticles resulted in remarkable immune responses [3]. The cationic 

surface charge of these microparticles was obtained by the incorporation of a 

cationic detergent, CTAB, into the surface of the microparticles during their 

preparation. CTAB, was primarily used for DNA isolation from bacteria and 

plants by precipitation [4].  

A microparticulate DNA delivery system based on the adsorption of DNA onto 

its surface has the clear advantage of i) circumventing the degrading effects on 

DNA during particle preparation ii) facilitating a rapid delivery of DNA to 

targeted antigen presenting cells and iii) providing an additional adjuvant effect 

by the presence of bacterial CpG units of the plasmid on the surface of the 

delivery system.  

In the present study, we investigated the potential of PEI to form cationic 

microparticles by direct internalization of the polycation into the PLGA matrix. 

CTAB was also directly mixed with the PLGA (RG 502H) solution. PEI 25 kDa 
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is one of the most powerful non-viral transfection agents used in vitro and in 

vivo [5]. Thus, we hypothesized that the adsorption efficiency and the gene 

delivery would be increased with such a system. The microparticles were 

characterized with regard to their physicochemical properties, their stabilizing 

effects on DNA integrity, in vitro characterization of the membrane toxicity and 

gene delivery. Finally, the most effective in vitro delivery system was used for 

in vivo immunization against the intracellular bacterium, Listeria 

monocytogenes, to assess the induction of a protecting immune response. 

 

MATERIALS AND METHODS 
 

Materials and DNA 
The commercially available poly(lactide-co-glycolide) (PLGA) (50:50), Resomer® 502H, 

(Mw 15,200, uncapped end-groups specifications supplied by the manufacturer) and PLGA 

(50:50), Resomer® 505 (Mw 80,000, specifications supplied by the manufacturer) were 

purchased from Boehringer Ingelheim (Ingelheim, Germany). Partially hydrolyzed 

poly(vinyl-alcohol) (PVA) (Mowiol® 3-83, Mw 14,000) was purchased from Clariant 

(Frankfurt, Germany). Polyethylenimine (PEI) 25 kDa, was purchased from BASF 

(Ludwigshafen, Germany) and stored under exclusion of humidity. Hexadecyltrimethyl-

ammonium-bromide (CTAB) was purchased from Fluka (Buchs, Germany). Plasmid DNA, 

pLuc-CMV, a luciferase encoding plasmid, preceded by a nuclear location signal under the 

control of a CMV promoter, was kindly provided by Chiron (Emeryville, Ca) and amplified 

by PlasmidFactory, (Bielefeld, Germany). All pLuc-CMV probes used were from one 

endotoxin free batch in TE-Buffer pH 8 and stored at – 80°C until use. All other chemicals 

were of analytical grade.  
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Plasmid DNAs encoding p60 named pCiap, listeriolysin O (LLO) named pClisA, and non-

hemolytic, mutant LLO named pChly492 were constructed by Fensterle et al. and effectively 

used for DNA vaccination by gene gun immunization [6,7].  Briefly, wild-type LLO gene and 

p60 gene of Listeria monocytogenes without the bacterial signal sequence were amplified by 

polymerase chain reaction (PCR) and inserted into EcoRI/XbaI site and XhoI/XbaI site of pCI 

mammalian expression vector (Promega, Madison, WI, U.S.A.), respectively. L. 

monocytogenes strain BUG337 encoding an LLO version with a single amino acid (a. a.) 

exchange at the a. a position 492 (Trp-492-Ala) was kindly provided by Dr. P. Cossart [8]. 

The mutant LLO gene was amplified from genomic DNA of L. monocytogenes strain 

BUG337 by PCR, and integrated into XhoI/XbaI site of pCI vector. 

 

Particle Preparation  
Microparticles were prepared by a modified double emulsion procedure under aseptic 

conditions. Briefly, the cationic agent (PEI/CTAB) was dissolved in methylene chloride and 

dispersed in a PLGA solution in methylene chloride resulting in a final volume of 10 ml. The 

amount of cationic agent added to the polymer was specified as % of the PLGA mass. PBS 

buffer of the internal phase was added to the CTAB / methylene chloride solution for 

complete dissolution. Aside from the incorporation of cationic agents into the organic 

polymer solution, microparticles were also prepared in aqueous solutions containing CTAB as 

stabilizer. Microparticle preparation was performed by initial homogenization of 1 ml PBS 

within the polymer solution at 13,500 rpm for 30 s, using an IKA 10G homogenizer (IKA, 

Staufen, Germany). The preparation was immediately injected into 50 ml of a stirred 

stabilizer solution (PVA 0.5% or CTAB 0.5%) and homogenized at 20,500 rpm for further 30 

s, using the IKA 25F homogenizer. The particle suspension was stirred at 200 rpm for 

methylene chloride evaporation over 12 hours in a laminar air flow. Particles were isolated by 
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centrifugation at 4°C in a Sorvall high-speed centrifuge (LB-5, Haereus, Hanau, Germany) at 

6,000 rpm for 20 min. The pellet was re-suspended and washed three times. A sterile 5% 

sucrose solution in distilled water was used, to wash the particles and for the final 

lyophilization in a Beta II lyophilizer (Christ, Osterode, Germany). Particles were stored at 

4°C until use. 

 

Particle Size 
The particle sizes were analyzed by laser diffractometry using a Mastersizer X (Malvern 

Instruments, Herrenberg, Germany) in a stirred cell, with a volume of 15 ml. The 

measurements were carried out with a 100 mm lens, covering a particle size range of 0.5 – 

180 µm. The samples were diluted in ultrapure water for measurement within the required 

range of obscuration. For data analysis the refractive index of ultrapure water (1.33) was used. 

The calculation of particle size was carried out using the standard modus of the Malvern 

software according to the theory of Mie. The weighted average of the volume distribution 

[4.3] was used to describe the particle size. D [4.3] is defined by Σnd4 / Σnd3 ( n = number of 

particles in each area of particle sizes, d = medium particle diameter in the area of particle 

sizes). All measurements were carried out in triplicate. 

 

Scanning Electron Microscopy 
Scanning electron microscopy (SEM) was performed with a CamScan 4 (Cambridge, UK) 

after gold sputter coating using an AUTO 306 (Edwards, UK). High resolution transmission 

electron microscopy imaging (TEM) was performed after cryo-sectioning of the nanoparticles 

with a JEM 3010 (Jeol, Japan) on a collodium grid.  
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Zeta Potential Measurement 

ζ-potential measurements were carried out using the Zetasizer 4 (Malvern Instruments, 

Germany) by electrophoretic light scattering after re-suspending the lyophilized particles in 

low ionic strength buffers (I=0.01) with varying pH from 3 to 8. Samples were diluted to a 

defined count rate interval of 400 – 800 kcps. Electrophoretic light scattering was performed 

in a AZ 104 cell. Average ζ-potential values were calculated from the data of 3 runs. The 

instrument was calibrated with a Malvern –50 mV transfer standard. 

 

DNA Adsorption Efficiency 
DNA was adsorbed onto the microparticles using a 0.5 mg/ml DNA solution to obtain a 

theoretical DNA loading of 1%. The particle suspension containing the DNA resulted in a 

final volume of 400µl. The particles were centrifuged at 10,000 rpm in an Eppendorf 5415C 

centrifuge (Wesseling, Germany) for 10 min after one hour of incubation. The adsorption 

efficiencies were calculated from the remaining DNA in the supernatant by UV measurement 

in a Shimadzu UV-160 (Shimadzu, Duisburg, Germany) at 260nm.  

 

Lactate Dehydrogenase Release 
The release of lactate dehydrogenase (LDH) was performed to characterize the membrane 

toxicity of the microparticle formulations. L929 mouse fibroblasts (DSMZ, Braunschweig, 

Germany) were seeded at a density of 50,000 cells per 2 ml in 12 well culture dishes (Nunc, 

Wiesbaden, Germany) and grown for 24 h prior to the incubation with the particles, according 

to the supplier’s recommendations. The cells were washed twice with PBS buffer (0.1 M, pH 

7.4). Subsequently, the cells were incubated with 2 ml of a microparticle suspension 

containing 1 mg particles /ml PBS buffer. Blank PBS buffer and a 0.1 % Triton-X 100 

solution in PBS buffer were used as controls. 100 µl samples were withdrawn after 180 min 
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and processed according to the manufacturer’s instructions (Sigma Diagnostics). All sample 

values were normalized relative to Triton-X values and expressed as relative LDH release in 

[%]. Each sample was performed in triplicate. The differences of all population means were 

analyzed by a two-sample t-test and one-way ANOVA at the 0.05 level. 

 

DNase Stability 
DNA stability was studied using 100 µl aliquots of the microparticle suspensions containing 1 

µg pDNA. The probes were incubated with 12.25 µl DNase buffer 10x (1M Na-acetate, 50 

mM MgCl2) and 2.5 µl DNase I solution (DNase I Boehringer Mannheim, Germany) (50 I.U. 

/ ml in 50 mM Tris-HCl pH 8, 100 mM KCl). The reaction was terminated by adding 5.7 µl 

EDTA solution (0.5M, pH8). The probes were freeze-dried and stored at –20°C until use. At 

the time of DNA analysis, the dried probes were incubated for one hour in 10 µl TBE-buffer 

(89 mM Tris, 89 mM boric acid, 2 mM Na2EDTA) containing 50 I.U heparin (Serva, 

Heidelberg, Germany). Further, 10 µl Roti-phenol® (Roth, Karlsruhe, Germany) were added 

and incubated for additional 2 hours at room temperature. Before the application onto a 1% 

agarose gel 5 µl glycerol were added to the emulsion. Untreated DNA was applied to the gel 

as a reference. Electrophoresis (Blue Marine 200, Serva, Germany) was carried out at 100 V 

for two hours in TBE-buffer. Ethidium bromide was included in all gels to visualize the DNA 

localization by photography on a UV transilluminator. 

 

In Vitro Transfection Efficiency 
L929 mouse fibroblasts (DSMZ, Braunschweig, Germany) were plated 24 h before 

nanoparticle incubation at a concentration of 50,000 cells / 2 ml in DMEM medium 

supplemented with 10% fetal calf serum (FCS) in 12 well plates. Immediately prior to 

transfection, the medium was removed and replaced by fresh DMEM containing 10% FCS. 
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Aliquots of the microparticle suspension containing 4 µg pLuc-CMV were added to the 

medium. The cell culture medium was removed after 4 hours and replaced with fresh medium 

containing 10% FCS. Cells were harvested after 48 h and washed with PBS pH 7.4 twice, and 

lysed in cell culture lysis reagent (Promega, Mannheim, Germany). Luciferase content was 

assessed using a commercial luminescence kit (Promega) and a Berthold Sirius luminometer 

(Berthold, Pforzheim, Germany). RLUs were converted into luciferase content by calibration 

with recombinant luciferase (Promega). Protein concentrations were determined by a 

modified BCA assay [9]. Transfection experiments were performed in triplicate and presented 

as the mean of the luciferase / protein ratio [ng/mg]. 

 

Cellular Uptake of DNA Nanoparticles 
For confocal microscopy experiments, a Zeiss Axiovert 100M microscope coupled to a Zeiss 

LSM 510 scan module was used. Plasmid DNA was fluorescently labeled with a Cy-3 

rhodamin dye (Mirus, Madison, Wisconsin) according to the manufacturers 

instructions.  

The RG 502H+PEI 10% microparticles were fluorescently labeled by covalent 

coupling with Oregon green 488 (Molecular Probes, Leiden, The Netherlands). 

Briefly, the dry particles without lyoprotectant were re-suspended in 1 ml 

ultrapure water at pH 8. 10 µl of Oregon green in DMSO was added to the 

suspension and stirred for one hour with the particles at room temperature. The 

suspension was centrifuged 10 min at 3000 rpm in a 5415C Eppendorf 

centrifuge at 4°C and washed 4 times with ultrapure water. The resuspended 

particles were freeze-dried and stored at –20°C until further use.  

DNA was adsorbed according to the conditions used for the transfection assays. 

Briefly, Cy-3 labeled DNA was mixed with the original DNA (1:1) and was 

incubated for one hour with the Oregon green labeled particle suspension at a 

DNA / particle ratio of 1:100 [m/m].  



Adsorption of DNA onto cationic Microparticles 68 
_________________________________________________________________________________________________________________ 

 
L929 cells were seeded at a density of 20,000 cells per well in 8 well chamber 

slides (Lab Tek, Nunc, Wiesbaden, Germany). After 24 hours the medium was 

removed. Aliquots of the resulting nanoparticle suspension containing 0.8 µg 

DNA were added to new medium containing 10% FCS. The cells were 

incubated with the nanoparticles for 5, 15, 30, 60 and 180 minutes. The medium 

was removed and cells were washed 4 times with PBS buffer. Fixation of cells 

was performed by incubation with 400 µl paraformaldehyde solution 3% in PBS 

for 20 minutes. The cells were washed 4 times with PBS and incubated for 

additional 20 minutes with a 0.1 mg/ml DAPI (4',6-diamidino-2-phenylindole, 

dihydrochloride, Molecular Probes, Leiden, The Netherlands) solution in PBS 

for nucleus staining. For excitation of the blue DAPI fluorescence an Enterprise 

UV laser with an excitation wavelength 364 nm was used. Excitation of the 

green fluorescence of 5-DTAF labeled polymer was obtained using an argon 

laser with an excitation wavelength of 488 nm and for excitation of red 

fluorescence of the DNA a Helium-Neon laser with an excitation wavelength of 

543 nm was used. Images were recorded in multitracking mode using a longpass 

filter of 385 nm for DAPI, a longpass filter of 505 nm for Oregon Green and a 

longpass filter of 560 nm for rhodamine. 
 
In Vivo Immunization 

Female BALB/c mice (6-8 week-old) were purchased from the Federal Institute 

for Risk Assessment, Berlin, Germany and maintained under specific-pathogen-

free conditions in the animal facilities of the Federal Institute for Risk 

Assessment, Berlin, Germany, or in the animal facilities of the Max-Planck-

Institute for Infection Biology, Berlin, Germany. All animal experiments were 

performed in accordance with German and institutional animal care guidelines. 

Listeria monocytogenes EGD strain Sv 1/2a, a laboratory wild-type strain was 

originally obtained from G. B. Mackaness. The bacteria were grown in Luria-

Bertani (LB) broth (Difco, Heidelberg, Germany) without any antibiotics to an 
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OD600 of 0.6, harvested by centrifugation, and stored as stock in final 10% 

glycerol in LB at –80ºC. The next day, one stock was thawed, plated onto LB 

agar plates, and colony-forming units (CFU) were assessed. 

Sex- and age-matched BALB/c mice in groups of six mice were immunized with 

10 or 100 µg of naked DNA or with 10 µg of DNA adsorbed on 1 mg of the 

microparticle formulation. Immunizations were performed 3 times at 3 weeks 

intervals by intramuscularly (i.m.) injection of 100µl.  Microparticles were 

prepared under aseptic conditions. The freeze dried particles were re-dispersed 

with distilled water and incubated with the DNA constructs over 12 hours at 

4°C.The vaccination protocol was optimized by Fensterle et al.. As positive 

control, sublethal dose (0.1XLD50) of L. monocytogenes EGD strain was 

injected intravenously (i.v.) into mice at the same time as the prime vaccination.  

Mice vaccinated with DNA encoding L. monocytogenes genes were challenged 

i.v. with lethal dose (5XLD50 or 10XLD50) of L. monocytogenes strain EGD in 

100µl of sterile PBS, at day 0, 3 weeks after the last boost. Survival was 

checked daily until day 10 post infection. 

 

RESULTS AND DISCUSSION 
 

Multiple strategies of adjuvant systems have been investigated for the effective 

use of DNA vaccines. One of them represents particulate systems, which have 

been intensively studied by several groups [3,10,11]. The overall aim of 

vaccinologists using particulate systems has been to obtain antigen presentation 

via the (major histocompatibility) MHC I pathway, providing new possibilities 

to act against intracellular pathogens and tumors. With this objective, diversified 

processes for the formation of biodegradable microparticles were studied, such 

as the encapsulation of DNA by modified double emulsion methods [11], spray-

drying or the adsorption of the DNA on cationic microparticles [3,12]. It has 
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become clear that the encapsulation and further a controlled release of the large 

and hydrophilic DNA in a bioactive form was a delicate ambition [13]. 

Moreover, the influences of the release kinetics of DNA from the microparticles 

on the immune response have not yet been fully elucidated.  

However, recently it was shown that the reduction of the interval between the 

emergency of the danger signal, induced by the injection of the particulate 

matter, and DNA release is crucial for the induction of an immune response 

[14]. T achieve this, we developed a new type of cationic microparticles by 

incorporation of PEI 25 kDa into the biodegradable polymeric matrix. PEI 25 

kDa is a well known and highly efficient DNA transfection agent [5]. These 

microparticles were prepared by a modified double emulsion procedure. A 

summary of microparticle characteristics is shown in Table 1. ξ-potential 

measurements were performed to evaluate the capability of DNA adsorption via 

ionic interactions on the microparticle surfaces.  

This study demonstrated that only the incorporation of PEI into the polymer was 

able to produce positive surface charges.  

Particles prepared with the plain polyester RG 502H, using CTAB in the 

external phase had low positive ξ-potentials. RG 505 polymer particles exhibited 

a slight negative ξ-potential, when prepared in CTAB. The ξ-potentials of 

particles prepared with PVA as an external stabilizer were negative, irrespective 

of the PLGA used. The blending of the polyester matrix with increasing 

concentrations of PEI led to the reversal of charge from - 22.9 mV to + 47.3 

mV. For example, particles prepared with 1 % PEI still had a negative ξ-

potential which reversed to positive values when particles were prepared with a 

5 % PEI content. 
The incorporation of PEI into the polymer matrix was possible due to the solubility of PEI in 

methylene chloride, the solvent used for microparticle formulation. A partition coefficient of 

2.9 : 1 (water : methylene chloride) of PEI 25kDa was determined in the two solvents, water 

and methylene chloride. 
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Polymer Cation Stabilizer[a] Size [µm] ξ - Potential 
[mV] 

Efficiency 
[%][b] 

RG 505   CTAB  37.6 ±  39.9 - 4.40 ± 0.4 33.7 ± 9.5 

   PVA 3.29 ±  3.2 - 24.6 ± 0.7 1.53 ± 2.2 

RG 502H  CTAB 30.5 ±  14.2 5.23 ± 0.1 11.3 ± 2.5 

  PVA 3.82 ±  0.8 - 16.7 ± 0.5 12.0 ± 9.8 

 PEI 0.1% PVA 13.4 ±  1.0 - 22.9 ± 1.0 16.0 ± 1.6 

 PEI 0.5% PVA 0.93 ±  0.2 - 23.0 ± 0.3 18.1 ± 3.1 

 PEI 1% PVA 17.4 ±  9.0 - 17.2 ± 0.8 10.4 ± 1.8 

 PEI 5% PVA 6.94 ±  1.3 17.0 ± 2.8 10.9 ± 1.0 

 PEI 10% PVA 1.39 ±  0.2 47.3 ± 1.2 96.3 ± 4.7 

 PEI 10% CTAB 1.44 ± 0.6  17.7 ± 0.5 96.7 ± 4.0  

 PEI 50% PVA 15.2 ±  2.1 39.2 ± 0.7 31.3 ± 1.5 

 CTAB 0.1% PVA 17.1 ±  3.8 - 22.7 ± 0.3 18.7 ± 13.1 

 CTAB 1% PVA 22.0 ±  1.4 - 19.0 ± 1.5 18.2 ± 13.6 

 CTAB 10% PVA 56.0 ±  15.1 - 13.9 ± 0.8 13.0 ± 1.9 

 CTAB 50% PVA 63.1 ±  10.7 - 14.7 ± 0.3 24.1 ± 6.9 
 
 
Table 1: Characterization of microparticles prepared by blending PLGA with 

cationic components.  
[a] 0.5% PVA or CTAB in distilled water. 
[b] DNA loading efficiency using a 0.5 mg/ml DNA solution in distilled water for 

incubation with the microparticles suspended in distilled water with a resulting 

theoretical DNA loading of 1%.  
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Thus, a diffusion of the cationic agent from the methylene chloride solution into 

the aqueous stabilizer solution was expected. This, however, did not result in the 

complete redistribution of PEI into the external aqueous phase, as demonstrated 

by the highly positive ξ-potential of microparticles prepared with 10% PEI. 

Another cationic agent, CTAB, was used to prepare microparticles with the aim 

to create a cationic surface for DNA adsorption. In contrast to the PEI blend 

particles, these microparticles did not exhibit positive ξ-potentials. Blending 

PLGA with CTAB in concentrations from 0.1 % to 50 % only led to an increase 

in the ξ-potential of only –22.7 to –14.7 mV. This could possibly be explained 

by a different arrangement of the cationic molecule in the biodegradable 

polymer matrix. CTAB was soluble in methylene chloride to some extent. The 

partition coefficient of CTAB in methylene chloride and the aqueous solution 

was determined to be 1 : 2.32 (water : methylene chloride). We assumed, that 

CTAB induced the formation of reversed micelles when the aqueous medium 

(PBS buffer) was added to the organic solution [15]. In consequence CTAB 

would have accumulated in the water/methylene chloride interphase, orienting 

the polar head group into the core of the micelle. This is a reasonable 

assumption, since the CMC of CTAB (21.1 mg/ml) was exceeded in the 

formulation. Taking into account the highly negative ξ-potentials of the CTAB 

microparticles, a subsequent rearrangement of the detergent did not occur. This 

explanation of the ξ-potential values was further supported by the shift of ξ-

potential towards higher values for the particles containing increasing amounts 

of PEI, whereas the increase of the amount of CTAB in the formulation only had 

a minor effect on the ξ-potential. Still, the cationic charge density of the two 

agents has to be considered, as PEI has a very high amine density, compared to 

CTAB which contains only one permanent positive charge per molecule. 

Microparticle sizes ranged from 63.05 µm to 0.93 µm, depending on the 

external stabilizer and the cationic excipient used during particle preparation. 

CTAB exhibited an important influence on the microparticle size when used 
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both in the external stabilizer solution or when added to the internal phase. Both 

formulations with CTAB (RG 505, RG 502H) as cationic stabilizer showed 

approximately 10-times larger hydrodynamic diameters than the analogous 

preparations in PVA solution. The type of PLGA (RG 505, RG 502H) had no 

effect on the particle size. All subsequently prepared microparticles were 

formulated using the lower molecular weight and end-group un-capped PLGA 

(RG 502H), due to its faster degradation characteristics compared to the high 

molecular weight RG 505 polymer [16]. Increasing amounts of CTAB added to 

the polymer solution in methylene chloride and PBS buffer resulted in a 

substantial increase in particle size of the microparticles. Increasing amounts of 

PEI in the PLGA polymer, however, did not have any effect on the final particle 

size. The considerable increase in size of the CTAB containing microparticles 

(0.1% – 50%) can be ascribed to the surface active properties of the cationic 

agent, acting as plasticizer within the polymer matrix. This, in consequence, 

resulted in the aggregation of the microparticles during their preparation or 

during their isolation. This hypothesis was reinforced by the 10-fold larger 

particle diameter of microparticles prepared in CTAB solution compared to 

those formulated in PVA by the same procedure.  

The adsorption efficiency of DNA was investigated in water at pH 7 in presence 

of the sucrose used for lyophilization. The DNA adsorption onto microparticles 

exhibiting negative ξ-potentials was probably the result of non-ionic 

interactions. In contrast, the adsorption efficiencies of microparticles prepared 

with the 10% PEI blend with PLGA correlated with the extremely high ξ-

potential of these formulations, resulting in an approximately 100% DNA 

adsorption efficiency. However, the microparticles formulated with 50% PEI 

exhibited a reduced adsorption efficiency compared to the PEI 10% preparation. 

Under these conditions, PEI could possibly be detached from the PLGA matrix, 

causing the lower adsorption efficiency.  
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Interestingly, an increased DNA adsorption efficiency was measured for the RG 

505 / CTAB preparation compared to the analogue preparation in PVA. The 

50% CTAB blend preparation, as well showed higher DNA adsorption. The ξ-

potentials of these particles were demonstrated to be negative, therefore, an 

additional factor must have influenced the DNA / microparticle interaction, 

possibly the large size of the particles and their aggregated structure. An 

efficient DNA adsorption of the RG 505 / CTAB preparation has already been 

demonstrated by others [3]. With the preparation methods used in this study, we 

did not realize efficiencies as high as those reported, but we did detect 

adsorption of DNA onto the particles. No difference in adsorption efficiency 

was seen for the RG 502H set of particles either prepared with PVA or CTAB as 

a stabilizer.  

SEM micrographs of the microparticles, RG 502H +10% PEI, prepared in either 

PVA or CTAB and microparticles prepared with CTAB, either in the external 

phase or internalized, confirmed the PCS data (Fig.1).  

Interestingly, multiple pores in the particle surface could be observed for both 

+10% PEI preparations, suggesting that adsorption was improved by the larger 

surface area available. Particles prepared with the detergent CTAB were all 

highly aggregated. The RG 505 microparticles formulated with 0.5% CTAB in 

the external phase showed small, but highly aggregated particles. Those in 

which CTAB had been incorporated in an amount of 10% and 50% exhibited 

larger agglomerates. This finding was consistent with the size measurements. 

The CTAB micrographs showed that CTAB was responsible for aggregation as 

it is able to integrate in the polymer surface. The microparticles with 50% PEI 

did not show particles of regular shape. In this formulation, the amount of water 

soluble component disrupted particle formation. 
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Fig.1: SEM micrographs of the particles, RG 502H+PEI 10% in 0.5%PVA (a), 

RG 502H+PEI 10% in 0.5% CTAB (b), RG 505 in 0.5% CTAB (c), RG 

502H+CTAB 10% in 0.1% PVA (d), RG 502H+ CTAB 50% (e), RG 502H+PVA 

50% (f). 
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Specific microparticles were chosen for further analysis. The DNA adsorption, 

as well as the ξ-potential in low ionic strength buffers with different pH (Fig.2) 

were investigated. Low ionic strength buffers were chosen to reduce the 

influence of buffer components on the ξ-potential measurement [17]. We 

intended to evaluate the surface charges at different degrees of protonation and 

possibly correlate them with DNA adsorption characteristics. The formulations 

chosen were RG 505 / CTAB, RG 502H / PVA and the highly adsorbing RG 

502H + 10% PEI prepared in either CTAB or PVA. The RG 505 / CTAB, as 

well as RG 502H / PVA particles displayed negative ξ-potentials over the pH 

range from 8 to 5. In contrast, the microparticles formulated with RG 502H + 

PEI 10% blends exhibited positive ξ-potentials over the full pH range from 3 to 

8. For the latter particles, CTAB stabilization led to higher values than those 

stabilized with PVA. 

 
Fig.2: ξ – potential and adsorption efficiency of microparticles in low ionic 

buffer (I=0.01) at pH 3 – 8. RG 502H / PVA (■), RG 505 / CTAB (○), RG 

502H+PEI / PVA (▲), RG 502H + PEI / CTAB (∇ ). 
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The pronounced increase in ξ-potentials seen for PEI blend microparticles 

demonstrated the presence of protonable groups on the surface of the particles. 

This explanation was reinforced by negligible changes in the ξ-potential of 

particles formulated without PEI (RG 502H / PVA). 

There are two possible reasons for the increased ξ-potential of the CTAB 

stabilized RG 502H+PEI particles. Either CTAB was integrated within the 

polymer surface or the increase was due to the absence of PVA interaction with 

the polymer surface. PVA is known to be to some extent associated with the 

particle surface during particle preparation [18]. Therefore, PVA stabilized 

PLGA particles usually exhibited negative ξ-potentials, as demonstrated for the 

RG 502H / PVA formulation. Since the CTAB stabilized preparations did not 

exhibit greatly increased ξ-potentials, we concluded that the increased ξ-

potentials of the 10% PEI blend particles in CTAB arose from the absence of 

PVA stabilizer, rather than the presence of CTAB.  

The ξ-potentials correlated well with the DNA adsorption efficiencies, which 

were measured in the same low ionic strength buffers from pH 3 to pH 8. Both 

microparticle formulations containing PEI, either prepared in PVA or CTAB 

exhibited almost complete DNA adsorption efficiencies over the investigated pH 

range. The DNA adsorption onto RG 505 / CTAB and RG 502H / PVA particles 

increased in the acidic environment only, from pH 4 onwards.  

The membrane toxicity of the cationic microparticles and cationic agents were 

investigated by LDH release from L929 mouse fibroblasts in vitro (Fig.3). 

Cationic agents have often been demonstrated to induce membrane toxicity, due 

to electrostatic interactions with negatively charged glycocalyx of the cellular 

surface [19,20]. The levels of LDH release obtained for microparticles prepared 

with increasing amounts of PEI 25 kDa, were, with the exception of the 50% 

PEI formulation, less than 10%, the level at which preparations are considered to 

be toxic [19]. Despite the high ξ-potential of the PEI 10% formulation no 

membrane toxicity was observed. 



Adsorption of DNA onto cationic Microparticles 78 
_________________________________________________________________________________________________________________ 

 

 

Fig.3: Membrane toxicity analyzed by LDH release from L929 mouse 

fibroblasts after 3 hours of incubation with microparticles (a) [1 mg/ml] and (b) 

CTAB and PEI 25kDa in solution. 

 

This effect was explained by the incorporation of PEI into the PLGA matrix 

reducing the interactions with the cellular membrane and the accessibility of the 

charges. The PEI 50% blend formulation exhibited higher and toxic LDH 

release, possibly arising from the rapid disintegration of the particle resulting in 

PEI 25kDa release. Interestingly, microparticles prepared with 10% or more 

CTAB showed extensive toxicity levels, even though these preparations 

exhibited negative ξ-potentials. These findings can be explained by the 

dissociation of CTAB from the formulation and the detergent effect of CTAB. 

The effects of the microparticle formulations on membrane stability were 
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compared to the effects of the cationic agents in solution. Three concentrations 

of PEI and CTAB were incubated with fibroblasts, resulting all cases in high 

LDH release levels. As a consequence, both cationic agents, PEI 25 kDa and 

CTAB, were deemed toxic to cellular membranes.  

The stabilizing effect of cationic microparticles on DNA degradation by DNase 

was investigated by agarose gel electrophoresis (Fig.4). DNA integrity was 

analyzed by the application of an emulsion, using a phenol / glycerol mixture 

with TBE buffer containing the dissolved formulations after the incubation with 

the enzyme. As a result, no DNA extraction was necessary from the particle 

formulations after the incubation with the enzyme. Naked DNA was degraded 

within the first five minutes of incubation with DNase I (Fig.4a). The influence 

of the two cationic agents was investigated in Figure 4b/c.  

CTAB exhibited a stabilizing effect on DNA, however, DNA was completely 

degraded after 20 min of enzyme incubation. In contrast, PEI 25 kDa protected 

DNA against degradation over a 12 hour time period, although a conversion of 

the supercoiled to the open circular form was observed. This highlighted the 

excellent DNA condensation capabilities of PEI 25kDa. CTAB, as a single 

tailed cationic lipid, has been used for plasmid DNA isolation by precipitation, 

thus the CTAB / DNA interaction was expected to result in enzyme stabilization 

[4]. However, the protection against DNase I degradation was relatively low. 

This was attributed to the low electrostatic interactions of the single charged 

molecule, used at a 1:1 [m/m] ratio with DNA, compared to polycations.  

PEI containing microparticles, which displayed negative ξ-potentials and, as a 

result low adsorption efficiencies, for example RG 502H+PEI 1% did not 

protect DNA from enzyme degradation (Fig.4d). DNA was degraded within 5 

minutes of incubation. However, microparticles formulated using higher 

amounts of PEI, such as RG 502H+10% and +50%, (Fig.4e/f) protected the 

adsorbed DNA over almost 12 hours. Similar to DNA/PEI complexes, DNA 

exhibited a change to the open circular form in later time points of incubation. 
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Fig.4: DNA stabilization against DNase degradation, (a) DNA, (b) DNA/CTAB, 

(c) DNA/PEI, (d) DNA adsorbed on RG 502H+PEI 1%, (e) DNA adsorbed on 

RG 502H+PEI 10%, (f) DNA adsorbed on RG 502H+PEI 50%, (g) RG 

502H+CTAB 10%, (h) RG 502H+CTAB 50%.  
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We attributed the high protection efficiency of the RG 502H+PEI 50% 

formulation to the formation of DNA polyplexes, as PEI appeared to be only 

loosely associated with the PLGA polymer. The RG 502H+PEI 10% 

formulation showed considerable DNA stabilization in agreement with the high 

ξ-potential and the nearly complete adsorption of 1% [m/m] DNA. This finding 

was not attributed to a polyplex formation, since the low membrane toxicity 

suggests the absence of free PEI. The protection of DNA microparticles has so 

far only been demonstrated for DNA encapsulated in PLGA particles as well as 

for DNA adsorbed on aminosilanes modified silica nanoparticles and mineral 

surfaces [21-23]. In contrast, none of the microparticles prepared with CTAB 

displayed a stabilizing effect on DNA (Fig.4g/h). In both preparations 

formulated either using 10% or 50% CTAB the DNA was degraded after only 5 

minutes of incubation, demonstrating the inefficient adsorption.  

Transfection experiments were carried out with plasmid DNA microparticles 

incubated in a 1: 100 [m/m] ratio, corresponding to a DNA loading of 1% (Fig.5). 

The transfection efficiencies were relatively high for particles prepared by the 

incorporation of 10% and 50% PEI, when compared to DNA/PEI complexes at a 

N/P ratio of 5 (Fig.5a). The mechanism of PEI mediated gene delivery has been 

demonstrated to be based on the osmotic rupture of endosomes, resulting in the 

release of DNA into the cytosol [5,24,25]. However, the non-phagocytic cells 

used in this study could not take up the microparticles. Thus, another mechanism 

of gene delivery must have occurred. The blend particles with a lower content of 

PEI did not lead to effective gene delivery. Likewise, the formulations with 

CTAB and the DNA / CTAB 1/1 [m/m] mixture did not result in a significant 

transfection efficiency in vitro. These results are in line with observations made 

previously, showing that complexes of plasmid DNA with CTAB do not have a 

significant influence on DNA delivery and transfection [26]. Microparticles 

prepared with 10% PEI were further investigated, by varying the theoretical 

DNA loading.  
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Fig.5: Transfection efficiency of DNA microparticles. (a) Transfection of DNA 

adsorbed onto PEI blend RG 502H microparticles compared to the efficiency of 

DNA/PEI complexes at N/P 5. Microparticles with 10% and 50% PEI exhibited 

efficient gene delivery. (b) Transfection of DNA adsorbed onto CTAB blend 

particles compared to a DNA / CTAB 1/1 [m/m] preparation. (c) Transfection of 

luciferase DNA using different theoretical loadings on RG 502H+PEI 10%.  
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This was performed using constant amounts of DNA with increasing amounts of 

particles (Fig.5c). Higher amounts of particles mixed with constant amounts of 

DNA led to higher transfection efficiencies. The transfection of non-phagocytic 

cells, using cationic DNA microparticles exceeding the cutoff size of 0.5 µm for 

endocytotic uptake, has been discussed recently [26,27]. In these previous 

studies, the mechanism of gene transfer was ascribed to the detachment of the 

cationic agent from the microparticle, resulting in a polyplex transfection. 

However, the transfection mediated by covalently attached PEI 25 kDa on 

microspheres or polymer films has been described by Zheng et al. [28]. In this 

case, the transfection was attributed to a pH independent membrane disruptive 

effect [29]. 

This group also conceded the possibility of enzyme cleavage of the linker 

carrying PEI. From our data, we were not able to detect increased rates of 

membrane disruption. This was demonstrated by the low LDH release from cells 

incubated with the particles formulated with PEI blends up to 10%. Therefore, 

we hypothesized that the transfection was mediated by the physical approach of 

DNA loaded microparticles towards the cell surface, as suggested by Ogris et al. 

[30]. This facilitated the endocytosis of either naked DNA or detached DNA/PEI 

complexes. 

To study the transfection mechanism of DNA loaded microparticles, both PEI 

and DNA were fluorescently labeled. Non-phagocytic L929 cells were incubated 

with DNA microparticles for 3 hours and fixed. The confocal microscopy 

revealed high concentrations of the formulations on the surface of the cells. The 

colocalization of both covalently bound fluorescence markers demonstrated the 

conservation of the PEI/DNA complexation during incubation. The cells 

exhibited a diffuse green and red fluorescence throughout the cytosol in 

combination with some concentrated fluorescence. These observations could be 

explained by the membrane disruptive properties of high concentrations of 

PEI/DNA complexes on the surface of the cellular membrane [29]. Segura et at 
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al. achieved similar transfection levels weather using biotinylated PEI bound to 

neutravidin, which was covalently bound to the cell culture dish, or weather 

non-biotinylated PEI was nonspecifically adsorbed to that surface [31]. 

However, in this study 20% of PEI, specifically-bound or nonspecifically-

adsorbed, was released within 2 days. Therefore both transfection results could 

arise from un-bound DNA/PEI complexes. In our study the diffuse fluorescence 

of both the PEI label and DNA label showed that this complex is released into 

the cell, possibly through small local damages in the cellular membrane. This 

mechanism, however, has to be further investigated. 

 

 

Fig.6: Confocal microscopy of L929 mouse fibroblasts after 3 hours of 

incubation with Oregon green labeled RG 502H+PEI 10% (green) with Cy-3 

labeled DNA (red). The nucleus was stained using DAPI (blue). The DNA and 

PEI are co-localized. High concentrations of the microparticles were adsorbed 

on the cell. A diffuse fluorescence in the cell indicated that PEI and DNA were 

taken up into the cell. 
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The protection of mice immunized with DNA against antigens of Listeria 

monocytogenes adsorbed onto cationic microparticles was studied by measuring 

their survival after a lethal challenge. Listeria monocytogenes is an intracellular 

bacterium. Hence, a successful immunization must be T-cell mediated to 

eliminate infected cells. The survival rates of mice challenged with lethal doses 

of Listeria monocytogenes are represented in Figures 7 and 8. In the first setting 

(Fig.7) both groups of mice were either immunized with 10 µg naked DNA or 

10 µg DNA adsorbed onto RG 502H+PEI 10% microparticles. 

The antigen encoding vectors of Fensterle et al. were used [6]. After one prime 

and two booster immunizations the mice were challenged with 5xLD50 Listeria 

monocytogenes. Naïve mice of both groups and mice immunized with the p60 

encoding sequence died within 4 to 7 days from the Listeria infection. All mice 

actively immunized with the sublethal dose of Listeria monocytogenes survived 

the challenge in both groups. A significant difference was observed for the 

survival of mice immunized with a sublethal dose of L. monocytogenes and mice 

immunized with the vector control, referred to as ‘mock’ DNA adsorbed onto 

the microparticles (P=0.0178) (Fig.7a). 

This mock DNA, which did not encode a Listeria antigen was capable of 

protecting 33% of the mice encoding the typical listeriolysin, and the mutant 

LLO vector, led to higher survival rates compared to the naked DNA.  

Mice immunized with mutant LLO DNA adsorbed onto microparticles exhibited 

the highest survival rates. In this group 66% (4 out of 6) mice survived. The 

effect of DNA adsorption on survival, however, was not significant compared to 

that of mock (P=0.2029). 

Therefore, the experiment was repeated with higher dose of L. monocytogenes 

(Fig.8). In this experiment mice were either immunized with 100 µg naked DNA 

(Fig 8b) or the mice were immunized with 10 µg DNA adsorbed onto 

microparticles (Fig.8a) using 10xLD50 L. monocytogenes to challenge the mice.  
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Fig.7: Survival curves of balb-c mice. (a) Intramuscular immunization with 10 

µg DNA adsorbed onto 1 mg microparticles. The difference of survival of mice 

immunized with mutant LLO was not significant compared to the mock 

(P=0.2029). Difference of survival of mice immunized with a sublethal dose of 

L. monocytogenes was significant compared to that of mock (P=0.0178). (b) 

Intramuscular immunization with 10 µg naked DNA. The difference of survival 

with mutant LLO was not statistically significant compared to mock (P=0.5143). 

The difference of survival of mice immunized with sublethal dose of L. 

monocytogenes was significant compared to that of mock (P=0.0185). The 

difference of survival of mice immunized with mutant LLO adsorbed on 

microparticles was not significant compared to naked mutant LLO (P=0.4441). 

Statistics was assessed by logrank test using Prism software. 
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Fig.8: Survival curves of balb-c mice. (a) Intramuscular immunization with 10 

µg DNA adsorbed onto 1 mg RG 502H + PEI 10% microparticles. (b) 

Intramuscular immunization with 100 µg naked DNA. The difference of survival 

of mice immunized with mutant LLO was not statistically significant compared 

to that of mock (P=0.0701). The difference of survival of mice immunized with 

sublethal dose of L. monocytogenes was significant compared with that of mock 

or mutant LLO (P=0.0498). Statistics was assessed by logrank test using Prism 

software. 
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The purpose of this study was not only to improve the protection but also to 

reduce the amount of DNA required for efficient vaccination. All but the 

actively immunized mice died in the DNA microparticle group. The 

immunization with 100 µg naked DNA (mutant LLO), however, could protect 

50% of the mice. The difference of survival of mice immunized with naked 

mutant LLO was not statistically significant compared to that of naked mock 

(P=0.0701). Still, the difference of survival of mice immunized with sublethal 

dose of L. monocytogenes was significant compared with that of naked mock or 

mutant LLO (P=0.0498). Therefore, we could conclude that the adsorption of 

DNA onto RG 502H+PEI 10% microparticles could induced higher survival 

rates after a lethal challenge when equal doses of DNA were used for 

immunization, even if these effects were not equal to a 10-times higher dose of 

naked DNA. 

 

CONCLUSION 

 

In this study we developed a cationic microparticulate system by the 

incorporation of the cationic molecules, PEI or CTAB, into the polyester matrix. 

PEI 25kDa, added to the polymer at 10% exhibited the most promising 

characteristics of all microparticle formulations.  

The adsorption efficiency was complete for a theoretical loading of 1% over a 

pH range from 3 to 8. The ζ-potential was + 47.3 mV and, thus, correlated with 

the adsorption efficiency. Further, this formulation protected adsorbed DNA 

from enzyme degradation over 12 hours, without exhibiting membrane toxicity, 

as demonstrated by a LDH release assay.  

The transfection efficiency in non-phagocytic cells was elevated compared to 

naked DNA and all the other formulations. However, the mechanism of 

transfection studied by confocal microscopy has to be further investigated. The 
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RG 502H+PEI 10% microparticle formulation was used for in vivo 

immunization in mice. These experiments demonstrated that adsorption of DNA 

on the surface of cationic microparticles could reduce the amount needed for an 

immune response by DNA immunization. Still, the in vivo effect of DNA 

adsorption onto the surface of these cationic microparticles could not be set into 

relation with the in vitro transfection efficiencies observed earlier. 
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SUMMARY 

 

DNA loaded nanoparticles were prepared using a newly designed platform of 

polymers with the aim to create an effective particulate gene delivery system.  

The polymers were synthesized by carbonyldiimidazole (CDI) mediated 

coupling of diamines, diethylaminopropylamine (DEAPA), dimethlyamino-

propylamine (DMAPA) or diethylaminoethylamine (DEAEA) to poly (vinyl-

alcohol) (PVA) with subsequent grafting of D,L-lactide and glycolide (PLGA) 

(50:50) in the stoichiometric ratios of 1:10 and 1:20 (free hydroxyl groups / 

monomer units). The polymers were characterized by 1H-NMR, GPC-MALLS 

(gel permeation chromatography - multiple-angle-laser-light-scattering), and 

DSC (differential scanning calorimetry). DNA loaded nanoparticles, prepared by 

a specifically modified solvent displacement method, were characterized with 

regard to their zeta (ζ) -potential and size. The transfection efficiency was 

assessed with plasmid DNA, pCMV-luc, in L929 mouse fibroblasts. 

The polymers were composed of highly branched, biodegradable cationic 

polyesters exhibiting amphiphilic properties. The amine modification further 

enhanced the rapid polymer degradation and was held responsible for the 

interaction with DNA during particle preparation. The nanoparticles exhibited 

positive ζ-potentials up to + 42 mV and high transfection efficiencies, 

comparable to polyethlyenimine (PEI) 25kDa/DNA complexes at a nitrogen to 

phosphate ratio of 5. 

The polymers combined amine-functions and short PLGA side chains resulting 

in water insoluble polymers, capable of forming biodegradable DNA 

nanoparticles through coulombic interactions and polyester precipitation in 

aqueous medium. The high transfection efficiency was based on fast polymer 

degradation and the conservation of DNA bioactivity. 
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INTRODUCTION 

 

DNA vaccines have been subject to intensive research efforts recently and it has 

become increasingly clear that adjuvants are necessary to reduce the DNA dose, 

while reaching protective immune responses [1]. Adjuvants, such as micro – and 

nanoparticles have been studied intensively as DNA delivery systems providing 

i) a sustained and predictable DNA release; ii) targeting antigen of presenting 

cells using particles < 10 µm and iii) stabilization of DNA in physiological 

environment [2]. Several encapsulation techniques, mainly using biodegradable 

PLGA, have been reported, such as spray-drying [3] and modified double 

emulsion methods [4], all of which utilized high-speed homogenization or 

sonication. These shear forces were found to compromise plasmid integrity and 

bioactivity [5,6]. Additionally, DNA was damaged in the acidic environment 

created by PLGA degradation products [3].  

Here, we describe a gentle solvent displacement method for the encapsulation of 

DNA relying on a new class of biodegradable polymers with rapid degradation 

properties [7]. This method allows the encapsulation of DNA without high speed 

/ shear homogenization using amine-modified branched polyesters. These 

polymers interact with DNA by electrostatic interactions and facilitate 

nanoparticle formation due to their amphiphilic character. We systematically 

investigated these polymers to characterize the influence of polymer structure on 

functional properties such as nanoparticle size and charge, as well as the 

protection of plasmid DNA by the measurement transfection efficiency in vitro. 
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MATERIALS AND METHODS 

 

Polymer Synthesis and Characterization  

Biodegradable comb-branched polymers consisting of amine-modified poly 

(vinyl alcohol) (PVA) backbones, grafted with PLGA side chains in a ratio 

[n(OH)/n(monomer)] of 1:10 and 1:20 were synthesized and characterized as 

previously described [7]. The amine modifications consisted either of 3-

diethylamino-1-propylamine (DEAPA = P), 2-diethylamino-1-ethylamine 

(DEAEA = E) or 3-dimethylamino-1-propylamine (DMAPA = M). Briefly, after 

activation of the diamine component using carbonyl diimidazole (CDI) in 

tetrahydrofuran (Fig. 1) the activated components were added to PVA, (Fluka, 

degree of polymerization: P=300) in N-methylpyrrolidone and reacted for 4 days 

at 80°C. Then lactide and glycolide (50:50) were grafted in stoichiometric ratios 

of 1:10 and 1:20 (free hydroxyl groups / monomer units) by bulk polymerization 

onto the amine-modified PVA-backbones at 150°C using tin(II) 2-

ethylhexanoate as catalyst.  

The source-based IUPAC nomenclature for e.g. DEAPA modified polymers is 

the following: Poly (vinyl 3-(diethylamino)propylcarbamate-co-vinyl acetate-

co-vinyl alcohol)-graft-poly(DL-lactide-co-glycolide). As abbreviation we use 

A(x)-y. (A indicates the type of amine substitution (P=DEAPA, M=DMAPA, 

E=DEAEA), x is the number of monomers in the backbone carrying amine 

substitutions, y is the PLGA side chain length calculated from feed). 

Resomer®502H (RG 502H, Mw 15,200 g/mol, specifications supplied by the 

manufcturer) was purchased from Boehringer Ingelheim (Ingelheim, Germany). 
1H-NMR spectra were generated in d6-DMSO with a Jeol Eclipse+500 NMR 

Spectrometer (JEOL, USA) at 50°C using 64 scans (500 MHz). GPC-MALLS 

was carried out with a combination of DAWN EOS, Optilab DSP (Wyatt 

Europe GmbH, Germany) and PSS SDV linear M column (PSS, Mainz, 
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Germany, flow rate 0.5 ml/min, solvent: dimethylacetamide +2,5 g/L LiBr at 

60°C). DSC measurements were conducted with a Perkin-Elmer DSC 7 (USA). 

Polymer degradation was measured gravimetrically after incubation of polymer 

films in PBS-buffer at pH 7.4 (37°C) over 21days according to Wittmar et al. 

[8]. 

 

DNA Nanoparticle Preparation and Characterization  

Nanoparticles were prepared by a modified solvent displacement method [9]. 

Briefly, 500 µl of an aqueous solution containing 0.5 µg/µl plasmid DNA was 

added to 2.5 ml of an acetone solution containing 50 mg of the water insoluble 

polymer. The product was injected into 10 ml stirred 0.1% Pluronic™ F68 

(BASF, Germany) in distilled water. The resulting nanoparticle suspension was 

stirred 3 hours under constant laminar air flow to remove residual acetone. 

Particle size and ζ-potential measurements were carried out in a Malvern 

Zetasizer 4 (Malvern, Germany), according to Jung et al. [9] after calibration 

with a Malvern –50 mV transfer standard. Scanning electron microscopy (SEM) 

was performed with a CamScan 4 (Cambridge, UK) after gold sputter coating 

using a AUTO 306 (Edwards, UK). High resolution transmission electron 

microscopy imaging (TEM) was performed after cryo-sectioning of the 

nanoparticles with a JEM 3010 (Jeol, Japan) on a collodium grid. 

 

In Vitro Transfection Efficiency 

L929 mouse fibroblast (DSMZ, Germany) cells were plated at a cell density of 

50 000 cells/ 2 ml in 12 well dishes 24 h prior to transfection. Aliquots of the 

particle suspension containing 4 µg pCMV-luc theoretical load were added to 

0.5 ml glucose 5 % medium pH 7.4. The cells were pre-incubated with the 

nanoparticle suspension for 5 min, after which 1.5 ml cell culture medium 

containing 10% fetal calf serum (FCS) was added. The nanoparticle suspension 
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was dispersed in the glucose medium before the addition of the medium, since 

instabilities of nanoparticle suspension were observed in medium. The 

nanoparticle suspension was removed after 4 hours of incubation and replaced 

with fresh medium containing 10% FCS. Cells were harvested after 48 h and 

luciferase transfection efficiency was assessed according to Kunath et al. [10]. 

Results were presented as luciferase / protein ratio [ng/mg]. 

 

RESULTS AND DISCUSSION 

 

In this study we present a new class of water-insoluble, amphiphilic polyesters, 

developed specifically for DNA encapsulation. We hypothesized that the 

loading efficiency of DNA nanoparticles could be greatly increased by three 

characteristics of the comb-branched polymers. Firstly, electrostatic interactions 

are thought to stabilize and protect DNA during the encapsulation process. 

Secondly, fast polymer degradation rate should allow the release of bioactive 

DNA and thirdly, tertiary amino-functions should facilitate gene delivery. We 

therefore developed polymers containing an amine-modified backbone for ionic 

interactions and possible buffering capacities in the endosomes and relatively 

short but multiple, biodegradable PLGA side chains for fast polymer 

degradation. The unique properties of these polymers were confirmed during the 

nanoparticle formation process. DNA was solubilized by the polymer in the 

acetone solution due to the amphiphilic characteristics in the acetone/water 

mixtures used for the solvent displacement method, suggesting a strong 

DNA/polymer interaction. The subsequent injection in aqueous medium resulted 

in nanoparticle formation. The biodegradable DNA nanoparticles exhibited 

effective gene delivery, demonstrated by high transfection efficiencies in-vitro.  
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Fig.1: The synthesis of poly (vinyl 3-(diethylamino)propylcarbamate-co-vinyl 

acetate-co-vinyl alcohol)-graft-poly(D,L-lactide-co-glycolide) using a three step 

process with PVA, amine and CDI as precursors b) GPC elution profile of 

P(33)-20 (signal of the refractive index detector: straight line, light scattering 

signal: dashed line) indicating a monomodal distribution of the molar mass of 

the polyesters, but also a small, low molecular weight part c) plot of the radius 

of gyration against MW. The reduced slope of the amine-modified polyester 

(P33)-20) demonstrated the highly branched structure in comparison to random 

coiled pullulan. 
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We synthesized 24 cationic, as well as two neutral derivatives of amine-

modified comb-branched polyesters, and characterized their functional 

properties in relationship to their structure (Fig.1). We grafted relatively short 

PLGA side chains consisting of approximately 10 or 20 repeating units on the 

amine-modified PVA-backbone. Consequently, already a small number of 

hydrolytic cleavage events would result in water soluble polymer fragments, 

thereby releasing the encapsulated DNA. The total number of biodegradable 

PLGA side chains grafted on an amine-modified PVA backbone ranged from 

150 - 240, resulting in a cationic and water insoluble polyester. The general 

characteristics of the polymers properties with different amine substitutions 

(DEAPA / DMAPA / DEAEA) were similar. The DEAPA substituted polyesters 

were all soluble in acetone and thus, suitable for the nanoparticle preparation 

process. Therefore, we selected this type of polymers for further study. 

The brush-like structure of the graft-polymers was verified using 1H-NMR 

spectroscopy, as well as GPC-MALLS depicted in (Fig.1b/c) for P(33)-20. The 

degree of PLGA side chain substitution was calculated from the 1H-NMR 

spectrum showing that only 5 to 35 % hydroxyl-groups of the PVA still 

remained free after reaction. The PLGA side chain lengths (SCL) were 

calculated from these data, demonstrating good correspondence with the 

theoretical values (Table 1). However, increasing amine substitution led to a 

decrease of SCL. A possible explanation could be an inhibitory effect of the 

amino-function on the tin catalyst which competed with lactide/glycolide 

monomers. The molecular weights of the polymers were calculated from a 

combination of this data, based on the known amine substitution of the PVA 

backbones. The values for molecular weight (MW) were confirmed by GPC-

MALLS (Fig.1b). GPC measurements demonstrated the monomodal MW 

distribution of the polyesters. The molecular weights did not show an expected 

trend towards lower MW with increasing amine-substitution because of i) the 

fast degradation of the polyesters, ii) the resolution of GPC and iii) decreasing 
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acetate content with increasing amine substitution. The nanostructure of the 

polymers in solution was characterized by the evaluation of the radius of 

gyration in a double logarithmic scale plotted against the molar mass of the 

polyesters (Fig.1b). The resulting slope of the linear fit was compared to the 

slope of random coiled pullulan (0.55). The flatter slope exhibited by the amine-

modified polyesters (P(33)-20: 0.40) indicated a compact, highly branched 

nanostructure of these polymers.  

Polymer degradation at 37°C in PBS buffer at pH 7.4 was greatly accelerated as 

compared to common linear PLGA. NMR studies demonstrated the reduction of 

the SCL of P(12)-10 from originally 10.8 units to 8.6 units in seven days and to 

5.4 units after another week. These measurements cannot be exclusively 

explained by physical erosion. Such an erosion would either not show deceased 

SCL or only a small SCL reduction. This behavior may substantially reduce the 

exposure time of the encapsulated substance to the detrimental effects of acidic 

degradation products generated by PLGA bulk erosion. The degradation 

behavior thus was remarkable, since the molecular weights of the graft-

polyesters were approximately ten-fold higher than the linear PLGA (RG 502H) 

(Table 1). This property corresponded to our hypothesis of a substantial 

reduction in time for the drug release. An increase in the PLGA side chain 

length from approximately 10 to 20 repeating units increased the degradation 

time as expected. P(33)-20, for example, showed a degradation half-life of 13 

days, compared to one day for the P(33)-10 analogue (Table 1). The degradation 

rates increased more than proportionally with increasing amine substitutions of 

the polymer. For example, the degree of amine substitution in P(33)-10 was 

three times greater than in P(12)-10, however, P(33)-10 exhibited a nine-fold 

increase in the rate of degradation. This effect could be explained by the rapid, 

initial PLGA mass loss of the P(x)-10 polymer in comparison to the slower mass 

loss of P(x)-20 polymers, attributed to a catalytic effect of the amino-functions, 

promoting the acidic ester degradation, caused by their protonation. 
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Polyester 
 

Tg 
 
 

[°C]a 

 

MW 
 
 

[kg mol-1] 

 

SCLd 
 

Degradation 
half-lifee,f 

 

[d] 

 

Nanoparticle 
sizef 

 

[nm] 

 

Zeta 
Potentialf 

 

[mV]  

  Mn
b 

Mn
c 

Mw
c 

    

P(6)-10 30.6 (107) 
211 
281 

11.2 >21 n.d. n.d. 

P(12)-10 30.8 179 
196 
263 

10.8 9 163 ± 1 22 ± 1 

P(33)-10 27.7 179 
195 
367 

9.4 1 152 ± 3 35 ± 3 

P(68)-10 11.5 172 
282 
799 

7.4 n.d. 309 ± 16 42 ± 2 

P(12)-20 33.0 422 
227 
304 

19.3 >21 n.d. n.d. 

P(33)-20 32.8 385 
375 
712 

17.2 13 351 ± 7 31 ± 5 

RG 502Hf 36.5 6.1 
6.6f 
15f 

84.6 19 602 ± 3 -55 ± 3 

 

Table I: Characterization of the amine-modified polyesters, demonstrating the 

low glass transition temperatures, extremely high molecular weights (MW) 

combined with fast polymer degradation at 37 °C in PBS buffer. DNA 

nanoparticles exhibited smaller sizes and high ζ (zeta)-potentials, compared to 

PLGA nanoparticles. 
a Glass transition temperature (heat rate: 10 °C/min, -10 to 200 °C, second run) 
b MW calculated from the 1H-NMR data  
c MW from GPC-MALLS (DAWN EOS, Optilab DSP, column PSS SDV 

linearM, solvent DMAc+2.5 LiBr g/L, 60°C, 0.5 mL/min) 
d PLGA side chain length calculated from 1H NMR 
e Days for 50% mass loss of a polymer film (extrapolated from plot, n=3) 
f mean of three independent measurements ± standard deviation 
g Commercial PLGA (1:1) lactic acid : glycolic acid subunits. MW: 

specifications supplied by the manufacturer (Boehringer Ingelheim) 
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This would lead to new carboxyl-functions restarting the catalytic cycle.  

Further, the protonated amino-functions will promote water uptake into the 

polymer effecting an increased rate of hydrolysis. All polymers displayed glass 

transition temperatures near 30 °C, implying that they exist in the glassy state in 

physiological environment (Table 1). In general, polymers with longer PLGA 

side chains and reduced amine substituents had higher transition temperatures. 

Thus, the amine-groups were thought to have acted as a plasticizer in the 

polymer. The influence of the polymer chain motility has to be further 

investigated for possible interactions with cellular membranes and the influence 

on the gene delivery process. 

An important feature of the polymer characteristics were the tertiary amine-

modifications of the polymers, hypothesized to stabilize DNA within the 

polymer matrix and to facilitate the gene transfer. Ionic interactions with the 

polymer were presumably the reason for the solubilization of DNA in the 

acetone/water mixture. For example, DNA could be completely dissolved in an 

acetone/water 5:1 [v/v] solution of the polymer, whereas DNA alone precipitated. 

Therefore, no further homogenization process was necessary to disperse DNA 

before the subsequent coacervation of the water insoluble polymer in the 0.1% 

poloxamer solution. Nanoparticles were only obtained with polymers exhibiting 

amine substitutions of 4% (P(12)-10) and higher, underlining the importance of 

the amphiphilicity, induced by the amine substituents. The structure of the 

polymers was described to be brush-like, due to the short and numerous PLGA 

chains. Therefore, we did not expect a micellar assembly of the polymers neither 

in acetone, nor in the non-solvent water. In contrast, water soluble, poly(l-

lysine)-g-PLGA polymers had a more distinct amphiphilic structure, containing 

a shorter hydrophilic backbone with few and long PLGA chains of 

approximately 210 monomers [11]. 
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The nanoparticles exhibited hydrodynamic diameters ranging from 152.4 nm 

(P(12)-10) to 351.3 nm (P(33)-20), whereas PLGA (RG 502H) nanoparticles 

prepared by the same procedure were approximately 200 nm larger (Table 1).  

 

Fig.2: TEM (left) and SEM (right, 1µm scale of the inlay) micrographs of DNA 

P(12)-10 nanoparticles confirmed the particulate structure of the nanoparticle 

and the size measured by photon correlation spectroscopy. 

 

Hence, despite a 33-fold higher molecular weight, the amphiphilic qualities of 

the polymers, influencing the interface tension, resulted in nanoparticles of 

reduced size.  

ζ-potentials of all preparations were clearly positive, with the exception of the 

linear PLGA, arising from the DNA phosphate groups, which were inverted by 

the cationic polymers. Particle sizes measured by photon correlation 

spectroscopy were confirmed by scanning electron microscopy (SEM) and 

transmission electron microscopy of nanoparticle cryo-sections (TEM). The 

particle morphology was examined by these methods as well for the polymer 

P(12)-10 in Figure 2. Particles were uniform in size and had smooth surfaces. 
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All DNA nanocarriers were used in vitro for transfection assays, as efficient 

gene delivery remains a prerequisite for subsequent in vivo immunization. By 

directly using the nanoparticles in vitro, we could detect the gene transfer 

properties of the amine-modified polymers, as well as the DNA bioactivity after 

nanoparticle preparation. Free plasmid and DNA complexes with PEI 25kDa, a 

potent polymeric transfection agent, were used as references to compare the 

luciferase expression levels with other polymer types [12]. On account of this, 

we could consider the nanoparticles as a potent transfection agent. All DNA 

nanocarrier formulations resulted in increased transfection efficiencies 

compared to naked DNA (Fig.3). The efficiency increased exponentially with 

the amount of amine substitution of the polymer.  

 

 

 

Fig.3: Transfection efficiency of pCMV-luc DNA, encapsulated in amine-

modified nanoparticles was greatly enhanced compared to free DNA, DNA/PEI 

25kDa complexes (N/P 5) and a DNA RG 502H particle preparation. 
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The 500,000-fold increase in transfection efficiency of the P(68)-10 plasmid 

nanoparticles, compared to free DNA, was remarkable, especially when 

considering the fact that the amount of polymer in relation to DNA was reduced 

by the factor 0.4 to avoid nocuous effects of an excess of cationic charges. 

Nanoparticles of P(x)-10 polymers clearly displayed higher efficiencies than 

their P(x)-20 analogous.  

The careful elucidation of the transfection mechanism of the polymers is yet to 

be investigated, however, we assume that these findings do not depend on 

increased ζ-potentials or particle size effects. They but must be dependent on the 

particle structure and DNA polymer interactions as well. The polymers 

consisted of dimethlyaminopropylamine substituents, representing tertiary 

amines. These have been shown to be essential for the endosomal escape of 

polyplexes by the osmotic rupture, the `proton sponge´ effect [13]. This effect 

could be intensified by the fast polymer degradation resulting in an increase of 

the osmotic pressure in the endosome, as proposed by Koping-Hoggard [14]. 

However, other mechanisms of endosomal release have eventually to be 

considered, for example, fusogenic activities, taking into account the low glass 

transition temperatures and hydrophobic moieties of the polymer [15], or the 

`hydrogel effect´ of swelling polymer in the endosome [16]. Therefore, we 

concluded that the combination of different properties within one biodegradable 

polymer, resulting in a fast degradation, ionic interactions with DNA and the 

formation of water insoluble nanoparticles, provided considerable advantages 

with regard to the transfection efficiency in vitro. Further experiments 

investigating the transfection efficiency under in vivo conditions and the 

encapsulation with other compounds, such as peptides, susceptible to acid 

degradation are in progress. 
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SUMMARY 

 

To circumvent DNA degradation during particle formation, the DNA was 

adsorbed onto pre-formed particles [1,2]. However, the adsorption via 

electrostatic interactions of DNA or other macromolecules onto colloidal 

structures can cause instabilities, such as flocculation, by either charge 

neutralization or bridging [3]. In this study, we intended to characterize a new 

approach for DNA nanoparticle formation. This new process allowed the 

encapsulation of DNA without using high-speed shear forces. Thereby, we 

aimed to reduce both particle flocculation and DNA degradation by DNA 

encapsulation.  

One representative polymer, P(26)-10, of a new class of amine-modified 

polyesters was used for the study of nanoparticle formation. The formulation 

method used in this study had previously only been described for the efficient 

encapsulation of hydrophobic compounds. We investigated the influence of 

several process parameters on the nanoparticle size. The DNA nanoparticle size 

was dependent on the volume of the organic solvent, as well as on the volume of 

the aqueous solutions. The viscosity of the organic solvent further influenced the 

particle size and the encapsulation efficiency. This system exhibited some 

variations, when compared to the standard solvent displacement techniques. 

These were explained by polyelectrolyte interactions of the polymer with DNA 

in the acetone/water medium. The ratio of the water/acetone medium apparently 

influenced the polyelectrolyte interactions of the DNA with the cationic 

polymer. The subsequent particle formation was dependent on the polymer 

coalescence, which we hypothesized to be influenced by the polymer / DNA 

interactions and solvent composition. The new class of amine-modified 

polyesters used in this study, was shown to be a promising tool for a one step 

DNA encapsulation into nanoparticles without using shear forces. 
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INTRODUCTION  

 

Recently, DNA has been successfully adsorbed on cationic microparticles and 

nanoparticles for the use as adjuvant systems for DNA immunization and gene 

delivery [1,4,5]. Thereby, DNA interacts via electrostatic forces with particle 

surfaces. The DNA / particle ratio was determined by the particle’s size and the 

particle’s surface charge. However, we and others have found that these 

colloidal systems exhibited instabilities, namely flocculation, when used for the 

adsorption of macromolecules, such as DNA [6]. The two mechanisms mainly 

involved in this phenomenon were charge neutralization and polymer bridging 

[3]. To avoid thee drawbacks we investigated methods to encapsulate DNA into 

nanoparticles.  

The solvent displacement method has typically not been an efficient technique 

for the direct encapsulation of water soluble drugs [7]. The method is based on 

polymer deposition on interfaces, due to the aggregation of polymers by organic 

solvent displacement. The driving force of the particle formation is the mass 

transport of an organic solvent into a second solvent, mostly water. This 

phenomenon was first described by Marangoni in 1871 [8]. The mass transport 

into the larger second phase induced interphase turbulences that resulted in 

interphase disruption and small solvent droplet formation. Commonly used 

organic solvents are water soluble and non-chlorated which exhibit low boiling 

points for efficient extraction and evaporation of the organic solvent form the 

preparation.  

In this study, we used P(26)-10, as a representative polymer for the new class of 

amine-modified polyesters [9]. These polymers were characterized by 

amphiphilic and cationic structures, which enabled us to modify the solvent 

displacement method for the encapsulation of DNA [10]. All nanoparticles were 

formulated according to a standard method, changing one parameter at a time.  
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MATERIALS AND METHODS 

 

Polymer and DNA 

The biodegradable polyester P(26)-10, was composed of an amine-modified 

poly(vinyl alcohol) (PVA) backbone with grafted poly(lactic-co-glycolic acid 

(PLGA) side chains, synthesized according to Wittmar et al. [9]. The cationic 

polymer backbone was composed of 26 units 3-diethylamino-1-propylamine 

(DEAPA = P) substituted on poly (vinyl alcohol) (PVA, Fluka, degree of 

polymerization: P=300). The grafted side chains consisted of D,L-lactide and 

glycolide (50:50) in a ratio of 1:10 (free hydroxyl groups / monomer units), 

resulting in approximately 200 PLGA side chains per hydrophilic backbone.  

Herring testes (HT) DNA (Sigma-Aldrich, Taufkirchen, Germany) was used for 

the mechanistic and feasibility studies. It was dissolved in low ionic strength (I = 

0.01) TE-buffer pH 7.4 (3.3 mM Tris(hydroxymethyl) aminomethane (Tris-

HCl), 0.3 mM disodium edetate (Na2EDTA) pH 8). 

 

Nanoparticle Preparation 

DNA nanoparticles were prepared using a modified solvent displacement 

technique. Therefore, 50 mg of the polymer were dissolved in 1.25 ml acetone. 

The HT DNA was diluted to a final concentration of 2 µg/µl in 250 µl of low 

ionic strength buffer at pH 7.4 and dispersed into the acetone solution containing 

the amine-modified polymer. The dispersion was prepared by fast injection of 

the aqueous solution into the polymer solution while mixing several times with 

the pipette. The resulting dispersion was then slowly injected into 20 ml of a 

magnetically stirred 0.1 % aqueous Pluronic™ F68 (BASF, Germany) solution, 

using a 14-gauge needle. Under these conditions spontaneous nanoparticle 

formation could be observed. The nanoparticle suspension was stirred for 3 

hours under constant air flow for complete removal of residual acetone. Particles 

were characterized directly after the preparation. 
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Particle Size Measurement 

The effective hydrodynamic diameter was measured by photon correlation 

spectroscopy (PCS), using a Malvern Zetasizer 4 (Malvern Instruments, 

Germany) at 25°C, equipped with a 5 mW helium neon laser and the Malvern 

software. Samples were measured in an AZ 110 cell at 633 nm and a scattering 

angle of 90°. The samples were diluted in ultrapure water if needed, to measure 

within a defined count rate interval of 100 – 400 kilo counts / second and to 

avoid multiscattering. The viscosity (0.88 mPa s) and the refractive index of 

ultrapure water (1.33) were used for data analysis. The PCS V. 1.26 - software 

was used to calculate the particle mean diameter and width of the fitted gaussian 

distribution. All measurements were carried out in triplicate.  

Scanning electron microscopy (SEM) was performed with a CamScan 4 

(Cambridge, UK) after gold sputter coating using a AUTO 306 (Edwards, UK) 

for particle size confirmation. 

 

DNA Encapsulation Efficiency 

The DNA distribution in either the nanoparticles or in the supernatant was 

evaluated using 1% agarose gel electrophoresis with ethidium bromide staining. 

The nanoparticle samples were centrifuged at 14,000 rpm (16,025 g) for 20 min 

in an Eppendorf 5415C centrifuge (Wesseling, Germany), to separate the 

particle pellet from the supernatant. The supernatants were directly applied into 

the gel adding 5 µl glycerol and 10 µl of dextran sulfate (Mw 5,000, Sigma-

Aldrich, Taufkirchen, Germany) 0.25 mg/ml to 20 µl of the probe. DNA 

encapsulated and associated with the polymer nanoparticles was extracted from 

the polymer using Roti-phenol® (Roth, Karlsruhe, Germany). The pellet was 

firstly incubated for one hour with 80 µl of a 0.25 mg/ml dextran sulfate solution 

in isotonic TE buffer (1mM Na2EDTA; 10mM Tris; 143mM sodium chloride). 

Roti-phenol®, 100 µl, was added thereafter and incubated for one additional 

hour under constant stirring of 10 rpm in a Rotatherm® (Liebisch, Bielefeld, 
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Germany) at room temperature. The two phases were separated by 

centrifugation at 14,000 rpm for 20 min in an Eppendorf 5415C centrifuge. 

Glycerol, 5 µl, was added to 20 µl of the aqueous phase and applied into the 1% 

agarose gel. Electrophoresis (Blue Marine 200, Serva, Germany) was carried out 

at 100 V for one hour in 0.1M TE-buffer. 8 µl of a 1 % (w/v) ethidium bromide 

solution were included into all gels to visualize the DNA localization by 

photography with UV transillumination. 

 

RESULTS AND DISCUSSION  

 

The solvent displacement method represents a very promising tool for the 

encapsulation of drugs, susceptible to shear and heat degradation. For the 

hydrophilic compound, such as DNA, this process has been shown to be non-

effective [7]. We hypothesized, that the complexation of DNA with polycations 

would reduce its hydrophilicity. Alternatively, a polycation / DNA complex 

could represent a surface for polymer deposition and aggregation. Thus, we 

were primarily interested in the encapsulation of complexed DNA within the 

newly synthesized fast degrading polyesters. Interestingly, we observed that 

neither the aqueous DNA solution nor the polymer precipitated when the two 

solutions were mixed. This was noteworthy, as DNA is insoluble in acetone and 

the polymer is insoluble in water (Fig.1). This phenomenon was explained by 

polyelectrolyte interactions in the acetone/water medium. Polyelectrolyte 

complexes in low-polar solvents, such as chloroform have been studied by 

Sergeyev et al. [11]. The interaction and solubilization of polyelectrolyte / 

surfactant complexes was ascribed to the high stability of salt bonds in the low 

polar environment. Further, the complexation capacity was hypothesized to arise 

from the DNA inherent property to reside in a condensed state [11]. As in this in 

the present study, DNA was insoluble in the organic solvent. Still, the solvent 
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acetone is much more polar (dielectrical constant: 20.7) compared to chloroform 

(dielectrical constant: 4.81) which was used by Sergeyev.  

 

Fig.1: Scheme of the nanoparticle formation process by solvent displacement. 

The mixture of the DNA and the polymer in a water / acetone medium is injected 

into a stirred stabilizer solution in which nanoparticles form spontaneously. 

 

Desbrieres et al. have studied pre-formed and lyophilized polyelectrolyte 

complexes in more polar solvent, such as dimethylformamide (dielectrical 

constant: 37). In this solvent both components were soluble and thus behaved 

similar to polyelectrolyte complexes in water [12]. Our system was considered 

to be similar to dimethylformamide, as we combined acetone and water. The 

particularity of the present method, compared to others, arises from the 

insolubility of DNA in the acetone/water mixture. This was demonstrated by 

DNA precipitation in the absence of the polymer in the acetone/water mixture. 

In both studies previously discussed, either both components were soluble in 
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water, or both were soluble in the organic solvent. P(26)-10 was insoluble in 

water. This enabled us to further use the solvent displacement method for 

nanoparticle formation by polymer coalescence in aqueous medium.  

Investigators have studied the influence of formulation parameters of the solvent 

displacement technique on nanoparticle formation. In this study we varied 

several parameters to characterizes our system, especially the nanoparticle size 

[13-17].  

All nanoparticles were formulated according to the standard method described, 

changing one parameter at a time. Nanoparticles prepared with the standard 

method had hydrodynamic diameters of approximately 160 nm (Fig.2). The 

standard volume of 250 µl of low ionic strength TE buffer corresponded to 20% 

of the 1.25 ml volume of acetone. When the acetone volume was doubled to 2.5 

ml, the size of the particles was decreased to 135 nm. A further increase of the 

acetone volume led to larger particles again. It is known from the literature that 

lower solvent viscosities, as well as higher volumes of organic solvents result in 

a better disruption of polymer droplets and inconsequence, in smaller 

nanoparticles [13,14]. 

 

Fig.2: Nanoparticle sizes using increasing amounts of acetone. An increase first 

led to a minimum particle size, further increase produced lager particles again. 
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For the P(26)-10 system, this could not be observed for all of the samples. This 

effect was attributed to the influence of the polymer/DNA interaction. We 

assume that the coalescence rate of the polymer is also dependent on the size of 

the polyelectrolyte complex in the acetone/water medium. As ionic interactions 

increase with the hydrophilicity of the solvent, the complex size decreased [12]. 

Higher amounts of acetone could have resulted in larger complexes, arising from 

less intensive interactions of the polymers resulting in higher viscosities and 

reduced droplet disruption. 

This hypothesis is in line with the nanoparticle sizes obtained by the 

encapsulation of polyethylenimine (PEI) 25 kDa (BASF, Ludwigshafen, 

Germany) complexes with DNA (Fig.3).  

 

Fig.3: (a) Size of nanoparticles prepared with equal amounts of PEI/DNA 

complexes dispersed in increasing volumes of low ionic-strength TE-buffer. The 

particle size increased with the volume of the aqueous phase mixed to the 

acetone solution. (b) DNA recovered from the nanoparticles prepared with 200 

µl, 300 µl, 400µl and 500 µl of DNA complex solution, respectively bands 1 to 

4. A volume of 500 µl aqueous solution led to the highest DNA encapsulation 

into the nanoparticles, as compared to formulations with lower buffer contents. 
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All complexes were prepared at a nitrogen to phosphate ratio of 5 in ultrapure 

water. The complexes were diluted with TE buffer to the final volume of the 

aqueous phase. PEI 25 kDa is a well-known and very effective complexing 

agent for DNA. Therefore, the DNA / polymer interaction will have a less 

relevant impact on the nanoparticle formation process. Nanoparticle sizes 

increased with higher volumes of the aqueous complex solution. The diffusion 

rate of the solvent is dependent on the concentration gradient of the solvent. 

Thus, a dilution of acetone caused a slower diffusion, less droplet disruption and 

faster coalescence.  

HT DNA of these nanoparticles was extracted and analysed by agarose gel 

electrophoresis (Fig.3b). The DNA encapsulation efficiency was the highest for 

500 µl TE buffer preparation and decreased with lower aqueous volumes. This 

suggested that the coalescence rate of the polymer is higher, when increasing 

amounts of aqueous solutions are mixed to the acetone polymer solution. This 

restricted the distribution of the PEI/DNA complex into the aqueous phase 

during encapsulation.  

A further well-known parameter influencing the nanoparticles size is the volume 

of the aqueous stabilizer solution. The concentration gradient of the acetone is 

greater when large aqueous phases are used. Hence, the mass transport is faster, 

resulting in more extensive droplet disruptions [13]. In our study this effect was 

observed for the preparations in 5 ml to 10 ml volumes of poloxamer solution. 

However, a volume of 20 ml resulted in larger nanoparticles again. Sterling et al. 

selectively described the two factors influencing the interfacial turbulences, i) 

the magnitude of surface viscosity and ii) the steepness of the concentration 

profile near the interface [13]. Therefore, we could only explain this finding by a 

hindrance of acetone diffusion into the aqueous phase, due to reduced mixing in 

the higher volume of aqueous solvent level during the preparation. 
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Fig.4: Size of nanoparticles prepared in 5, 10, 20 ml poloxamer solution using 

either 1.25 ml acetone or 3.75 ml acetone. 

 

 

Fig.5: Size of nanoparticles prepared using different DMSO / acetone ratios as 

organic polymer solvent. (a) The nanoparticle size increased with rising 

amounts of DMSO. (b) The amount of encapsulated DNA recovered from 

nanoparticles decreased with raising amounts of DMSO solvent. 
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Increasing the amount of a model solvent DMSO in the acetone phase, led to 

larger hydrodynamic diameters of the nanoparticles (Fig.5a). This effect was 

attributed to the slower diffusion of the solvent mixture into the stabilizer 

solution because of a higher viscosity of DMSO (2.4 mPa*s) compared to 

acetone (0.34 mPa*s). 

Particles in a size range of 350 nm could be prepared exclusively using DMSO 

as organic solvent. DMSO however, does not represent a realistic candidate for 

nanoparticle preparation, as it cannot be evaporated easily form the formulation. 

DNA of the nanoparticles was extracted and analyzed by agarose gel 

electrophoresis. The encapsulation efficiency of DNA decreased significantly 

when the amount of DMSO was raised (Fig.5b). This was ascribed to the 

prolonged coalescence rate of the polymer, due to slower mass transport of the 

solvent from the organic phase. This resulted in a greater diffusion of DNA into 

the supernatant.  

In a further study an organic solvent, ethanol, was used as external phase instead 

of the 0.1% Pluronic solution (Fig.6). All other parameters for the nanoparticle 

preparation were held constant. We hypothesized that complete association of 

DNA with the nanoparticles was possible, as both, DNA and the polymer were 

not soluble in ethanol. The sizes of DNA loaded nanoparticles prepared without 

additives exhibited hydrodynamic diameters of approximately 600 nm. 

Interestingly, pre-complexed DNA with either PEI 25 kDa or the hydrophilic 

amine-modified PVA backbone resulted in smaller particles. We hypothesized 

that ethanol is a suitable external phase as it can be readily evaporated. Thus, 

concentrating the samples in smaller volumes or the transfer of the formulation 

into another medium would be easier to achieve. Still, aqueous systems have 

great advantages, especially with regard to the application on cells or in 

physiological environment. 
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Fig.6: Nanoparticle suspensions prepared with ethanol used as external 

solution. (a) PEI/DNA complexes encapsulated in P(26)-10 dissolved in 

acetone.(b) DNA encapsulated in P(26)-10 dissolved in DMSO/acetone 

(1:1)[v/v], (c) DNA encapsulated in P(26)-10 dissolved in acetone. 

 

The morphology of nanoparticles formulated by the standard setting was 

analyzed by SEM (Fig.7).  

 

Fig.7: SEM micrographs of nanoparticles prepared with the solvent 

displacement method using P(26)-10 as representative polymer for the amine-

modified polyesters.  
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These micrographs exhibited some well-defined structures, however, a majority 

of the particles appeared as a collapsed structures. This effect can be attributed 

to the very low glass transition temperature of the polymers [9]. This could 

result in the collapsed structure of the nanoparticles, upon exposure of the 

polymers to higher temperatures and energy during the gold sputter coating. 

Nanoparticle sizes however could be confirmed. 

 

CONCLUSION 

 

In this study we investigated the particle formation process for direct 

encapsulation of DNA into a representative polymer of a new class of amine-

modified polyesters. We successfully encapsulated DNA using the solvent 

displacement technique which has been previously only described for the 

efficient encapsulation of hydrophobic compounds. We investigated the 

influence of several parameters on the particle size. Our findings were mostly in 

line with the literature. Still, this system exhibited specific properties, which 

could be explained by the polyelectrolyte interactions of the polymer with DNA. 

The characterization of DNA extracted from the nanoparticles represented some 

difficulties, as the P(26)-10 polymer precipitated in the aqueous solution. 

However, this study demonstrated that the polymer used is a very promising 

candidate for DNA encapsulation without the application of major shear forces. 
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SUMMARY 

  

The encapsulation of plasmid DNA into biodegradable micro- and nanoparticles 

has recently been a challenge for many groups, aiming to use the system for 

DNA vaccination and gene delivery. In this study we present a technique for 

DNA encapsulation into nanoparticles avoiding shear or ultrasonic forces by the 

use of biodegradable amine-modified polyesters. These biodegradable polymers 

combined specific characteristics, as ionic interactions with DNA and 

protonable amino-functions, providing an efficient nanoparticular system for 

gene transfer. The resulting DNA nanoparticles had hydrodynamic diameters 

ranging from 175 nm to 285 nm and highly positive ξ-potentials, depending on 

the nitrogen to phosphate (N/P) ratio used for the particle formation. Atomic 

force microscopy (AFM) confirmed particle sizes and showed well-defined 

shapes to more collapsed particle morphologies. DNA stability was investigated 

upon DNA release in PBS buffer and enzymatic degradation was assayed by 

agarose gel electrophoresis. This demonstrated that DNA was released in its 

supercoiled form and that it was protected from enzyme degradation. DNA 

nanoparticle cellular uptake was measured by flow cytometry using different 

N/P ratios. The efficient particle endocytosis was further followed over time by 

confocal microscopy.  

 The efficiency of the DNA nanoparticles was demonstrated by in vitro 

transfection assays in four cell lines. The gene delivery efficiencies of the 

amine-modified polymers were increased compared to free DNA. To 

demonstrate the power of the nanocarrier system, we compare the luciferase 

expression of the pCMV-Luc plasmid with PEI 25 kDa / DNA complexes used 

at equal N/P ratios. Thereby, we could show that one of the polyesters, P(68)-10, 

had higher efficiencies than the PEI 25 kDa complex.  
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INTRODUCTION  

 

DNA vaccines have been under intensive investigation for over a decade [1,2]. 

During this time, it has become clear that a sufficient immune response with 

DNA vaccines can only be achieved with adjuvant systems. While, the injection 

of naked plasmid DNA in mice has been shown to induce an immune response, 

including the generation of antibodies and cytotoxic T lymphocytes [3,4], 

relatively high doses of DNA were needed to reach protective levels [5,6]. By 

the use of adjuvants, however, one could reduce the required DNA dose to 

practical levels. Several groups have successfully developed DNA adjuvant 

delivery systems based on micro – and nanoparticles [7]. Ideally, such systems 

should i) protect DNA from enzymatic degradation; ii) allow a sustained and 

predictable DNA release from the carrier and iii) target the delivery system to 

antigen presenting cells by appropriate particle sizes. The most commonly used 

biodegradable polymer for DNA encapsulation has been poly(lactic-co-glycolic 

acid) (PLGA). Many techniques have been used to encapsulate DNA within 

PLGA including spray-drying [8] and modified double emulsion methods [9], 

all of which rely on high-speed homogenization or sonication for the formation 

of particles suitable for phagocytic uptake. The effect of high shear forces on 

DNA, however, has been found to be very detrimental for plasmid integrity 

[10,11]. To circumvent DNA damage during this procedure, several methods 

have been proposed, such as complexation of DNA with cationic polymers prior 

to encapsulation [12], cryopreparation and the addition of ionic excipients [8]. 

All methods were able to diminish the effects of mechanical stress on DNA 

during encapsulation. However, upon release from these particles, DNA had 

been exposed to the PLGA acidic degradation products, namely lactic and 

glycolic acid, resulting in acid-catalyzed depurination and chain breaks [10]. 

Even the encapsulation of DNA using the least hydrophobic, uncapped PLGA 
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with a relatively small molecular weight exhibited DNA nicking shortly after its 

burst release [8].  

To overcome these draw-backs, we developed a modified solvent displacement 

method for DNA encapsulation using a new class of biodegradable polymers 

which exhibit rapid degradation [13]. This method enabled us to encapsulate 

DNA without the use of high-speed homogenization. In the present study, we 

systematically investigated series of polymers belonging to branched polyesters 

with regard to their abilities to encapsulate, protect and deliver plasmid DNA. 

 

MATERIALS AND METHODS 

 

Polymers and DNA 

Biodegradable comb polymers consisting of amine-modified poly(vinyl alcohol) 

(PVA) backbones grafted with PLGA at a backbone to PLGA side chain ratio 

[m/m] of 1:10 and 1:20 were used in this study [13]. The amine modification of 

the polymer backbone using either 3-diethylamino-1-propylamine (DEAPA = 

P), 2-diethylamino-1-ethylamine (DEAEA = E) or 3-dimethylamino-1-

propylamine (DMAPA = M) was accomplished by N,N'-Carbonyldiimidazole 

coupling chemistry. PLGA grafting was performed using a ring opening 

polymerization procedure. The degree of amine-substitution was indicated by 

the number following the type of amine modification, representing the number 

of monomers of the PVA backbone carrying an amine-substitution. The PLGA 

chain length was described by the number after the degree of amine substitution, 

calculated from feeding. The commercially available PLGA (50:50), Resomer® 

502H, (Mw 15,200, specifications supplied by the manufacturer) was purchased 

from Boehringer Ingelheim (Ingelheim, Germany). 

Plasmid DNA, pLuc-CMV, a luciferase encoding plasmid, preceded by a 

nuclear location signal under the control of a CMV promoter, was kindly 
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provided by Chiron (Emeryville, Ca) and amplified by PlasmidFactory, 

(Bielefeld, Germany). The pLuc-CMV used in this study originated from a 

single endotoxin-free batch in TE-buffer pH 8 and was stored at -80°C until use. 

Pluronic™ F68 was purchased from BASF (Parsippany, NJ). All other 

chemicals were purchased by Sigma and were of analytical quality. 

 

Nanoparticle Preparation 

Nanoparticles of amine-modified PVA-graft-polyesters and PLGA were 

prepared by a modified solvent displacement method [14]. Briefly, herring testes 

(HT) DNA or plasmid DNA, was diluted to a final concentration of 0.5 µg/µl in 

500 µl distilled water and dispersed into 2.5 ml acetone solution containing the 

amine-modified polymer. The dispersion was prepared by simple injection of 

the aqueous solution into the polymer solution. The amount of polymer in the 

acetone solution was determined by the requested N/P ratio. The resulting 

mixture further was slowly injected into 10 ml of a magnetically stirred 0.1 % 

aqueous Pluronic™ solution, using a 14-gauge needle. Under these conditions 

spontaneous nanoparticle formation could be observed. The nanoparticle 

preparation was stirred for 3 hours under constant laminar air-flow for complete 

removal of residual acetone. Particles were characterized and used directly after 

the preparation. 

 

Particle Size Measurement 

The effective hydrodynamic diameter was measured by photon correlation 

spectroscopy (PCS) using a Malvern Zetasizer 4 (Malvern Instruments, 

Germany) at 25°C equipped with a 5 mW helium neon laser and the Malvern 

software. Samples were measured in a AZ 110 cell at 633 nm and a scattering 

angle of 90°. The samples were diluted in ultrapure water if needed, to measure 

within a defined count rate interval of 100 – 400 kilo counts / second to avoid 

multiscattering. The viscosity (0.88 mPa s) and the refractive index of ultrapure 
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water (1.33) were used for data analysis. The PCS V. 1.26 - software was used 

to calculate particle mean diameter and width of fitted gaussian distribution. All 

measurements were carried out in triplicate. 

  

Zeta Potential Measurements 

ξ-potential measurements were carried out using the Zetasizer 4 (Malvern 

Instruments, Germany). Samples were diluted in ultrapure water to a defined 

count rate interval of 400 – 800 kcps. Electrophoretic light scattering was 

performed in a AZ 104 cell. Average ξ-potential values were calculated from the 

data of 3 runs. The instrument was calibrated with a Malvern –50 mV transfer 

standard. All measurements were carried out directly after particle preparation. 

 

Polymer Mass Balance 

The polymer mass balance was determined gravimetrically after centrifugation 

of the nanoparticle preparation directly after preparation at 10,000 rpm (8,176 g) 

in an Eppendorf 5415C centrifuge for 20 min. The nanoparticle pellet and the 

supernatant were lyophilized separately in a Christ beta-II freeze-dryer 

(Osterode, Germany). The polymer mass balance was measured gravimetrically 

to rule out the possibility of free polymer in solution, taking into account the 0.1 

% poloxamer stabilizer. The difference of all population means was analyzed by 

a two-sample t-test and one-way ANOVA at the 0.05 level. 

 

Atomic Force Microscopy 

The DNA nanoparticles were directly transferred onto a silicon chip after 

preparation, by dipping into the nanoparticle solution. Atomic force microscopy 

was performed on a Digital Nanoscope IV Bioscope (Veeco Instruments, Santa 

Barbara, CA) as described elsewhere [15]. The microscope was vibration-

damped. Commercial pyramidal Si3N4 tips (NCH-W, Veeco Instruments, Santa 

Barbara, CA) on a cantilever with a length of 125 µm, a resonance frequency of 
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about 220 kHz and a nominal force constant of 36N/m were used. All 

measurements were performed in Tapping mode to avoid damage of the 

sample surface. The scan speed was proportional to the scan size and the scan 

frequency was between 0.5 and 1.5 Hz. Images were obtained by displaying the 

amplitude signal of the cantilever in the trace direction, and the height signal in 

the retrace direction, both signals being simultaneously recorded. The results 

were visualized either in height or in amplitude modus. 

 

Lactate Dehydrogenase Release 

The release of lactate dehydrogenase (LDH) was measured to characterize the 

membrane toxicity of nanoparticle formulations. L929 mouse fibroblasts 

(DSMZ, Braunschweig, Germany) were seeded at a density of 50,000 cells per 2 

ml in 12 well culture dishes (Nunc, Wiesbaden, Germany) and grown for 24 h 

prior to the incubation with the particles, according to the supplier’s 

recommendations. The cells were washed twice with PBS buffer (0.1 M, pH 7.4) 

and incubated with 100 µl nanoparticle suspension resulting in 0.5 mg polymer 

per ml PBS buffer. Blank PBS buffer and a 0.1 % Triton-X 100 solution in PBS 

buffer were used as controls. 100 µl samples were withdrawn after 120 and 180 

min and processed according to the manufacturer’s instructions (Sigma 

Diagnostics, Deisenhofen, Germany). All sample values were normalized 

relative to Triton-X values and expressed as relative LDH release in [%]. All 

DEAPA polymers were used as nanoparticle preparations at N/P ratio of 5. Each 

sample was performed in triplicate. The difference of all population means were 

analyzed by a two-sample t-test and one-way ANOVA at the 0.05 level. 

 

DNA Release and DNase Stability 

DNA release from the nanoparticles was evaluated in the supernatant of the 

particle preparations in isotonic TE-buffer at pH 7.4 (1 mM Na2EDTA; 10 mM 

Tris; 143 mM NaCl). Aliquots containing 300 µl of the nanoparticle suspension 
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corresponding to 7.5 µg pDNA were prepared for each time point. Polymer 

mass was dependent on the N/P ratio. After predetermined time points, the 

samples were centrifuged at 14000 rpm (16,025 g) for 30 min in an Eppendorf 

5415C centrifuge. The supernatant and the pellet were lyophilized in a Christ 

beta-II freeze-dryer (Osterode, Germany). The soluble components from the 

supernatant were re-dissolved in 20 µl TBE-buffer (89 mM Tris, 89 mM boric 

acid, 2 mM Na2EDTA), containing 25 IU heparin (Serva, Heidelberg, Germany) 

to separate possible DNA / backbone complexes. Glycerol (5 µl) was added to 

the preparation prior to the separation using a 1% agarose gel. 

DNA stability was studied using 100 µl aliquots of the nanoparticle suspensions, 

corresponding to 2.5 µg DNA. The samples were incubated with 12.25 µl 

DNase buffer 10x (1M Na-acetate, 50 mM MgCl2) and 2.5 µl DNase I solution 

(DNase I, Boehringer Mannheim, Germany) (50 I.U. / ml in 50 mM Tris-HCl 

pH 8, 100 mM KCl). The reaction was terminated with 5.7 µl EDTA solution 

(0.5 M, pH 8). The probes were freeze-dried and stored at –20 °C until further 

use. At the time of analysis, the dried probes were incubated for one hour in 10 

µl TBE-buffer containing 50 I.U heparin. Further, 10 µl Roti-phenol® (Roth, 

Karlsruhe, Germany) were added and incubated for additional 2 hours at room 

temperature. Glycerol (5 µl) was added to the emulsion before application onto a 

1 % agarose gel. Untreated DNA was applied to the gel for comparison of the 

DNA forms. Electrophoresis (Blue Marine 200, Serva, Germany) was carried 

out at 100 V for two hours in TBE-buffer. 8 µl 1 % (w/v) ethidium bromide 

solution were included into all gels to visualize the DNA localization by 

photography with UV transillumination. 

 

Nanoparticle Cell Association 

Flow cytometry was performed using plasmid DNA labeled with 25 µl/mg DNA 

of the intercalating fluorescence dye YOYO-1 (Molecular Probes, Leiden, The 

Netherlands), as described by Ogris et al. [16]. L929 mouse fibroblasts were 
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plated at a density of 400, 000 cells / well in 6-well cell culture dishes (Nunc, 

Wiesbaden, Germany) and grown for 24 hours in DMEM with 10 % FCS. 

Nanoparticles were prepared with the polymer P(68)-10 and the fluorescence 

labeled DNA, using the standard protocol at different N/P ratios. The volume of 

the nanoparticle dispersion was reduced by ¼ to 2.5 ml. Aliquots of 160 µl 

particle suspension, containing 4 µg DNA were incubated with the cells for 4 

hours according to the transfection protocol. 

The cells were washed twice with glucose 5 %, pH 7.4 and once with 1M NaCl 

as described by Ruponen et al. to remove adsorbed nanoparticles [17]. The cells 

were suspended in PBS buffer after detachment by trypsin incubation for 1 min. 

Cell suspensions were kept on ice until analysis. Flow cytometry was performed 

with 10,000 cells, using a Becton Dickinson FACS Scan equipped with an argon 

laser with an excitation wavelength of 488 nm. 

 

Cellular uptake of DNA Nanoparticles 

For confocal microscopy experiments a Zeiss Axiovert 100M microscope 

coupled to a Zeiss LSM 510 scan module was used. 

Plasmid DNA was covalently fluorescence labeled with a rhodamin dye, Cy-3 

(Mirus, Madison, Wisconsin) according to the manufacturers instructions. The 

P(68)-10 amine-modified polyester was covalently labeled with a fluorescein 

chromophore using the amine reactive 5-DTAF (5-(4,6-

dichlorotriazinyl)aminofluorescein, Molecular Probes, Leiden, The 

Netherlands). For polymer labeling, 96 mg of the polymer and 2.5 mg 5-DTAF 

were dissolved in a total volume of 7.5 ml DMSO and stirred for 1.5 hours at 

65°C for amine coupling. The polymer was ice-cooled and precipitated with a 

mixture of propanol-2 and water. The pellet was washed several times to 

eliminate unbound components.  

Nanoparticles were prepared according to the standard protocol by mixing the 

fluorescence labeled polymer with non-labeled polymer in a mass ratio of 1/6. 
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Rhodamin labeled DNA was mixed with the original plasmid in a ratio of 

1/61.5. L929 cells were seeded at a density of 20,000 cells per well in 8 well 

chamber slides (Lab Tek, Nunc, Wiesbaden, Germany). After 24 hours medium 

was removed. Aliquots of the nanoparticle suspension containing 0.8 µg DNA 

were added to new medium containing 10 % FCS. The cells were incubated for 

5, 30, 60 and 180 minutes with the nanoparticles. The medium was removed and 

cells were washed 4 times with PBS buffer. Fixation of cells was performed by 

incubation with 400 µl paraformaldehyde solution 3 % in PBS for 20 minutes. 

The cells were washed again for 4 times with PBS and incubated for additional 

20 minutes with a 0.1 mg/ml DAPI (4',6-diamidino-2-phenylindole 

dihydrochloride, Molecular Probes, Leiden, The Netherlands) in PBS for 

nucleus identification. An Enterprise UV laser with a wavelength 364 nm was 

used for excitation of the blue DAPI fluorescence. Excitation of green 

fluorescence of 5-DTAF labeled polymer was performed using an argon laser 

with an excitation wavelength of 488 nm. A Helium-Neon laser with an 

excitation wavelength of 543 nm was used and for the excitation of red 

fluorescence of the DNA. Images were recorded in multitracking mode using a 

longpass filter of 385 nm for DAPI, a longpass filter of 505 nm for Oregon 

Green and a longpass filter of 560 nm for rhodamine. 

 

Transfection Efficiency  

L929 mouse fibroblasts (DSMZ, Braunschweig, Germany) and NIH-3T3 

fibroblasts (DSMZ, Braunschweig, Germany) were cultured in Dulbeco's 

modified Eagle’s medium (DMEM, Gibco, Eggenstein, Germany) and 

supplemented with 10 % fetal calf serum (FCS, Gibco) according to the 

supplier’s recommendations. The cells were plated 24 h before nanoparticle 

incubation at a density of 50,000 cells / 2 ml in 12 well plates (Nunc, 

Wiesbaden, Germany). U937, human pre-monocytic cells (DSMZ, 

Braunschweig, Germany), cultured according to the supplier’s instructions, were 
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plated at a density of 50,000 cells / 2 ml in RPMI medium containing 10 % FCS 

and incubated for 72 h with 81 nmol / ml phorbol 12-myristate 13-acetate 

(PMA, Sigma, Deisenhofen, Germany) for cell activation and adhesion to the 

cell culture dish. Rabbit vascular smooth muscle cells (RbVSMC), a primary 

cell line was supplied by the department of experimental radiology (University 

of Marburg) after their isolation according to Axel et al. [18]. The cells were 

cultured in DMEM medium supplemented with 10 % FCS. The RbVSM cells 

were plated at a density of 20,000 cells / 2 ml because of their larger cell size. 

Immediately prior to transfection, the medium was removed and replaced by 500 

µl glucose 5 % at pH 7.4. Aliquots of 160 µl particle suspension, containing 4 

µg pLuc-CMV, were added to the glucose 5 % medium at pH 7.4. 

The cells were pre-incubated with the nanoparticle suspension for 5 min, after 

which 1.5 ml cell culture medium containing 10 % FCS was added. The 

nanoparticle suspension was dispersed in the glucose medium before the 

addition of the medium, since instabilities of nanoparticle suspension were 

observed in the medium. The nanoparticle suspension was removed after 4 hours 

of incubation and replaced with fresh medium containing 10 % serum. Cells 

were harvested after 48 h, washed with PBS pH 7.4 twice, and lysed in cell 

culture lysis reagent (Promega). Luciferase content was assessed using a 

commercial luminescence kit (Promega) measured in a Berthold Sirius 

luminometer (Berthold, Pforzheim, Germany). RLUs were converted into 

luciferase content by calibration with recombinant luciferase (Promega). Protein 

concentrations were determined by a modified BCA assay [19]. Transfection 

experiments were performed in triplicate and presented as the mean of the 

luciferase / protein ratio [ng/mg]. 
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RESULTS 

 

Particle Preparation and Characterization 

DEAPA (P), DEAEA (E) and DMAPA (M) -modified PVA-graft-polyesters, 

represented in Figure 1, were used in this study for DNA nanoparticle formation.  

 

Fig.1: Representative structure of the biodegradable amine-modified (polyvinyl 

alcohol)-graft-poly(lactide-co-glycolide) polymers. The PVA degree of 

polymerization was 300 containing from 12 to 68 amine-substituents and 150 to 

240 grafted PLGA side chains. The PLGA (50:50) grafts were built up of 

approximately 10 or 20 monomer units. 

 

The nanoparticles were formulated using variable nitrogen to phosphate (N/P) 

ratios, based on the fact that one amine side chain represented one protonable 

amine. The amount of DNA used in our study was held constant at 250 µg DNA 

for each preparation. The properties of the branched polyesters allowed us to 

modify the solvent displacement method for optimized DNA encapsulation.  

 

This was highlighted by the fact that, although DNA (0.5 mg/ml) was not 

soluble in acetone, no precipitation occurred after the addition of 500 µl of the 

O
O

O

O

m

O
O

HN
O

R

x y z
O OOH

*

w

O

O

O

O
H n

*

R=
-CH2CH2CH2N(CH2CH3)2, 
-CH2CH2N(CH2CH3)2, 
-CH2CH2CH2N(CH3)2



Effective Gene Delivery of DNA Nanoparticles 137 
_________________________________________________________________________________________________________________ 

 
DNA solution into the acetone polymer solution (2.5 ml). In contrast, the 

addition of DNA solution into an acetone solution resulted in a visible 

precipitation. Nanoparticles formed spontaneously after the injection of the 

acetone/water solution containing DNA and the polymer into the aqueous 

stabilizer medium.  

 

Polymer Size a 

 
[nm] 

Poly-
dispersity a 

ξ - potential a 

 
[mV] 

Molecular
Weight b 

[g/mol] 
P(12)-10 238.0 0.25 24.2 ± 1.7 262,600 
P(26)-10 199.4 0.28 46.7 ± 0.7 n.d. 
P(33)-10 175,4 0.53 45.4 ± 0.4 366,900 
P(68)-10 280.5 0.4 45.6 ± 0.4 798,500 
P(33)-20 285.1 0.25 45.0 ± 1.0 711,900 
E(33)-10 211.7 0.32 44.7 ± 1.5 1199,000 
E(12)-20 188.7 0.68 41.3 ± 0.6 350,300 
E(33)-20 > 1000 1.0 n.d.  767,000 
M(13)-10 186.7 0.31 38.9 ± 1.2 631,700 
RG 502H 563.4 0.74 -54.6 ± 2.6 15,200 

a Average value of three independent measurements and standard deviation 
b MW from GPC-MALLS (gel permeation chromatography - multiple-angle-

laser-light-scattering) according to Wittmar et al. [13] 

 

Table 1: Characterization of DNA nanoparticles prepared with amine-modified 

PVA - graft polyesters at a N/P ratio of 5 and one PLGA (RG 502H) polymer, 

using a modified solvent displacement method. The nanoparticles were 

characterized directly after their preparation with regard to their hydrodynamic 

diameters by PCS and their ξ - potentials by electrophoretic light scattering. 

The molecular weights of the of the polymers were specified in the table.  
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Particles sizes and ξ-potentials were measured directly after preparation and 

results are presented in Table 1. DEAPA polymer nanoparticles at the N/P ratio 

of 5 had hydrodynamic diameters ranging from 175 – 285 nm, while DEAEA 

nanoparticle sizes were in the range of 200 nm. The E(33)-20 polymer did not 

form nanoparticles at the N/P ratio investigated in this study. The DMAPA 

polyester studied, M(13)-10, had an average hydrodynamic diameter of 187 nm. 

Particle sizes were independent of the polyester side chain length and amine-

modification. However, the commercial PLGA (RG 502H) polymer particles 

showed roughly a two-fold increase in hydrodynamic diameter as compared to 

the amine-modified polyester formulations when the same method of particle 

formation was used. 

The ξ-potential of the DNA / PLGA nanoparticle preparation was highly 

negative, arising from the presence of DNA and the uncapped carboxylic groups 

of the polymer. The DNA nanoparticles formulated with the amine-modified 

polyesters had very similar positive ξ-potentials, independent of the polymer 

used, when they were prepared at the N/P ratio of 5.  

In Figure 2 nanoparticles prepared with P(68)-10, as a representative polymer, at 

different N/P ratios were studied for their size and ξ-potential. Nanoparticles 

with HT DNA at a N/P ratio of 0.5 were relatively large, measuring 

approximately 890 nm. At the calculated point of neutrality, the nanoparticle 

formulation exhibited a mean hydrodynamic diameter of approximately 200 nm. 

Further increase in the N/P ratio did not have any influence on the nanoparticle 

size measured. The polymer P(68)-10 was further used to study the effect of the 

N/P ratio on the nanoparticle ξ-potentials (Fig.2). 

At the N/P ratio of 0.5, the particles exhibited a negative ξ-potential (- 48.6 

mV). From the point of calculated charge neutrality on, the ξ-potentials 

increased to reach a constant level at N/P 3 to N/P 9 (+ 51 mV) (Fig.2). 
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Fig.2: Nanoparticle size (□) and ξ-potential (●) of DNA nanoparticles 

prepared with the amine-modified polymer P(68)-10 at different N/P ratios. The 

nanoparticle size remains approximately constant and small from N/P 1 to N/P 

9, whereas the ξ-potential increases from N/P 1 to N/P 3 by the value of 100 

mV. 

 

Polymer Mass Balance 

The amphiphilic properties of the polymers observed during particle preparation 

were attributed to the hydrophilic amine modifications and the remaining 

hydroxyl groups of the PVA backbone combined with the short hydrophobic 

PLGA grafted side chains. 

As a result, it was necessary to investigate if the polymer molecules could 

solubilize in the aqueous stabilizer solution. The mass balance of the 

nanoparticle suspension compared to the polymer mass in the supernatant was 
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characterized. Gravimetric analysis of the lyophilized supernatants and of the 

pellets added up to the total yield.  

The total yield was > 81% for the nanoparticle suspensions characterized in this 

study (Table 2). Small polymer amounts (1.61 – 5.6%) were recovered in the 

supernatant, suggesting that the amphiphilic properties of the polymer did not 

result in the solubilization of the polymer in the aqueous medium after particle 

preparation. A high amine substitution, and thus theoretically a more hydrophilic 

polymer resulted in an almost complete recovery of the polymer mass in the 

pellet.  

 

Polymer Pellet  
 

[%]±sd 
Supernatant  
 

[%]±sd 
Recovered Mass  
 

[%]±sd 

P(12)-10 97.11 ± 1.79 2.89 ± 1.79 81.33 ± 3.06 

P(26)-10 97.11 ± 2.51 2.89 ± 2.51 88.00 ± 3.27 

P(33)-10 96.26 ± 5.77 3.74 ± 5.77 94.00 ± 1.06 

M(13)-10 96.15 ± 2.81 3.85 ± 2.81 91.73 ± 1.15 

E(33)-10 98.39 ± 2.45 1.61 ± 2.45 101.87 ± 2.05 

P(33)-20 97.66 ± 2.72 2.34 ± 2.72 90.00 ± 11.00 

RG 502H 94.40 ± 4.85 5.60 ± 4.85 100.00 ± 14.90 
 

Table 2: Polymer mass balance of the recovered mass of the DNA nanoparticle 

preparations at N/P ratio of 9. The recovered mass [%] was in the range of 80 – 

100% for the amine-modified polyesters as well as PLGA. The mass fraction 

recovered in the pellet was approximately 95% of the recovered mass for all 

preparation. At the 0,05 level, the difference of all population means were not 

significantly different from the PLGA (RG 502H) nanoparticles analyzed be 

two-sample t-test and one-way ANOVA. 
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Atomic Force Microscopy 

Atomic force microscopy (AFM) was used to characterize the morphology of 

the nanoparticles (Fig.3). The particle sizes measured by dynamic light 

scattering could be confirmed by the micrographs.  

The DNA / P(26)-10 polymer particles were distinct and spherical.  

 

 

 

Fig.3: AFM imaging of DNA nanoparticles preparations: P(26)-10 N/P 9 (a), 

P(33)-10 N/P 11 (b), P(68)-10 N/P 5 (c), M(13)-10 N/P 5 (d), E(33)-10 N/P 5 

(e), RG 502H (f). Nanoparticles have well defined structures and could confirm 

the particle size measurements. E(33)-10 nanoparticles led to a more collapsed 

structure on the silicium support. 
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Nanoparticles prepared using E(33)-10 led to larger particles which had a less 

discrete morphology up to a collapsed structures. DMAPA particles, used in a 

N/P ratio of 5, as well as the PLGA nanoparticles were again round and well 

defined. 

 

LDH - Release 

The amounts of LDH released from cells incubated with the nanoparticles of the 

homologous series of the DEAPA polymers at the N/P ratio of 5 did not show 

significant differences analyzed by a two-side t-test and one-way ANOVA (P ≤ 

0.5) (Fig.4a).  

 

Fig. 4: LDH-release assay after 3 hour incubation of 1 mg nanoparticles in PBS 

buffer, (a) homologous series of DEAPA substituted polyesters all at N/P ratio 

of 5; (b) DNA P(68)-10 nanoparticles at different N/P ratios. At the 0.05 level, 

the difference of all population means were not significantly different from the 

blank PBS medium analyzed by two-sample t-test and one-way ANOVA. 
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Further, the effect of the N/P ratio (1 to 13) on the membrane stability was 

studied, using P(68)-10 polymer nanoparticles (Fig.4b). No membrane toxicity 

over the 10 % level was detected taking into account that no significant 

differences compared to the PBS blank were observed using the statistical 

analysis two-side t-test and one way ANOVA test (P ≤ 0.05). 

 

DNA Release and Enzyme Stability 

DNA release from the nanoparticles, prepared at the N/P ratio of 5, was studied 

over 9 days in isotonic TE buffer, pH 7.4 using separate aliquots for each time 

point which contained 7.5 µg DNA (Fig.5). 

Agarose gel electrophoresis of the supernatants of the P(12)-10 and the PLGA 

particles showed high levels of DNA in the supernatant from day 0 on, implying 

that the encapsulation efficiency of these preparations was incomplete compared 

to the other amine-modified polymer particles. 

In both the DNA / P(33)-10 and the DNA / P(68)-10 nanoparticle supernatants 

no DNA was apparent in the gel directly after the nanoparticle preparation, 

demonstrating complete DNA retention in the formulation. In the supernatant of 

P(33)-10 no DNA release was observed within the 9 days of incubation, whereas 

P(68)-10 polymer nanoparticles released small amounts of DNA beginning from 

day 2 on. 

The stabilizing effect of the nanoparticles against DNA degradation by DNase 

was studied with P(68)-10 particles (Fig.6). Nicking of naked DNA took place 

by the conversion of the supercoiled form into the open circular form and ended 

in the complete destruction of the DNA. Formulations at N/P ratio of 0.5, did 

not offer much protection, as the DNA was completely degraded after 5 minutes 

of enzyme incubation. 
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Fig.5: Agarose gel of DNA release from nanoparticles at N/P 5 from 0 to 9 days 

at pH 7.4 from the supernatant, a) P(12)-10; b) P(33)-10; c) P(68)-10; d) 

PLGA. Complete DNA encapsulation could be demonstrated for the P(33)-10 

and P(68)-10 nanoparticles. 

 

 

Fig.6: DNA protection from enzyme degradation by encapsulation in P(68)-10 

nanoparticles, followed from 0 minutes to 60 minutes and 12 hours of 

incubation with DNase I a) N/P 0.5; b) N/P 1; c) N/P 3; d) N/P 5. C represents 

non-degraded DNA samples.  
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In contrast, protection of DNA could be observed in formulations at the N/P 

ratio of 1 for 35 min, while for N/P 3 and N/P 5 the DNA was only degraded 

after 12 hours. Nicking of the supercoiled DNA-form could be observed in the 

N/P 3 preparation after 60 min of incubation. The DNA of the N/P ratio of 5 

particles was at the same time point still present in the supercoiled form.  

 

Nanoparticle Cell Association  

Nanoparticles prepared with raising N/P ratios were found to associate better 

with the L929 fibroblast cells as shown in Figure 7 and by the geometric means 

of the fluorescence counts.  

 

Fig.7: YoYo - 1 fluorescence labeled DNA association with cells after 

incubation of DNA / P(68)-10 nanoparticles at different N/P ratios. DNA 

association with the cells increases with the N/P ratio. Nanoparticles formulated 

at N/P 0.5 exhibited a minor association. Geometric means (gm) of the 

fluorescence, blank (6), N/P 0.5 (18), N/P 5 (430), N/P 9 (569), N/P 11(619). 

 

blank N/P 0.5 

N/P 9 N/P 5 N/P 11 
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Intensive washing with glucose 5% and high ionic salt solution reduced the 

adsorption of the nanoparticles on the cell surfaces. Therefore, the fluorescence 

measurement can be in majority ascribed to nanoparticle uptake via non-specific 

nanoparticle endocytosis. For nanoparticle formulations of a N/P ratio of 5 the 

DNA uptake was extensively increased (gm: 430) compared to blank cells (gm: 

6) and to cells incubated with nanoparticles formulated at a N/P ratio of < 1 

(gm:18). A doubling of the calculated positive charge excess, represented by 

particles prepared at a N/P ratio of 9 (gm: 569) and 11 (gm: 619), exhibited only 

a slight increase in fluorescence counts per cell.  

 

Cellular uptake of DNA Nanoparticles 

The double labeling enabled us to simultaneously follow the transport of DNA 

and the polymer P(68)-10 into mouse fibroblasts in vitro (Fig.7). After a 5 

minute incubation only little fluorescence of the particles was associated to the 

cells or the cell membranes. Compared to that, the 30 minutes time-point 

exhibited cells that already had taken up nanoparticles. The fluorescence was 

localized in several defined areas of the cells. The red, rhodamine fluorescence 

of the DNA and the green P(68)-10 fluorescence were co-localized. At the 1 

hour time-point the fluorescence was localized in large vesicles and remained 

superimposed. The three hour time-point exhibited cells that had endocytosed 

very large amounts of DNA nanoparticles. These were not arranged in groups 

anymore but dispersed over the entire cell and specifically around the nucleus. 

Fluorescence of the DNA and polymer remained superimposed, whereas diffuse 

polymer fluorescence was detectable throughout the cytoplasm. The red DNA 

fluorescence remained concentrated in specific areas. 
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Fig.8: Confocal laser scanning microscopy micrographs of DNA nanoparticle 

uptake at different time-points. (a) 5 min, (b) 30 min, (c) 60 min, (d) 180 min. 

The nanoparticles are extensively taken up into the endosomal compartment of 

the cells from 30 min post incubation on. DNA (red) and the P(68)-10 polyester 

(green) were associated during incubation and uptake, represented by the 

yellow/ white fluorescence. 
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Transfection Efficiency 

The transfection efficiency of DNA nanoparticles prepared with the homologous 

series of DEAPA and DEAEA polymers were investigated in L929 mouse 

fibroblasts (Fig.9-10). All DNA nanoparticles were prepared at a N/P ratio of 9 

by adjusting the polymer mass during formulation using invariant amounts of 

plasmid DNA. Hence, equal volumes of particle suspension were added to the 

cells, each containing 4 µg of plasmid DNA per well.  

The transfection efficiency of the nanoparticle suspension was evaluated and 

compared to that of an equal amount of free DNA in solution, to DNA/PEI 25 

kDa complexes and a DNA / PLGA (RG 502H) nanoparticle suspension. The 

luciferase expression of cells incubated with most of the amine-modified 

polymer DNA nanoparticles was greater than that of naked DNA. The efficacy 

of the DEAPA polymers to transfect increased with the degree of amine 

modification of the polymer, resulting a maximum value of luciferase 

expression for the P(68)-10 polymer (Fig.9a). P(68)-10 nanoparticles exhibited a 

40,950-fold higher transfection efficiency than DNA in solution and an 8.57-

fold higher luciferase expression than DNA/PEI complexes, both prepared at 

N/P 9. PLGA nanoparticles achieved only slight luciferase expression. 

Polyesters with reduced amine modification as well as those with 20 units of 

PLGA grafting were less effective than P(68)-10. The polyester, P(68)-10, in 

consequence, was investigated more intensively. P(68)-10 / DNA nanoparticles 

were formulated at N/P 0.5 to N/P 11 and their transfection efficiencies are 

represented in Figure 9b. The values were compared to DNA in solution and 

DNA/PEI complexes at N/P 5. The amount of luciferase increased exponentially 

from N/P 0.5 to N/P 7. A plateau was reached at N/P 7 through to N/P 11. 

Nanoparticles at N/P 0.5, which exhibited a negative charge, nonetheless, 

achived higher transfection efficiencies than DNA in solution. At an equal N/P 

ratio (N/P 5), the nanoparticles were 273-times more effective than the 

PEI/DNA complexes (Fig.9b). 



Effective Gene Delivery of DNA Nanoparticles 149 
_________________________________________________________________________________________________________________ 

 

 

Fig.9: Transfection efficiencies of DNA DEAPA nanoparticles, a) homologous 

series of DEAPA substituted polyesters and PEI 25kDa / DNA complexes all at 

N/P 9 compared to DNA in solution and DNA PLGA nanoparticles, b) DNA 

P(68)-10 nanoparticles at different N/P ratios and PEI 25kDa at N/P 5. 
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Fig.10: Transfection efficiencies of DNA DEAEA nanoparticles, homologous 

series of DEAEA substituted polyesters and PEI 25kDa / DNA complexes all at 

N/P 9 compared to DNA in solution and DNA PLGA nanoparticles. The higher 

amine-modifications result in higher transfection. The values however are 

inferior to PEI25 kDa / DNA complexes. 

 

The DEAEA polyester nanoparticles were also able to transfect L929 cells, 

however, DEAEA polymers were not as efficient as the DEAPA series (Fig.10). 

DNA/PEI complexes exhibited a nearly 700-fold better transfection efficiency 

than the most potent nanoparticles (E(33)-10), at N/P 9. The E(33)-10 DNA 

nanoparticles showed only a 2.3-fold higher efficiency than plasmid DNA in 

solution. The only DMAPA polymer used in this study exhibited a minimal 

increased transfection efficiency compared to DNA in solution (Fig.10).  
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The transfection efficiency of the nanoparticles at a N/P ratio of 9 was also 

investigated with three complementary cell lines: i) PMA activated U937 human 

pre-monocytic cell line, ii) rabbit smooth muscle cells (RbVSM) and iii) NIH-

3T3 mouse fibroblasts. The results of the P(33)-10, P(68)-10 and PEI 25 kDa 

were compared to those of DNA in solution (Table 3). It was demonstrated that 

the transfection efficiency was greatly enhanced for the P(33)-10 and P(68)-10 

polyesters compared to free DNA in non-monocytic cells.  

 

Cell line PEI/DNA P(33)-10 P(68)-10  DNA sol. 
U937 1.6 1.5 1.8 1 
L929 4,545.5 818.2 39,090.9 1 

RbSMC 1,470.6 132.3 1,147.1 1 

NIH – 3T3 10,989.0 604.4 17,582.4 1 

 

 

Table 3: Effect of the cell line on the transfection efficiency of DNA : DEAPA 

nanoparticles and DNA/PEI 25 kDa complexes at N/P 9 compared to free 

DNA. The DNA / P(68)-10 nanoparticles exhibit similar efficiency than the PEI 

25kDa / DNA complex 

 

Monocytic cells, however, did not exhibit luciferase expression. The P(68)-10 

formulation was more efficient than the DNA/PEI complex in fibroblasts. The 

measured values were reduced for all the preparations in RbVSM, where the PEI 

/ DNA complex was 1.3-fold more efficient than the P(68)-10 nanoparticles. 

P(33)-10 particles consistently exhibited lower luciferase levels than P(68)-10 

and PEI 25 kDa but still the values were greatly enhanced compared to DNA in 

solution. 
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DISCUSSION  

 

A tremendous effort has been put into the development of new delivery devices 

for gene delivery and more particularly into the development of new 

formulations for the effective use of DNA as a vaccine. In this study we 

investigated a new polymer class to evaluate its efficacy of DNA encapsulation, 

gene transfer and conservation of DNA bioactivity after nanoencapsulation. The 

polymers were designed specifically for DNA delivery by combining different 

functional modules which, from our hypothesis, were favorable for DNA 

encapsulation, in a polymer (e.g. biodegradation, hydrophobic PLGA grafts and 

cationic, hydrophilic amine substitutions) [13]. These possible structural 

varieties resulted in a spectrum of characteristics that were differently 

pronounced depending on the proportions in the polymer composition.  

The encapsulation of hydrophilic molecules in hydrophobic biodegradable 

polymers has been a challenge for some time. It was previously accomplished 

using ternary systems, such as emulsification / solvent evaporation techniques 

and double emulsion encapsulation techniques [9]. All of these methods, 

however, used high energy sources to stabilize the molecule in the polymer 

matrix [8,11,20]. The solvent displacement method is typically not an efficient 

technique for the direct encapsulation of water soluble drugs [21]. The synthesis 

of the new amine-modified polymers, possessing amphiphilic structures, 

however, has enabled us to encapsulate the hydrophilic molecule DNA without 

the degrading effects of shear or ultrasonic forces. The modified solvent 

displacement method was based on the solubilization of DNA by the polymer, 

interacting intensively via polyelectrolyte forces in the acetone/water mixture. 

Final nanoparticle formation in the aqueous medium was a result of the 

Marangoni effect, which describes the process of droplet formation arising from 

the rapid diffusion of acetone into the aqueous phase [22]. This results in 

interface turbulences and small droplet formation. The solvent diffusion process 
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for nanoparticle formation was described by Quintanar-Guerro et al. [23,24]. In 

these studies, particle sizes were described to be dependent upon the polymer 

concentration in the organic phase. This was attributed to the substantial 

increase of viscosity of the organic phase. Thus, it was found that homologous 

polymers with increasing molecular weights formed larger nanoparticles, due to 

higher viscosities [25]. The amine-modified polymers used in our study had very 

high molecular weights, ranging from Mw 261,600 g/mol to Mw 1199,000 g/mol 

for P(12)-10 to P(33)-10. PLGA, which was used for comparison had a 

molecular weight of only Mw 15,200 g/mol, leading to the assumption that the 

amine-modified polyester particles would exhibit larger hydrodynamic 

diameters. Remarkably, our new polymers formed smaller particles than PLGA 

even when nanoparticles were prepared with equal amounts of polymer and 

DNA (Table 1) [26]. Hence, the amine substitution increased the hydrophilicity 

of the polymer, which decreased the coalescence rate of the polymer droplets.  

The influence of the N/P ratio on the particle size of P(68)-10 nanoparticles 

revealed that an excess of negative charges of the DNA resulted in large 

aggregates (Fig.2). This could be explained by the incomplete nanoparticle 

formation and DNA aggregation. At charge neutrality, sufficient polymer was 

available to form small nanoparticles. The excess of polymer beyond this 

resulted in nanoparticles that were mainly regulated in their size by the polymer 

properties. The ξ-potential values of the P(68)-10 preparations with increasing 

N/P ratios were expected to increase from the calculations of the nanoparticle 

stoichiometry. Indeed, nanoparticles with N/P ratios ranging from N/P 1 to N/P 

2 exhibited a ξ-potential increase from –49 mV to +51 mV. This complete 

reversal of the surface charge characteristics demonstrated the ability of the 

polymer to efficiently encapsulate and compact DNA. Nanoparticles with N/P 

ratios ranging from 3 to 9 exhibited little change in the ξ-potential. The ξ-

potentials of nanoparticles prepared from DEAPA and DEAEA polymers at N/P 

5 in Table 1 were, all very similar, demonstrating that a five-fold excess in 
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amine groups over the phosphate groups resulted in similar surface charges of 

the nanoparticles independently of the polymer used. P(12)-10 and M(13)-10 

nanoparticles had reduced ξ-potentials, possibly resulting from a steric 

hindrance of amine arrangement in the particle due to higher PLGA grafting per 

amine group in the polymer.  

The polymer mass distribution showed that nearly the total polymer mass could 

be recovered in the pellet after particle preparation (Table 2). Therefore, the 

polymers used for the nanoparticles formation were not dissolved in the aqueous 

medium.  

Atomic force micrographs confirmed the PCS data and revealed the nanoparticle 

structure (Fig.3). The PLGA component seemed to be responsible for the 

formation of smooth particles. Polymers with a higher proportion of PLGA 

components compared to the amount of amine groups, for example, M(13)-10 

and P(26)-10, had a more defined structure than the E(33)-10 DNA polymer 

particles. This can be attributed to a reduced interaction of the polymer with 

DNA or an increased water uptake leading to a collapsed structure interacting 

more intensively with the silicium support.  

The lactate dehydrogenase release assay was performed to investigate the 

membrane toxicity of the nanoparticles preparations (Fig.4). High cationic 

surface charges have often been shown to be the cause of cell toxicities [27,28]. 

No membrane toxicity, defined by a LDH release inferior to 10%, was observed 

after 3 hours of incubation at 37°C. This preliminary data demonstrated that the 

nanoparticles preparations in the concentration used are suitable gene delivery 

agents, exhibiting no membrane toxicity. Further toxicity studies are under 

investigation.  

The release of DNA from nanoparticles at N/P 5 was studied using polymers 

with increasing degrees of amine substitution (Fig.5). Large amounts of DNA 

were discovered in the supernatant of the PLGA particles, which implied that 

the DNA / polymer interaction was low during PLGA particle preparation. 
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P(12)-10 nanoparticles, despite their cationic charge excess at N/P 5, also 

allowed free DNA to remain in the supernatant. This can be attributed to a 

shielding of amine-substituents charges by the PLGA side chains. In this case, 

the polymer could probably not interact as fully with DNA, compared to higher 

amine-modified polymers. The DNA encapsulation efficiency for P(33)-10 and 

P(68)-10 was complete, as no DNA was detected in the supernatant of the 

preparations. The low DNA release of the P(68)-10 and the absence of release 

from P(33)-10 was attributed to the strong association of DNA to the polymer 

and polymer backbone. The protection from DNase increased with the N/P ratio 

of the P(68)-10 nanoparticles, demonstrating an increase in DNA compactation 

firstly within the particles and during polymer degradation with the polymer 

backbone (Fig.6). The DNA in the nanoparticles at a N/P ratio of 9 was 

protected over 60 minutes.  

The association of P(68)-10 nanoparticles with fluorescence labeled DNA was 

studied to quantify the nanoparticle uptake into fibroblasts (Fig.7). Therefore, 

the similar incubation conditions as for the transfection experiments were used. 

The adsorption of the nanoparticles on the cell membranes was reduced by 

throughoutly washing with low ionic strength buffer, as well as highly 

concentrated salt solutions. The fluorescence intensity emitted by 10,000 cells 

was assessed by flow cytometry. Thereby, the intensity increased with the N/P 

ratio of the nanoparticles. The increase of fluorescence cell association could not 

be defined as linear compared to the raise of the N/P ratio. This phenomenon 

was in line with the ξ-potential (Fig.2) and the transfection data (Fig.9b) of 

P(68)-10 polyester DNA nanoparticles at different N/P ratios. As for the ξ-

potentials, this phenomenon could be explained by the formation of 

nanoparticles that did not have DNA encapsulated within the polymer. 

Consequently, the uptake of particles carrying DNA and particles without DNA 

compete for endocytosis. Still, the uptake of the particles with a N/P ratio of 11 

is higher that the N/P 9 and N/P ratio of 5. 
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The nanoparticle uptake into non-phagocytic cells, such as fibroblasts was 

studied by confocal laser scanning microscopy with fluorescence labeled DNA 

nanoparticles (Fig.8). Adsorptive endocytic uptake was observed from the 30 

min time-point on to the three hour time-point. The DNA and polymer 

fluorescences thereby mainly remained superimposed. The primary nanoparticle 

cell membrane interaction took place due to ionic interactions of the cationic 

nanoparticles with the negatively charged cell glycocalyx. This induced the non-

specific endocytosis of the nanoparticles into the non-phagocytic cells. 

Fluorescence was restricted to distinct areas of the cell for the 30 minutes time-

point, leading to the assumption that several particles were internalized in one 

endosome. After 3 hours of incubation, the particles were dispersed over the 

cell, arranging themselves in the proximity of the nucleus, which is common for 

lysosomes. The diffuse green polymer fluorescence in the cytosol of the cell 

revealed that endosomal escape of the polymer occurred. We hypothesized that 

the 5-DTAF fluorescein label was mainly bound to PLGA end groups of the 

polymer. These PLGA end groups of the P(68)-10 polymer are rapidly 

hydrolyzed, especially in the acidic endosomal environment. Therefore, we 

explained the diffuse green fluorescence by free fluorescently labeled lactic or 

glycolic acid in the cytoplasm of the cell. This allows the assumption, that the 

DNA nanoparticle formulation escaped the endosome. Other groups have 

explained the PLGA nanoparticle escape from the endosomal pathway by a 

combination of osmolytic activity localized-destabilization of the membrane that 

was followed by the extrusion of the nanoparticles into the cytosol [29]. 

However, we consider that further studies are needed to fully explain the fate of 

the nanoparticles within the cell. Still, this study demonstrated that DNA 

particles are intensively taken up by the cells, thus facilitating the gene transfer. 

The high transfection efficiencies of the DNA nanoparticles prepared by the 

modified solvent displacement method demonstrated the potency of this new 

polymeric system and the bioactivity of the DNA after encapsulation in vitro. 
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Generally, cationic surface characteristics, and thus, positive ξ-potentials, are 

required for high transfection efficiencies [30]. This could be observed for 

P(68)-10 nanoparticles prepared with increasing N/P ratios. The transfection 

efficiency increased exponentially from N/P 0.5 to N/P 7 (Fig.9b). At the same 

time, the ξ-potentials of P(68)-10 nanoparticles prepared with increasing N/P 

ratios exhibited a substantial shift from N/P 0.5 to N/P 5 (Fig.2). Further 

increase in the cationic polymer excess, however, did not result in considerable 

changes in ξ-potential or transfection efficiency. This was an indicator that 

increased DNA / polymer interaction took place in the range of N/P 5 to N/P 7. 

Higher N/P ratios only resulted in the formation of particles without DNA, 

which in contrast to water soluble polymers did not show membrane toxicity 

effects, which could influence the transfection efficiency (Fig.4) [19].  

The transfection efficiency of the homologous series of polymer particles was 

mainly dependent on the degree of amine substitution of the polymer (Fig.9a). 

Moreover, the polymers with shorter PLGA side chains exhibited higher 

luciferase expression than polyesters with a 1:20 backbone to PLGA ratio. This 

correlated with the PLGA degradation of the amine-modified polymers 

demonstrated by Wittmar et al. [13]. Still, primary experiments in our 

laboratories revealed that polymer backbone/DNA complexes did not exhibit 

comparable transfection efficiencies. Therefore, additional factors arising from 

the polymer PLGA grafting must interfere with the DNA delivery. 

While all particles were shown to exhibit similar ξ-potentials (Table 1), their 

transfection efficiencies greatly increased with the degree of amine substitution. 

Therefore, the transfection efficiency was not only dependent on the N/P ratio, 

but it was significantly dependent on the rate of amine modification of the 

polymeric backbone (Fig.5). It has been demonstrated by others that the charge 

density and not only the total amount of surface charge mainly influences the 

transfection efficiency [31]. This effect was further demonstrated comparing the 

two amine modifications (DEAPA, DEAEA) at N/P 9. DEAPA amine-modified 
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polyesters were considerably more effective than their DEAEA analogous. It 

was assumed that the interaction of DNA with the polymer was enhanced by the 

propyl-spacer (DEAPA) as opposed to the shorter ethyl-spacer (DEAEA), 

possibly due to reduced accessibility of the positive charge by PLGA shielding. 

While PEI 25 kDa exhibits a much higher amine density than the P(68)-10 

polyester, the enhanced transfection efficiency of P(68)-10 may, in contrast, be 

attributed to the combination of different effects contributing to an enhanced 

DNA release from the endosomal compartment. The careful elucidation of the 

transfection mechanism has yet to be investigated, but different effects could 

simultaneously interfere during the process [30,32,33]. The efficient amine-

modified polymers consisted of dimethlyaminopropylamine substituents, 

representing tertiary amines, that have been demonstrated to be essential for the 

endosomal escape of polyplexes by a `proton sponge´ effect [34]. This effect, 

leading to the osmotic rupture of the endosome and DNA release into the 

cytosol, could be intensified by the fast polymer degradation, resulting in an 

increase of the osmotic pressure by acidic degradation products within the 

endosome, as proposed by Koping-Hoggard [35]. The fast polymer degradation 

of the amine-modified polymers containing PLGA side chain lengths of 10 

monomers, could explained the observed effect, that polymers with shorter 

PLGA side chains were more efficient in transfecting cells [13,36]. This 

mechanism would additionally explain the diffuse green fluorescence in the 

cytoplasm, as well as the reduced transfection efficiency of polymer backbones. 

However, other mechanisms of endosomal release have eventually to be 

considered, for example, membrane destabilizing activities, taking into account 

the low glass transition temperatures and hydrophobic moieties of the polymer, 

demonstrated by Wittmar et al. [13]. Further, the `hydrogel effect´ proposed by 

Ishii, describing the swelling of the polymers in the endosome could increase the 

disruption of endosomes, due to polymer protonation [37]. Therefore, we 

concluded that the combination of different modules within one biodegradable 
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polymer, resulting in a fast degrading polymer, ionic interactions with DNA and 

the formation of water insoluble nanoparticles, provided considerable 

advantages with regard to the transfection efficiency in vitro.  

 

CONCLUSION 

 

Efficient gene delivery is a prerequisite to reduce the amount of DNA needed 

for successful DNA vaccination. The novel biodegradable branched polyesters 

described in this study, composed of an amine-modified PVA backbone with 

multiple and short hydrophobic PLGA side chains, allowed us to modify the 

solvent displacement method for DNA nanoparticle preparation. Thereby we 

were able to encapsulate DNA within biodegradable nanoparticles without the 

use of high energy sources, as a result of the interaction of DNA by the polymer 

within the acetone/water solution. The investigation of the polymer series 

demonstrated that efficient gene delivery, comparable and better than PEI 25 

kDa could be achieved in vitro using this nanocarrier system.  
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SUMMARY 

 

In this dissertation different microparticular and nanoparticular DNA carrier 

systems were developed, with the aim to create an efficient adjuvant system for 

DNA vaccination.  

Their suitability was investigated by physico-chemical parameters, such as 

particle size, ζ-potential and encapsulation efficiency. Further, the systems were 

studied in-vitro for DNA stabilization and DNA bioactivity after encapsulation 

and release, as well as for gene delivery. A promising formulation was finally 

used as DNA delivery system for in-vivo immunization. 

In Chapter 1 we described the basic fundamentals of DNA vaccines, the 

chances arising from their use, the current research and results indicating the 

difficulties to reach protective levels of immune responses. Further, vaccine 

adjuvants were described concentrating on microparticular and nanoparticular 

systems. These were presented in detail with regard to the preparation 

techniques and their applications. 

In Chapter 3 we investigated modified double emulsion methods and spray 

drying techniques for DNA microencapsulation. To prevent possible DNA 

degradation during the encapsulation process, DNA was formulated using 

several additives. Firstly, DNA was complexed with polyethylenimine (PEI) 25 

kDa. We further studied the possibility to encapsulate lyophilized DNA and 

lyophilized DNA / PEI complexes in the presence of lyoprotectants. The 

microparticles were formulated using i) a modified double emulsion technique 

(W/O/W), ii) a solid in oil in water method (S/O/W), iii) a water in oil spray 

drying technique (W/O) and iv) a solid in oil spray drying technique (S/O). The 

microparticles were smaller 10 µm for the spray-dried and the W/O/W 

formulations, thus suitable for phagocytic uptake. DNA release from particles 

prepared with double-emulsion methods, in contrast to spray drying techniques, 

resulted in constant DNA release and relatively low initial burst effects. The 
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complexation with PEI substantially retarded the DNA release for all 

preparation techniques. 

DNA encapsulated in polyester particles is exposed to the acid degradation 

products of polymer hydrolysis. 

In Chapter 4, DNA we adsorbed DNA onto the surface of microparticles. We 

developed a cationic microparticular system by the incorporation of different 

amounts of the cationic molecules, PEI or CTAB (Hexadecyltrimethyl-

ammonium-bromide), into the polyester matrix. PEI 10% microparticles 

exhibited the most promising characteristics, such as a small particle size, a high 

ζ-potential of + 47 mV, a high DNA adsorption efficiency for a theoretical 

loading of 1% over the physiological pH range. In contrast to the PEI 

formulations, microparticles containing the detergent CTAB exhibited 

aggregated particles demonstrated by SEM micrographs, as well as high 

membrane toxicities and low adsorption efficiencies.  

The mechanism of gene delivery was studied by confocal microscopy and 

revealed diffuse fluorescence of DNA and PEI in the cytoplasm of non-

phagocytic L929 fibroblasts. This was attributed to polyplex formation after PEI 

release from the particle. The efficient gene transfer of RG 502H+PEI 10% 

microparticles was confirmed by luciferase transfection. Hence, this formulation 

was chosen for in-vivo DNA immunization against Listeria monocytogenes in 

mice. The challenge experiments with a lethal dose of the pathogen 

demonstrated that the formulation had an adjuvant effect. 

However, adsorption of DNA onto microparticles by electrostatic interactions 

can cause instabilities, such as flocculation. In consequence, we encapsulated 

DNA into nanoparticles to reduce both particle flocculation and DNA 

degradation. 

In Chapter 5 a new polymeric system was designed, consisting of poly (vinyl-

alcohol) coupled with diamines, such as diethylaminopropylamine (DEAPA), 

dimethlyaminopropylamine (DMAPA) or diethylaminoethylamine (DEAEA). 
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The hydrophilic backbone was further grafted with D,L-lactide and glycolide 

(50:50) side chains consisting of 10 or 20 monomers. These polymers were 

characterized by 1H-NMR, gel permeation chromatography-multiple-angle-

laser-light-scattering, and differential scanning calorimetry. The amphiphilic 

properties allowed the formulation of DNA nanoparticles by a modified solvent 

displacement technique without the use of shear forces. DNA nanoparticles 

exhibited positive ζ-potentials up to +42 mV. The gene delivery of the 

nanoparticles was assessed in L929 mouse fibroblasts, which demonstrated high 

transfection efficiencies, comparable to PEI 25kDa/DNA complexes at a 

nitrogen to phosphate ratio of  5. 

In Chapter 6 we chose one representative polymer, P(26)-10, of the new class 

of amine-modified polyesters to investigate the influence of several process 

parameters on the nanoparticle formation. The nanoparticle size was dependent 

on the volume of the organic solvent as well as on the volume of the aqueous 

solution. The organic solvent composition further influenced the particle size 

and the encapsulation efficiency. The variations form parameters of the solvent 

displacement technique could be explained by polyelectrolyte interactions of the 

cationic polymer with DNA in the acetone / water mixture. These in 

consequence influenced the coalescence rate of the polymer.  

In Chapter 7 DNA nanoparticles with amine-modified polyesters were further 

characterized using two classes of polymers (DEAPA /DEAEA) with different 

amounts of amine modifications. The nanoparticles were prepared at specific 

nitrogen to phosphate ratios. The nanoparticle ξ-potentials and sizes were 

dependent on the N/P ratio and highly positive for a N/P ratio higher 3. Atomic 

force microscopy confirmed the small particle sizes. DNA stability during the 

encapsulation process and release over nine day was demonstrated by 

electrophoresis, as well as DNA protection from enzyme degradation in 

dependence of the N/P ratio.  
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The amount of cellular uptake of an efficient candidate P(68)-10, DNA 

nanoparticles was shown to be dependent on the N/P ratio of the formulation by 

flow cytometry. The mechanism of cellular uptake was followed by confocal 

microscopy and exhibited endocytotic uptake of the particles. The endosomal 

escape of the formulation was observed by the covalently bound polymer label 

in the cytosol and detected by reporter gene expression. The endosomal escape 

was ascribed to a combination of osmotic effect of the readily degraded PLGA 

side chains and the polycationic properties of the backbone. The very efficient 

gene delivery of the P(68)-10 polymer was demonstrated by in-vitro transfection 

assays in four cell lines compared to PEI / DNA complexes  at equal N/P ratios. 

 

OUTLOOK 

 

DNA nanoparticles formulated with amine-modified polymers were 

demonstrated to be efficient gene delivery systems. In-vivo immunizations with 

this system are ongoing. DNA nanoparticles of the most promising polymer 

P(68)-10 are either injected intra-muscularly or applied intra-nasally. Intra-nasal 

administrations generally were shown to efficiently induce mucosal immune 

responses. 

Further, highly concentrated nanoparticle preparations, especially of the 

DEAEA-modification, exhibited in-situ aggregation upon injection into buffered 

medium. Most of the current in-situ forming devices are based on polymer 

solution in organic solvents. The possibility to inject an aqueous drug - 

nanoparticle dispersion, which self assembles to a polymeric implant represents 

a promising possible to develop organic solvent free in-situ implants.  
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ZUSAMMENFASSUNG 

 

In dieser Arbeit wurden mikropartikuläre und nanopartikuläre DNA-

Trägersysteme mit dem Ziel einer adjuvanten Anwendung für DNA-Impfstoffe 

entwickelt. 

Deren Eignung wurde anhand physikalisch-chemischer Parameter, unter 

anderem ihrer Partikelgrößen und ξ-Potentiale, sowie ihrer Verkapselungs- und 

Adsorptionseffizienzen bestimmt. Weiterhin wurde in-vitro die schützende 

Wirkung für DNA vor enzymatischem Abbau, die DNA-Bioaktivität nach deren 

Freisetzung und die Transfektionseffizienz charakterisiert. Eine optimierte 

Formulierung wurde schließlich als DNA-Trägersystem für die in-vivo DNA-

Immunisierung verwendet. 

In Kapitel 1 wurden die Grundlagen der DNA-Immunisierung, deren 

Möglichkeiten, der aktuelle Stand der Forschung und die Schwierigkeiten der 

Entwicklung eines effektiven Schutzes durch DNA-Impfstoffe dargestellt. Des 

weiteren wurden adjuvante Systeme vorgestellt, wobei besonders die 

Herstellung und Verwendung von bioabbaubaren Mikropartikeln und 

Nanopartikeln berücksichtigt wurde. 

In Kapitel 3 haben wir das Doppelemulsionsverfahren und die Sprühtrocknung 

zur Herstellung von DNA-Mikropartikeln untersucht. Um den möglichen Abbau 

der DNA während der Verkapselung zu verhindern wurden unterschiedliche 

Hilfsstoffe in der Formulierung verwendet. Die DNA wurde in Lösung, als 

Polyethylenimin (PEI) 25 kDa Komplex, sowie in lyophilisierter Form in 

Anwesenheit von Lyoprotektoren verkapselt. Folgende Methoden zur 

Herstellung der DNA Mikropartikel wurden verwendet: (1) ein modifiziertes 
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Doppelemulsions-verfahren (W/O/W), (2) ein Feststoff in Öl in Wasser 

Verfahren (S/O/W), (3) die Sprühtrocknung einer Wasser in Öl Dispersion 

(W/O) und (4) die Sprühtrocknung einer Feststoff in Öl Dispersion (S/O). Die 

resultierenden Partikel der Sprühtrocknung und des Doppelemulsionsverfahrens 

waren kleiner als 10 µm und entsprachen daher den Größenanforderungen für 

eine phagozytotische Aufnahme in Zellen. Die Partikel aus dem 

Doppelemulsions-verfahren setzten DNA kontinuierlich frei, wohingegen die 

DNA aus sprühgetrockneten Mikropartikeln primär schlagartig freigesetzt 

wurde. Durch die Komplexierung mit PEI konnte die DNA-Freisetzung in allen 

Zubereitungen erheblich verlangsamt werden. 

In Polyesterpartikel verkapselte DNA wird durch die sauren Hydrolyseprodukte 

des Polymers abgebaut.  

In Kapitel 4 haben wir daher DNA an Oberflächen von Mikropartikeln 

adsorbiert. Durch die Integration unterschiedlicher Anteile kationischer 

Moleküle PEI oder CTAB (Hexadecyl-trimethylammoniumbromid) in 

Polyestergerüste konnten wir Mikropartikel mit kationischen Oberflächen-

eigenschaften entwickeln. Partikel mit 10% PEI zeichneten sich durch besonders 

positive Eigenschaften, wie zum Beispiel einer geringen Partikelgröße, eines 

positiven ξ-Potentials von +47 mV und einer besonders guten DNA-

Adsorptionseffizienz über den physiologischen pH-Bereich, aus. Diese 

Formulierung war zudem in der Lage DNA vor enzymatischem Abbau zu 

schützen. Elektronenmikroskopische Aufnahmen bewiesen, dass CTAB Partikel 

stark aggregierten und daher erheblich größere Durchmesser als PEI 

Mikropartikel in der Laser Diffraktometrie aufwiesen. Im Gegensatz zu PEI - 

Partikeln waren CTAB - Partikel membrantoxisch. Konfokale Aufnahmen mit 

fluoreszenz-markierten PEI - Partikeln und DNA resultierten in diffuser 

Fluoreszenz im Zytoplasma von nicht-phagozytischen L929 Fibroblasten. Dies 

wurde auf das Herauslösen von PEI und der Bildung von Polyplexen 

zurückgeführt. Der Gen-Transfer der RG 502H+PEI 10% Partikel konnte des 
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weiteren durch die Transfektion mit dem Reportergen Luciferase bestätigt 

werden. Daher setzten wir diese Partikel als Trägersystem für die DNA-

Immunisierung von Mäusen gegen Listeria monocytogenes ein. Das System 

bewies dabei einen adjuvanten Effekt auf die DNA-Immunisierung, welches 

durch die Infektion mit einer letalen Dosis des Erregers untersucht wurde.  

Die Adsorption von DNA an kolloidale Systeme, wie kationische Mikropartikel, 

kann allerdings zu Instabilitäten und Ausflockung führen.  

In Kapitel 5 wurde daher die Entwicklung eines neuen Polymersystems für die 

Verkapselung von DNA beschreiben. Diese Polymere wurden  aus Poly-(vinyl-

alkohol) und Diamin-Substituenten (Diethylaminopropylamin (DEAPA), 

Dimethlyaminopropylamin (DMAPA) oder Diethylaminoethylamin (DEAEA) 

aufgebaut. Diese Polymer-Rückgrate wurden mit Seitenketten aus D,L-Laktid 

und Glykolid (50:50) aus 10 oder 20 Monomeren gepfropft. Diese neuartigen 

Polymere wurden über 1H-NMR, Gel-permeation-chromatographie und 

Differential Scanning Calorimetrie charakterisiert. Die amphiphilen Polymer-

eigenschaften ermöglichten es, ein neues Verfahren zu Verkapselung von DNA 

zu ohne Verwendung von Scherkräften zu entwickeln. Die DNA Nanopartikel 

zeigten hohe ξ-Potentiale sowie hohe Transfektionseffizienzen in-vitro. Diese 

waren vergleichbar mit PEI / DNA Komplexe mit einem N/P Verhältnis von 5. 

In Kapitel 6 wählten wir ein repräsentatives Polymer dieser neuen 

Polymerklasse, P(26)-10, um die Prozessparameter des Herstellungsverfahrens 

der DNA Nanopartikel zu charakterisieren. Die Partikelgröße war abhängig vom 

Volumen des organischen Lösungsmittels und der wässrigen Phase. Die 

Zusammensetzung des organischen Lösungsmittels bestimmte durch die 

Viskosität zusätzlich die Partikelgröße und die DNA Beladungseffizienz. Wir 

erklärten die Besonderheiten des Systems durch Polyelektrolyt-

Wechselwirkungen der DNA mit dem kationischen Polymer in dem Aceton / 

Wasser Lösungsmittel. Dieses Volumenverhältnis bestimmte daher die 

Koaleszenzeigenschaften des Polymers mit. 
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In Kapitel 7 wurden die neuartigen Polymersysteme durch die Formulierung 

von DNA Nanopartikeln in unterschiedlichen N/P Verhältnissen charakterisiert 

und in-vitro angewendet. Dabei waren die ξ-Potentiale der Partikel und die 

Partikelgröße von deren N/P Verhältnis abhängig. Die Raster-Kraft-Mikroskopie 

konnte die gemessenen Partikelgrößen bestätigen. Zudem wurde DNA durch 

Verkapselung in Partikel in Abhängigkeit des N/P Verhältnisses gegen 

enzymatischen Abbau geschützt. Die Freisetzung über 9 Tage zeigte, dass nur 

Polymere mit hohen Amindichten DNA vollständig verkapseln konnten. Durch 

Flow Cytometrie mit P(68)-10 DNA Nanopartikeln konnte gezeigt werden, dass 

die Partikelaufnahme in Zellen vom N/P Verhältnis abhängig ist. Der 

entsprechende Aufnahmemechanismus wurde mit Hilfe der konfokalen 

Mikroskopie verfolgt. Die Aufnahme der Partikel in das endo/lysosomale 

Kompartiment und eine Freisetzung des kovalent gebundenen Polymerlabels in 

das Cytosol konnte beobachtet werden. Wir nehmen daher eine Freisetzung der 

Formulierung aus Endosomen durch einen osmotischen Effekt der PLGA 

Abbauprodukte in Kombination mit polykationischen Eigenschaften des 

Rückgrates an. Die ausgesprochen gute Transfektionseffizienz eines der 

Polymere, P(68)-10, wurde in unterschiedlichen N/P Verhältnissen und in vier 

Zelllinien untersucht und war bei gleichen N/P Verhältnissen vergleichbar mit 

PEI / DNA Komplexen. 

 

AUSBLICK 

 

Die DNA Nanopartikel des aminmodifizierten Polyesters, P(68)-10 haben sich 

durch sehr gute Transfektionseffizienzen ausgezeichnet. Daher werden zur Zeit 

DNA-Immunisierungen durchgeführt. Dazu werden die Nanopartikel-

Zubereitungen Mäusen parallel intra-nasal und intra-muskulär verabreicht 
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werden. Die intra-nasale Immunisierung hat im Allgemeinen den Vorteil, dass 

durch sie eine verstärkte mukosale Immunantwort entsteht.  

Ein zweiter Ansatz verfolgt das Ziel lösungsmittelfreie In-Situ Implantate zu 

entwickeln. Hochkonzentrierte DNA Nanopartikelsuspensionen, im besonderen 

die DEAEA – aminmodifizierten Polyester, bilden bei der Injektion in 

Pufferlösungen Aggregate. Daher könnte die Injektion von wirkstoffhaltigen 

Nanopartikelsuspensionen in Wasser zur Bildung von bioabbaubaren Depots 

führen. 
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