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1.  Introduction 
 
1.1  Amino acid metabolism: general overview 
Bacteria can utilize a wide range of nitrogen compounds as sole sources of cellular 

nitrogen. These range from simple inorganic compounds such as dinitrogen (N2) and 

nitrate (NO3
-) to complex compounds including amino acids. For many bacteria, including 

the enteric group, ammonium ions are the preferred nitrogen source. However, they frequ- 

ently have to utilize alternate nitrogen sources such as amino acids and, to accomplish this, 

they are capable of activating the necessary pathways. The synthesis, and in some cases the 

activity of these enzymes is tightly regulated in concert with the availability of the respec- 

tive substrates. The metabolic pathways can be divided into two classes: pathways necess- 

ary for utilization of nitrogen from the extracellular medium and biosynthetic pathways for 

intracellular production of nitrogen-containing compounds. The coordinated expression of 

the enzymes of nitrogen metabolism is primarily dependent on intracellular nitrogen pool.  

  In all organisms, amino acids are involved in a wide variety of cellular processes. Amino 

acids not only constitute the building blocks for protein synthesis but also serve as 

precursors of important metabolites such as lipids, carbohydrates, vitamins, and nucleoti- 

des. Most nitrogen atoms found in macromolecules are initially derived from the amino 

acids glutamate (Glu) and glutamine (Gln). The amino groups of both compounds are 

utilized for the production of other amino acids, and the amide group of Gln is used 

directly for the synthesis of purines, pyrimidines and various other compounds.  

  Our current knowledge of amino acid metabolism in bacteria and its regulation is mainly 

based on research with enterobacteria, notably Escherichia coli, Salmonella typhimurium 

and Klebsiella pneumoniae, whereas very little is known about the modes of amino acid 

utilization in other microorganisms such as the pseudomonads. The pseudomonads are a 

large group of the γ-proteobacteria that are engaged in a variety of metabolic activities 

including degradation of biogenic and xenobiotic pollutants (Timmis, 2002). In addition, 

Pseudomonas strains play a significant role as biocontrol agents in plant protection (Lee 

and Cooksey, 2000; Walsh et al., 2001) and plant growth promotion (see below). In the 

present work we, therefore, focussed on the metabolism of the acidic amino acids (Asp, 

Glu) and their amides (Asn, Gln) and its regulation in the Pseudomonas putida strain 

KT2440.   
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1.2  Pathways for ammonia assimilation in enteric bacteria 
Ammonia is the energetically least expensive nitrogenous substrate to process as it can be 

directly incorporated into glutamine (Gln) and glutamate (Glu), the key nitrogen donors for 

biosynthetic reactions. The assimilation of NH4
+ proceeds by either of two pathways which 

both yield Glu as the main product (cf. Fig. 1.1). 

 
Gln

Glu

2-OG

Glu

3 2 4 5

NADPH

NADP+NH4
+

H2OADP+Pi

ATP
NH4

+

NH4
+

Asn

Asp

Fum

1 2
H2OADP+Pi

ATP
NH4

+

2-OG

OAA

7
6

NH4
+

 
 

Figure 1.1: Enzymes involved in the metabolism of acidic amino acids and their amides. The 
enzymes involved are: asparagine synthetase [1], glutaminase/asparaginase [2], glutamine syn-
thetase (GS) [3], glutamate synthase (GOGAT) [4], glutamate dehydrogenase (GDH) [5], aspartase 
[6] and aspartate transaminase [7]. Asn- asparagine, Asp- aspartate, Fum- fumarate, OAA- oxaloac- 
etate, 2-OG -2-oxoglutarate,  
 

1.2.1  Glutamate dehydrogenase pathway 

Glutamate dehydrogenase (GDH, enzyme 5) catalyzes the reductive amination of 2-oxo-

glutarate to glutamate with NADPH as the reducing agent. ATP is not required. 

 

2-Oxoglutarate + NH3 + NAD(P)H + H+ → Glu + NAD(P)+ 

 

This pathway is the preferred one when the ammonium concentration in the medium is 

high. 

 

1.2.2  GS/GOGAT  pathway 

This pathway is also ubiquitous in bacteria and is active when ammonium levels are low. 

Glutamine synthetase (GS, enzyme 3) has a much lower Km (~0.1 mM) for ammonia than  
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GDH (~2 mM in E. coli). GS first converts glutamate and ammonia in an ATP-dependent  

reaction to glutamine. Glutamate synthase (GOGAT, enzyme 4) then transfers the amido 

group from glutamine to 2-oxoglutarate yielding two molecules of glutamate.  

 

Glu + NH3 + ATP  GS → Gln + ADP + Pi 

α-Ketoglutarate + Gln + NADPH  GOGAT→  2 Glu + NADP+ 

 

Genetic evidence indicated that GS is a highly regulated enzyme at both the transcriptional 

and the post-translational level. In enteric bacteria, GS is reversibly modified by the 

bifunctional enzyme adenylyltransferase (ATase) in response to nitrogen availability (see 

below). Adenylylation and deadenylylation regulate the catalytic activity of GS. When the 

intracellular nitrogen level is sufficient, ATase catalyzes the transfer of AMP from ATP to 

the subunits of GS which progressively inactivates the enzyme. Conversely, when the 

intracellular nitrogen level is low, the adenylyl group is removed from GS and the enzyme 

becomes active again. In E. coli, two protein components, PI and PII, are involved in the 

adenylylation and deadenylylation process. The PI fraction contained an ATase whose 

ability to adenylylate or deadenylylate GS was specified by the PII protein and by the 

concentrations of PI, ATP, UTP, Gln and 2-ketoglutarate.  

  Structural analyses of GOGAT revealed that the enzyme is a heterodimer, whose larger 

glutaminase subunits and smaller transaminase subunits  are encoded by gltB and gltD 

genes, respectively. GOGAT is essential for the derepression of the Ntr response in many 

bacteria (see section 1.4) as it removes Gln which represses the Ntr system.  

 

1.3  Enzymes of amino acids utilization 
In ammonia-limited conditions, cells utilize many alternative nitrogen sources such as 

nitrate, urea and amino acids (Magasanik, 1996). As already mentioned, E. coli and other 

enterobacteria derive all their nitrogen from Glu or Gln (Reitzer, 1996a, 1996b). Never- 

thless, Glu and Gln are inferior to NH4
+ in supporting growth of enteric bacteria. In 

Pseudomonas the situation is different. Several strains of P. fluorescens and P. putida 

rapidly grow on acidic amino acids and their amides, even when these are supplied as the 

sole source of carbon and nitrogen (Hüser et al., 1999; Klöppner, 1999). 
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1.3.1  Asparagine synthetase 

The reactions catalyzed by asparagine synthetase (Fig. 1.1, enzyme 1) use either Gln or 

ammonia as a nitrogen source to convert of Asp to Asn. Two families of asparagine 

synthetases have been found. Members of the AsnA family which occur in E. coli and 

Klebsiella aerogenes (Humbert and Simoni, 1980; Reitzer and Magasanik, 1982) use only 

ammonia as the amino group donor. The other group is the AsnB family, members of 

which were found in both prokaryotes and eukaryotes (Hughes et al., 1997; Scofield et al., 

1990). These enzymes use both Gln and ammonia as the nitrogen donor, but Gln is the 

preferred one.  

 

1.3.2  Glutaminase/asparaginase 

Enzymes that catalyze the hydrolysis of Gln and Asn are widely distributed in microorga-

nisms. One such group of amidohydrolases called glutaminase/asparaginases convert 

asparagine and/or glutamine to their respective dicarboxylates, aspartate and glutamate 

(Fig. 1.1, enzyme 2). According to their subcellular localization and kinetic properties, 

there are two major subgroups (Class I and Class II). Class I asparaginases  are constitutive 

cytoplasmic enzymes with a marked preference for L-Asn. By contrast, class II enzymes, 

encoded by the ansB gene, are located in the periplasm and show a wider specificity for L-

Asn and L-Gln  as well as for their D-isomers (Cedar and Schwartz, 1967; Kovelenko et 

al., 1977; Derst et al., 2000). The role of asparaginases has been studied extensively in 

Gram-negative bacteria such as E. coli (Cedar and Schwartz, 1967), Salmonella enterica 

(Jennings et al., 1993), Erwinia chrysanthemi (Gilbert et al., 1986), and Vibrio proteus 

(Sinha et al., 1991) and also in some Gram-positive organisms such as Bacillus subtilis 

(Atkinson and Fischer, 1991) and Staphylococcus aureus (Rozalska and Mikucki, 1992).  

  E. coli contains both the periplasmic (type II) and the cytosolic (type I) asparaginase 

isoenzyme. Type II asparaginases from E. coli and E. chrysanthemi have received con-

siderable attention as they are used in the treatment of leukemias. Malignant transformed 

haematopoietic cells are sometimes unable to synthesize sufficient Asn for their own 

metabolism, so that the asparaginase-induced depletion of Asn in serum impairs function 

of the transformed cells and eventually causes their death (Roberts, 1976; Jacob et al., 

1996; Müller and Boos, 1998).  

  In Pseudomonas, the acidic amino acids (Asp, Glu) and their amides (Asn, Gln) strongly 

and specifically induce the periplasmic glutaminase/asparaginase isoenzyme (PGA,  
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Klöppner, 1999; Hüser et al., 1999). However, the physiological roles of class II 

glutaminases/ asparaginases and their regulation in P. putida KT2440 at the molecular 

level are not well understood.  

 

1.3.3  Aspartase  

This enzyme (Fig. 1.1, enzyme 6) is also referred to as aspartate ammonia lyase. It plays an 

important role in amino acid metabolism by reversibly converting the product of glutami-

nase/asparaginase, L-Asp, to fumarate and ammonium ion. Thus it feeds the carbon 

skeleton of Asp into the tricarboxylic acid cycle. 

 

1.3.4  Aspartate transaminase  

This enzyme (Fig. 1.1, enzyme 7), also known as aspartate aminotransferase or glutamate- 

oxaloacetate transaminase, catalyzes the formation of oxaloacetic acid and glutamic acid 

from aspartic acid and 2-oxoglutarate.  

 

1.4  Nitrogen control by the Ntr system 
In many natural environments inhabited by prokaryotes, ammonia is not present at 

sufficient concentrations. In such cases, bacteria opt to utilize a wide range of  alternate 

nitrogen sources. In ammonia limiting conditions, cells synthesize proteins that transport 

and degrade nitrogenous compounds, and assimilate the ammonia produced. There is 

increasing evidence indicating that in most, if not all, bacteria the expression of genes 

involved in nitrogen assimilation and catabolism is controlled by a global nitrogen 

regulatory (Ntr) system. The main components of the system, which has been most 

extensively studied in E. coli, are shown in an overview in  Fig. 1.2. 

 

1.4.1  Components  

The Ntr system basically consists of four proteins 1) uridylyltransferase/uridylyl removing 

enzyme (UT/UR) 2) the glnB encoded PII protein and 3+4) the proteins of a two-

component regulatory system, NtrB and NtrC. The activated NtrC protein stimulates 

expression of about 100 genes and thus initiates the Ntr response (Reitzer, 2003).  

 All functional proteins of the Ntr system can be interconnected between two different 

states. UT/UR controls the state of the PII protein in response to the nitrogen status of the 

cell. The unmodified form of PII inactivates both glutamine synthetase (GS) and the 
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NtrB/NtrC system. This, in turn, prevents the expression of Ntr-related proteins. The 

uridinylated form of PII is no longer capable of inhibiting NtrB/NtrC and thus allows 

initiation of the Ntr response. 
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The primary sensor of the nitrogen status is the UT/UR bifunctional enzyme. Its effect on 

the PII protein mainly depends on the [glutamine]/[2-oxoglutarate] ratio. When the cells are 

nitrogen-limited, the [Gln]/[2-OG] ratio is low which, in turn, stimulates UTase to covale- 

ntly modify PII by transferring an uridylyl monophosphate (UMP) group to a specific 

tyrosine residue of the protein at the expense of UTP.  In conditions of  good nitrogen 

supply, i. e. when the [Gln]/[2-OG] ratio is high, the uridylyl-removing action of UT/UR is 

promoted, resulting in the formation of  free PII. 2-OG probably induces a conformational 

change in PII that allows uridylylation, while binding of glutamine to UT/UR results in a 

conformation that preferentially deuridylylates PII. 

  A major function of PII is to control the activity of glutamine synthetase (GS). More than 

30 years ago it was recognized that GS activity is mainly regulated by enzyme-catalyzed 

adenylation/deadenylation (Magnum et al., 1973; Adler et al., 1975) which, in turn, is 

controlled by the state of PII. Adenylation and deadenylation of GS are brought about by a 

bifunctional adenylyltransferase-adenylyl removing enzyme (AT/AR) similar to UT/UR. 

The two forms of PII interact with AT/AR and control its catalytic activity, i. e.  

             

 PII(UMP)4  → AR ↑   →  deadenylated (more active) GS  

                          PII → AT ↑   →  adenylated (less active) GS  

 

1.4.3  Control of the NtrB/NtrC system by PII 

NtrB (also referred to as NRII) and NtrC (NRI) are members of a so-called two-component 

regulatory system (such systems are discussed in more detail below). In the absence of PII, 

NtrB acts as a protein kinase. It transfers a phosphate residue from ATP to one of its own 

histidine residues (autophosphorylation) and from there to an aspartate residue of NtrC. 

(Keener and Kustu, 1988; Weiss and Magasanik, 1988; Weiss et al., 1991). NtrC, the so-

called response regulator of the system, i. e. a transcription factor that, in its phosphoryl- 

ated form, activates the σ54-dependent transcription of genes. Binding of free PII to NtrB 

stimulates the phosphatase activity of the latter and thus leads to transcriptionally inactive 

NtrC. In summary, the modification of PII in response to the cellular nitrogen status 

provides the intracellular switch that regulates the phosphatase and kinase activities of 

NtrB and hence the transcriptional activity of NtrC.  
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1.4.4  Genes regulated by the Ntr system 

As already mentioned, in enteric bacteria a large number of genes (at least 100) are tran-

scriptionally regulated by NtrBC (Zimmer et al., 2000). These include the ntrBC operon 

itself, glnA which encodes glutamine synthetase and many genes that code for transport 

systems. So, the Ntr system of E. coli controls the transport of Gln (glnHPQ), Glu 

(gltJKL), arginine (argT), histidine (hisJQMP), putrescine (potFGHI, ydcSTUV), peptides 

(oppABCDF, dppABCDF) and of other N-containing compounds. The genes required for 

nitrate and nitrite assimilation (nasFEDCBA), the nitrogen fixation regulatory genes nifLA 

of K. pneumoniae; and the nitrogen regulation gene (nac) of K. aerogenes also depend on 

the Ntr system for expression. 

  To date, very little is known about the  function of the Ntr system in Pseudomonas. It was 

superficially characterized  in  P. aeruginosa and P. putida. Several mutants of P. aerugin- 

osa were isolated because of their inability to assimilate poor nitrogen sources, and a 

number of these were shown to have pleiotropic phenotypes with respect to nitrogen 

utilization. Eberl et al. (2000) reported that in P. putida KT2442 mutations in the gltB 

gene, encoding a major subunit of GOGAT affects the biosynthesis of the enzyme which 

result in Ntr- phenotype i.e. the inability to utilize a number of amino acids as sources of 

nitrogen. The GOGAT deficient mutants failed to grow on nitrite, urea, low levels of 

ammonium (below 1 mM) and some amino acids. In addition, the GOGAT mutant was 

severely impaired in the ability to survive prolonged incubation in nitrogen-free medium 

that only 0.001% of the initial populations remained viable. These results clearly indicates 

that a mutation in gltB gene give rise to a nitrogen-sensitive mutants.  

 

1.5  Two Component Systems 
Two-component regulatory systems play an important role in the adaptation of bacterial 

cells to the environmental signals such as nutrient availability, oxygen tension or 

osmolarity (Dunny and Winans, 1999). The basic biochemical events of two-component 

signal transduction were first established by Ninfa and Magasanik (1986) for the nitrogen 

regulatory system in E. coli (see section 1.4). In its basic form, a two-component system 

consists of a pair of proteins: a sensor kinase (histidine protein kinase, HPK) and a cognate 

response regulator (RR). Most, but not all, HPKs are associated with the plasma 

membrane, usually via one or two membrane-spanning sequences and they typically 

contain extracellular sensory input modules fused to the protein kinase catalytic module.  
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This arrangement enables HPKs to detect environmental signals. Such signals trigger 

autophosphorylation of the transmitter module in the histidine kinase domain of HPKs at a 

specific histidine residue (H). The sensor HPK then regulates the activity of a cytoplasmic 

RR by transferring its histidine-bound phosphate to an aspartate residue (D). Response 

regulators consist of a "receiver domain" that contains the aspartate-phosphorylation site 

and a "output domain", a DNA-binding module whereby the RR functions as a transcri- 

ption factor (Dunny and Winans, 1999; Hoch and Silhavy, 1995).  
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The P. aeruginosa genome contains more than 500 genes that encode either transcriptional 

regulators or two-component regulatory system proteins. Recently, Nishijyo et al. (2001) 

identified in P. aeruginosa PAO1 a novel two-component system, CbrA-CbrB, which 

belongs to the NtrB-NtrC family. This system controls several specific pathways and 

modulates the catabolism of various natural substrates in response to the carbon/nitrogen 

ratio. In addition, it controls the expression of catabolic pathways, specifying the major 

route of arginine degradation. CbrA and CbrB negative mutants of strain PAO1 were 

unable to utilize several amino acids such as arginine, histidine and proline as sole source 

of carbon and nitrogen (Nishijyo et al., 2001). By comparing their sequences with a known 

components of regulatory systems, CbrA and CbrB were identified as a sensor/histidine 

kinase and its cognate response regulator, respectively. The N-terminal half (490 residues) 

of CbrA appeared to be a sensor membrane domain, whereas the C-terminal part showed 

34% sequence identity with NtrB of E.coli and other kinases of the NtrB family. The CbrB 

protein was ~45% identical to the response regulators of the NtrC family. Studies on the 

expression of catabolic pathways of arginine and histidine indicated that the σ54-RNA 

polymerase holoenzyme is absolutely essential for the expression of the respective 

enzymes, with CbrB acting as a transcriptional activator. As the P. aeruginosa PAO1 

genome contains all genes encoding the nitrogen regulatory proteins (Stover et al., 2000), 

it is conceivable that a signal transduction system similar to Ntr also operates in 

Pseudomonas. However, the signals that determine the activity of the CbrA-CbrB system 

in P. aeruginosa are still largely unknown.  

 

1.6  Sigma factors in bacterial gene expression 
Sigma factors associated with RNA polymerase are involved in specific binding to DNA 

and thus play an important role in regulation of differential gene expression (Helmann and 

Chamberlin, 1988). There are several sigma factors present in bacteria. E. coli has seven σ 

subunits, and each constitutes a distinct function. σ70 associated with RNA polymerase 

initiates transcription of house keeping genes and some nonessential genes which are 

induced under certain conditions. σS is considered as a general stress factor since it is 

mainly associated with a variety of growth-impairing stresses such as nutrient limitation, 

high osmolarity, oxidative stress and high temperature. σ32 and σE are also associated with  
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stress. σ32 is required for the response to damage of cytoplasmic proteins, which is most 

commonly associated with heat shock, and σE controls the response to extracytoplasmic or  

extreme heat stress. σ54 encoded by the rpoN gene was first discovered  during an analysis 

of GS and nitrogen assimilation in enteric bacteria (Hirschman et al., 1985). It is an 

important factor involved in nitrogen assimilation. It is also involved in a variety of other 

processes such as carbon source utilization, certain fermentation pathways, flagellar 

synthesis, and bacterial virulence. σ54-dependent transcription has several distinct features. 

σ70-like factors associated with core RNA polymerase (E) forms a open promoter complex. 

In contrast, Eσ54 catalyzes strand separation only with the help of a distinct class of 

transcriptional activators. Due to this unique property, transcription can be turned off 

completely. The σ54-dependent activators bind to sites that are effective regardless of 

distance and orientation. The activators interacts with Eσ54 from these binding sites. This 

interaction sometime requires DNA bending proteins such as integration host factor (IHF). 

 

1.6.1  σ54-dependent promoters 

σ54-dependent genes are controlled through modulation of the activator’s ATPase activity. 

σ54-dependent activators contain a regulator domain that controls ATPase activity by 

several mechanisms like phosphorylation, interaction with ligand, or interaction with 

regulatory proteins. σ54-dependent promoters contain an easily recognizable site for Eσ54 

since their expression absolutely requires σ54. In E. coli, all the known σ54-dependent 

promoters are located outside the structural genes. The average size of the intergenic 

region that contain a known σ54-dependent promoter is about 200-250 bases. The distance 

from the 3’ end of the Eσ54 binding site to the nucleotides coding for the initiation codon 

is, on average, 50 bases. 

 

1.6.2  σ54-dependent genes of nitrogen metabolism 

Many σ54-dependent genes are involved in nitrogen assimilation. These genes specify GS, 

the regulators NRI, several transport systems, and a few catabolic operons. Glu and Gln are 

the major intracellular nitrogen donors, and they provide about 75 and 25% of the cell’s 

nitrogen, respectively (Reitzer and Schneider, 2001). Ammonia assimilation and the GS 

activity is known to be dependent on σ54 factor. The pathways of ammonia assimilation 

and control of GS activity is already discussed in section 1.2. 
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1.7  Transport of Nitrogenous Compounds 
The transport of nitrogen-containing nutrients into the cell is the initial and thus a very 

important process in bacterial nitrogen metabolism. 

 

1.7.1  Ammonium transport 

There is considerable evidence for the rapid diffusion of free ammonia across cytoplasmic 

membranes. In most of the prokaryotic species, transport of ammonium ions (NH4
+) occurs 

by an active transport system (Amt). In most cases, Amt activity is repressed in the 

presence of high extracellular ammonium concentrations. Several studies indicated that 

Amt expression is controlled by the Ntr system (Jayakumar et al., 1986). In E. coli, a 

peripheral membrane-associated protein (AmtA) is mainly responsible for ammonium 

transport. 

 

1.7.2  Nitrate transport 

PII-like proteins play a role in nitrate utilization or uptake in many organisms. GlnB 

mutants of Bacillus subtilis and Rhizobium leguminosarum failed to utilize nitrate as a sole 

nitrogen source, indicating that GlnB is involved in nitrate utilization (Amar et al., 1994; 

Wray, et al., 1994). Like ammonium uptake, nitrate assimilation is controlled by the Ntr 

system. A glnB mutant of Azospirillum brasilense excreted ammonium when the cells were 

grown in presence of nitrate. It has been proposed that the observed effect could be due to 

deregulation of the nitrate assimilation pathway, with the consequent accumulation of 

intracellular ammonium leading to ammonia excretion (Liang, et al., 1993). A P. putida 

KT2442 nasB- mutant (devoid of nitrate reductase) was also shown to be highly responsive 

to ammonia deprivation (Eberl et al., 2000). These authors also demonstrated that 

expression of nasB gene is dependent on the presence of a functional gltB gene. 

 

1.7.3  Amino acid transport 

Transport of an extracellular amino acids into the cell is an important step in their 

utilization as a sources of cellular nitrogen and for various other metabolic processes such 

as protein and nucleotide biosynthesis. The ABC (ATP binding cassette) transporter is one 

of the active transport systems of the cell, which is widespread in archea, eubacteria, and 

eukaryotes. It is also known as the periplasmic binding-dependent transport system in  
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Gram-negative bacteria and the binding-lipoprotein-dependent transport system in Gram-

positive bacteria. The transporters consist of two integral membrane proteins (permeases),  

two peripheral membrane proteins that bind and hydrolyze ATP, and a periplasmic 

substrate-binding protein. In E. coli more than half of the genes activated by nitrogen 

limitation code for transport systems. Many transport systems for the amino acids were 

shown to be dependent on σ54 factor.  

 Glutamine transport has been studied extensively in E. coli. Gln transport system requires 

a GlnH, a high-affinity Gln-specific binding protein in the periplasm. The glnHPQ operon 

specifies GlnH and two other membrane proteins, which interact with GlnH. Expression of 

glnHPQ requires nitrogen limitation. Nitrogen limitation increases the production of 

glnHPQ transcripts five- to nine fold. E. coli contain five transport systems for glutamate 

and aspartate. Nitrogen limitation induces a periplasmic protein gltI that binds to both Glu 

and Asp. 

 

 E. coli and other Gram-negative bacteria digest peptides intracellularly after their passage 

through the outer membrane and transport via periplasmic binding protein-dependent 

transport systems. Nitrogen limitation induces the expression of dppABCDE and 

oppABCDE. The products of these operons are the major peptide transporters in E. coli. 

The first step in peptide transport is passage through the outer membrane, and nitrogen 

limitation results in 25-fold higher transcription of ompF, which codes for an outer 

membrane channel. 

  Very little is known about the regulation of amino acid transport in Pseudomonas. 

Considering this fact, it would be of great importance to study such systems in more detail. 

 

1.8  Plant growth-promoting rhizobacteria 
In recent years, the interest in the interactions between plant roots and soil organisms has 

been growing at a rapid pace. Plants are known to establish two types of symbiotic 

relationship.  

1) plant-bacterial symbiosis as see with rhizobia and bradyrhizobia and 2) plant-fungal 

symbiosis. Plant-bacterial symbiosis result in the provision of nitrogen to the plant via 

fixing of atmospheric nitrogen by the symbiont, while plant-fungal symbiosis supplies the 

plants with phosphates. In return, the plants supplies both type of organisms with carbon 

compounds for their nutrition. 
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In addition to symbiotic microorganisms many other bacteria inhabit the rhizosphere (the 

root surface and the surrounding soil areas). Some of these non-symbiotic bacteria also 

have the potential to improve crop yields. These so-called plant growth-promoting 

rhizobacteria (PGPR) which belong in diverse genera such as Pseudomonas and Bacillus, 

enhance plant growth either directly through the synthesis of phytohormones (giberellin 

and indole acetic acid) or indirectly by the production of antibiotics that control pathogenic 

fungi and competing bacteria (Bloemberg et al., 2001). Additionally, PGPR increase 

availability of compounds such as nitrate, phosphate, sulfate, carbon dioxide and water for 

use by the roots. 

  Due to these effects, PGPR are of great interest for sustainable crop protection and have, 

therefore, drawn much attention. However, their use in the field often failed because 

potential PGPR were unable to colonize the rhizosphere of inoculated plants and to survive 

in this environment. Colonization of roots by introduced bacteria is an important step in the 

interaction between beneficial bacteria and their host plants. In recent years, several groups 

have initiated projects with the aim to elucidate the interactions that mediate root 

colonization. In most of these studies, fluorescent pseudomonads are used which inhabit 

the rhizospheres of most crop plants. Pseudomonads are free-living saprophytic organisms 

in soil or water where they play an important role in decomposition, biodegradation, and in 

the carbon and nitrogen cycles. Because of this lifestyle, pseudomonads are characterized 

by great metabolic diversity. Consequently, they are also important in bioremediation i.e. 

the microbial degradation or inactivation of hazardous chemicals in the environment, and 

in biofertilization i.e. the process in which microorganisms increase the availability of 

nutrients (Lugtenberg et al., 1991).  

 

1.9  Root colonization by bacteria 
One of the most relevant aspects is the process of bacterial establishment in the 

rhizosphere, since an effective biocontrol depends on the efficiency or root colonization 

(Chin-A-Woeng et al., 2000). To date, only a few bacterial traits involved in rhizosphere 

colonization have been identified. It was reported that immotile Pseudomonas mutants 

were impaired in colonization (de Weger et al., 1987). Mutants of P. fluorescens defective 

in the synthesis of the O-antigen of lipopolysaccharide (LPS) were also less effective in 

root colonization. Further characterization revealed that mutants lacking the O-antigen of 

LPS have a decreased growth rate compared to their parental strains (Dekkers et al.,  
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1998b). The ability to synthesize amino acids and vitamin B1 was also shown to be 

essential for colonization. Simons et al. (1996) reported that genes involved in the 

synthesis of amino acids and vitamin B1 are essential for establishment in the rhizosphere. 

In one of the mutants, mutation in the nuo4 gene encoding a subunit of NADH: ubiquinone 

oxidoreductase resulted in impaired root colonization. This enzyme is involved in the 

generation of the proton motive force used for the synthesis of ATP, active transport of 

various nutrients and ATP-dependent rotation of the flagella. The action of a member of 

the λ integrase family of site-specific recombinases was found to be essential for 

colonization (Dekkers et al., 1998a). Site-specific recombinases have been implicated in 

the production and regulation of fimbriae in E. coli, the production of two different forms 

of LPS in Francisella tularensis, antigenic variation of surface lipoprotein antigens in 

Mycoplasma bovis and the production of two flagellin genes in Salmonella typhimurium. 

This suggest that lacking the ability for DNA rearrangements can affect one or more traits 

already described to be important for root colonization. 

  Attraction of PGPR by the host is probably a key process for the initiation of mutualistic 

plant-bacterial interactions. Bacterial chemotaxis towards different nutrients known to be 

present in root exudates has been demonstrated (Vande Broek et al.,1995). Non-flagellated 

and non-chemotactic mutants of Azospirillum brasilense showed reduced ability to 

colonize wheat roots (Vande Broek et al., 1998). Although the question of bacterial 

motility in soil is still under debate, a series of experiments performed with P. fluorescens 

and A. brasilense, pointed out the existance of a directed motion of bacterial cells towards 

wheat roots in soil (Bashan, 1986). However, this motion was heavily influenced by soil 

composition and humidity. The role of motility in attachment and colonization has been 

examined in detail by Turnbull et al. (2000). Motility seems to be important for compe- 

titive root colonization by P. fluorescens (Turnbull et al., 2001), as well as for the attach- 

ment of P. putida to wheat roots under conditions of nutrient limitation. 

 

1.10  The role of root exudates in plant-bacterial interactions 
Many plants release a large fraction of their assimilates into the rhizosphere. It is now well 

established that such root exudates play a central role in the communication between root 

bacteria and their plant hosts (De Weger et al., 1995). Apparently, many plants have 

gained the ability to exert control over the rhizosphere community through the release of 

compounds that can enhance beneficial associations while limiting deleterious interactions.  
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In parallel, microbes can increase their survival within the rhizosphere by establishing a 

spectrum of relationships with the plant that can be exerted in response to root exudation. 

Indeed, root exudates were shown to induce in rhizosphere bacteria the expression of 

specific genes, some of which appear to be involved in the utilization of exudate 

components (van Overbeek and van Elsas, 1995; Lee and Cooksey, 2000). Exuded organic 

compounds such as citrate and malate also play an important role in mobilization of 

phosphorous, complexation of iron and solubilization of zinc and manganese.  

 

1.11  Components of root exudates 
Root exudate components generally have been categorized into three classes: low-

molecular weight, high-molecular weight and volatile compounds (Fig. 1.4). Low-

molecular weight compounds represent the main portion of exudates and mainly consist of 

sugars, amino acids, organic acids, vitamins and various secondary metabolites. High-

molecular weight compounds consist of mucilage and proteins, while carbon dioxide, 

certain secondary metabolites, low-molecular weight alcohols and aldehydes constitute 

volatiles (Nelson, 1991; Fan et al., 1997).  

Different plant species contain many common constituents of each of these categories but 

their amounts and time of release may vary. Several factors such as temperature, light, age, 

soil type and moisture have been shown to affect the nature and the timing of exudate 

release (Rovira, 1969).  

  Although sugars account for most of the organic matter in exudates, there is no evidence 

indicating that they play a major role in plant-bacterial interactions. Lugtenberg et al. 

(1999) could not find a significant contribution of sugars to tomato root colonization by a 

well-studied Pseudomonas biocontrol strain. In addition to monosaccharides, exudates 

contain organic acids such as succinate, malate, acetate, and pyruvate (Waschutza et al., 

1992) and significant amount of amino acids. 

 

The predominant amino acids in root exudates are the acidic amino acids Asp and Glu and 

their amides Asn and Gln. In barley-root exudates, the acidic amino acids and their amides 

account for almost 50% of all amino acids (Barber and Gunn, 1974). Similar results were 

obtained with other plants (Boulter et al., 1966; Shepherd and Davis, 1994). In the corn 

rhizosphere, amino acids afford as much as 220 mg nitrogen/kg of soil dry weight, while 

nitrate and ammonia together account for less than 60 mg/kg (Jones and Darrah, 1993).  
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Figure 1.4: Functional role
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establishing and persisting in the rhizosphere at a relatively high population density 

(Molina et al., 2000). While Pseudomonas putida KT2440 is non-pathogenic, other 

pseudomonads can cause disease. For example, P. aeruginosa is an important opportunistic 

pathogen and P. syringae is a plant pathogen. In addition P. putida KT2440 is very easy to 

handle and has the ability to utilize a wide range of carbon and nitrogen sources. Recently, 

the full genome sequence of P. putida KT2440 became available (Nelson et al., 2002) 

which greatly facilitates the identification and manipulation of relevant genes.  

 

1.13 Aims and objectives of this study  

 

The aims of the present study were to  

     •  further characterize the role of acidic amino acids and their amides in nitrogen   

      metabolism of P. putida KT2440 

     •   identify differentially expressed proteins during growth on various combinations of  

          carbon and nitrogen sources 

     •   characterize genes involved in the utilization of amino acids 

     •   identify regulatory systems that control utilization of acidic amino acids and their   

          amides 
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    _________________________________________________________2  MATERIALS 
 

2.  Materials 
 
2.1 Microorganisms 
Stocks of all microorganisms were prepared in sterile 40% glycerol. Routinely used stocks 

were kept at -20 0C whereas, for longer use stocks were kept at -80 0C. 

 

Microorganism                      Genotype                Source 

E. coli 
BL21                       ompT hsdS(rB– mB–) dcm+ Tetr gal λ   Stratagene 
CodonPlus(DE3)-RIL (DE3) endA Hte [argU ileY leuW Camr] 
DH5αTM   F-φ80dlacZ∆M15 ∆(lacZYA-argF)U169       Life Technology 

deoRrecA1 endA1 hsdR17 ((rk
- mk

+)phoA  
supE44 λ- thi-1 gyr A96 rel A1 

HB101   supE44hsdS20-(rb
- mb

-) recA13 ara-14       Amersham Pharmacia 
    proA21acY1 gaIK2 rpsL20 
TG1   supE thi-1 ∆(lac-proAB) ∆(mcrB-hsdSM)5  Stratagene 

(rk
- mk

-)[F' traD36 proAB laclqZ∆M15] 
XL1 Blue   recA1 endA1 gyr A96 thi-1    Stratagene 
    hsdR17 sup E44lac[F' proA 
          BlacIZ∆M15 Tn10(Terr)] 
 
E. coli S-17 pOT182       Merriman,  1993 
E. coli S-17        Simon et al., 1983 
 
Pseudomonas 
P. putida    Wildtype; ATCC 12633   DSM 
P. putida KT2440   mt-2hsdR1 (r- m+)           Bagdasarian et 
al.,1982 
P. putida KT2440 rpoN-  rpoN mutant     Köhler et al., 1989 
aauS-              aauS- derivative of KT2440              This work 
aauR-   aauR- derivative of KT2440    This work 
ansB-   ansB- derivative of KT2440   This work 
gltB-   gltB- derivative of KT2440   This work 
Tn-SM2   gltB:: Tn5-OT182    This work 
Tn-SM3   gltB:: Tn5-OT182    This work 
Tn-SM6   gltB:: Tn5-OT182    This work 
Tn-SM9   gltB:: Tn5-OT182    This work 
Tn-SM15   gltB:: Tn5-OT182    This work 
Tn-SM27    gltB:: Tn5-OT182    This work 
Tn-SM29   gltB:: Tn5-OT182    This work 
Tn-SM30   gltB:: Tn5-OT182    This work 
Tn-SM31    gltB:: Tn5-OT182    This work 
Tn-SM33    gltB:: Tn5-OT182    This work 
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2.2  Antibiotics 
Antibiotics were first filter sterilized and then added to the medium when the temperature 

of the medium reached 50 oC. 

 
Antibiotic   Stock (mg/ml)      Final Concentration (µg/ml) 

 
Ampicillin          100    100 
Carbenicillin           50    300 
Chloramphenicol         100    50 
Gentamycine           10    15 
Kanamycin            10    25 and 30 

     Tetracycline           10    25 
 
 
2.3  Plasmids 
 
Plasmid              Characteristic(s)            Source 

pGEX-6P-3                 Expression vector            Amersham BioScience 
pJQ200       Cloning vector            Quandt and Hynes, 1993 
pK18       Cloning vector                   Pridmore, 1987 
pOT182       Self cloning promoter probe Vector      Merriman and Lamont,1993 
Tn5-OT182      Derivative of pSUP102(Gm)::               Merriman and Lamont, 1993 
             Tn5-B21 
 
 

2.4  Oligonucleotides 

All synthetic nucleotides were made available from MWG BioTech (Ebersberg).  

 
2.4.1  Oligonucleotide primers for gene expression 

Primer name              Nucleotide sequence       Restriction Site 
 
ABCFor   5'-CACATCATGGTCATGCCTTC-3'   ----- 

ABCRev   5'-ACCTGACCATCACCGAGAAC-3'   ----- 

ansBFor   5'-CTGTCCTGGGTCTTGGTCAT-3'   ----- 

ansBRev   5'-GTATGGCTATGGCAACGTCA-3'   ----- 

AspFor   5'-GGTTGATTTCGGTCAGCAGT-3'   ----- 

 20



    _________________________________________________________2  MATERIALS 
 

AspRev   5'-ACCTGCACCCTAACAACGAC-3'   ----- 

FumaFor   5'-ATACGGCCAGTACCCACGTA-3'   ----- 

FumaRev   5'-GTAGCTGCTTGACTGCACCA-3'   ----- 

LyaseFor   5'-GGTTGATTTCGGTCAGCAGT-3'   ----- 

LyaseRev   5'-ACCTGCACCCTAACAACGAC -3'   ----- 

PorFor   5'-AGACCCGCATGCTGTATTTC-3'   ----- 

PorRev   5'-ACTGGTCACCCACTTTCAGC-3'   ----- 

RhoFor   5'-ATCCTGCTGGACTCGATCAC-3'   ----- 

RhoRev   5'-GAGCGGTTGATGTTGATGG-3'   ----- 

 
 

2.4.2  Oligonucleotide primers for transposon mutant sequencing 

Primer Name             Nucleotide sequence        Restriction Site 
OT182For   5'-GATCCTGGAAAACGGGAAAG-3'   ----- 

OT182Rev   5'-ACATGGAAGTCAGATCCTGG-3'   ----- 

pOT182For  5'-CGACGGGATCCATAATTTTT-3'   ----- 

pOT182Rev  5'-CGTTACCATGTTAGGAGGTC-3'   ----- 

 

2.4.3  Oligonucleotide primers for gene replacement 

_________________________________________________________________________ 
Primer Name                  Nucleotide sequence     Restriction site 
aauSFor                    5'-CGCggatccCGAATACCCTTGAAGGCCTGA-3'         BamHI 

aauSRev                   5'-CCCAAGCTTTCAGTTTTTCCACACCATCG-3'        HindIII 

aauRFor     5'-CGCggatccGCCTGGTCGAACGTGGTACG-3'            BamHI 

aauRRev     5'-CCCaagcttGATGTCTTCACGGCGCTCAC-3'             HindIII 

ansBFor      5'-GAGGCTAAGCGAGGAAATGA-3'       -------- 

ansBRev      5'-GTAGCCAGCCGAAACTGAAG-3'       -------- 

ansBLT     5'-ATGAATGCCGCACTGAAAAC-3'      -------- 

ansBRT     5'-ACGACCCAGTCGTTCTTGTC-3'      -------- 

ansB5Rev     5'-GCGCTTGGGGCGAAGGTT-3'      -------- 

gltBFor     5'-CGCggatccCGCAAACATCTTCCAGGAGT-3'             BamHI 

gltBRev     5'-AActgcagACCAGCGTGGTGTATTCCTT-3'               PstI 

gltBpK18For    5'-CACAGGAAACAGCTATGACCA-3'      -------- 
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gltBpK18Rev    5'-ACCAGCGTGGTGTATTCCTT-3'      -------- 

gltBP3For                 5'-ATTTCACACAGGAAACAG-3'       -------- 

gltBP4Rev                5'-CTCCAGCGGCTCGACCTG-3'       -------- 

KTABCFor    5'-CGCggatccTGGTCGATGGCAACTTCGATT-3'         BamHI 

KTABCRev    5'-CCCaagcttTGCTGCCCTTGTCCATGAAG-3'             HindIII 

 
 
 
2.4.4  Oligonucleotide primers for protein overexpression 
 
 

Primer Name              Nucleotide sequence       Restriction site 
aauR1For    5'-CGCggatccATGAACCAAGCGCCTCTTAC-3'  BamHI 

aauR2Rev  5'-CCGgaattcTCAGGCGAGGCCGTATTTTTTC-3'  EcoRI 

 
 
Lower case and underlined = Restriction site introduced 

Highlighted and underlined = Nucleotide base introduced 

 

2.5  DNA and RNA Markers 

DNA and RNA markers were kept at -20 0C for longer use. Routinely used markers were 

kept at 4 °C for up to six months. 

 

Marker      Obtained from 
λBstEII      peqlab Biotechnology GmbH, Erlangen 

1 kb DNA- Ladder     peqlab Biotechnology GmbH, Erlangen 

100 bp Ladder     peqlab Biotechnology GmbH, Erlangen 

Mass RulerTM DNA Ladder, Low Range  Fermentas, St.Leon- Rot 

RNA Ladder High Range    Fermentas, St.Leon-Rot 

Prestain Protein Marker    New England BioLabs, Beverly 

 

2.6  Kits 

All components of DIG DNA Labeling and Detection kit and RT-PCR kit were stored at -

20 0C and buffer P1 from QIAprep Spin Plasmid kit was stored at 4 0C.  
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DIG DNA Labeling and Detection kit  Boehringer Mannheim, Mannheim 

DNeasy Tissue Kit     Qiagen, Hilden 

QIAamp Tissue Kit    Qiagen, Hilden 

QIAprep Spin Plasmid Kit   Qiagen, Hilden 

QIAquick Gel Extraction Kit   Qiagen, Hilden 

QIAquick PCR Purification Kit   Qiagen, Hilden 

QIAquick Nucleotide Removal Kit  Qiagen, Hilden 

RNeasy Mini Kit     Qiagen, Hilden 

RT-PCR Kit     Invitrogen Life Technologies,  

                                                                              Eggenstein 

 

2.7  Enzymes and Chemicals 
Chemicals (usually of analytical grade) and enzymes were supplied by the Promega (Man- 

nheim), Sigma (Steinheim), Merck (Darmstadt), Serva (Heidelburg), Roth ( Karlsruhe), 

Roche (Mannheim), Peqlab Biotechnology (Erlangen), Life Technology (Eggestein), 

Amersham Pharmacia Biotech ( Freiburg), Fermentas (St. Leon-Rot), New England 

BioLabs (Beverly), and Fluka (Buchs). 

 

2.7.1  Enzymes 

All enzymes except glutamate dehydrogenase were stored at -20 0C for prolonged use. 

Glutamate dehydrogenase was stored at 4 0C. 

 

Enzyme          Source/Type   Obtained from 
Alkaline Phosphatase   Calf intestine alkaline New England BioLabs, Beverly 

  Phosphatase (CIP) 
 

DNA polymerase    PfuTurbo-Polymerase Stratagene, Heidelburg 

      Taq- Polymerase  Roche, Mannheim 

Glutamate dehydrogenase     Sigma, Steinheim 

Restriction enzymes     Boehringer Mannheim; Roche,    

                    Mannheim; New England  

BioLabs, Beverly 

Reverse Transcriptase SupreScript TM II   Life Technologies, Eggenstein 
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RNase OUT Recombinant     Life Technologies, Eggenstein 

RNase H       Life Technologies, Eggenstein 

RQ1 DNase       Promega, Mannheim 

T4-DNA ligase       Fermentas, St. Leon-Rot; New   

        England BioLabs, Beverly 
 
 
2.7.2 Chemicals 

    
Acrylamide, N, N'-methylene bisacrylamide   Roth, Kerlsruhe 

(30 %, 0.8%)   

Agarose        Sigma, Steinheim 

α-cyano-3-hydroxycinnamic acid      Sigma, Steinheim 

Ammoniumpersulfate (APS)     Merck, Dermstadt 

Bromophenol Blue       Roth, Karlsruhe 

Dithiothreitol (DTT)      Sigma, Steinheim 

Formaldehyde       Sigma, Steinheim 

Glycerol        Sigma, Steinheim 

Glycine        Sigma, Steinheim 

Immobilized pH gradient strips    Amersham Pharmacia, Freiburg 

Iodoacetamide       Sigma, Steinheim  

Pharmalytes 3-10      Pharmacia Biotech, Freiburg 

PhastGel Blue R      Pharmacia Biotech, Freiburg 

Saturated phenol       Roth, Karlsruhe 

Serva Blue G       Serva, Heidelburg 

 

Silver nitrate       Roth, Karlsruhe 

Sodium dodecylsulphate (SDS)     Merck, Darmstadt 

Sodium thiosulphate      Sigma-Aldrich, Steinheim 

N,N,N',N'-Tetramethylendiamine (TEMED)   Merck, Darmstadt 

Thiourea        Sigma-Aldrich, Steinheim 

Trypsin        Promega, Mannheim 

Urea        Sigma-Aldrich, Steinheim 
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2.8  Instruments 
 

2.8.1  Bacterial growth 

 

Apparatus            Model           Manufacturer 
Autoclave      VST40/60S    Zirbus GmbH, Osterode 

Incubation shaker     Novotron AK 82   Bottmingen, Switzerland 

                   G25     New Brunswick Scientific,     

                                                                                           Nürtingen 

Heat incuabtion cupboard    FT550    Heraeus, Hanau 

Sterile bench     D624 RF    Schirp Reinraumtechnik 
 
 

2.8.2 Centrifuges 

 

Apparatus   Model                       Manufacturer 
 

Centrifuge Biofuge fresco           Heraeus, Hanau    

Centrifuge 5415           Eppendorf, Hamburg 

J2-21             Beckmann 

Minifuge RF             Heraeus Sepatech, Hanau 

                                    Suprafuge 22            Heraeus Sepatech 
 
 

 

2.8.3  Photometers 

 
 

 

Apparatus      Model          Manufacturer 
 
Spectrophotometer   UV/Vis 551   Perkin-Elmer, Überlingen 

     Ultrospec 3000  BiotechPharmacia, England 

     U-2000    Hitachi, Tokyo 
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2.8.4  Electrophoresis 

 
Apparatus       Model            Manufacturer 
 

2-D Gel electrophoresis  Hoefer SE 600  Perkin Elmer, Life Sciences 

Digital Camera   D120 Zoom digital Camera Kodak 

Isoelectric focussing  MultiphorII    Pharmacia, Freiburg 

Easy-Cast electrophoresis  B2    Woburn, USA 

Power supply   Power-supply 3000/150 Pharmacia, Freiburg 

     Consort E452   AGS GmbH, Heidelburg 

Video- Scanner   Mitsubishi Video copy Mitsubishi  
     processor with thermoprinter 

 
 

2.9  Membranes and special materials 

 
     Obtained from 

Cellulose acetate filter (0.2 µm)  Sartorius, Göttingen 

HybondTM-N+    Amersham Pharmacia biotech, Freiburg 

Membrane filter (0.2 µm)   Schleicher& Schüll, Dassel 

Millex-GS (0.22 µm)   Millipore, Bedford, USA 

Millex-HA (0.45 µm)   Millipore,Bedford, USA 

96-Well-Plates, Sterile   Greiner GmbH; Frickenhausen 

24-Well-Plates, Sterile   Greiner GmbH; Frickenhausen 

 

2.10  HPLC Analysis  
 
Acetonitrile    Riedel-deHaen, Seelze 

Amino acid standard   Sigma, Steinheim 

Methanol     J. T. Baker, 

Phenylisothiocyanate (PITC)  Sigma, Steinheim 

Pyridine, Sodium acetate   Merck, Darmstadt 

Triethylamine    Sigma, Steinheim 
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2.11  Other apparatus 
 

Apparatus   Model     Manufacturer 
 

Analytical balance       Sartorius 

    AB54     Mettler Toledo, Gießen 

DNA Thermocycler  T Personal     Biometra, Goettingen 

    Cetus     Perkin Elmer, Langen 

Heat bath   F3     Haak, Karlsruhe 

Heating block  Thermostat 5320   Eppendorf, Hamburg 

HPLC   D-7500    Hitachi, Japan 

Microplate reader  Reader 3550 UV with software- Biorad, München 

     kinetic collector 

pH meter   Model U2000    Orion-Colora, Lorch 

Micropipettes       Gilson, France 

Sonicator   Sonorex RK-103   Bandelin, Berlin 

Speed-Vac Concentrator      Savant,Martinsried,   

         Germany   

Ultrasonicator  Sonoplus GM70   Bandelin, Berlin 
 

 

2.12  Computer programs and Internet-Links 

 
Clustal W alignment    http://www.igbmc.u-strasbg.fr/Biolnfo/clustaw/Top.html 

2-D Gel analysis    MelanieII, BioRad 

Compute pI    http://scansite.mit.edu/cgi-bin/calcpi 

Emboss Transeq    http://www.ebi.ac.uk/emboss/transeq 

ExPASy-Tools     http://www.us.expasy.org/tools/ 

Multialign interface   http://prodes.toulouse.inra.fr/multialin/multialin.html 

Sequence blast                               http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html 

Peptide mass    http://www.expasy.org/tools/peptide-mass.htm 

Pseudomonas database   http://pseudomonas.bit.uq.edu.au/gene_browser.phtml 

Pseudomonas genome   http://www.pseudomonas.com/ 

PromScan Promoter Scanning  http://www.promscan.uklinux.net/ 
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Protein Identification    MS-Fit 

Protein Machine     http://www.ebi.ac.uk/~tommaso/translate.html 

PowerPoint      Microsoft 

Sigmaplot      Jandel Scientific 

The Institute for Genomic Research  http://www.tigr.org 

Windows     Microsoft 

Word      Microsoft 
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3.  Methods 

 

3.1  Safety  
All potentially harmful operations were carried out in restricted areas. Media, solutions, 

and instruments required for experiments with bacterial cultures were autoclaved before 

use. Temperature-sensitive solutions were sterilized by filtration through 0.4 µm membra- 

nes. All bacterial waste was decontaminated by autoclaving for 30 min at 121 oC or higher 

before disposal. Waste containing ethidium bromide was first passed through the column 

packed with activated charcoal and then disposed off in a special container. All dangerous 

chemicals were handled using safety glasses and gloves.  

 

3.2  Bacterial growth 
 

3.2.1  Storage and revival  of bacterial cultures 

100 µl of frozen cells from 40 % glycerol stock was inoculated into 5 ml of LB medium 

(Luria-Bertani medium, Sambrook et al., 1989). E. coli and Pseudomonas cultures were 

grown overnight  with shaking at 37 oC and 30 oC, respectively. A loopfull of culture was 

streaked on LB plates and plates were incubated overnight at respective temperatures. The 

colonies formed could be used up to 1 month when kept at 4 oC. For longer storage, a fresh 

culture of exponentially growing cells was mixed with sterile 40% glycerol in an 1:1 ratio 

(v/v) and stored at –80 oC.  

 

LB medium 

NaCl     10 g/L 

Tryptone    10 g/L 

Beef extract    5 g/L 

———————————————————————————————————— 

3.2.2  Cultivation 

Pseudomonas putida KT2440 and mutants were grown overnight in M9+-medium at 30 oC 

with shaking. The cells were spun down at 6,000 rpm for 10 min. The pellet was washed in 

3 ml of M9--medium and centrifuged again at 6,000 rpm for 5 min. The pellet was resus- 
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pended in M9--medium. Cell density was measured as A600. The resulting cell suspensions 

were diluted appropriately with M9–-medium so that nearly equal number of cells were 

present in an inoculum.  

 

 M9 medium  (Sambrook et al., 1989) 

       a)  M9+-medium    
     Na2HPO4, anhydrous     6.78 g/l 

      KH2PO4      3.0   g/l 
       NaCl       0.5   g/l 
       NH4Cl       1.0 
       * 20% glucose, filter sterilized    20 ml 
       * 1M MgSO4      2 ml 
       * 1M CaCl2        100 µl  
             pH = 7.4  
 b)  M9--Solution 
     Na2HPO4, anhydrous     6.78 g/l 
      KH2PO4      3.0   g/l 
      NaCl       0.5    g/l 
      *1M MgSO4      2 ml 
      * 1M CaCl2        100 µl    
         pH = 7.4 
* Sterilized separately and cooled to room temperature before adding into M9 medium. 

 

     Carbon and nitrogen source(s) Stock solution Final concentration 

================================================================ 

α-Ketoglutarate§      100 mM   10 mM 
Aspartate        100 mM   10 mM 
Asparagine       100 mM   10 mM 
Fumarate§       100 mM   10 mM 
Glutamate       1 M    10 mM 
Glutamine       100 mM   10 mM 
Saccharose§      100 mM   10 mM  
Succinate       100 mM   10 mM 

 

* All filter sterilized 
§ Neutralized with 1 N NaOH 
 

In order to check the effect of different carbon and nitrogen sources on growth and enzyme 

activities of wild-type and mutants, equal volumes of inoculum were added to tubes 

containing M9--medium supplimented with different carbon and nitrogen sources.  
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Samples were removed after different time intervals and checked for growth (A600) and 

enzyme activities. E. coli cells were grown in LB medium under identical conditions 

except that cells were incubated at 37 oC. 

 

3.3  Preparation and transformation of competent cells 
 

3.3.1  Preparation of competent E. coli cells (Hanahan et al., 1983) 

A single colony of E.coli cells was picked up using a sterile toothpick and incubated in 5 

ml of LB medium with shaking at 37 oC overnight. 30 ml of LB medium was inoculated 

with 0.3 ml overnight culture and was allowed to grow till OD595 nm reached to 0.4-0.5. 

Bacterial cells were transferred to a sterile, ice-cold 50-ml polypropylene tube and the cells 

were recovered by centrifugation at 3500 rpm for 10 min at 4 oC. The medium was 

decanted from the cell pellet and the tube was allowed to stand in an inverted position on a 

pad of paper towel for 1 min to drain away the last traces of medium. The pellet was 

resuspended by swirling in 20 ml sterile, ice-cold 0.1 M CaCl2 solution and incubated in 

ice for 30 min. Cells were spun down at 3500 rpm for 5 min at 4 oC. The pellet was 

resuspended in 5 ml of 0.1 M CaCl2 and again kept in ice for 30 min. The treated cells were 

directly used for transformation or were dispensed in aliquots and frozen at -80 oC. 

 

3.3.2  Transformation of competent host cells 

10 µl of ligation mixture was added to 100 µl of competent E. coli cells. The contents of 

the tube was mixed by swirling gently and the tube was stored in ice for 30 min. The cells 

were heat-shocked at 42 oC for 60 s and the tube was rapidly transferred to an ice bath 

where the cells were allowed to chill for 5 min. 400 µl of LB medium was added to each 

tube. The cultures were shaken at 37 oC, 130 rpm for 1 h. Transformed competent cells 

were transferred onto LB agar plates containing appropriate antibiotic. The plates were 

stored at room temperature until the liquid had been absorbed. Plates were inverted and 

incubated at 37 oC. 

 

3.3.3  Preparation of electro-competent Pseudomonas cells 

A single colony of Pseudomonas from a fresh agar plate was inoculated into a flask 

containing 5 ml of LB medium. The culture was incubated overnight at 30 oC on a rotary  
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shaker (220 rpm). 0.5 ml of this overnight culture was inoculated in 50 ml LB medium. 

The flask was incubated at 30 oC with agitation (220 rpm) until OD595nm of the growing 

culture reached to 0.6. The flask was transferred to an ice-water bath for 30 min. The 

culture was transferred to ice-cold centrifuge bottles. The cells were harvested by 

centrifugation at 3500 rpm for 10 min at 4 oC. The supernatant was discarded and cells 

were resuspended in 20 ml sterile ice-cold 10% glycerol. Cells were harvested by 

centrifugation at 3500 rpm for 5 min at 4 oC. The resulting pellet was resuspended in 20 ml 

sterile ice-cold 10% glycerol and again centrifuged under same conditions. Finally the cells 

were resuspended in 5 ml ice-cold 10% glycerol. 

    

3.3.4  Electroporation of competent Pseudomonas cells 

Electroporation is an efficient means of transferring macromolecules such as DNA into 

bacteria. It is the process of applying high-voltage electric field pulses of short duration to 

create temprory pores in the membrane of cells. These pores are generally large enough to 

allow macromolecules to diffuse into the cell. Upon removal of an electric field and a 

period of recovery, these pores are resealed and the DNA is replicated within the cell. 

  90 µl of the freshly made electrocompetent cells were pipetted into ice-cold 1.5 ml 

microfuge tube. The cells were placed on ice, together with an appropriate number of  

electroporation cuvettes. 10 µl of the DNA was added to each microfuge tube and the tubes 

were incubated in ice for 5 min. The DNA/cell mixture was pipetted into an ice-cold 1 mm 

electroporation cuvette. The solution was tapped to ensure that the suspension of bacteria 

and DNA sits at the bottom of the cuvette. Moisture from outside of the cuvette was dried. 

The cuvette was placed in a electroporation devise. A pulse of electricity at 1.8 kV was 

delivered to the cells. Immediately after the pulsing, the electroporation cuvette was 

removed from electroporation devise and 400 µl LB medium was added to the cuvette. 

After this, cells were transferred to a polypropylene tube and was incubated with gentle 

rotation (~130 rpm) for 3 h at 37 oC. Electroporated cells were spread onto LB agar 

medium containing appropriate antibiotic. The plates were stored at room temperature until 

the liquid had been absorbed. The plates were inverted and incubated at 30 oC. 
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3.4  Motility and chemotaxis assays 
Transposon mutants were examined for their motility phenotypes by transferring fresh 

individual colonies to Petri dishes containing a 0.3% M9--agar supplimented with 10 mM 

amino acids and tetracycline. These motility plates were incubated for 1 to 3 days at 30 oC, 

and the motility phenotype of each mutant was assessed. Motile strains swarm through the  

semi-solid agar away from the site of inoculation, resulting in a larger area of growth than 

for nonmotile strains. Chemotaxis towards amino acids was examined on 'swarm plates'. 

Sterile filter paper discs were soaked in amino acids (Asn Asp, Gln, Glu, 10 mM each) and 

transferred to the plates. Fresh bacterial colonies were inoculated at a suitable distance 

from soaked filter paper discs, incubated at 30 oC for 24 to 36 h, and examined for growth 

towards amino acids.  

 

3.5  Survival in nitrogen limiting conditions 
Nitrogen starvation regimens were set up after harvesting an overnight grown culture of 

transposon mutants, gltB mutant and wild-type strain. Cells were washed twice with M9--

medium followed by resuspension in M9+-medium depleted of ammonium. Growth and 

starvation of cells were carried out at 30 oC and the cell mass of the cultures was measured 

spectrophotometrically as the optical density at 600 nm (OD600). Starvation survival of 

nitrogen depleted cultures was monitored by determination of viable counts by plating 0.1-

ml samples of different dilutions on LB plates. 

 

3.6  Isolation of bacterial DNA 
 

3.6.1  Isolation of genomic DNA by the DNA Mini Kit (Qiagen) 

The QIAamp DNA minikit (250) from QIAGEN was used for the preparation of DNA. 

Bacterial cells were grown overnight in 5 ml of appropriate medium at optimum 

temperature. 1.5 ml of the culture was transferred into a microfuge tube and centrifuged at 

a maximum speed for 30 s at 4 oC to isolate the cell pellet. The pelleted bacterial cells were 

suspended in 180 µl ATL buffer. After that, 20 µl proteinase K was added and mixed with 

the cell pellet by vortexing. The mixture was incubated at 56 oC for 10 min. The samples 

were vortexed occasionally during incubation to disperse the contents. After incubation, 

the sample was centrifuged briefly to remove the drops from the inside of the lid. 
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Reagents 
ATL        Cell lysis buffer 

Proteinase K      DNase inhibitor 

AL        Lysis buffer 

Absolute ethanol     Precipitation 

AW1       Wash buffer 1 

AW2       Wash buffer 2 

AE       Elution buffer 

 

To attain a RNA-free genomic DNA, 20 µl RNase A ( 20 mg/ml) was added to the sample 

and mixed thoroughly by gentle vortexing. Next, 200 µl buffer AL was added to the 

sample, mixed again by pulse vortexing for 15 s and incubated at 70 oC for 10 min. 200 µl 

of absolute ethanol was added to the lysate and mixed by gentle inversion to precipitate 

cell components. A QIAamp spin column was placed in a microcentrifuge tube and the 

mixture including precipitate was transferred to the column. After centrifugation for 1 min 

at 6,000 x g, the fluid in the spin column was drained into the microcentrifuge tube, while 

the DNA from the supernatant was bound to the column material. The column was then 

washed by adding 500 µl buffer AW1 without wetting the rim and again centrifuged for 1 

min. The flow-through was discarded and the column was placed in a clean 2-ml collection 

tube. The column was washed another time with 500 µl buffer AW2 as above. To 

eliminate any chance of possible buffer AW2 carryover, the column was placed in a fresh 

microcentrifuge tube and centrifuged again for 1 min. Finally, the bound DNA was eluted 

with 50 µl buffer AE.  

 

3.6.2  Phenol-chloroform extraction  

150 µl phenol saturated with TE buffer was added to the cell suspension and the mixture 

was dispersed homogeneously by shaking for 5 min. The bacterial lysate was centrifuged 

at maximum speed for 30 s to separate the two phases. 200 µl of the upper aqueous phase 

of the emulsion was carefully transferred into a fresh microfuge tube and the protein-

containing interphase was discarded. 150 µl absolute chloroform was added to the aqueous 

phase, shaken gently to mix the content and centrifuged at maximum speed for 30 s. 200 µl 

of the aqueous phase was transferred into a new microfuge tube. This step was repeated 

twice.  
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3.6.3  DNA precipitation 

1/20 volume (10 µl ) 5 M NaCl and 2 volumes of absolute ethanol were added to the DNA 

solution. The solution was mixed by vortexing and then allowed to stand for 2 min at room 

temperature. The precipitated DNA was collected by centrifugation at maximum speed for 

10 min at 4 oC in a microfuge. The supernatant was discarded and the tube was allowed to  

 

 

stand in an inverted position to drain away the fluid. DNA was washed by adding two 

volumes of 70% ethanol and the tube was inverted several times. The DNA was recovered 

by centrifugation at maximum speed for 5 min at 4 oC. The tube was kept open at room 

temperature until the ethanol had evaporated completely. DNA was dissolved in 200 µl TE 

buffer (pH 8.0) and mixed by gentle shaking. DNA was stored at 4 oC for further use. 

 

3.7  Isolation of Plasmid DNA  
The QIAprep-spin Plasmid Kit (250) from QIAGEN was used for the preparation of 

double-stranded DNA from overnight cultures of Pseudomonas and E. coli in LB medium. 

These cultures were centrifuged at 4 oC for 30 s at 13,000 rpm to isolate the cell pellet.  

 

Reagents 

P1       Cell suspension buffer 
P2       Cell lysis buffer 
N3       Neutralization buffer 
PB       Wash buffer 
PE       Wash buffer 
EB (elution buffer)    10 mM Tris-Cl, pH 8.5 

 

The pelleted bacterial cells were resuspended in 250 µl buffer P1. After that, 250 µl SDS-

containing lysis buffer P2 was added and mixed with the cell pellets by inverting 4-6 times. 

The mixtures were incubated at room temperature for 5 min. 350 µl neutralization buffer 

N3 was added to the lysate and mixed by gentle inversion to precipitate the cell 

components. The precipitate was removed by centrifugation at 4 oC for 10 min at 13,000 

rpm and the supernatant was discarded. A QIAprep-spin column was placed in a 

microcentrifuge tube and the supernatant was applied to the column. After centrifugation  
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for 1 min, the fluid in the spin column was decanted, while the plasmid DNA from the 

supernatant was bound to the column material. The column was then washed by adding 

500 µl PB buffer and again centrifuged for 1 min. The flow-through was discarded. The 

column was washed a second time with 750 µl PE buffer as above. To avoid possible 

carryover of ethanol containing PE buffer which may inhibit subsequent enzymatic 

reactions, the column was again kept in a new microcentrifuge tube and centrifuged for 

additional 1 min. Finally, the bound DNA was eluted with 50 µl EB buffer by 

centrifugation. 

 

3. 8  Agarose gel electrophoresis (Maniatis et al., 1982) 
In agarose gels DNA fragments can be separated from each other according to their size. 

The electrophoretic mobility of DNA fragments is inversly related to their length, as each 

nucleotide in a nucleic acid molecule carries a single negative charge. 

================================================================ 

    Reagents     Concentration 

 

Gel solution     0.8-1.7% (w/v) in 1X TAE 

Ethidium bromide stock   10 mg/ml 

Gel loading dye solution   0.25 % (w/v) bromophenol blue in H2O 

       0.25% (w/v) xylenecyanol FF in H2O 

       30% (v/v) glycerol in H2O 

        Electrode buffer    1X TAE 

 

        TAE-buffer (50 X), per liter 
     ================================================================ 

      Tris       242 g 

       Acetic acid      57.1 ml 

     0.5 M EDTA     100 ml, pH= 8.0 

      

 

 

 

 

 36



    __________________________________________________________3. METHODS 
 

Running buffer (10X), per liter 

  Tris      30 g 

  Glycine     144 g 

  10% SDS     500 ml 

================================================================ 

DNA bands can be detected by staining with ethidium bromide which fluoresces under 

ultraviolet light when bound to DNA.  

  The gel matrix was prepared as follows: 0.8-1.7% (w/v) agarose was dissolved in 1X 

TAE buffer by boiling. 8 µl ethidium bromide (10 mg/ml) was added to this gel solution 

and poured into the corresponding gel apparatus and the gel was allowed to solidify at 

room temperature. To load a DNA sample, wells of 4 mm size were prepared by placing a 

comb into the liquid agarose. After solidification, 500 ml electrode buffer was poured into 

the apparatus to cover the gel surface. 10 µl of DNA solution was mixed with 2 µl of 6X  

 

 

dye solution and placed into the wells of the gel. After that, the gel was run at 80 V until 

the blue dye was 1 cm away from the bottom of the gel. The DNA bands in the gel were 

then visualized on a transilluminator using UV light (365 nm). To determine the size of 

DNA, a standard λ-DNA marker  (300 bp to 4,000 bp size) was run with sample. The gels 

were photographed by using KODAK DC120 camera. For isolation of DNA from the 

agarose gel, the desired DNA band was cut from the gel by using a clean scalpel and kept 

in a microcentrifuge tube for the following DNA extraction. 

 

3.9  DNA extraction from agarose gels 
After staining, DNA-fragments were visualized under UV-light at 365nm. DNA fragments 

were excised with a clean, sharp scalpel. The gel slice was weighed in a microfuge tube.  

 

            Reagents 

 

          Buffer QG       Dissolving buffer 

          Buffer PE       Washing buffer 

          Buffer EB (elution buffer)     10 mM Tris-Cl, pH 8.5 
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Three volumes buffer QG was added to one volume of the gel. The tubes were incubated at  

50 oC for 10 min. To dissolve the gel completely, the mixture was vortexed every 2-3 min 

during incubation. If the colour of the mixture was violet, 10 µl 3 M sodium acetate, pH 

5.0 was added to the reaction mixture. To increase the yield of DNA fragments, one gel 

volume isopropanol was added to the sample and mixed well. QIAquick spin columns 

were placed in a 2-ml collection tube. To bind DNA, the sample was applied to the 

QIAquick column, and centrifuged for 1 min at 10,000 rpm. The flow-through was 

discarded and 0.5 ml buffer QG was added to QIAquick column and again centrifuged for 

1 min at 10,000 rpm. The column was washed by adding 0.75 ml buffer PE to the column 

and centrifuged for 1 min at 10,000 rpm. Residual ethanol from buffer PE was completely 

removed by centrifuging the column for an additional 1 min. The column was placed in a 

new 1.5 ml microfuge tube. The DNA was eluted by adding 50 µl buffer EB to the center 

of the QIAquick membrane. To increase DNA concentration, the column was allowed to 

stand for 1 min at room temperature, and then centrifuged for 1 min at 13,000 rpm. For 

further use, the DNA was stored at -20 oC. 

 

3.10  Polymerase Chain Reaction 

The Polymerase Chain Reaction (PCR) uses multiple cycles of template denaturation, 

primer annealing, and primer elongation to amplify DNA sequences.  

In a sterile 0.5-ml microfuge tube the following components were added 

    

 10X amplification buffer     5 µl  

2 mM dNTPs       10 µl  

Forward primer (100 pm)      1µl  

Reverse Primer (100 pm)     1 µl  

Taq DNA polymerase/PfuTurbo Polymerase  1-2 Units 

Template DNA      200-400 ng 

Total Volume       50 µl  

 

The use of thermostable polymerase from Thermus aquaticus (Saiki et al., 1988) is the 

enzyme of choice for increased efficiency of PCR. The enzyme is highly processive 5'-3' 

DNA polymerase that lacks 3'-5' exonuclease activity. The enzyme exhibits highest  
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activity at a pH of around 9 and temperature around 75 oC. Taq DNA polymerase activity 

is stable against prolonged incubations at elevated temperatures (95 oC). Another enzyme 

of choice to obtain high-fidelity PCR is PfuTurbo DNA polymerase. PfuTurbo DNA 

polymerase amplifies complex genomic DNA targets upto 10 kb and vector targets upto 19 

kb in length. To obtain the desired products in high yield, oligonucleotide primers 

complementary to 5'- and  3'- end of the  amplification fragment were used. 

  The nucleic acids were amplified using the denaturation, annealing, and polymerization 

times and temperatures as listed below. 

 

Cycle 

Number 

    Denaturation Annealing   Polymerization 

First 25-30 

cycles 

1-5 min at 

94-95 oC 

30-40 s at 

45-68 oC 

1 min at 72 oC 

Last 

Cycle 

  5-10 min at 72 oC 

 

 

 

5-10 µl of a sample from test reaction mixture was withdrawn and analyzed by electropho-

resis through an agarose gel. Control reaction and an appropriate size DNA markers were 

also included with test reactions. Gels were stained with ethidium bromide to visualize 

DNA bands. 

 

3.11  Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 
RT-PCR combines cDNA synthesis from RNA templates with PCR to provide a rapid, 

sensitive method for analyzing gene expression. RT-PCR is used to detect or quantify the 

expression of messages, often from small amounts of RNA. In addition, the technique is 

used to analyze differential gene expression or to clone cDNAs without constructing a 

cDNA library. RT-PCR is more sensitive and easier to perform than other RNA analysis 

techniques, including Northern blot, RNase protection assays, in situ hybridization, and S1 

nuclease assays. The RT reaction can be primed with random primers, oligo(dT), or a 

gene-specific primer (GSP) using a reverse transcriptase (see Fig 3.1). 
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Figure 3.1: Principle of RT-PCR 

 

 

3.11.1  Isolation of total RNA  

Bacterial cells were harvested by centrifugation at 6,000 rpm for 5 min at 4 oC. The 

supernatant was discarded, and all remaining medium was removed carefully by aspiration.  

Reagents 

================================================================

TE buffer      0.1 M Tris, 0.01 M EDTA, pH 8.0 

Lysozyme in TE buffer    400 µg/ml 

β-Mercaptoethanol     Reducing agent 

Buffer RTL     Resuspension buffer 

Ethanol (96%)     Precipitation 

RW1      Wash buffer 1 

Buffer RPE      Wash buffer 2 

RNase-free water     Elution 
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The bacterial pellet was loosened by flicking the bottom of the tube and resuspended in 

100 µl lysozyme-containing TE buffer by vortexing and incubated at room temperature for 

5 min. 350 µl RTL buffer was added to the sample, mixed thoroughly by vortexing. 250 µl 

ethanol (96%) was added to the lysate and mixed thoroughly by gently pipetting the 

mixture several times. The sample including precipitate was applied to the column and 

centrifuged for 20 s at 10,000 rpm. 700 µl buffer RW1 was added to the column, and 

centrifuged for 20 s at 10,000 rpm to wash the column. To wash the column, 500 µl buffer 

RPE was pipetted onto the column and centrifuged for 20 s at 10,000 rpm. To dry the 

RNeasy silica-gel membrane, another 500 µl buffer RPE was added to the column and 

centrifuged for 2 min at 10,000 rpm. To eliminate any chances of buffer RPE carryover, 

the column was placed in a new 2 ml collection tube and centrifuged at 13,000 rpm for 1 

min. To elute RNA, 40 µl RNase-free water was pipetted directly onto the RNeasy silica-

gel membrane and centrifuged for 1 min at 10,000 rpm. 

 

3.11.2  First-strand (cDNA) synthesis 

The Superscript RT-PCR system is designed for the sensitive and reproducible detection 

and analysis of RNA molecules in a two-step process. cDNA synthesis was performed in 

the first step by using total RNA primed with oligo(dT). P. putida KT2440 was grown in  

M9--medium containing 22 mM glucose and 19 mM NH4Cl; 10 mM glutamate till optical 

density (OD600nm) reached to 0.3-0.5. Total RNA was isolated as described in section 

3.11.1. Residual DNA was removed by treating total RNA with RNAse free DNAse. DN- 

Ase (1 U/µl ) was added to total RNA and incubated at 37 oC for 30 min. The reaction was 

terminated by adding 1 µl RQ1 DNase stop solution. The reaction mixture was incubat- ed 

at 65 oC for 10 min to inactivate the DNase. The reverse transcription was carried out on 

the same day of RNA isolation. Reverse transcription reaction was carried out in a 20 µl 

reaction volume. In a 1.5 ml tube, 1 µg RNA, 0.1 mM dNTP, 50 pmol oligo(dT) primer 

were mixed and the volume was adjusted to 10 µl with DPEC treated water. RNA and 

primer were denatured by incubating the reaction mixture at 65 oC for 5 min and immedia- 

tely kept on ice for 1 min. A master reaction mixture containing 1X RT buffer, 5 mM 

MgCl2, 20 mM dithiothreitol, 2 U RNaseOUT Recombinant RNase inhibitor was prepared. 

9 µl of master reaction mixture was added to RNA/Primer mixture, mixed gently and 

incubated at 42 oC for 2 min. 0.25 U SuperscriptII was added to the prewarmed reaction 

mixture. Samples were transferred to a thermal cycler preheated to 42 oC and incubated for   
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90 min. The reaction was terminated by incubating at 70 oC for 15 min and immediately 

chilled on ice. 1µl RNase H (2 U/µl ) was added and incubated at 37 oC for 20 min. cDNA 

synthesis reactions were used for PCR or for longer use were stored at -20  oC. 

 

3.11.3  Polymerase chain reaction  

PCR was carried out in a 50 µl reaction mixture, using 2 µl of the RT reaction as template 

for PfuTurbo DNA polymerase.  

 

Cycle(s) Temp (oC) Time (min) Temp (oC) Time (min) Temp (oC) Time (min) 
1 94 2     

26 94 1 54 0.5 72 4 
1     72 5 

 

To a thin walled PCR tube, cDNA template, 1X buffer, 0.5 U PfuTubro DNA polymerase, 

100 pmol of each primers (section 2.4.1), 0.2 mM dNTP were added. DNA was amplified 

for 26 cycles with a Perkin Elmer Cetus thermo cycler using the above PCR sequence. 

Control set without polymerase enzyme was also carried out separately for monitoring the 

performance of the system. 10 µl of RT-PCR products were then subjected to electropho- 

resis in a 1.5% agarose gel visualized by staining with ethidium bromide. Gels were 

photographed by Zoom digital camera and analyzed after scanning. 

 

3.12  DNA hydrolysis with restriction endonucleases 
Restriction endonucleases are enzymes that cleave the sugar-phosphate backbone of both 

strands of DNA while leaving a phosphate group on the 5' ends and a hydroxyl group on 

the 3' ends. Restriction endonucleases create double-strand breaks at specific recognition 

sequences within DNA molecules. Some enzymes cut at precisely opposite sites in the two 

strands of DNA, thus generating blunt ends without overhangs. Other enzymes cut 

asymmetrically and generate 5' or 3' overhangs which are called sticky or cohesive ends. 

One unit is defined as the amount of enzyme required to digest 1 µg of λ-DNA in 1 h at 37 
oC. For restriction digestion, reaction mixtures containing 0.1 to 1 µg DNA, 20 U restricti- 

on enzyme and 1/10 volume of 10X reaction buffer were incubated at 37 oC for 2-5 h. The 

total volume of the reaction was adjusted to 20 µl with dH2O. 
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3.13  Dephosphorylation of 5'-phosphate groups 
Alkaline phosphatase catalyzes the removal of 5'-phosphate groups from DNA and RNA. 

Since calf intestinal phosphatase (CIP) treated fragments lack the 5'-phosphoryl termini 

required by T4-DNA-ligase, they can not self ligate. One unit of CIP is defined as the 

amount of enzyme that hydrolyzes 1 µmol of p-nitrophenylphosphate to p-nitrophenol in  

1 min  at  37 oC. Restriction-digested vector DNA (0.1-1 µg) was suspended in 1X reaction 

buffer. 0.5 U/µg CIP was added to the vector DNA. The reaction mixture was incubated at 

37 oC for 15 min. Before starting the ligation reaction, the dephosphorylated DNA was 

purified by Phenol-chloroform method as described in section 3.6.2.  

 

3.14  DNA-ligation 
T4 DNA ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5'-

phosphate and 3'-hydroxyl termini in duplex DNA or RNA. For the ligation reaction, 50-

200 ng vector-DNA with 200-1,000 ng DNA-fragment, 1/10 volume 10X reaction buffer 

and 2µl T4-DNA ligase (1U/µl ) were mixed gently in a microfuge tube. Before adding 

reaction buffer and T4-DNA ligase, the vector DNA and the DNA fragment were heated at 

65 oC for 3 min and then immediately cooled on ice for 3 min. The reaction mixture was 

incubated for 3-5 h at room temperature. 

 

3.15  Knock-out of the ansB gene  

 
 
Figure 3.2:  Plasmid vector pJQ200. GmR, Gentamycine resistant gene; oriT, origin of replication,     
sacB, sucrose sensitive gene (Quandt and Hynes, 1993). 
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3.15.1  Insertion of a kanamycin cassette into the ansB gene  

A 2389-bp fragment harboring the entire ansB gene was amplified by PCR from P. putida 

KT2440 DNA using PfuTurbo DNA polymerase and gene-specific primers ansB For:5'-

GAGGCTAAGCGAGGAAATGA-3' and ansB Rev: 5'-GTAGCCAGCCGAAACTGAA- 

G-3'. The amplified product was cloned into plasmid pJQ200-mp18 (Quandt and Hynes, 

1993, see fig. 3.2) cut with BamHI and SalI. A SalI fragment containing a kanamycin 

resistance cassette was cut from the pUC4K vector (Amersham BioSciences). A single SalI 

site of the ansB gene (at 623 nucleotide base position) was then used to insert a SalI frag- 

ment containing the kanamycin resistance cassette of pUC4K, yielding pJQKansB.  

 

3.15.2  Construction of ansB mutant and plasmid conjugation 

A defined P. putida KT2440 ansB mutant was constructed by diparental mating on cellu- 

lose acetate filters using E. coli S-17 as donor strain. pJQansB recombinant vector was first 

delivered into E. coli S-17. Transformed cells were selected on LB plates supplemented 

with kanamycin. The vector carrying a defective ansB gene was then delivered into P. 

putida KT2440 via conjugation with E. coli S-17 (harboring pJQansB) by using a 

membrane filter mating technique as described in section 3.17. Gentamycin-resistant (Gmr) 

and kanamycin-resistant (Knr) transconjugants were identified after 24-36 h incubation at 

30 oC. P. putida KT2440 and E. coli S-17 (harboring pJQansB) were also grown separately 

under the same conditions as a control. To eliminate donor cells, the colonies were 

propagated two to three times on the same medium by replica plate method as described in  

section 3.18. To check PGA activity, transconjugant colonies were grown in M9--medium 

containing 10 mM glutamate; 22 mM glucose and 19 mM NH4Cl. Colonies with less or no 

enzyme activity compared to P. putida KT2440 were selected. P. putida KT2440 was also 

grown with mutants under the same conditions, as a positive control.  

 

3.15.3  Genetic analysis 

To confirm insertion of the inactivated ansB into the host genome, DNA was isolated from 

the transconjugants and subjected to PCR using the primer pair ansBLT: 5'-ATGAATG- 

CCGCACTGAAAAC-3' and ansBRT: 5'-ACGACCCAGTCGTTCTTGTC-3'. The PCR  

sequence used was: 94 oC, 3 min; 94 oC, 30 s; 54 oC, 30 s; 72 oC, 2 min, and 72 oC for 5 

min and was amplified for 25 cycles. Amplified ansB was electrophoresed with standard 

marker in 1% agarose gel. 
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3.16  Transposon mutagenesis 
The transposon (Tn) was first discovered in the 1940s by Barbara McClintock, even before the 

structure of DNA had been elucidated. Transposons are segments of DNA that can move around to 

different positions in the genome of a single cell. These mobile segments of DNA are sometimes 

called "jumping genes". Transposons contain one or more genes, conferring phenotypic 

characteristics to the bacterial strain that possess them. These genes may confer resistance to an 

antibiotic, heavy metal or provide a metabolic function. Each transposable element is occasionally 

activated to move to another DNA site in the cell (or between plasmid and chromosome), by a 

process called transposition, catalysed by its own site-specific recombination enzyme, transposases. 

The transposition event can occur in a number of ways; by replication of the molecule and insertion 

of the copy either randomly or at some preferred site (replicative transposition); or the whole 

transposon element can be cut out of the DNA and inserted into a new site, whilst the previous site 

is resealed (non-replicative transposition). Chromosome mutagenesis and gene transfer are often 

promoted by the movement of transposable DNA elements. The transposition frequency can be 

modulated both by mobile element-encoded factors and by various host factors. Transposon Tn5 

has been used extensively for the genetic analysis of Gram-negative bacteria (Berg, 1989). Tn5-

OT182 is derived from Tn5. This Tn inserts almost at random in target DNA, in addition it 

functions in a wide range of Gram-negative bacteria and is very well characterised both physically 

and genetically.  

 

3.16.1  Applications of transposon mutagenesis 

It is molecular research that has led to transposons becoming such a powerful tool for the 

genetic analysis of bacteria (Berg and Groissman, 1989). One of the main genetic values of 

transposons comes in the form of a technique called 'transposon mutagenesis'. This 

approach provides complete disruption of the mutated gene. The use of Tn5 and Tn10-

derived transposons has been succesfully utilized by a number of research groups 

(Renzikoff et al., 1993). The bacterial transposable element Tn5 consists of two inverted 

elements, IS50R and IS50L. These flank a central region that codes for several antibiotic 

resistance genes. IS50R encodes two proteins, a transposase and an inhibitor of 

transposition. Transposon mutagenesis system allows the analysis of biochemical and 

regulatory pathways in bacteria (Kraiss et al., 1998). 
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Figure 3.3: Transposon carrier plasmid pOT182 (Merriman and Lamont, 1993). ori1= 
p15A origin of replication; aacC1 = gentamycin-acetyltransferase I-gene; LacZ - β-
galactosidase gene; bla = β-lactamase gene; ori2 = pBR322 replication origin; tetR = tet-
regulator gene; tnp = transposase; IR = inverted repeat. 
 

3.17  Transposon mutagenesis and plasmid conjugation 

Transposon mutagenesis with the self-cloning promoter probe vecto Tn5-OT182 

(Merriman and Lamont, 1993) carrying tetracycline and carbenicillin resistance markers 

was performed by diparental mating. Tn5-OT182 was delivered to P. putida KT2440 via 

conjugation with E. coli S17-1 (pOT182) using a membrane filter mating technique. The 

donor strain (E. coli S17-1 harboring pOT182) was grown overnight in 5 ml of LB broth 

containing tetracycline at 37 oC for 16 to 18 h with shaking (230 rpm). The recipient strain 

(P. putida KT2440) was also grown under these conditions at 30 oC without antibiotic 

selection.  200 µl of each saturated culture was added to 5 ml of fresh LB medium with  
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appropriate antibiotic and was allowed to grow to an OD595 of 0.5. The donor and recipient 

strains were mixed in the ratio of 1:1, 1:5, and 5:2. Control assays, using donor and 

recipient alone, were also performed. The cellulose acetate filter papers (0.2 mm-pore size, 

Sartorious) were washed with 2 ml of sterile 0.85% NaCl. After that, filter papers were  

placed on LB plates and incubated for 1h in a 37 oC incubator. 100 µl aliquots  from each 

mixture were spread on prewarmed filter papers placed on LB plates without antibiotic and 

the plates were incubated overnight at 30 oC. Filter papers were washed with 1 ml of sterile 

M9--medium and diluted appropriately with the same medium. 100 µl of diluted culture 

was spread on M9--medium plates supplemented with 10 mM glutamate; 22 mM glucose 

and 19 mM NH4Cl containing tetracycline and carbenicillin. Tetracycline-resistant (Tcr) 

and carbenicillin-resistant (Cbr) transconjugants were identified after 24 to 36 h incubation 

at 30 oC. Transconjugants were transferred 2-3 times onto the same medium by replica 

plating in order to eliminate the donor cells. The resulting transconjugants were 

individually assayed for PGA activity (Section 3.24.1). Those with strongly reduced or 

missing activity were selected for further studies.  

 

3.18  Replica plating  
This is a technique in which the pattern of bacterial colonies on a culture plate is copied using 

sterile membranes. It is mainly used for identifying and selecting mutant colonies of a 

microorganism. The microorganisms are cultured on a plate of agar, then a replica is made by 

blotting the colonies with a membrane and blotting the membrane on another plate. This results in 

all colonies from the first plate being in identical locations on the second plate. The second plate 

either contains some substances which kills off, or selectively permits the growth of the mutant of 

interest.  

  Plates to be replicated were marked with a line perpendicular to the edge for orientation. Sterile 

circular block covered with velvet was pressed gently onto the plate. Then the copied colonies were 

blotted on a new LB plate containing selective antibiotic or substa- nces. The plates were incubated 

for 12-15 h at 30 oC or until the colonies regrow. 

 

3.19  Self-cloning 
For 'Self cloning', approximately 2 µg of  DNA from transposon mutants was digested with 

XhoI. The resulting fragments were ligated with T4 DNA ligase and used to transform E. 

coli DH5α. Plasmid DNA was isolated from Tcr clones, purified on QIAprep spin  
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columns, and sequenced using the primers pOT182For: 5'-CGACGGGATCCATAAT-

TTTT-3' and  pOT182Rev : 5'-CGTTACCATGTTAGGAGGTC-3'. 

 

3.20  Southern blotting 
Southern blotting, invented by Ed Southern in 1975, is a technique to detect specific 

sequences in complex populations of DNA fragments. DNA fragments generated by 

restriction digestion are separated by fragment size class by agarose gel electrophoresis and 

then transferred onto nitrocellulose filters for hybridization with specific probes. 

 

3.20.1  Restriction digestion and purification of pOT182 probe 

pOT182 vector was digested with XhoI restriction enzyme 

 

10X Reaction buffer                              2 µL 

Bovine serum albumin                          0.2 µL 

XhoI (0.25 U)                                        1 µL 

Vector plasmid/DNA (400 ng)              10 µL 

dH2O                                                      6.8 µL 

 

After restriction digestion, the plasmid DNA was purified by using Phenol-choloroform 

extraction method as described in section 3.6.2 and finally dissolved in 10 µl dH2O.  

 

3.20.2  DIG labeling of pOT182 probe DNA 

The DNA was denatured by heating in a boiling water bath for 10 min and quickly chilled 

in an ice bath for 5 min followed by a brief centrifugation. To the freshly denatured probe, 

2 µl hexanucleotide mix, 2 µl dNTP-labeling mix and 1 µl Klenow enzyme were added. 

The components of the tube were mixed completely and incubated overnight at 37 oC. The 

reaction was stopped by adding 2 µl EDTA and 2.5 µl LiCl. The DNA was precipitated by 

adding chilled 75 µl absolute ethanol and incubated at -80 oC for 30 min. The sample was 

centrifuged at 13,000 rpm, for 20 min at 4 oC. The supernatant was discarded and the DNA 

was washed by adding 150 µl 70% ethanol and again incubated at -80 oC for 15 min. The 

precipitated DNA was centrifuged at 13,000 rpm, for 10 min at 4 oC. The supernatant was 

discarded and the DNA was dissolved in 50 µl TE buffer with gentle swirling. 12.5 µl of   
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labelled probe was added into 10 ml hybridization buffer and kept in a boiling water bath 

for 10 min. The probe was rapidly cooled in a ice-bath for 10 min. 

 

         EDTA                                        0.2 M, pH 8.0 

         Lithium chloride (LiCl)            4 M 

         Ethanol                                     70% and 96 % 

         TE buffer                                  0.1 M Tris, 0.01 M EDTA, pH 8.0 

         Hybridization buffer                100 ml 5X SSC, 0.1 % N-lauroylsarcosine, 

                                                          0.02 % SDS, 1% blocking reagent 

 

3.20.3  Capillary transfer of DNA from agarose gels to membranes 

The genomic DNA of transposon mutants was digested with XhoI and EcoRI restriction 

enzymes. After digestion, samples were run through 0.8% agarose gel. The gels were 

stained with ethidium bromide. A transparent ruler was placed alongside the gel and was 

photographed by Kodak digital camera. After fractionation of the DNA by gel 

electrophoresis, the gels were transferred to a clean glass plate. The unused areas of the gel 

including the section of the gel above the wells were trimmed away using a razor blade. 

The DNA was denatured by soaking the gel in 250 ml of denaturation solution for 30 min 

at room temperature with constant gentle agitation on a rotary platform. The gel was rinsed 

briefly in deionized water, and then neutralized it by soaking in 250 ml neutralization 

solution for 30 min at room temperature with constant gentle agitation. By using a fresh 

scalpel a piece of nylon membrane ~1mm larger than the gel in each dimension was cut. 

 

Membrane was immersed in 200 ml 10X SSC for 5 min. A piece of thick blotting paper 

was  placed on a glass plate in such a way that the ends of the blotting paper were drapped 

over the edges of the plate. The dish was filled with 10X SSC until the level of the liquid 

reached almost to the top of the support. The gel from the solution was removed and 

inverted it so that its underside is facing upward. The top of the gel was wetted with 10X 

SSC. The wet membrane was placed on the top of the gel so that the cut corners were 

aligned with the gel. Two pieces of thick blotting paper were wetted in 10X SSC and 

placed them on top of the wet membrane. A stack of paper towels were placed on the 

blotting papers. A glass plate was kept on top of the stack and weighed it down with a  
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~400 g weight. In between paper towels were replaced before the entire stack becoming 

wet with transfer buffer. The DNA was allowed to transfer for ~16 h. 

 

           Denaturation solution            1.5 NaCl, 0.5 M NaOH 

           Neutralization solution          1 M Tris-HCl (pH 7.4), 1.5 M NaCl 

          10X SSC                                 87.65 g NaCl, 44.1 g Sodium citrate 

                                                          1 L dH2O, pH 7.0 

 

The gel was peeled from the membrane and discarded. The membrane was soaked in 250 

ml 2X SSC for 2 min at room temperature then removed from the solution and excess fluid 

was allowed to drain away. The membrane was placed flat on a  paper towel, sandwiched 

between two sheets of dry blotting paper and baked for 2 h at 80 oC. 

 

3.20.4  Hybridization of a labelled probe with DNA fragments 

The DNA-containing membrane was floated on the surface of a tray containing 2X SSC 

until it became thoroughly wetted from beneath. The wet membrane was incubated in 10 

ml of 1X prehybridization buffer for 1 h at 68 oC. Before use, the labelled probe was 

denatured by heating for 10 min at 100 oC and was chilled rapidly in ice water bath. 

Denatured probe was added to fresh prehybridization solution and the solution was 

delivered into the bag which was incubated overnight at 68 oC. The hybridization solution 

was poured off into a polypropylene tube and stored at -20 oC for further use. The mem- 

brane was removed from the bag and immediately submerged in a tray containing 50 ml  

2X SSC and 0.1% SDS for 5 min at room temperature with gentle agitation on a slowly 

rotating platform. The rinse solution was replaced with 0.2X SSC and 0.1% SDS and 

incubated at 68 oC for 15 min two times.  

 

3.20.5  Detection of hybridized probe and DNA fragment 

The membrane was washed briefly in a 20 ml of wash buffer and then incubated in 20 ml 

of  blocking solution for 30 min. During incubation, the tray was rotated gently after every 

2 min to spread blocking solution evenly over membrane. 1:1,000 diluted antibody solution 

was added to the blocking solution and spread evenly over the membrane. The membrane 

was incubated in antibody solution for 30 min with gentle shaking after every 2 min. Then 

membrane was washed twice in 20 ml of washing buffer for 15 min at room temperature.  
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The membrane was equilibrated in detection buffer for 2-3 min. After this, membrane was 

incubated in 2 ml freshly prepared color substrate solution in an appropriate container in 

the dark and developed still desired spot intensities were achieved. 

 

Solution                Composition Use 
Washing 

buffer 

    0.1 M maleic acid, 0.15 M NaCl;  

    pH 7.5 ; 0.3% (v/v) Tween 20 

Remove unbound 

antibody 

Maleic acid 

buffer 

0.1 M maleic acid, 0.15 M NaCl; pH 

adjusted to 7.5 with solid NaOH 

Dilute blocking 

solution 

Detection 

buffer 

0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5 Adjust pH to 9.5 

Blocking 

stock solution 

(10x) 

10% (w/v) blocking reagent in maleic 

acid buffer 

Preparation of 

blocking solution

Antibody 

solution 

 

  Anti-Digoxigenin 

Binding to the 

DIG-labeled 

probe 

Colour-

substrate 

solution 

40 µl of NBT/BCIP + 2 ml detection 

buffer 

Visualize 

antibody-binding

 

3.21  Gene Replacement 
Gene targeting by homologous recombination is a genetic tool that permits modification of 

cellular genes in a precise and predetermined fashion. Although homologous integration of 

transfected DNA into the genome was considered to be an extremely rare event in other 

organisms, techniques for this process have been established for several model systems. 

Targeting knockout of genes involves first designing and construction of an appropriate 

targeting vector in which the gene of interest has been disrupted with a positive selectable  

marker. The second step involves the introduction of the targeting vector into a bacterial 

culture followed by selection for those cells in which the internal positive selectable 

marker has become integrated into the genome of the bacteria. 
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3.21.1 GltB gene replacement 

The pK18 vector was used for targeted knock-out of an intact gltB gene with a denatured 

gltB gene. pK18 (Pridmore, 1987) is a small multi-copy kanamycin-resistance plasmid, co-

ntaining the pUC lacZα-complementation peptide and the pUC18 and pUC19 multiple 

cloning site. The plasmids and their derivatives allow simple and rapid transfer of inserts 

from one replicon to another. 

 

 

 

 Figure 3.4: Map of the pK plasmid. lacZ and KmR  gene are represented by arrows showing
the direction of transcription.  
 

3.21.2 Amplification and cloning of gltB  

An 834 bp fragment of gltB gene was amplified from genomic DNA of P. putida KT2440 using the 

gene-specific primers gltBFor: 5'-CGCggatccCGCAAACATCTTCCAGGA- GT-3' (BamHI 

restriction site introduced into the primer is underlined, highlighted nucleotide was introduced to 

generate a frameshift) and gltBRev: 5'-AActgcagACCAG- CGTGGTGTATTCCTT-3' (PstI 

restriction site introduced into the primer is underlined).  

 The amplified product thus generated was purified by phenol-chloroform method as 

described in section 3.6.2. Both amplified gltB fragment and pK18 vector were digested 

with BamHI and PstI. The digested pK18 vector was then dephosphorylated with calf 

intestinal alkaline phosphatase. The dephosphorylated vector and digested gltB fragment 

were again purified by phenol-chloroform extraction method. The PCR product generated  

in this way was cloned into the compatible BamHI-PstI site of pK18 vector and then  
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transformed in E. coli HB101. The transformed cells were plated out on LB medium 

containing kanamycin and the plates were incubated overnight at 37 oC. The plasmid DNA 

of the transformant cells was isolated by using Miniprep plasmid isolation kit. The 

presence of gltB gene in pK18 vector was confirmed by DNA sequencing with M13 

universal primer and by restriction digestion analysis with BamHI and PstI. After that, 

recombinant pK18 vector was electroporated into the electrocompetent P. putida KT2440, 

and the plasmid integrants were selected on LB medium containing kanamycin. Integration 

of denatured gltB fragment into the KT2440 genomic DNA was confirmed by PCR using 

the following primers gltBP3 For: 5'-ATTTCACACAGGAAACAG-3' and gltBP4Rev: 5'-

CTCCAGCGGCTCGACCTG-3'. The forward primer was derived from pK18 vector 

sequence (starts from nt 2410 ), whereas the reverse primer was designed from gltB gene 

sequence (starts from nt 2880). 

 

3.21.3 Knock-out of the aauS (sensor kinase) and aauR (response regulator) genes 

A aauR gene fragment was amplified from genomic DNA of P. putida KT2440 using the 

gene-specific primers  aauRFor: 5'-CGCggatccGCCTGGTCGAACGTGGTACG-3' (the 

BamHI restriction site introduced into the primer is underlined whereas the highlighted 

nucleotide was introduced to generate a frameshift) and aauRRev: 5'- CCCaagcttGATGT-

CTTCACGGCGCTCAC-3' (HindIII restriction site is underlined). PCR amplification was 

performed with an automated thermocycler by using the following program. 

 

Cycle(s) T (oC) Time  T (oC) Time  T (oC) Time  

 1 95 5 min     

28 95 30 s 55 40 s 72 1 min 

 1     72 5 min 

 

The amplified product was purified by phenol-chloroform method as described in section 

3.6.2. The amplified aauR fragment and pK18 vector were digested with BamHI and 

HindIII restriction enzymes. The vector was then dephosphorylated with calf intestinal 

alkaline phosphatase. The dephosphorylated vector and the digested amplified product  
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were again purified by phenol-chloroform extraction method. The PCR product generated in this 

way was cloned into the compatible BamHI and HindIII site of pK18 vector and then transformed 

in E. coli HB101. The presence of the aauR gene fragment in pK18 vector was confirmed by 

restriction digestion analysis with BamHI and HindIII. After that, the recombinant pK18 vector was 

electroporated into electro-competent P. putida KT2440 cells. 

 

Similarly, the aauS (sensor kinase) gene was inactivated using the primers aauSFor: 

5'CGCggatccCGAATACCCTTGAAGGCCTGA-3' (BamHI site underlined, the highlight- 

ed nucleotide introduced into the primer to generate a frameshift)  and aauSRev: 5'-CCC 

aagcttTCAGTTTTTCCACACCATCG-3' (HindIII site underlined). 

 

3.22  Overexpression of the AauR protein 

 

3.22.1  Expression system 

The Glutathione S-transferase (GST) gene fusion system (Amersham Biosciences) is 

mainly used for the expression, purification, and detection of fusion proteins produced in 

E. coli. This system allows high-level expression of genes as fusions with Schistosoma 

japonicum GST. Expression in E. coli yields proteins with the GST moiety at the amino 

terminus and the protein of interest at the carboxyl terminus. The pGEX-6P-3 PreScission 

Protease vector offer the most efficient method for cleavage and purification of GST fusion 

protein. 

 

3.22.2  Amplification and cloning of the aauR gene 

A complete, in frame aauR gene was amplified by using  aauR1For: 5'-CGCggatccATG-

AACCAAGCGCCTCTTAC-3' (BamHI site underlined) and aauR2Rev 5'-CCGgaattcT-

CAGGCGAGGCCGTATTTTTTC-3' (EcoRI site underlined) primers. The resulting PCR 

product was purified by using the PCR purification kit. The pGEX vector and the insert 

DNA were digested sequentially by EcoRI and BamHI restriction enzymes. The insert was 

then ligated into the dephosphorylated vector. The ligation mixture was transformed into 

the competent DH5α cells and the transformed cells were spread on ampicillin containing 

LB plates. Positive clones were selected and the insertion was verified by restriction 

digestion analysis (RsaI ) and PCR by using aauR1For and aauR2 Rev primers. 
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3.22.3  Transformation into the expression host 

Plasmid DNA was isolated from the positive clones and transformed into the competent E. 

coli BL21 (DE3) RIL strain (Stratagene). The transformed and untransformed cells were 

spread on LB plates supplemented with ampicillin and chloramphenicol. 

 

3.22.4  Screening 

Screeing was performed to verify that the insert is in the proper orientation and the correct 

junctions are present such that the reading frame is maintained. Plasmid DNA from the 

Cmpr-Ampr clones was isolated by QIAPrep Mini Kit and sequenced by pGEX5' and 

pGEX3' sequencing primers. 

 

3.22.5  Bacterial growth and expression of fusion protein 

The ability of clones to express the fusion protein was evaluated by optimizing growth and 

expression conditions. A single colony of E. coli harboring a recombinant pGEX plasmid 

was grown overnight in 50 ml LB medium supplimented with ampicillin and chloramphe- 

nicol at 37 oC. A 5 ml overnight culture was inoculated into the fresh 500 ml of the same 

medium pre-warmed to the growth conditions. The culture was allowed to grow with 

aeration to an A600 of 0.7. IPTG to a final concentration of 1 mM was added to the grow- 

ing culture and incubation continued for an additional 6 h. The culture was transferred, 

centrifuged at 6,000 rpm for 10 min at 4 oC to sediment the cells. Supernatant was 

discarded and the drained pellet was kept on ice. An aliquot of the culture was analyzed for 

protein expression by SDS-PAGE. 

 

3.22.6  Purification of the recombinant AauR-GST fusion protein 

The cell pellet was completely suspended in ice-cold 20 ml GST-PBS buffer. The cells 

were disrupted by sonication in a 100 ml beaker for 7 min (15 s pulse, 15 s pause).  

 

             PBS buffer                140 mM NaCl 

                                                2.7 mM KCl 

                                                10 mM Na2HPO4 

                                                1.8 mM KH2PO4, pH 7.3 

             Elution buffer           50 mM Tris-HCl 

                                               10 mM glutathione reduced, pH 8.0 
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The resulting homogenate was centrifuged at 12,000 rpm for 20 min at 4 oC. The 

supernatant was removed and the pellet was solubilized in 5 ml of 8 M urea and stirred for 

30 min at 4 oC. The resulting suspension was centrifuged at 12,000 rpm for 15 min at 4 oC. 

The supernatant was dialyzed against 1 L PBS buffer for 1 h. This step was repeated twice.  

 

The AauR protein was purified on a 1 ml GSTrap FF column with glutathione as the ligand 

(Amersham BioSciences). The column was equilibrated with 5 volumes of PBS buffer at 

0.2 ml/min flow rate. Clear supernatant was loaded onto the column at the same flow rate. 

The column was washed with 10 bed volumes of PBS at an 1 ml/min flow rate. Bound 

proteins were eluted by adding 3.0 ml of elution buffer. The eluant was collected in clean 

tubes (1 ml fractions) and checked for purity by SDS-PAGE. 

 

3.22.7  Removal of the GST tag by enzymatic cleavage 

The fusion protein was treated with PreScission Protease (Amersham Biosciences) whose 

recognition sequence is located immediately upstream from the multiple cloning site on the 

pGEX plasmids. PreScission Protease is a fusion protein of GST and human rhinovirus 3C 

protease which specifically recognizes the amino acid sequence Leu-Glu-Val-Leu-Phe-

Gln-↓Gly-Pro, cleaving between Gln and Gly. 

 
PreScission cleavage buffer:    50 mM Tris-HCl, 150 mM  NaCl, 1 mM EDTA 

                                                 1 mM dithiothreitol, pH 7.0 

Binding buffer:                        1X PBS (140 mM NaCl, 2.7 mM KCl,  

                                                 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3 

 

 

 

 

 

The column was equilibrated with five volumes of binding buffer. The eluted protein 

sample was loaded on to the eqilibrated column. The column was then washed with 10 

column volumes of binding buffer and then with 10 column volumes of PreScission 

cleavage buffer. The PreScission protease mixture was prepared freshly by adding 80 µl 

(160 units) PreScission Protease to 920 µl of PreScission cleavage buffer at 4 oC. The 

mixture was loaded onto the column. The column was incubated overnight at 4 oC. Finally, 

the column was eluted with PreScission cleavage buffer. Fractions of 500 µl were collected 

in clean Eppendorf cups. 
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3.22.8  SDS-PAGE (Laemmli, 1970) 

By this technique, proteins are separated on the basis of their mass under denaturing 

conditions. SDS, an anionic detergent, disrupts noncovalent intercations in native proteins. 

Mercaptoehtanol reduces the disulphide bonds of the proteins.  

================================================================        

Reagents 

================================================================ 

Acrylamide solution:   30 % acrylamide, 0.8 % bisacrylamide 

Separation gel buffer:   1.5 M Tris-HCl, pH 8.8 

Stacking gel buffer:  0.5 M Tris-HCl, pH 6.8   

Loading buffer:                      0.1 M Tris-HCl (pH 6.8), 2% (w/v) SDS,  

                                                                                  3 % mercaptoethanol, 10% (v/v) glycerol,  

                                                                                  0.01 % (w/v) bromophenol blue   

10 X running buffer:  250 mM Tris, 1.9 M glycine, 1 % (w/v) SDS 

================================================================ 

Composition of the gel solution 

================================================================                         

                                          Separation gel solution         Stacking gel 
                 (12% acrylamide)                 (4.5% acrylamide) 
================================================================ 

Acrylamide solution    4,000 µl    650 µl  

Separation gel buffer   2500 µl    ------ 

Stacking gel buffer               -----    1250 µl  

10 % (w/v) SDS       100 µl       50 µl  

Water    3350 µl    3050 µl  

10 % (w/v) APS       50 µl     25 µl  

TEMED        25 µl     10 µl  

 

On the average, one SDS molecule binds for every two amino acids. Therefore, the 

complex of SDS with the denatured protein carries a large net negative charge and 

migrates towards the anode. The velocity of migration of SDS-protein complexes is 

inversely proportional to the mass of the protein. 
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The cell pellet was suspended in PBS buffer, pH 7.6. The resulting suspension was mixed 

with loading buffer and incubated at 95 oC for 3 min for denaturation. The samples were 

then loaded into the wells under the running buffer with a microsyringe. Separation of the 

proteins was carried out at the 30 V for 30 min. Once proteins entered into the separation 

gel the current was set at 200 V and allowed to run for additional 45 min. Finally, the 

proteins in the gel were visualized by staining with Coomassie blue.  

 

3.22.9  Coomassie staining 

================================================================ 

Fixation solution  20% methanol, 1 ml 85% phosphoric acid 

Staining solution  45% (v/v) methanol, 10%(v/v) glacial acetic acid, 

    0.1% (w/v) Serva A Blue 

De-staining solution 5% ethanol, 7% acetic acid 

 

After electrophoresis, the separating gel was immersed in the fixation solution for 1 h at 

room temperature with gentle shaking. The gel was then kept in staining solution for 

atleast 1 h. After that, gel was rinsed with water, destained by destaining solution for 1 h. 

The destaining solution was changed 2 times during the process. Before drying the gel, it 

was washed again with water and then dried at 70 oC under vaccum. 

 

3.23  Primer extension 
Primer extension is mainly used to map the 5' termini of the mRNA. In this technique, 

poly(A)+ RNA is first hybridized with a single-stranded oligodeoxynucleotide primer, 

radiolabelled at its 5' terminus, which is complimentary to the target RNA. The primer is 

then extended by using reverse transcriptase enzyme. The resulting cDNA is 

complimentary to the RNA template and is equal in length to the distance between the 5' 

end of the primer and the 5' terminus of the RNA. 

 

3.23.1  Preparation of the Oligonucleotide probe 

The reaction mixture was incubated for 1 h at 37 oC. The kinase reaction was stopped by 

heating the reaction mixture at 65 oC for 5 min. After this, 80 µL dH2O was added to the 
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reaction tube. G-25 column was prepared for loading by centrifuging it at 2700 rpm for  

 

2 min after breaking the bottom seal. 100 µL of the labelled primer was loaded onto the 

column and centrifuged again for 2 min at 2700 rpm. The oligonucleotide primer was 

labelled in a reaction containing: 

 

 

 

 

Oligonucleotide primer (200 pmol)                       1 µL                  

10X polynucleotide kinase buffer                          2 µL 

Polynucleotide kinase                                            1.5 µL 

[γ-32P] ATP                                                            5 µL 

ddH2O                                                                    11.5 µL 

 

3.23.2  Hybridization and extension of the oligonucleotide primer 

To 10 µL of the RNA following components were added 

 

10mM dNTP mix   1 µL 

5X Strand buffer   4 µL 

Labelled primer   2 µL 

DTT (0.1M)    2 µL 

 

The oligonucleotide/RNA mixtures was placed at 37 oC for 2 min for annealing. Then, 1 

µL of MLV-reverse transcriptase was added to the reaction mixture and mixed properly. 

The tubes were incubated at 37 oC for 1 h. The primer extension reaction was terminated 

by adding 20 µL of the stop solution. Before loading onto the gel, the samples were heated 

at 70 oC for 5 min. 

Stop solution:         80% formamide; 10% EDTA, pH 8.0;  

                               1 mg/ml xylene cyanol; 1 mg/ml bromophenol blue 

 

3.23.3 Preparation of the sequencing gel and electrophoresis 

Sequencing gel was prepared by mixing the components listed below and allowed to 

solidify for 45 min. After solidification of the gel, it was kept in gel chamber. The gel   
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chamber was filled with 0.5 X TBE (Tris base-5.4 g/L, boric acid-2.7 g/L, EDTA-0.46 g/L) 

and runned for 10 min at 3000 V before loading the samples. 

Sequencing gel composition: 

 

                  Urea                                21 g 

                  5X TBE                          5 ml 

                  Rotiphorex40                  7.4 ml 

                  TEMED                          30 µL 

                  10% APS                        400 µL 

                  dH2O                               37.5 ml 

 

3-4 µL of samples were loaded onto the gel and runned for approximately 1.5 h till the 

bromophenol blue reached 1 mm away from the bottom of the gel. Gels were dried at 60 
oC for 1.5 h. Finally gels were autoradiographed overnight and scanned. 

 

3.24  Enzyme Assays 
 

3.24.1  Assay of glutaminase/asparaginase with L-aspartic acid β-hydroxamate 

 (L-AHA) 

In this work, an asparagine analog L-aspartic acid β-hydroxamate (L-AHA) was used as 

the substrate for glutaminase/asparaginase. The assay is based on the reaction of hydro- 

xylamine liberated from L-AHA with 8-hydroxyquinoline at high pH. The resulting green 

oxindol dye has an absorption coefficient of about 1.75 x 104 M-1 cm–1 at 705 nm and is 

thus detectable with high sensitivity. One unit of asparaginase activity is the amount of 

enzyme that catalyses the hydrolysis of 1 µmol substrate in 1 min at 25 oC. 10 µl enzyme 

solution was added to 30 µl of buffered 1 mM L-AHA and incubated for up to 60 min at 

room temperature. The reaction was stopped by addition of 240 µl of stop solution. The 

absorption was measured at 655 nm in an ELISA-Reader. 

 

 

 

 

 60



    __________________________________________________________3. METHODS 
 

COO

C HH3N

CH2

C
O NHOH

“

”
COO

C HH3N

C
O O

“

”

”H2O

NH2OH

L-Asparaginase / L-Glutaminase
CH2

L-Aspartic ß-hydroxamate (AHA) L-Aspartate 

N

OH

N

OH

N

OH

N

O

NH8-Hydroxyquinoline Green oxindol dye 
O2 or NaIO4

Hydroxylamine

 
 

Glutaminase/asüpataginase assay 

 

 
Reagents    Concentration 
 
 
Substrate solution   1 mM AHA in 50 mM MOPS (pH= 7.0) 
Na2CO3    1 M in dH2O 
Chromogen   1% (w/v) Hydroxyquinoline in Dimethylsulfoxide 
Oxidant    1% (w/v) NaIO4 in dH2O 
Stop solution   8 ml Na2CO3 + 1 ml Chromogen + 200 µl Oxidant 

 

3.24.2  Glutamate-Synthase (GOGAT) Activity 

Glutamate-Synthase activity was estimated according to Meister and Meers (Meister, 

1985; Meers et al., 1970) by following the decrease of NADPH absorption. NAD(P)H has  
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an absorption coefficient of 6220 L·mol-1·cm-1 at 340 nm. The enzyme activity was 

measured in a microtiter plate in a total volume of 300 µl. 
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Reagents    Concentration 
 

L-Glutamine   10 mM in 100 mM Tris-HCl, pH = 7.8 

NAD(P)H    0.35 mM in dH2O, prepared freshly 

α-Ketoglutarate   5 mM in dH2O, neutralized with 0.1 N NaOH 

 

260 µl L-Gln, 10 µl α-ketoglutarate, 10 µl NADPH, and 20 µl of enzyme solution were 

added to a microtiter plate. Blanks were prepared in the same way as test, except that 

distilled water was added instead of enzyme solution. Absorbance was measured every 3 

min at 340 nm. 

 

3.25  Protein estimation 

Bacterial cells were disrupted by sonication (4 × 15 s ). After each cycle, the cells were 

cooled on ice for 15 s. Cell debris was removed by centrifugation at 13,000 rpm for 10 min 

at 4 oC. Protein concentrations of the samples were measured by the Bradford method and  

the BCA method (Bradford, 1976, Friedenaur and Beilet, 1989). 

 

3.25.1  Bradford method 

100 µl of appropriately diluted protein sample was mixed with 5 ml Bradford reagent and 

incubated at room temperature for 20 min. Absorption was measured at 595 nm against a  

blank (100 µl H2O, 5 ml Bradford reagent). Different concentrations of bovine serum albu-

min were used for the standard curve. 
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            Reagents          Concentration  

Bradford reagent   0.01% (w/v) Serva Blue G,  

5% (v/v) ethanol, 

      10% (v/v) phosphoric acid 

 

3.25.2  BCA (Bicinchonic acid) Method 

                 Reagents         Concentration 

Bovine serum albumin stock  2.0 mg/ml 

Working reagent   50 parts of Reagent A + 1 part of Reagent B 

 

To the 0.1 ml of appropriately diluted protein samples, 2.0 ml of working reagent was 

added. The tubes were mixed properly to ensure a homogeneous mixture and incubated at 

37 oC for 30 min. After cooling to room temperature absorption at 562 nm was measured 

against a water as reference. For standard curves, BSA concentrations ranging between 25 

to 200 µg/ml were used.  

 

3.26  Proteomics 
"Proteomics" is the large-scale screening of the proteins of a cell, organism or biological 

fluid, a process which requires stringently controlled steps of sample preparation, 2-D 

electrophoresis, image detection and analysis, spot identification, and database search. The 

 expression of a particular protein cannot be directly related to its mRNA level because 

protein maturation and degradation are dynamic processes that can dramatically alter the 

final amount of active protein. In order to be able to correlate mRNA levels with protein 

expression, there should be a systematic method for separating and visualizing the protein 

components of a cell.  

 

3.27  Two-dimensional (2D) electrophoresis 
The core technology of proteomics is 2-D polyacrylamide gel electrophoresis (2D-PAGE). 

Two-dimensional electrophoresis was first introduced by O’Farrell (O'Farrell, 1975) and 

Klose (Klose, 1975). At present, there is no other technique capable of simultaneously 

resolving thousands of proteins in one separation procedure. 2D-PAGE sorts proteins  
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according to two independent properties in two discrete steps. The first dimension,  

isoelectric focussing (IEF) separates proteins according to their isoelectric points, i.e. by 

migrating to a point in the gel where the pH causes the net charge on the protein to become 

neutral. The replacement of classical first-dimension ampholyte based pH gradients with 

well-defined immobilized pH gradients has resulted in higher resolution, higher protein 

loading capacity, improved reproducibility, and an extended basic pH limit for 2D-PAGE. 

The second-dimension step, SDS-polyacrylamide gel electrophoresis (SDS-PAGE), 

separates proteins according to their molecular weights. Each spot on the resulting two-

dimensional array corresponds to a single protein species in the sample. Thousand of 

different proteins can thus be separated, and information such as the protein pI, the 

apparent molecular weight, and the amount of each protein is obtained. 

 

3.27.1  Sample preparation 

Pseudomonas putida KT2440 was grown in flasks containing M9-- medium with 22 mM 

glucose and 19 mM NH4Cl; 10 mM glutamate; 10 mM glutamate and 10 mM fumarate as 

C and N sources (cf. section 3.2.2). The samples were prepared freshly. Bacteria were 

harvested by centrifugation. After washing with M9 salt solution, the pellet was suspended 

in 2 ml TE/PMSF buffer, pH 7.5. The cells were disrupted by sonication for 1 min (15 x 4) 

at a low temperature and with minimum heat generation. The resulting homogenate was 

centrifuged for 10 min at 10,000. The supernatant was transferred into a fresh Eppendorf 

tube. The supernatant was again spun twice at 14,000 rpm for 30 min. All steps were 

carried out at 4 oC. 

 

            TE/PMSF buffer 

Tris-HCl      10 mM, pH= 8.0 
EDTA      1 mM prepared in 0.1 N NaOH 
Phenylmethylsulfonyl fluoride (PMSF)   0.3 mg/ ml in ethanol 

================================================================ 

 

3.27.2  Protein precipitation 

Five volumes of 100 % ice-cold acetone was added to the one volume of protein extract. 

The proteins were allowed to precipitate overnight at -20 oC. Proteins were pelleted at  

0 oC, at 6,000 rpm for 10 min. The residual acetone was removed by air drying. 
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3.27.3  First-dimension (Isoelectric focussing) 

C H CH C

O

N H2 R

R =  w eak ly  ac id ic  o r bas ic  bu ffe ring  group

 

The first-dimension separation procedure involves protein solubilization, Immobilized pH 

Gradient (IPG) strip rehydration, sample application, and isoelectric focussing. The immo- 

bilized pH gradient is created by covalently incorporating a gradient of acidic and basic 

buffering groups into a polyacrylamide gel at the time it is cast.   

 

   For IEF, proteins were solubilized in a rehydration solution such that the end volume 100 

µl contains 100 µg of protein. Subsequently, 320 µl of rehydration solution was added to 

the solubilized protein samples and mixed well to ensure a homogeneous solution. Samples 

were delivered slowly to the center of the slot of the DryStrip reswelling rehydration tray 

in such a way that no air bubble was present in the samples. The protective cover from IPG 

strips (18 cm NL with a linear pI gradient from 3.0 to 10.0 ) was removed and strips were 

positioned with the gel side down and the pointed end against the sloped end of the slot. 

Each IPG strip was overlayed with 3 ml of low viscosity paraffin oil and then the 

Reswelling tray was covered with lid. The strips were allowed to rehydrate at room 

temperature for 24 h, removed from the Reswelling tray and rinsed briefly in a stream of 

deionized water. 

 

 

 

Step(s) V mA W Vh 

1 500 1 5 1,000 

2 500 1 5 2,000 

3 3,500 1 5 10,000 

4 3,500 1 5 35,000 
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                   Rehydration solution 

  Urea       1.92 g 

  Thiourea      0.61 g 

  CHAPS      80 mg 

  Pharmalytes 3-10     52.5 µl  

  Dithiothreitol (DTT)     17.5 mg 

  Bromophenol blue     Trace  

  dH2O       3 ml 

 

The strips were kept on its edge on a damp filter paper for several seconds to drain excess 

moisture. The strips were placed in the grooves of a MultiphorII  Immobiline DryStrip tray 

in such a way that the acidic (pointed) end was near the anode and the blunt end was near 

the cathode. The moistened electrode strips were placed across the cathodic and anodic 

ends of the aligned IPG strips. Each electrode was aligned over the electrode strip, 

ensuring that the marked side corresponded to the side of the tray giving electrical contact. 

Finally, the strips were covered with paraffin oil. During isoelectric focussing temperature 

was maintained at 20 oC. Isoelectric focussing was carried out by using the above 

voltage/time profile. 

 

3.27.4  Second dimension (SDS-PAGE)  

After IEF, the second-dimension separation was performed. SDS-PAGE consists of four 

steps: (1) preparing the second-dimension gel, (2) equilibrating the IPG strip(s) in SDS 

buffer, (3) placing the equilibrated IPG strip on the SDS gel, and (4) electrophoresis. The 

technique is performed in polyacrylamide gels containing sodium dodecyl sulphate (SDS), 

an anionic detergent that denatures proteins by wrapping around the polypeptide backbone 

in a ratio of approximately 1.4 g SDS per g protein. 

 

3.27.5  IPG strip equilibration  

The equilibration step saturates the IPG strips with the SDS buffer system required for the 

second-dimension separation.  
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 Equilibration buffer for 5 gels 

 

Ingredients Solution A Solution B 

0.5 M Tris-HCl, pH 6.8    2.5 ml    2.5 

Urea    9 g    9 g 

87% Glycerol    8.6 ml    8.6 ml 

10 % SDS    10 ml    10 ml 

DTT 87.5 mg        - 

Iodoacetamide       - 1.125 g 

Bromophenol blue       -     Trace 

 

IPG strips were kept individually in channels. The strips were equilibrated with 5 ml of 

equilibration solution A for 15 min at room temperature with continuous rocking. After 

this, the equilibration solution was decanted and 5 ml of equilibration solution B was 

added to each strip. The strips were equilibrated for 15 min at room temperature with 

continuous rocking. After equilibration, the IPG strips were placed on filter paper 

moistened with dH2O. To drain the excess solution, the IPG strips were gently blotted with 

moistened filter paper. 

 

3.27.6  Preparing SDS slab gels (Laemmli, 1970) 

In the second dimension proteins were separated in the InvestigatorTM System (Perkin 

Elmer, Life Sciences, Cambridge, UK).  

 

           Components                 Separation gel,  per 6 gels Stacking gel, per 6 gels 

40 % acrylamide   167.7 ml      5.4 ml 

2% bis-acrylamide   89.5 ml     2.2 ml 

1.5 M Tris (pH= 8.8)  136.2 ml     ------ 

4X upper buffer, pH = 6.8  -------      15 ml 

10 % SDS    5.74 ml     ------ 

     dH2O    150 ml     36.9 ml 

40 % APS    350 µl      55 µl  

TEMED    275 µl      33 µl  
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              4X Upper buffer, pH 6.8 

  Tris-HCl    0.5 M, pH = 6.8 

              SDS    0.4% 

 

A homogeneous single percentage SDS gel containing 12.5% total acrylamide was 

prepared and poured in between two plates which were separated by spacers. The gel was 

immediately overlayed with a thin layer of 1 ml of deionized water and allowed to 

polymerize at room temperature for 2-3 h. After ensuring that polymerization was even, 

the overlay was removed. After this, each gel cassette was overlayed with 5 ml of stacking 

gel and again overlayed with 1 ml deionized water. The gels were allowed to polymerize 

for 30-60 min at room temperature. 

  The equilibrated IPG strips were positioned between the plates on the surface of the 

second-dimension gel. 1 ml of melted 1% agarose (prepared in 1X upper buffer) was 

poured on the top surface of the slab gel such that no air bubble was introduced into the 

agarose. Immediately the IPG strips were embedded in agarose and then gently pushed 

down with a ruler so that the entire lower edge of the IPG strips was in contact with the top 

surface of the slab gel. The Investigator unit was filled with running buffer, temperature 

was set to 20 oC and the safety lid was placed on the top of the system. The current was 

supplied at 400 V, 400 mA  and 12 W. The gels were allowed to run until bromophenol 

blue was 1-2 mm away from the bottom of the gel. The gels were removed and visualized 

by silver and Coomassie staining. 

 

3.27.7  Silver staining (Bloom et al., 1987) 

Silver staining is the most sensitive, nonradioactive staining method. It requires a high 

purity reagents and precise timing for reproducible, high-quality results. All staining and 

developer solutions were prepared freshly. After the run, the proteins were fixed by 

incubating the gels in fixation solution with gentle agitation on a shaking platform for at 

least 1 h at room temperature. The gel slabs were rinsed with 50% ethanol (3 changes, 20 

min per change) with gentle agitation . The gels were sensitized with a sensitization 

solution for 1 min. The solution was discarded and the gel slabs were quickly rinsed with 3 

changes of dH2O (20 s each). 
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Fixation solution: 

Ingredient(s) Volume Final Concentration 

Ethanol 500 ml 50 % 

Acetic acid 120 ml 12 % 

37% formaldehyde* 0.5 ml 0.05 % 

dH2O 380 ml  

Sensitization: 

Ingredient(s) Volume Final Concentration 

Na2S2O3.5H2O* 0.2 g 0.02 % 

dH2O 1000 ml  

Staining solution: 

Ingredient(s) Volume Final Concentration 

Silver nitrate* 2 g 0.2 %  (w/v) 

37% formaldehyde* 0.75 ml 0.075 % 

dH2O 1000 ml  

Development solution: 

Ingredient(s) Volume Final Concentration 

Na2CO3 60 g 6 % 

Na2S2O3.5H2O* 4 mg 0.0004 % 

37% formaldehyde* 0.5 ml 0.05 % 

dH2O 1000 ml  

Stop solution: 

Ingredient(s) Volume Final Concentration 

Glycine 15 g 1 % 

dH2O 1500 ml  

*Reagents were added immediately prior to use 

 

Staining solution was added to the gel and gently agitated for 20 min at room temperature. 

The silver nitrate solution was discarded, the gels were quickly rinsed with distilled water 

(2 changes, 20 s per change) and transferred to the developing solution and gently agitated 

with a rocking motion until the bands reached to the desired intensity (usually 1 min.). To 

terminate the developing reaction, the gels were immediately transferred to stop solution  
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and incubated with gentle shaking for 30 min. After this, they were washed overnight in  

distilled water with gentle agitation.  

  Silver stained 2D-gel images were first scanned and analyzed by using MelanieIII 

(BioRad) software package.  

 

3.27.8  Coomassie staining 

 

Stock Solution (0.2%): 1 tablet of PhastGel Blue R was dissolved in 80 ml of distilled 

water and stirred for 5 to 10 min. To this, 120 ml of methanol was added and stirred until 

all of the dye is dissolved. 

Final Solution (0.02%): One part of stock solution was mixed with 9 parts of methanol: 

acetic acid:distilled water (3:1:6). 

 

Gels intended for MALDI-TOF analysis were stained by PhastGel Blue R. Each gel was 

incubated with 200 ml of final solution overnight in a shaking condition and then washed 

in distilled water for several hours till background staining of the gels disappeared. 

Distilled water was changed after every 30 min. 

 

3.28  Mass Spectrometry 
The basic requirements of proteome analysis are: a wide dynamic detection range, high-confidence 

protein identification and protein quantification. Mass spectrometry (MS) can fulfill all these 

requirements. During the past decade, Matrix-assisted laser desorption ion- ization-time-of-flight 

mass spectrometry (MALDI-TOF MS) has proven to be one of the most succesful ionization 

methods for the mass spectrometric analysis and investigation of large molecules such as proteins.   

 

In this technique, a matrix and sample (analyte) is irradiated by a nanosecond laser pulse. A laser 

beam, serves as the desorption and ionization source in MALDI. The matrix plays a key role by 

absorbing the laser light energy, which prevents unwanted fragmentation of analyte, and enables 

vaporization of the illuminated substrate. A rapidly expanding matrix plume carries some of the 

analyte into vaccum with it and aids the sample ionization process. Nitrogen lasers operating at 337 

nm (a wavelength that is well absorbed by most matrices) are the most common illumination 

source.  
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Once the sample molecules are vaporized and ionized, they are transferred and accelerated in an 

electric field in a time-of-flight tube. In the flight tube, the molecules are separated from the matrix 

ions. During the flight in the tube, different molecules are separated according to  their mass to 

charge ratios (m/z) and reach the detector at different times. In this way each molecule yields a 

distinct signal. This method is used for detection of molecules with molecular masses between 400 

and 350,000 Da.  
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Solutions: 

Trypsin digest 1:                 100 mM Tris in 50 % acetonitrile, pH 8.5 

Trypsin digest 2:                 100 mM Tris in 10 % acetonitrile, pH 8.1 

Trypsin digest 3:                 100 mM Tris, 1 mM CaCl2 in 10 % acetonitrile, pH 8.1

Enzyme solution:                Trypsin (Promega); 1 µg/5 µL in reconstitution buffer 

Stop and elution solution:   2 % trifluoroacetic acid (TFA), 75 % acetonitrile 

Solution 6:                            1 %TFA, 30 % acetonitrile 

α-Cyano-3-hydroxy- :         30 µg α-Cyano + 500 µL Acetonitrile, vortex for 

cinnamic acid                       5 min, add 500 µL H2O, vortex 5 min, 

                                             centrifuge at 5000 rpm for 1 min. 

Peptides were extracted according to Otto et al. (1996). The excised spots were covered 

with 500 µl of  Trypsin-digest 1 and incubated at 30 oC for 20 min with shaking. This step 

was repeated until the colour disappeared. To restore spot size, the supernatant was discar-

ded and the spots were mixed with 500 µl Trypsin-digest 2 and incubated at 30 oC for 30 

min with continuous shaking. The supernatant was removed and the gel slices were dried 

in the Speedvac to 20-40% of the original volume. Enzyme solutions were prepared freshly 

by suspending trypsin in 200 µl resuspension buffer and incubated at room temperature for 

15 min with continuous shaking. 1.4 ml of Trypsin-digest 3 was added to the enzyme 

solution and mixed well.  30 µl of this solution (Trypsin and Trypsin-digest 3) was added 

to the gel slice and incubated overnight at 37 oC on a shaker. Peptides were extracted by 

adding 100 µl of stop and elution solution and incubated overnight at room temperature 

with continuous shaking. The supernatant was transferred to a new Eppendorf tube and 

dried in a Speedvac to a residual volume of 1-2 µl. Concentrated peptides were resuspen-

ded in 10 µl of solution 6. For MALDI-TOF analysis, 0.5 µl of desalted peptide solution 

was mixed with 0.5 µl α-Cyano-3-hydroxy-cinnamic acid matrix, pipetted on a metal 

target plate and allowed to crystallize at room temperature. Crystallized samples were 

subjected to MALDI-TOF analysis. Peptide masses were determined by Dr. Völker (MPI 

for Terrestrial Microbiology, Marburg) in the positive ion reflector mode in a Voyager DE 

RP mass spectrometer with internal calibration. Peptide mass finger-prints were compared 

to databases using the MS-Fit program (http://prospector.ucsf.edu).  The searches conside-

red oxidation of methionine, pyroglutamic acid formation at the N  terminal of glutamine  
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and modification of cysteine by carbamidomethylation as well as partial cleavage leaving 

one internal cleavage site. Spots that could not be identified by the above method were 

further analyzed by MALDI-Post Source Decay (PSD) sequencing (performed by Protagen 

AG, Bochum, Germany). 

 
 
3.28.2 Desalting of protein samples (Millipore Inc.) 
 
ZipTipTM is a 10 µl pipette tip with a 0.5 µl bed of resin fixed at its end. It is intended for 

concentrating, desalting, and removing detergents from biological samples (< 40 kd) for 

MALDI MS, or other analytical techniques. ZipTipC18 contains C18 spherical silica (15 

µm, 200 Å pore size) in a 0.6 µl bed volume.  

 

Wetting buffer:                    50 % acetonitrile in water 

Equilibration buffer:           0.1 % TFA in water 

Elution buffer:                     Matrix in 50 % acetonitrile 

 

The tip was first prewetted by depressing the plunger to a dead stop using the maximum 

volume setting of 10 µl. Tip was aspirated and dispensed twice with wetting buffer. The tip 

was equilibrated for binding by washing it twice with the equilibration buffer. After 

equilibrating the tips, peptides and proteins were aspirated and dispensed  5 to 10 cycles by 

fully depressing the pipette plunger to a dead stop. Tip was washed by aspirating and 

dispensing two cycles of 0.1% trifluoroacetic acid (TFA). The peptides were eluted by 

aspirating and dispensing 2 to 4 µl of elution buffer. 

 

3.29  Determination of intracellular levels of glutamine and glutamate 
For the assay of intracellular Glu and Gln, the P. putida KT2440 and gltB mutant were 

grown in M9--medium with 22 mM glucose and 19 mM NH4Cl. Samples were removed 

after 24 and 96 h. Cells were washed, suspended in 4 ml 80% ethanol, and incubated at 90 

°C  for 15 min. An aliquot of sample was removed for protein estimation. After centrifu- 

gation at 14,000 x g, the clear supernatant was evaporated to dryness and then dissolved in 

50 mM N-ethylmorpholine, pH 8.0 (a volatile buffer system), and divided in two equal 

parts. After treating one of them with 100 U of E. coli asparaginase (Medac, Wedel) for 1 h 

to convert Gln to Glu, both samples were taken to dryness once again and dissolved in N- 
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ethylmorpholine buffer as above. The Glu content of the resulting solutions was 

determined by an enzymatic assay based on glutamate dehydrogenase. In the wells of a 

microtiter plate 220 µl buffer was mixed with 20 µl of the Glu-containing sample and 20 µl 

glutamate dehydrogenase (Sigma, 1600 U/ml). After starting the reaction with 20 µl 10 

mM NAD+, the formation of NADH was followed at 340 nm until completion. The total 

absorption change obtained in this way (corrected with appropriate blanks) is proportional 

to the amount of Glu initially present.  

    Reagents              Concentration 

    N-ethylmorpholine, pH 8.0   50 mM 

*GDH enzyme     8 U/ mg protein 

NAD+      20 mg/ml in H2O 

* GDH stock solution was diluted in 40 % glycerol 

 

For protein estimation, the cells were disrupted by sonication (15 s x 4) and immediately 

cooled in ice. Protein content was estimated by Bradford method (see section 3. 25.1).  

 

3.30  HPLC analysis of amino acid uptake  
Precolumn derivatization with phenylisothiocyanate (PITC) followed by reversed-phase 

HPLC is an increasingly popular method for quantitative amino acid analysis. The method 

offers the advantages of sensitivity in picomole range, short analysis time, and quantitation 

of all amino acids at a single wavelength. The system (Merck-Hitachi, Darmstadt) 

consisted of L-7100 pumps, an UV-Vis detector, AS-2000A autosampler, D-7500 

integrator and a L-7612 solvent degasser. 

 

3.30.1  Derivatization of amino acids 

Precolumn derivatization with phenylisothiocyanate (PITC) was carried out as described 

by Mora et al. (1988). The tubes were prepared for analysis by washing them with 

detergent and water, briefly soaking in nitric acid. Tubes were then rinsed several times 

with distilled water, and finally dried at 80 oC before use. Samples and standard glutamine 

and glutamate were derivatized by PITC.  

  The ansB knock-out mutant and P. putida KT2440 were grown in M9--medium 

containing Gln and Glu (10 mM each) as sole C and N sources. Samples were removed at  
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different time intervals. Amount of amino acids present in the medium was analyzed by 

HPLC. 100 µl from each sample was concentrated in the cleaned tube under vaccum. 50 µl 

coupling buffer was added to the concentrated samples, mixed homogeneously and then 

dried under vaccum. For derivatization, 190 µl coupling buffer and 10 µl PITC were added 

to the vaccum dried samples and were allowed to stand at room temperature for 30 min. 

After incubation samples were again dried under vaccum. Finally derivatized samples were 

dissolved in 95 µl buffer A and 5 µl acetonitrile.  

 

3.30.2  Chromatography 

================================================================ 

Coupling buffer: 35% H2O, 30% Acetonitrile, 25% Pyridine, 10% Triethylamine 
 
Buffer A :  50 mM Sodium acetate, 2.75% Triethylamine (pH 6.4, adjusted with 

phosphoric acid)       
 
   Buffer B:   50% buffer A, 40% Acetonitrile, 10% Methanol. 
 
 
       Gradient used: 

 

  Time (min)      0       25       25.1        35 35.1     45 

  Buffer A (%)     98       98         0            0   98     98  

  Buffer B (%)      2        2       100        100    2      2 

  

The resulting PITC-amino acid derivatives were separated and analyzed using a 

Lichrospher 60 RP select B column (5 µm particle size; Merck, Darmstadt) at 50 oC and a 

flow rate of 1.0 ml/min in a Merck-Hitachi LabChrom gradient system. Whenever 

chromatography was delayed after derivatization of a sample, the PITC-amino acids were 

stored at -80 oC in a screw-capped bottles. Absorbance of the eluate was monitored at 254 

nm. 
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4.  Results 

 

4.1  Selection of strain 
As already discussed in the introduction, P. putida KT2440 has become a model organism 

for studies of the interactions between plants and rhizosphere bacteria. Moreover, the full 

genomic DNA sequence of this organism is now available (Nelson et al., 2002). Previous 

experiments had established that P. putida KT2440 is able to utilize a wide range of amino 

acids as sources of carbon and/or nitrogen (Klöppner, 1999; Hüser et al., 1999). Mainly for 

these reasons, P. putida KT2440 was selected for the present work which focuses on the 

metabolism of the acidic amino acids in pseudomonads and its regulation. 
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P. fluorescens 
ATCC 13525 *) 

P. fluorescens Pf-5 *) P. putida   
ATCC 12633 *) 

P. putida KT2440 Amino 
acids 

N C + N N C + N N C+ N N C+ N 
Asp ++ ++ ++ ++ +++ ++ ++ ++ 
Asn +++ +++ +++ +++ +++ ++ +++ +++ 
Glu ++ + ++ + + + ++ ++ 
Gln +++ + +++ ++ +++ + +++ ++ 
Ala ++ ++ +++ ++ ++ ++ n. d. + 
Ser ++ ++ ++ + +++ ++ + + 
Pro + (+) ++ + + ++ ++ 
Lys − − − − − − − − 
Arg ++ + ++ ++ ++ ++ n.d. n.d. 
Leu (+) (+) + + − (+) − − 

− 

 
Table 4.1: Growth of Pseudomonas strains on different amino acids. The cells were pre-grown on 
M9-- medium containing NH4

+/glucose overnight and then transferred to M9--medium 
supplemented with 22 mM glucose plus 10 mM amino acids (N), or 10 mM amino acids as the sole 
source of carbon and nitrogen (C + N). Relative growth rates were estimated as an increase in OD 
at 595 nm between 3 h and 5 h after transfer to fresh medium. +, 0.05-0.1; ++, 0.1-0.2; +++, >0.2. 
*) Data from Klöppner (1999). 
 

4.3  Regulation of PGA expression by amino acids 

Earlier work from our group had established that the expression of periplasmic 

glutaminase/ asparaginase (PGA) of P. fluorescence ATCC13525 and P. putida ATCC 

12633 is strongly and specifically enhanced by acidic amino acids and their amides 

(Klöppner, 1999; Hüser et al., 1999). In the present work a similar induction pattern was 

observed with P. putida KT2440. For these experiments, the cells were pre-grown 

overnight on NH4
+/glucose and then transferred to media containing amino acids as the 

sole source of carbon and nitrogen. As shown in Fig. 4.2, all four amino acids led to an 

about 20-fold increase of PGA activity within 12 h, while proline supported rapid growth 

but had no effect on PGA activity. All other amino acids tested also failed to induce PGA 

activity (data not shown). 

  As shown by Fig. 4.2, the time courses of PGA induction by Asn and Asp on one hand, or 

Gln and Glu on the other, were almost the same, however, PGA induction by Asp and Asn 

was delayed by about 6 h. Therefore, maximum PGA activity during growth on these 

amino acids was only seen after 12 h. Asn, Pro, and NH4
+/Glc led to immediate growth, 

while growth on Glu and Gln only started after a delay of about the same duration as 

observed for PGA induction (Fig. 4.2). 
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Figure 4.2: Kinetics of PGA induction in P. putida KT2440 by Asn (-✧ -), Asp (−∇−), Gln (- -), 
Glu (−� −), proline (+), NH4

+/glucose (−Ο−). The cells were pre-grown in NH4
+/glucose minimal 

medium overnight and then transferred to the same medium, or to minimal medium containing 10 
mM amino acids as the sole source of carbon and nitrogen. Growth was monitored as an increase in 
optical density at 600 nm vs. time after transfer to fresh medium. 

 

Klöppner (1999) as well as Hüser et al. (1999) reported that the expression of PGA in  

P. fluorescens ATCC 13525 and P. putida ATCC 12633 was subject to carbon catabolite 

repression by good carbon sources.  

 

Figure 4.3: Regulation of PGA expres-
sion in P. putida KT2440. Specific PGA
activities (in U/mg protein) were meas-
ured 6 h (open bars) and 24 h (filled
bars) after transfer from NH4

+/glucose to
M9- medium supplemented with differ-
ent carbon and nitrogen sources, i. e.
(from left to right) NH4

+/glucose,10 mM
each of Glu, Gln, Asp, and Asn; 10 mM
Glu +22 mM glucose (Glu+Glc), 10 mM
Glu +10 mM sucrose (Glu+Sucr), 10
mM Glu +10 mM fumarate (Glu+Fum),
or 10 mM Glu +10 mM α-ketoglutarate
(Glu+α-KG). 
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A similar behaviour was seen with P. putida KT2440 (Fig. 4. 3). Glucose and 

intermediates of the citric acid cycle (fumarate, 2-oxoglutarate) almost completely 

suppressed the inductive effect of Glu on PGA induction, while sucrose which is not 

metabolized by P. putida KT2440, was much less effective as a repressor.  

 

4.4  Role of PGA in Gln utilization by P. putida KT2440 
In order to further characterize the role of periplasmic PGA in the assimilation of Asn 

and Gln, we constructed a P. putida KT2440 mutant where the PGA-encoding ansB gene 

was inactivated by a targeted disruption. The gene was amplified from KT2440 genomic 

DNA, cloned into pJQ200, inactivated by insertion of a kanamycin resistance cassette, 

and then re-introduced into the KT2440 genome by homologous recombination (see 

sections 3.15.1 and 3.15.2). The transconjugants obtained in this way were analyzed for 

PGA activity and growth rates on amino acids. 
  
 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4: Growth and PGA activity of ansB
(open symbols) on Asn (-◆ -,-✧ -), Asp (-∇-,-▼-
(-•-, -Ο-). Cells were pre-grown overnight 
washed and transferred to a) the same medium
Asp, Gln or Glu as sole source of C and N.  
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shown in Fig. 4.4. When amino acids were provided as the sole source of carbon and 

nitrogen, Gln was the only amino acid that did not support rapid growth of the mutant. 

 

4. 5  Amino acid utilization by an ansB disruption mutant  
As mentioned above, PGA is located in the periplasm of the cells. Thus, the inability of 

the ansB- disruption mutant to grow on Gln might be due to the fact that Gln cannot be 

taken up but, in order to be utilized, has to be hydrolyzed to Glu first which then enters 

the cell.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.5: Uptake of Gln and Glu by P. putida KT2440 wild type (open symbols) and the ansB 
dis- ruption mutant (closed symbols). The cells were pre-grown on NH4

+/glucose minimal 
medium and then transferred to M9-- media supplemented with a) 5 mM  Gln and b) 5 mM Glu 
as the sole source of carbon and nitrogen. The concentrations of Glu and Gln in the medium 
(determined by quantitative amino acid analysis, see section 3.30) are plotted vs. incubation time. 
 

To examine this possibility, we used quantitative amino acid analysis to follow the 

disappearance of Gln and Glu from media inoculated with P. putida KT2440 (wild type) 

and the ansB- disruption mutant, respectively. As shown in Fig. 4.5a, the ability of the 

ansB- mutant to consume Gln was severely impaired. By contrast, the rate of utilization 

of Glu was unaffected in the mutant (Fig. 4.5b). The consumption of both amino acids 

(Gln and Glu) did not start immediately but after a lag phase of 6-8 h. This indicates that 

not only PGA but also other proteins required for utilization of Glu and Gln have to be 

induced after transfer from NH4
+/glucose to amino acids. 
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4.6  Identification of further amino acid-induced proteins  

In former studies on the effects of amino acids on gene expression in Pseudomonas, PGA 

was used as an indicator enzyme mainly because its activity is easy to measure with intact 

cells. Using 2D gel electrophoresis, Klöppner (1999) already shown that PGA of P. 

fluorescens is differentially expressed in the absence and presence of amino acids like Asn 

and Asp. In addition, she identified a second protein induced by acidic amino acids, i. e. a 

putative Gln- binding protein associated with an ABC transporter (Klöppner, 1999). 

   

With the aim to identify additional proteins that are induced or repressed by acidic amino 

acids and/or their amides, we performed further 2D-PAGE experiments with P. putida 

KT2440 extracts prepared at 0, 2, 4 and 6 h after transfer of cells from overnight cultures 

on NH4
+/glucose to a) the same medium (Glc/NH4

+, Fig. 4.6) or b) to M9--medium with 10 

mM Glu as the sole source of carbon and nitrogen (Fig. 4.7) or c) to M9-- media containing 

Glu + fumarate as sources of carbon and nitrogen (Fig. 4.8). To facilitate comparison, a 

series of several gels with different samples from the same experiment were run 

simultaneously. Major protein spots that appeared unique or were significantly upregulated 

under these conditions are marked by circles, whereas the corresponding spots 

downregulated under these conditions are indicated by dashed circles.  

  A group of at least 9 major protein spots (Pp1-Pp9, Pp stands for P. putida) were 

coordinately induced by Glu as compared to their levels in cells grown on NH4
+/glucose 

(Figs. 4.6 and 4.7). The intensity of the respective spots gradually increased with 

incubation time from 0 to 6 h. Spots Pp1, Pp3/Pp4, Pp5, Pp6 and Pp9 were already present 

at low intensities immediately after transfer, whereas Pp2, Pp7 and Pp8 only started to 

appear after 2 h (see Fig. 4.7). Spots Pp10-Pp13 responded to different carbon and nitrogen 

sources in a similar fashion. As compared to growth on Glu, their expression was strongly 

upregulated during growth on  NH4
+/ glucose (compare Fig. 4.6 and Fig. 4.7). 
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Figure 4.6: Two-dimensional electrophoresis maps (pH 3-10) of soluble proteins differentially 
expressed by P. putida KT2440 during growth on NH4

+/glucose minimal medium (NH4
+/Glc). 

Selected proteins upregulated during growth in this medium (Pp10-Pp13) are marked by circles. 
Proteins which were upregulated in Glu but downregulated in NH4

+/Glc are highlighted by dashed 
circles. 
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Figure 4.7: Two-dimensional electrophoresis maps (pH 3-10) of soluble proteins expressed by 
P. putida KT2440 during growth on M9--medium supplemented with 10 mM Glu as the sole source 
of C and N. Selected proteins that were upregulated during growth on Glu (Pp1-Pp9) are marked 
by circles.  
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Figure 4.8: Two-dimensional electrophoresis maps (pH 3-10) of soluble proteins differentially 
expressed by P. putida KT2440 during growth on M9-medium containing 10 mM each Glu and 
fumarate as the source of C and N. Selected proteins unaffected during growth on Glu and fumarate 
are marked by circles. Proteins which were upregulated in Glu but downregulated in Glu and fumarate 
are highlighted by dashed circles. 
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As shown in figure 4.6, Pp11-Pp13 were consistently present in all extracts with increasing 

intensities, while Pp10 only appeared after 2 h of growth on NH4
+/glucose.  

  All Glu-induced proteins except Pp2, Pp9 and, in part, Pp6 were partially or totally 

repressed in the fumarate-containing media. On the other hand, all four NH4
+/glucose 

induced proteins (Pp10-Pp13) were unaffected by the presence of fumarate (Fig. 4.8). 

These results are also summarized in table 4.3 (see below). 

  For identification, a total of 13 spots (Pp1–Pp13) differentially expressed in both the 

conditions (Glu, NH4
+/Glucose) were selected, cut from several gels and pooled. The gel 

pieces were then digested with trypsin in situ and desalted as described in sections 3.28.1 

and 3.28.2. The unfractionated mixtures of tryptic peptides were then analyzed by 

MALDI-TOF or MALDI-PSD mass spectroscopy, in order to obtain as many 

fragmentation spectra of proteolytic peptides as possible. In 11 out of 13 cases, proteins 

could be identified with a high degree of confidence. Only spots Pp2 and Pp7 did not 

produce MS spectra of sufficient quality to allow their identification. All other spots were 

identified and assigned to proteins deduced from the P. putida KT2440 genome. 

  Three proteins, Pp3/Pp4, Pp11 and Pp12 were identified by MALDI-TOF, i. e. solely 

based on peptide masses with reference to the genome of P. putida KT2440 

(http://www.tigr.org). For unequivocal identification of proteins, several parameters such 

as modification of cysteine by carbamidomethylation and oxidation of methionine were 

considered. The MS data was directly used as input for the Mascot and MS-Fit 

programs, which search protein sequence databases to identify any sequence that generates 

a theoretical pattern of peptide masses matching the experimentally measured one. The 

experimental mass values were then compared with calculated peptide mass or fragment 

ion mass values, obtained by applying carbamidomethylation cleavage rule to the entries in 

sequence database. By using an appropriate scoring algorithm, the closest match or 

matches were identified. 

  The other proteins were identified by the MALDI-PSD technique. It was of particular 

importance to obtain a significant degree of amino acid sequence coverage in order to 

confirm the correctness of the identified proteins. The basis for the identification of some 

of the peptides are given in appendix 8.2. The protein sequences of the respective genes 

were derived from the P. putida KT2440 genome (Nelson et al., 2002).  
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Protein Pp1 was identified as transcription termination factor, which is the product of the 

rho gene. Being based on 12 matching peptides, the identification of this protein is 

unequivocal. As already mentioned, spots Pp2 and Pp7 did not produce MS spectra of 

sufficient quality to allow their identification. Both Pp3 and Pp4 were identified as 

periplasmic glutaminase/ asparaginase (PGA) with 11 peptide mass matches. Protein Pp5 

was identified as ATP-binding protein of an ABC transporter. Although only two peptides 

were matching, these showed strong sequence similarity to ATP-binding proteins from 

several bacterial transporters. Protein Pp6 encoded aspartate ammonia-lyase (aspartase) 

which is the product of aspA gene in P. putida KT2440. Here, 7 peptide masses matched 

the fragmentation patterns for aspartase. Pp8 was identified as an outer membrane protein, 

which is the product of oprD gene. Pp9, a member of the Glu induced proteins, was 

identified as putative carboxyphosphonoenol pyruvate-phosphonomutase. Although, both 

Pp8 and Pp9 were identified based on only 2 and 3 peptide matches, respectively, they 

showed strong similarities with peptide sequences from other organisms. 

  Four proteins were upregulated when P. putida KT2440 was grown in the presence of 

NH4
+/glucose. Pp10, encoded by a gabT gene, was identified as 2,4-diaminobutyrate 

2-oxoglutarate transaminase, with 4 peptide mass similarities. Among the 4 induced 

proteins, Pp11 was identified as fumarase protein by MALDI-TOF technique. This protein 

a product of the fumC gene was identified with 7 strong peptide mass matches. Pp12 and 

Pp13 were identified as members of the ABC transporters with 6 and 2 peptide mass 

similarities, respectively. Until, in P. putida KT2440, sugar ABC transporter sugar binding 

protein (Pp12) is not assigned to any gene product. Putrescine ABC transporter putrescine 

binding protein (Pp13) is encoded by a potF gene. 

  The data that emerged from mass spectrometric analysis of the identified spots 

is summarized in table 4.2. The table lists the names of the encoding genes, their known or 

putative functions, isoelectric points, and molecular masses calculated from the genome 

data.   The isoelectric points of the identified proteins were calculated using Expasy's 

"Compute pI" program (http://scansite.mit.edu/cgi-bin/calcpi). For calculating the protein 

masses, the "Peptide Mass" program http://www.expasy.org/tools/peptide-mass.html) was 

used. The calculated pI (IEPcalc) and molecular masses (Masscalc) of all proteins were 

roughly  matching the pI values estimated from the 2D gels.  
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a)  Induced during growth on Glutamate 

 

Protein

Spot 

   Identified as   Identified  
        by 

Locus   IEPcalc    Masscalc    
    kDa 

 
Pp1     Transcription  

     termination factor 
PSD (12)       rho 

  (PP5214) 
7.7  47.0 

Pp2      Not identified 
 

    

Pp3 
 Pp4 

Periplasmic Glutami-
nase/asparaginase 

PM (11) ansB 
  (PP2453) 

6.6  36.1* 

Pp5 ABC transporter 
ATP-binding protein 

PSD (2)    ? 
   (PP1068) 

8.2  28.1 

Pp6 Aspartase ammonia-
lyase (Aspartase) 

PSD (7) aspA 
  (PP5338) 

5.7  51.5 

Pp7 Not identified     

Pp8 Outer membrane   
porin D 

PSD (2)  oprD 
  (PP1206) 

4.8  46.1* 

Pp9 Carboxyphosphonoe- 
nolpyruvatephosph- 
onomutase (putative) 

PSD (3)    ? 
   (PP1389) 

5.1  31.8 

 

    b)  Induced during growth on NH4
+/glucose 

 
Protein 

Spot 

    Identified as   Identified   
     by 

Locus   IEPcalc    Masscalc   
   kDa 

 

Pp10 2,4-Diaminobutyrate 
 2-oxoglutarate      
 transaminase 

 PSD (4) gabT 
  (PP4223) 

6.5 
 

48.8 

Pp11  Fumarase  PM (7) fumC 
  (PP0944) 

5.7 48 

Pp12 
 

 Sugar ABC         
 transporter, sugar   
 binding protein 

 PM (6)  
(PP1015)

5.7 45.4 

Pp13  Putrescine ABC   
 transporter,  putres-   
 cine binding protein 

  PSD (2) potF 
  (PP5181) 

6.1 40.1 

 
Table 4.2: Characteristics of differentially expressed protein spots in P. putida KT2440. PM (n) - 
identified from peptide masses, PSD (n)- Identified by MALDI-PDS, n- number of matching 
peptides.  
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The Glu-induced proteins (Pp1-Pp9) have a wide range of pI values (4.8-8.2) and 

molecular masses ranging from 31 to 52 kDa. On the other hand, the NH4+/glucose 

induced proteins had a narrower range of pI values (5.7-6.5) and molecular masses 

between 40 and 49 kDa. 
 
 

Protein 

Spot 

Expressed in  

     rpoN- 

   Repressed by  

      fumarate 

Induced during growth on glutamate 

Pp1         -         + 

Pp2         -         - 

Pp3 
Pp4 

        -         + 

Pp5         -         + 

Pp6         +        (-) 

Pp7         -         + 

Pp8         -         + 

Pp9         -         - 

Induced during growth on glucose + NH4
+ 

Pp10        (+)        (-) 

Pp11         +         - 

Pp12         +         - 

    Pp13         +         - 

 

 
Table 4.3:  Expression profile of differentially expressed proteins in the rpoN- mutant and 
repression by fumarate. +, repressed by fumarate and expressed in rpoN mutant; (-), weakly 
repressed; -, not repressed by fumarate and absent in rpoN mutant. 
 

4.7  Dependence of Glu-inducible gene expression on σ54  

For the proteins identified here we also analyzed the dependency of their 

induction/repression on the presence of the alternate sigma factor σ54 (RpoN). Sigma 

factors play an important role in binding of RNA polymerase to DNA and thus are 

important elements in controlling differential gene expression. The alternate sigma-factor 

σ54 (σN) encoded by an rpoN is required for the expression of genes involved in the  
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utilization of various nitrogen and carbon sources as well as diverse other functions 

(Merrick, 1993; Reitzer and Schneider, 2001). Therefore, a comparative proteome analysis 

of the wild type KT2440 and its isogenic RpoN- mutant was performed to investigate the 

RpoN-dependency of the changes in the protein profile discussed above. As described 

previously (Köhler et al., 1989), an RpoN- mutant of strain KT2440 was unable to grow 

when amino acids are given as sole source of carbon and nitrogen. P. putida KT2440 and 

the RpoN- mutant were pre-grown overnight in NH4
+/glucose minimal medium, washed 

and transferred to the M9--media containing Glu as sole carbon and nitrogen source. Cell 

extracts were prepared 6 h after transfer and were subjected to 2D electrophoresis as 

described in earlier sections. Data obtained in this experiment is summarized in Fig. 4.9 

and Table 4.4. They clearly show that the expression of most, if not all, of the Glu-

inducible proteins is almost completely abolished in the RpoN- strain, supporting the 

notion that their induction following transfer from glucose/ NH4Cl medium to Glu medium 

requires σ54. The only exception was spot Pp6 (aspartase) which appeared to be expressed 

more strongly in the mutant.  

 

                        Protein Potential σ54 binding site 

      Pp1   Rho termination factor      GGCCACgttttTTGCT 

Pp3/4 Glutaminase/asparaginase) GGGCTGCTACACAGCT 

      Pp5   ATP-binding protein TGGTACgcgctTTGCA 

      Pp6   Aspartate ammonia lyase TGGCACggtgcTTGGC 

      Pp8   Outer membrane porin D CGGCACgacatCTGCA 

   Pp9    Phosphoenolpyruvate mutase CGGTGCgcacgTTGCG 

             Consensus sequence  TGGCACGnnnnTTGCT 

 

 Table 4.4:  Putative σ54 recognition sites of Glu-responsive genes in P. putida KT2440 (see text). 
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In order to support this conclusion, i.e. that the Glu-responsive proteins identified in the 

present study are indeed dependent on σ54 for expression, the P. putida KT2440 genome 

was analyzed to localize the potential σ54 recognition sequences in the upstream regions of 

the respective genes using the program PROMSCAN (http://www.promscan.uklinux.net;  

(Studholme et al., 2000). σ54 recognition sequences are typically located at –12/-24 relative 

to the start of transcription. In the consensus sequence (see Table 4.4) a GG and a GC pair, 

both separated by 10 nucleotides, are strictly conserved (Buck et al., 2000). For all of the 

Glu-responsive genes identified here, sequences with the expected properties were found at 

a reasonable distance (i.e. within 200 bp) from the respective translation start sites. Of 

course, for an unequivocal identification of these sites it would be necessary to locate the 

transcription start site in each case.  
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igure 4.9: The effect of Glu on protein expression in P. putida KT2440 wild type (wt, left panel) 
nd a mutant defective in the alternate sigma factor σ54 (rpoN-, right panel). Spots upregulated by 
lu in the wild type are marked by solid circles. Corresponding spots in the mutant strain are 
ighlighted by dashed circles.  
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At present, this has only been performed for the ansB gene of P. putida KT2440. By the 

primer extension technique the transcription start site (TS) of this gene has been identified. 

It is located 105 bp upstream of the translation start (TL). As expected from the results 

described above, a σ54 binding motif (GGGCTGCTACACAGCT) is present at the correct 

distance (i.e. -12/-24) with respect to the transcription start. In addition, a typical ribosome 

binding site (RBS) sequence was found  8 bp upstream of the translation start site (Fig. 

4.10). 

 
ACCAACTATGGTAACAGGACCGTTGTTTGTCAAATCCGTTTGGCTTTCGGAGGCCAAAGTGCTGCTGGGGCCG 
 
ATTATGCAGTCTTTTCCGAAAAACCGAACACCTTTTCCTTTATTTGTTCGGAATTACGAATGCAATGCCGCCT 
                                                               →TS start  ┌
TTGGCAGGCGCGGGTCGGTGCAACATCACACATTGTCGGGGCTGCTACACAGCTCATTGCAACGCAAGGCCGC 
                                      -24         -12  
TCCAACCCAGGCAACGCGTGGTGCCTTGGTACGAAAAATGCCTATAGCCCTGCGCGACTCAATAACTAACTCA 
          RBS         ┌→ TL start  
CTAGGAAGCGAGAACAATAACGATGAATGCCGCACTGAAAACCTTCGCCCCAAGCGCACTCGCCCTGCTGCTG 
 

ATCCTGCCATCCAGCGCCTCGGCCAAAGAAGCCGAAACCCAACAGAAGCTGGCCAACGTGGTCATCCTCGCCA 

 
CCGGCGGCACCATTGCCGGCGCCGGTGCCAGCGCTGCCAACAGCGCCACTTACCAGGCTGCCAAGCTGGGCGT 

 

Figure 4.10:  Transcription start site and σ54 binding motif of the P. putida KT2440 ansB gene. 
TS, transcription start site; RBS, ribosome binding site; TL, translation start site.  
 

4.8  Analysis of Glu-induced gene expression by RT-PCR 

To ascertain whether the effects of Glu observed on the protein level are indeed taking 

place on the level of transcription, a semi-quantitative reverse transcription-PCR (RT-

PCR) was performed to examine the levels of mRNA for several proteins differentially 

expressed in the cells grown on M9--medium containing NH4
+ plus glucose and 10 mM 

Glu (as described in section 3.11.). RNA isolation and RT-PCR for the genes listed in 

section 2.4.1 was carried out on the same day. The RNA was transcribed into cDNA by 

reverse transcriptase and the resulting cDNA was amplified by PCR using PfuTurbo DNA 

polymerase. The primers used (see section 2.4.1) were derived from the KT2440 genome. 

Although the procedure used here did not quantify proteins by using internal standards, the 

observed amounts of RT-PCR amplificates in the absence and presence of Glu (see Fig. 4. 

11) were consistent with the proteomics data described above. 
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Figure 4.11: RT-PCR analysis of gene expression in P. putida KT2440. Pp1, transcription 
termination factor Rho; Pp3, PGA; Pp5, ABC transporter ATP-binding protein; Pp6, aspartase; 
Pp8, outer membrane porin D; Pp11, fumarase. 
 

The Glu-responsive proteins previously identified in 2D gels (Table 4.2) seemed to be up-

regulated on the transcriptional level as well. The RT-PCR products corresponding to the 

ABC-transporter ATP-binding protein (Pp5) and aspartase (Pp6) were not seen during 

growth on NH4
+/Glc but readily detected during growth on Glu. The mRNAs for PGA 

(Pp3), the outer membrane porin D (Pp8), and the Rho termination factor (Pp1) were also 

detected in the absence of Glu but greatly increased when the amino acid was present. The 

formation of fumarase mRNA (Pp11), on the other hand, was strongly repressed by Glu. 

However, as only one pair of primers per gene was used and also did not include a Glu-

independent control gene in the RT-PCR experiments, the results shown in Fig. 4.11 are 

still qualitative rather than quantitative. 
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4.9  Transposon mutagenesis to identify factors affecting PGA   expression  
Several different approaches are available to identify bacterial genes associated with a 

certain function or phenotype. The most common one is complementation: A genomic 

library is prepared from the species of interest using a vector that can be transferred to 

other bacteria. The gene(s) of interest is(are) then identified by mobilizing the library into 

a recipient strain which is defective in the respective function with selection for donor 

clones that complement the defect. 

 

An alternative approach is to mutagenize the organism with a transposon that randomly 

inserts itself into the host genome at a single or only a few sites, followed by selection for 

transconjugants that have lost the function of interest. This technique is called transposon 

mutagenesis. Genes functionally involved in this function or property can then be 

identified by locating the position of the transposon in the genome. Again, this can be 

achieved by several different strategies. One of these is termed “self-cloning”. It uses a 

transposon that can be replicated in a cloning host without the need to join it to a cloning 

vector. The transposon together with a neighbouring segment of the disrupted gene is cut 

out from the genome using an appropriate restriction enzyme and then transformed into 

and cloned in a suitable host such as E. coli. The disrupted gene is then identified by 

sequencing using a primer complementary to the terminal sequence of the transposon.   

  In the present work, we looked for genes that are necessary for the Glu-dependent 

expression of PGA in P. putida KT2440. PGA was selected because its activity can 

easily be detected with small amounts of cells such as individual colonies. Our hope was 

to find regulatory proteins, transcription factors or other functional proteins involved in 

the regulation of PGA expression. The transposon employed was the “self-cloning” 

transposon vector Tn5-pOT182 (Merriman and Lamont, 1993). Tn5-pOT182 contains a 

promoterless lacZ reporter gene which can be used to monitor transcription of the gene 

into which the transposon has been inserted. pOT182 was first transformed into E.coli 

strain S17 (Simon et al., 1983) which contains a chromosomally-integrated derivative of 

RP4, which is capable of causing conjugative transfer of mob-containing plasmids such 

as pOT182 into a wide range of Gram-negative bacteria (Simon et al., 1983). pOT182 

was introduced into KT2440 from strain S17 by conjugation as described in section 3.17. 

Transconjugants resistant against tetracycline (TcR) and carbenicillin (CbR) were selected 

on plates containing M9--medium supplemented with 10 mM Glu; 22 mM glucose and  
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19 mM NH4
+. Approximately 1,500 TcRCbR transconjugants were obtained. Of these 

clones, about 400 were individually assayed for PGA activity as described in section 

3.24.1 in the presence of Glu as the inducer. A total of 50 transconjugants were identified 

that exhibited low or negligible PGA activity in Glu-containing medium as compared to 

the wild-type.  

 

0 h 2 h 4 h 6 h 24 h Time 

N/Glc Glu N/Glc Glu N/Glc Glu N/Glc Glu N/Glc Glu 

Tn-SM3 0 0 0 0 0 0.2 3 0.2 13 60 

Tn-SM6 0 0 0 0 0 2 2 3 13 16

Tn-SM9 0 0 0 0 0 0.5 4 2 4 15

Tn-SM29 0 0 0 0 0 0 0 0 0 0 

Tn-SM31 0 0 0 0 0 0 0 0 0 12

Tn-SM33 0 0 0 0 0 0 0 0 0 0 

WT 0 0 13 23 25 72 32 88 51 18
  

Table 4.5: PGA activities (mU/ml) of some representative transposon mutants at different times 
after transfer to M9--medium supplemented with 22 mM glucose plus 19 mM NH4Cl (N/Glc) or 
10 mM Glu (Glu). Before the experiment, the cells were pre-grown overnight in M9-- medium 
containing NH4

+/glucose. Tn-SM3-Tn-SM33: transconjugants obtained by Tn5-pOT182 
mutagenesis; WT: wild type.   
 

When using transposon mutagenesis, one has to make sure that the clones obtained are, 

in fact, derived from the recipient strain (here P. putida KT2440) rather than from the 

donor (here E. coli S-17). In our case this was straightforward, as all of the isolated 

clones produced a strong green fluorescence when grown in liquid media – a property 

typical of fluorescent pseudomonads such as P. putida but not seen with E. coli.  About 

50 of these transconjugants (Tn-SM1-Tn-SM50) were randomly selected and assayed in 

detail for their growth properties and the time course of PGA expression. Most of these 

clones exhibited very little PGA activity for the initial 6 h but an activity comparable to 

wild-type cells after 15-24 h, i.e. PGA expression was delayed but not abolished. The  
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development of PGA activity (mU/ml) of some representative Tn mutants with time during 

growth on Glu and NH4
+/ glucose is shown in table 4.5.  

  The main goal of this study was to identify mutants rendered defective in Glu-induced  

PGA expression by random transposon mutagenesis. Transconjugants such as Tn-SM6 or 

Tn-SM9 showed delayed PGA expression were, therefore, not taken into account for further 

studies.  

 

4.10  Self-cloning and sequence analysis 
As mentioned above, Tn5-OT182 after digesting with an appropriate restriction enzyme, 

allows replication of flanking DNA sequence in E. coli without the need to join to a cloning 

vector. DNA sequences flanking the transposon in 11 transconjugants were isolated by self 

cloning (Merriman and Lamont, 1993). To verify insertion of the transposon, chromosomal 

DNA from the transconjugants was digested with XhoI. The resulting fragments were 

ligated by using T4 DNA ligase and then transformed into E. coli DH5α. Tcr clones were 

selected. Primers specific to the right and left end of Tn5-OT182 were used to perform 

sequencing on each of the plasmids. The resulting sequences (about 300 bp in length) were 

checked against the database using an alignment search tool BLASTN. 

 

  None of the transconjugants examined in detail contained the transposon in the PGA-

encoding ansB gene or in a gene with sequence homology to bacterial regulator proteins or 

transcription factors. Surprisingly, in 7 of the 11 sequenced mutants the transposon had in-

serted into the gltB gene (PP5067 in P. putida KT2440) which encodes the large subunit of 

glutamate synthase (GOGAT). In three transconjugants (in the following referred to as Tn-

SM2, Tn-SM15, and Tn-SM30) the site of insertion of the transposon within gltB was 

exactly the same, being located 135 bp away from the translation start site. Fig. 4.12 shows 

a partial alignment of one of these clones (Tn-SM2) with the P. putida KT2440 gltB gene. A 

schematic map of the corresponding region of the P. putida KT2440 genome is depicted in 

Fig. 4.13. In one transconjugant, the transposon had interrupted a gene that, by sequence 

similarity, encodes a DNA helicase. In this mutant the transposon had integrated 53 bp away 

from the translation start site of the gene. In another case the transposon was localized in a 

gene that probably encodes a carbamoyltransferase of unknown function. These latter 

strains have not been further characterized so far.  
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The unexpected finding that the inactivation of gltB led to the loss of PGA activity raised 

the question whether the observed phenotype might be, in fact, not due to gltB disruption 

but a consequence of insertion of the transposon into additional genes. Therefore, Southern 

blot experiments were performed using fragments obtained by digestion with XhoI and  
 

 
                       101                                               150 

         Tn-SM2  [.....Tn5-pOT182 vector sequence.....]C GGCGGCATCAATGC 
           gltB  CTGCCATGCA  GGCGCTGACA TGCATGACCC ACCGC GGCGGCATCAATGC 
                          G  G  I  N  A 
    
     151                                                200 
         Tn-SM2  CGACGGCAAG ACCGGTGACG GTTGCGGTCT GCTCATGCAG AAGCCCGATC 
           gltB  CGACGGCAAG ACCGGTGACG GTTGCGGTCT GCTCATGCAG AAGCCCGATC 
                  D  G  K   T  G  D   G  C  G  L   L  M  Q   K  P  D   
                      
     201                                                250 
         Tn-SM2  AATTCCTGNG TGCCATGGCC CAGGAGCACT TCGCTGTCGA GCTGCCCAAG 
           gltB  AATTCCTGCG TGCCATGGCC CAGGAGCACT TCGCTGTCGA GCTGCCCAAG 
     Q  F  L  R   A  M  A   Q  E  H   F  A  V  E   L  P  K                      
 
                 251                                                300 
         Tn-SM2  CAGTACGCCG TCGGCATGGT GTTCTTCAAC CAGGACCCGG TCAAAGCCGA 
           gltB  CAGTACGCCG TCGGCATGGT GTTCTTCAAC CAGGACCCGG TCAAAGCCGA 
                  Q  Y  A    V G  M  V   F  F  N   Q  D  P    V K  A E 
                  
     301                                                350 
         Tn-SM2  AGCTGCCCGC GCCAACATGG ACCGCGAGAT CCTCGCCGCT GGCCAGA··· 
           gltB  AGCTGCCCGC GCCAACATGG ACCGCGAGAT CCTCGCCGCT GGCCTGA··· 
     A  A  R   A  N  M   D  R  E  I   L  A  A   G  L  K   
 
 
Figure 4.12: Partial alignment of the sequence adjacent to the transposon in transconjugant Tn-
SM2 and the P. putida KT2440 gltB gene. Nucleotides common to both the sequences are 
highlighted by bold face. The corresponding amino acid sequence of gltB is indicated below.           
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EcoRI, respectively, and labelled pOT182 as the probe. With all three transconjugants (Tn-

SM2, Tn-SM15, and Tn-SM30) the gels showed only one band after cutting with either one 

of the enzymes, indicating that each harboured a single copy of the transposon in an unique 

position (Fig. 4.14). 
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4.11  Characterization of gltB-negative transposon mutants   
 

Figure 4.14: Selectivity of Tn5-
pOT182 insertion. Genomic DNA of
transconjugants Tn-SM2 and Tn-
SM30 was digested with XhoI and
EcoRI and the fragments hybridized
with a digoxigenin-labelled pOT182
probe as described in section 3 20 

 

 As exp cted, the three Tn mutants did not exhibit detectable glutamate 

(GOGA ) activity (data not shown). Next, we checked the ability of strains Tn-

SM15 and Tn-SM30 to utilize various sources of carbon and nitrogen 

NH4
+/glucose, amino acids (Asn, Asp, Gln, Glu) alone and amino acids comb

NH4
+ and glucose. Both wild type cells and mutants grew well in M9

supplemented with glucose and ammonia. By contrast, the ability of the Tn m

utilize amino acids as sole source of carbon and nitrogen was severely impaired

and Tn-SM30 failed to grow in all above mentioned amino acids. On the other 

SM15 exhibited slow growth in Asn and Gln starting after 15 h.  The effect of a

amino acids on PGA activity was also measured. With wild-type P. putida

growing on Asp, Glu or the corresponding amides, PGA expression was fully

within 6-15 h, depending on the type of amino acid used, while the Tn mutan

exhibit PGA activity at all.  
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Asparagine Aspartate  
Asn  Asn +Glc  Asn+NH4

+ Asp  Asp +Glc Asp+NH4
+ 

Wild type  ++     ++++ +++  ++ +++     +++ 

      Tn-SM2  (+) +++   -   -  (+)   - 

 Tn-SM15   + +++   +   -   +   - 

 Tn-SM30   - +++   -   -   +   - 

gltB- mutant   - +++        -   -  ++   - 
 

Glutamine Glutamate   
     Gln  Gln +Glc  Gln+NH4

+      Glu  Glu +Glc  Glu+NH4
+ NH4

++Glc
  Wild type      +++      +++     +++      +++      +++       +++     +++ 
   Tn-SM2 -       ++ - - +  -     +++ 
   Tn-SM15 -      +++ - - +  -     +++ 
   Tn-SM30 -      +++ - - +  -     +++ 

gltB- mutant -      +++ - -       ++  -      ++ 
 

Table 4.6: Utilization of various carbon and nitrogen sources by P. putida KT2440 and different 
mutant strains. Growth was assessed by measuring OD450 after 12 h in M9- medium 
supplemented with 10 mM amino acids, 22 mM glucose and 19 mM NH4

+. -, O.D.450 < 0.05; 
(+),O.D.450  0.05-0.1; +, O.D.450 0.1-0.2; ++, O.D.450 0.2-0.4, +++, 0.4-0.6; ++++, O.D.450  >0.6. 
 

While the Tn mutants studied did not grow on amino acids alone, glucose in combination 

with amino acids supported rapid growth of the mutants. On the other hand, amino acids 

supplied together with NH4
+ as a nitrogen source did not allow growth of the mutants. 

This indicates that it is the utilization of amino acids as carbon source that is abolished by 

disruption of the gltB gene.    

 

4.12  Motility and Chemotaxis  
In addition to growth and PGA activity, the Tn mutants were assayed for their motility 

phenotype and chemotaxis towards amino acids. Motility was checked on “swarming 

plates” which allow detection of swarming growth on a given medium. This assay was 

performed either on normal Petri dishes (cf. Fig. 4.15) or in microtiter plates (Fig. 4.16). 

The latter method allowed the screening of a large number of strains under identical 

conditions. The approach is illustrated by Figs. 4.15 and 4.16. P. putida KT2440 wild 

type (left) showed a high motility when grown on amino acids. By contrast an isogenic 

rpoN-mutant was non-motile (right). This effect was already described by Köhler et al. 

(1989). 
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Most of the mutants (including Tn-SM2, Tn-SM15 and Tn-SM30) were entirely non-motile 

(see Table 4.7); only a few showed an attenuated motility (Fig. 4.16). The gltB insertion 

mutants were also examined for their chemotactic response towards Asn, Asp, Gln, and Glu 

(10 mM each) as described in section 3.4. The chemotactic response was considered 

positive when the length of the flare of growth towards the test compound was distinct. 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Motility of the a) P. putida KT2440 wild type (left panel) and b) P. putida rpoN 
mutant (right panel) in M9- medium supplemented with Asn. 
 
 

Wild-type cells showed a strong chemotactic response towards the above mentioned 

amino acids. Tn-SM2 and Tn-SM15 failed to respond to any of the amino acids, while 

Tn-SM30 showed weak chemotactic response towards asparagine only (Table 4.7). 

 

 

 

 

 

 

 

  

 

Figure 4.16: Sw
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containing a 0.3
were incubated a

 

arming growth of two repre
M9--medium containing 19
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 % M9 agar supplemented 
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Mutants    Asparagine 
 M              C 

 Aspartate 
 M                C 

  Glutamine 
  M            C 

Glutamate 
 M              C 

Tn-SM2     -                -   -                  -   -               -     -                - 
Tn-SM15     -                -    -                  -   -               -     -                - 
Tn-SM30     -               (+)    -                  -    -               -   -                - 

rpoN     -                -    -                  -   -               -     -                - 
Wild-type     +               +   +                 +    +              +     +               + 

Table 4.7: Motility (M) and Chemotaxis (C) of transposon mutants in 10 mM amino acids. 
  -, negative;  +, positive; (+), weak. The assays were performed as described in section 3.4. 
 

 

4.13  Properties of a targeted gltB- disruption mutant  
Although the results of Southern blot experiments shown in Fig. 4.14 indicated that Tn5-

pOT182 had inserted into the KT2440 genome at a single site, they could not completely 

exclude the possibility that the transposon had also interrupted a second gene. To 

ascertain that the phenotype observed with strains Tn-SM2, Tn-SM15 and Tn-SM30 was 

only due to the inactivation of gltB gene, a targeted gltB- disruption mutant was 

constructed by homologous recombination. As described in section 3.21.2, the mutant 

was constructed by i) amplifying a 834 bp fragment of the gltB gene from KT2440 

genomic DNA and inactivating it by introduction of a frame shift mutation, ii) cloning 

the nonfunctional gltB gene into pK18, and iii) re-introducing the nonfunctional gltB 

gene into the P. putida KT2440 genome by homologous recombination. Integration of 

inactivated gltB gene into the KT2440 genome was verified by PCR using suitable 

primers (gltBP3For and gltBP4Rev, see section 3.21.2). The gltB- disruption mutant 

obtained in this way showed a behaviour very similar to that of transposon mutants Tn-

SM2, Tn-SM15, and Tn-SM30. This is illustrated by Fig. 4.17, which compares the 

growth curves and PGA induction kinetics of wild type cells and the gltB- mutant during 

growth on amino acids as the sole source of carbon and nitrogen. None of the amino 

acids tested supported rapid growth or led to PGA expression (the strong increase of 

OD450 after 12-15 h especially with Asn as the nutrient is not due to cell growth but due 

to the formation of the fluorescent dye which is typical of P. putida). As shown by Table 

4.6, the behaviour of the targeted gltB disruption mutant on other combinations of carbon 

and nitrogen sources was also comparable to that of the three strains obtained by random 

mutagenesis, i. e. the gltB mutant was able to utilize amino acids only when supplied 

together with glucose. 
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Figure 4.17: Growth and PGA activity of a gltB m
(open symbols) in M9--medium supplemented with
and Glu (-▲-, -∆-) as the only source of carbon and
 
4.14  Survival of the gltB-mutant in co
A study by Eberl et al. (2001) on a P. putida

that survival of such cells under conditions of

In order to see whether this was also the case

performed a similar survival experiment (Fig. 4

 In agreement with the data of Eberl et al., P. p

least 24 days of nitrogen starvation. In contra

the ability to survive prolonged incubation in

incubation in nitrogen-free medium, the cell co

nitrogen starvation no viable colonies of the mu

 

 

 

 

 

 

 

    
 
 
 
Figure 4.18: Starvation survival (viable cell count
and P. putida KT2440 wild type (-•-) in nitrogen 
as descr- ibed in section 3.5. 

 

utant (close symbols) and P. putida KT2440 
 Asn (-◆ -,-✧ -), Asp (-▼-, -∇-), Gln (- -, - -), 
 nitrogen. 

nditions of nitrogen starvation 

 strain with a defective gltB gene showed 

 nitrogen starvation was greatly impaired. 

 with our GOGAT-deficient mutants, we 

.18).  

utida KT2440 remained fully viable for at 

st, the mutants were severely impaired in 

 nitrogen-free medium. After 5-7 days of 

unts dropped steeply, and after 24 days of 

tants were found any more.   
) of gltB- (-o-), Tn-SM2 (-✧ -), Tn-SM30 (- -) 
depleted media. The experiment was performed 
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4.15  Differential protein expression in gltB- Tn mutants 
In order to check the effect of inactivation of gltB gene on the level of protein expression,  

2D-PAGE experiments were performed with cell extracts prepared after transfer from 

NH4
+/glucose to media containing Glu as sole source of C and N. Fig. 4.19 compares the 

protein expression patterns observed in this way with P. putida KT2440 wild type (left 

panel) and Tn-SM2 (right panel) after 6 h of growth on Glu. Major spots upregulated in 

the wild-type cells under this condition are marked by solid circles. Most of these 

proteins were not up-regulated in Tn-SM2 are indicated by the dashed circles in Fig. 

4.19b. Similar results were obtained with Tn-SM15 and Tn-SM30 as well.  

Figure 4.20 compares 2D-gels obtained with extracts of the targeted gltB disruption 

mutant on NH4
+/glucose (left panel) and Glu (right panel). The expression patterns 

obtained are virtually identical, indicating that not only induction of PGA but also the 

inductive effect of Glu (cf. Fig. 4.7) on other proteins was abolished by the inactivation 

of gltB as well. 
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ure 4.19: Two-dimensional electrophoresis gels (pH 3-10) of soluble proteins of P. putida 
2440 and transconjugant Tn-SM2 during growth on M9--medium containing 10 mM Glu as 
 sole source of C and N. Spots up-regulated by Glu in the wild type are marked by solid 
cles. The position of the corresponding spots in the mutant strain are highlighted by circles 
ght panel). 
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Figure 4.20: Two-dimensional electrophoresis of soluble proteins expressed by the gltB- mutant 
of P. putida KT2440 6 h after transfer from M9--medium supplemented with glucose/NH4

+ to the 
same medium (left panel) or to M9--medium containing 10 mM glutamate (right panel).  
 

4.16  Determination of the intracellular pools of Glu and Gln 
As discussed in the introduction, glutamate synthase (GOGAT), one subunit of which is 

encoded by gltB, converts Gln and 2-oxoglutarate to two molecules of Glu. Thus, inacti- 

vation of gltB is likely to affect the intracellular concentrations of Gln and Glu. As no 

experimental data on this issue have been presented in the literature, we compared the 

intracellular levels of Glu and Gln in wild-type cells and gltB-mutant growing on 

different carbon and nitrogen sources. Cell extracts containing the amino acid fraction 

were prepared by heating the cell pellet in ethanol, and the concentrations of Glu and Gln 

determined by an enzymatic assay as described in section 3.29. 

 

The levels of Glu and Gln in the wild type cells and the gltB-disruption mutant were 

monitored on NH4
+/glucose for several days. In the gltB-mutant, both Gln and Glu 

accumulated to high concentrations (several µmol per mg of cellular protein) while no 

accumulation was seen in the wild type cells (Fig. 4.21). Similar results were obtained 

with cells kept on Glu and glucose as an additional carbon source (data not shown). In 

the absence of an external N source no detectable amounts of Glu or Gln were found.  
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Figure 4.21: Intracellular concentrations
of Glu (-Ο-, -● -) and Gln (- - , -■ -) (in
µmol per mg of cellular protein) as a fun-
ction of time after transfer to M9 medium
containing 19 mM NH4

+ and 22 mM glu-
cose. The figure compares data for wild
type P. putida KT2440 (open symbols)
and a gltB disruption mutant  (filled sym-
bols). 

 

 

4.17  Identification of a two-component system involved in the  
         regulation of glutamate metabolism  
 
In the proteomics experiments described in section 4.6 we found that during growth of  

P. putida KT2440 on Glu- among other proteins - two components of an ABC transporter 

are induced. They are encoded by the P. putida KT2440 genes PP1068 and PP1071 and 

correspond to the ATP-binding subunit of the transporter (PP1068) and the periplasmic 

binding protein associated with it (1071). Immediately adjacent to this group of genes are 

two further genes which, by sequence homology, encode a so-called two-component system 

(see section 1.5). Although the neighbourhood of these two systems could be only 

accidential, we speculated that the system encoded by PP1066/67 might have a function in 

amino acid metabolism. This speculation was supported by a comparison with the genomes 

of P. aeruginosa PAO1 and P. fluorescens SBW25 (see Fig. 4.22). On the basis of sequence 

similarity, PP1068-1071 correspond to the P. aeruginosa genes PA1339-1342. This 

probable operon in P. aeruginosa is followed (in upstream direction) by 4 additional genes 

that all are connected with glutamate and/or aspartate metabolism: PA1338 encodes a γ-

glutamyltransferase, PA1337 (ansB) encodes PGA, and the subsequent genes PA1335/1336, 

which encode a two-component system, show a high sequence similarity to PP1066/1067.  
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Figure 4.22: Comparison of selected regions in three Pseudomonas genomes (see text) 

 

 

In the unfinished genome of P. fluorescence SBW25 (in progress at the Sanger Centre, 

U.K), the ABC transporter-encoding genes with the highest similarity to PP1068-1071 

(genes 2-5) are directly followed by genes 6 and 7 which are very similar to 

PP1066/1067. This suggested that PP1066/1067 might also be functionally involved in 

the metabolism of acidic amino acids and their amides. We tested this hypothesis by 

inactivating PP1066 and PP1067 by the same method already used for the disruption of 

the gltB gene (see section 4.13) and examining the properties of the resulting mutants. As 

will be shown below, the results indicate that the two component system encoded by 

PP1066 and PP1067 is in fact involved in the control of the metabolism of the acidic 

amino acids. Therefore, we termed the system encoded by these two genes "aau" which 

stands for “acidic amino acid utilization”. As judged by sequence homology, the aau 

system involves a sensor kinase (aauS-PP1067) and a regulator protein (aauR-PP1066). 

In the annotated P. putida KT2440 genome (Nelson et al., 2002) the protein products of 

the system are annotated as “sensor histidine kinase” and “σ54-dependent response 

regulator”, respectively, of unknown function.  

 

 

 105



 
________________________________________________________________4. RESULTS 

 

4.18  Characteristics of aauS and aauR disruption mutants 
In order to characterize the role of the aau system in the regulation of the utilization of 

acidic amino acids (Asp, Glu) and their amides (Asn, Gln), mutants were generated by 

homologous recombination as described in section 3.21.3, in which aauS and aauR were 

disrupted. As usual, these mutants (aauR- and aauS-) were compared with the parental 

strain with respect to their growth properties and the induction of PGA and other Glu-

responsive proteins.   

 As shown by Fig. 4.23, growth of aauR- on Asn and Asp was normal, while growth on 

Gln as sole source of carbon and nitrogen was slightly and growth on Glu was strongly 

impaired. The levels of PGA activity were very low in the mutant. Only growth on Asn 

led to significant activities after 10-12 h. These findings indicate that a functional aauR 

is indeed required for the expression of genes involved in the utilization of Gln and Glu. 

Table 4.8 shows a more detailed summary of the growth properties and PGA activities of 

the aauR- and aauS- disruption mutants on various combinations of carbon and nitrogen 

sources.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.23: Growth and PGA induction of th
KT2440 (open symbols) on glucose/NH4

+ (-● -, -
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strongly retarded in Glu-containing medium. This was not only the case when Glu was 

combined with succinate, but also when it was supplied as the sole source of C and N. 

 

 aauS- aauR- 
Additional 

C- source 

none 

 

Glucose Succinate none Glucose Succinate 

C/N-

source 

Growth     

(% of wt)

PGA 

activity 

(% of wt) 

Growth    

(% of wt) 

Growth     

(% of wt) 

 Growth   

 (% of wt) 

PGA 

activity 

 % of wt 

Growth      

% of wt 

 Growth     

% of wt 

   Asn     109     12  58  96 95 10   99  96 

   Asp 30     <1  58  66 90  5   70  66 

   Gln 16     <1  49  70 41  1   80  70 

  Glu  7     <1  51  44 23  2   40  44 

  NH4
+     n.d.     n.d.  91  98 n.d. n.d.    100   81 

 

Table 4.8: Relative percentage growth and PGA activities of aauR- and aauS- mutants after 12 h 
of growth in different combinations of carbon and nitrogen sources. Cells were grown overnight 
in NH4

+/glucose minimal medium, washed and transferred to M9--media containing Asn, Asp, 
Gln, Glu, (10 mM each), 10 mM amino acids and 22 mM glucose, or 10 mM amino acids plus 10 
mM succinate. Growth (as OD450) and PGA activity are given as % of the respective values 
obtained with wild type cells under the same conditions.  
 

In order to check whether aauS- and aauR- mutants are able to utilize amino acids as 

nitrogen source, M9--media with the above four amino acids was supplemented with 

glucose and succinate as additional carbon source. Succinate was chosen because in 

Rhizobium leguminosarum and Sinorhizobium meliloti succinate is a good inducer of dct 

system which is responsible for the transport of dicarboxylic acid (Ledebur et al., 1990; 

Jording et al., 1992). Both aauR- and aauS- showed rapid growth on succinate-

containing media (see table 4.8), suggesting that the aau system is different from dct, i.e. 

it is not required for the utilization of succinate. Compared to wild-type, aauR- mutant 

showed slightly slower growth on succinate and Glu. A somewhat different situation was 

observed with the aauS- mutant. Here, in addition to media containing Glu and succinate, 

growth was also retarded in Asp and succinate-containing medium. 
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4.19  Differential protein expression in wild type and the aauR- mutant 
In order to examine the effect of inactivation of a response regulator aauR on protein 

expression, crude protein extracts from P. putida KT2440 wild type cells and the aauR- 

mutant were analyzed by 2-D gel electrophoresis 6 h after transfer from NH4
+/glucose to 

M9-/glutamate (Fig. 4.24). In the aauR- mutant at least 23 protein spots (R1-R23) were 

repressed and 4 protein spots (I1-I4) were up-regulated. Most of the differentially 

expressed proteins are located in the neutral-to-acidic pH range. 

 
b) aauR-/Glua) KT2440 wt/Glu 

 

 

 

 

 

 

 

Figure 4.24: Two-dimensional electrophoresis of differentially expressed proteins in P. putida 
aauR- mutant during growth on 10 mM Glu. Protein spots a) repressed and b) induced in mutant 
are represented as RI-R24 and I1-I4 , respectively. 
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Proteins less strongly expressed in the aauR- mutant during growth on Glu 

 

Protein 
spot 

Protein name Locus 

R1 General amino acid ABC transporter, 
Periplasmic binding protein 

PP1297 

R3 Superoxide dismutase (Fe) PP0915 

R4 2-dehydro-3-deoxy-phosphogluconate aldolase PP1024 

R5 6-phosphogluconolactonase PP1023 

R8 50S ribosomal protein L14 PP0464 

R11 Transcriptional regulator, GntR family PP0620 

R12 Branched-chain amino acid ABC transporter, 
periplasmic amino acid-binding protein 

? 

R14 Translation elongation factor Tu PP0440 

R16 Inosine-5-monophosphate dehydrogenase PP1031 

      R17 

 

2-oxoglutarate dehydrogenase,  
lipoamide dehydrogenase component 

PP4187 

R19 Dihydrolipoamide dehydrogenase PP5366 

R21-23 Quinoprotein ethanol dehydrogenase PP2674 
 

 

Proteins more strongly expressed in the aauR- mutant during growth on Glu 

 

Protein 
spot 

Protein  Locus 

I1 Flagellin C PP4378 

I2 Dna K protein PP4727 

I4 Acetyl-CoA carboxylase, biotin carboxylase PP5347 
 

Table 4.9: List of  the identified differentially expressed proteins in the aauR- mutant during 
growth in glutamate containing medium. 
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For the identification of the differentially expressed protein spots, a total of 28 spots (R1–

R24 and I1-I4, see Fig. 4.24) were selected, cut from the Coomassie-stained gels and 

pooled. The cut gel pieces were then digested with trypsin and the tryptic peptides were 

analyzed by MALDI-TOF mass spectroscopy as described in section 3.28.1. For 

identification, several modification parameters such as modification of cysteine by 

carbamidomethylation and oxidation of methionine were considered. The searching 

parameters used were a peptide mass tolerance of 0.1 Da and missed cleavages not 

allowed. The MS data obtained was directly used as input for the Mascot™ program. From 

the proteins R1-R24, 14 could be identified and matched to entries of the P. putida 

KT2440 genome with high scores. Proteins R21-R23 were identified as isoforms of a 

single protein, quinoprotein ethanol dehydrogenase. The results of protein identification 

are summarized in Tables 4.9. Surprisingly, a comparison of these tables with table 4.2 

does not show any overlap, none of the proteins appears in both tables. 

 

4.20  Overexpression of the AauR protein 

For expression of the AauR protein, the pGEX expression system was used. In this 

system expression is under the control of the tac promoter, which is induced by the 

lactose analogue isopropyl β-D thiogalactoside (IPTG).  

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Confirmation of the aauR 
cloning into the pGEX vector by restric-
 tion digestion analysis with a RsaI    
 enzyme.  
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pGEX also contain an internal lacIq gene. The lacIq gene product is a repressor protein 

that binds to the operator region of the tac promoter, preventing expression until 

induction by IPTG, thus maintaining tight control over expression of the insert. Cloning 

of aauR gene into the compatible sites of pGEX-6P-3 (see section 3.22.2) was confirmed 

by cutting the vector with EcoRI and BamHI and digesting the released insert (1326 bp) 

with RsaI. As shown by Fig. 4.25, the expected fragments (978 and 348 bp) were found. 

Using this construct, AauR was overexpressed in a protease-deficient E. coli BL21(DE3) 

IL strain as a fusion protein with GST.  

 
1 2 3 4 5

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Induction kinetics of the AauR protein. The figure shows SDS-PAGE of crude cell 
extracts before induction with IPTG (lane 1) and 0.5, 1, 2 and 3 h after induction (lanes 2-5). 
  

In order to obtain optimum yields of the protein, we examined the dependence of AauR 

expression on incubation time after IPTG induction. For these studies, a 50 ml pre-

culture was grown overnight and added to 500 ml of LB medium supplemented with 

chloram- phenicol and ampicillin. When OD600 had reached 0.7,  IPTG was added to a 

final concentration of 1 mM. Samples were removed at suitable time intervals up to 24 h 

after induction with IPTG. As no significant increase in the yield of protein was observed 

at times longer than 3 h, cells were harvested after this time (see Fig. 4.26).  
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4.21  Purification of the AauR protein 
Purification of the P. putida KT2440 AauR protein was accomplished in a three-step 

procedure starting with a sonication of cells to generate a crude extract, followed by 

affinity chromatography on glutathione sepharose 4B and finally cleavage of the GST 

fusion with PreScission protease. Fig.4.27 shows material from one such purification 

separated on 12% SDS-polyacrylamide gel before and after cutting with PreScission 

protease. As shown by the figure, about 80 % purity was achieved by affinity 

chromatography. Additional steps like gel filtration will be necessary to obtain the AauR 

protein in a homogeneous form. Extracts from 500 ml cultures afforded 50-60 mg of 

protein.  
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Figure 4.27: Purification of the overexpressed AauR-GST fusion protein. M, Marker; Lane1, 
AauR-GST fusion protein (uncut); Lane 2, AauR protein (after cutting with PreScission 
protease). 
 
 
By analytical SDS-PAGE, the molecular mass of the GST-AauR fusion protein was 

estimated to be 78.0 kDa and that of AauR protein as 48.7 kDa (see Fig. 4.27). These 

values are in good agreement with those predicted from the respective amino acid 

sequences.  
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Figure 4.28: AauR purified protein a) before Protease PreScission treatment (uncut) , b) after 
protease treatment (cut). -•-, standard protein markers; -▼-, AauR protein. 
 
 
So far, no functional characterization of the purified AauR protein has been carried out. 

However, sufficient amounts of purified protein are now available for further functional 

characterization such as DNA binding studies and an analysis of the mode of phosphory-

lation.
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5.  Discussion  
 

Bacteria have an unique ability to occupy very hostile environments and to adapt to rapid 

changes of the environmental conditions. In this respect, they are much more adaptable than 

mammalian cells which enjoy rather constant and well-regulated conditions of their 

environment. Therefore, the mechanisms that regulate bacterial gene expression in response 

to environmental signals are of major interest to basic research. Such studies also may find 

practical applications in novel methods for fighting bacterial infections or in the use of 

bacteria to improve the quality of soils by removing toxic compounds or enhance plant 

growth. Today, the study of bacterial gene regulation is greatly facilitated by the availability 

of a large number of complete genomes. Together with increasingly powerful methods for 

the analysis of differential protein expression (the so-called proteome research) and the 

sensitivity of analytical methods in the field of gene expression, it is now possible to obtain a 

wealth of detailed information on the responses of bacterial cells to environmental factors. 

 
5.1  Amino acid utilization by P. putida 
In the present work, we studied the utilization of acidic amino acids and their amides by  

P. putida strain KT2440. As already discussed in the introduction, this organism, like other 

Pseudomonas strains, has the ability to grow on a very broad range of carbon sources and is 

also a plant growth-promoting organism (PGPR) with possible applications in agriculture. 

Another pseudomonad that has attracted much attention due to medical reasons is the human 

pathogenic species P. aeruginosa. Comparative sequence analysis revealed that the genomes 

of P. aeruginosa PAO1 and P. putida KT2440 have an about 85% sequence similarity. The 

pseudomonad genomes also are among the largest of all bacterial genomes so far, and also 

contain the largest proportion of regulatory genes (Nelson et al., 2002, Shingler, 2003). 

  The main goal of this study was to identify factors in P. putida KT2440 that regulate the 

uptake and metabolism of acidic amino acids and their amides. This line of investigation was 

based on previous data from our laboratory which showed that expression of periplasmic 

glutaminase/asparaginase (PGA) of several pseudomonads is stringently regulated by 

induction and repression (Hüser, 1999; Klöppner, 1999). The activation of systems for the 

utilization of amino acids is one of the most important mechanisms for the adaptation of 

bacteria to nitrogen starvation, i.e. a lack of a preferred nitrogen source like NH4
+. As already 

discussed in the introduction, this reaction which is known as 'nitrogen response' was studied  
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in much detail in E. coli and other enterobacteria while little information on the Ntr system is 

available for the pseudomonads.  

  In the present work, we first showed that the general patterns of amino acid utilization and 

its regulation in P. putida KT2440 are similar to those of the strains previously studied by 

Hüser and Klöppner (see Table 4.1; Figs. 4.2 and 4.3). Asp and Glu as well as their amides 

(Asn, Gln) supported rapid growth of strain KT2440. As already noted, this differs from the 

situation in E. coli where NH4
+ is a much better nitrogen source than amino acids (Reitzer, 

1996).   

5. 2  Regulation of PGA activity 

The acidic amino acids and their amides not only supported rapid growth of P. putida 

KT2440, they were also the only amino acids capable of inducing PGA. A somewhat 

different situation was observed in P. fluorescens ATCC 13525 (Klöppner, 1999), in which 

the kinetics of induction indicated that aspartate and glutamate rather than asparagine and 

glutamine are the actual inducers. This paradoxical situation is difficult to explain. However, 

one may expect that in most situations in which pseudomonads are naturally exposed to 

asparagine and glutamine, the dicarboxylates aspartate and glutamate should be available as 

well. It could also be due to different activation mechanisms in different strains. It was fur-

ther shown by Klöppner (1999) that root-colonizing biocontrol strains express PGA at much 

higher activities than non-colonizers. When supported by additional data, it would suggest an 

important role of acidic amino acids and their amides for interactions in the rhizosphere.  

  In the present study, we found that preferred sources of carbon like glucose and 

intermediates of the tricarboxylic acid (TCA) cycle strongly repress PGA synthesis in P. 

putida KT2440. This phenomenon is known as 'carbon catabolite repression' (CCR). 

Bacterial genes encoding carbon catabolite enzymes are often regulated in response to the 

available carbon source. It is well established that intermediates of the TCA cycle often 

repress the catabolic pathways of other carbon sources (Collier et al., 1996). If a rapidly 

metabolizable carbon source such as glucose is present in excess amounts the synthesis of 

peripheral catabolic enzymes is reduced. In contrast to E. coli or B. subtilis, carbon catabolite 

repression in pseudomonads is not well understood. In enteric bacteria, uptake of glucose 

indirectly leads to a low level of cyclic AMP (cAMP) which results in repression of 

activation of cAMP mediated genes responsible for degradation of secondary carbon sources 

(Postma et al., 1993). For Pseudomonas species, organic acids like succinate, citrate are  
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among the preferred carbon sources. In the presence of any of these substrates, the activity of 

the enzymes involved in the transport and/or catabolism of amides and amino acids like 

histidine is reduced (Ng and Dawes, 1967; Philipps and Mulfinger, 1981; Smyth and Clark, 

1975). As Gln and Asn are eventually degraded to intermediates of the TCA cycle (2-

oxoglutarate and fumarate, respectively), the CCR of their catabolism makes sense 

biochemically. When intermediates of the cycle or metabolites that feed it are already 

available, there is no need to utilize these amino acids.  

 

 The only example of CCR in P. putida that was investigated in some detail is the 

degradation of phenols (Müller et al., 1996). However, the available data do not yet provide a 

consistent picture of the mechanisms involved (Petruschka et al., 2001). It is known, 

however, that cAMP and the CAP protein do not play any role in pseudomonads. Instead, a 

carbon catabolite regulatory protein (crc) was identified that is involved in CCR in ways 

which have still to be characterized (Hester et al., 2000). Although, in the present work the 

mechanism of CCR was not characterized in detail, the regulation of PGA activity may 

become an interesting model system to study carbon catabolite repression in pseudomonads. 

Another organism interesting to examine would be P. fluorescens Pf-5, which is markedly 

less subject to CCR than the other Pseudomonas strains examined so far (Klöppner, 1999).  

  As already noted by Klöppner (1999) for wild type strains of P. fluorescens and P. putida, 

the findings summarized above that in P. putida KT2440 the acidic amino acids mainly serve 

as sources of carbon which are dispensable when other, more readily metabolizable C sources 

are available.  

 

5.3  Role of PGA in P. putida KT2440 

In E. coli, the PGA homolog asparaginase II (EcGA) is under the control of the fnr gene 

product and thus only expressed by anaerobically growing cells (Jerlström et al., 1987). This 

finding indicates that E. coli asparaginase II mainly serves to supply precursors for the so-

called fumarate respiration. In this pathway, which is used by E. coli to produce ATP in  

anaerobic conditions, fumarate is used as an final electron acceptor in an electron transfer  
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chain that generates a proton gradient over the plasma membrane which eventually is used 

for ATP production. The fumarate required for this process can be synthesized from Asn by 

the following two-step sequence 
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                                          EcGA                                aspartase 
              asparagine    →  aspartate   → fumarate 
                             H2O         NH4

+                                   NH4
+ 
. putida as a predominantly aerobic organism does not use this pathway. To elucidate the 

ole of PGA in amino acid utilization in P. putida KT2440, a disruption mutant defective in 

nsB expression was constructed. As shown in section 4.4, the disruption mutant was unable 

o grow on Gln as sole source of carbon and nitrogen. As PGA is a purely periplasmic 

ctivity, this result suggests that P. putida KT2440 does not possess an efficient uptake 

ystem for glutamine and thus has to hydrolyze Gln to Glu in the periplasm to be able to use 

xogenous Gln as a source of carbon and nitrogen. Direct evidence for this assumption was 

rovided by the results of amino acid transport studies (see section 4.5) which indicate that 

he disruption was also unable to take up glutamine from the medium to support growth. 

 Fig. 5.1 shows an alignment of several PGA sequences deduced from Pseudomonas 

enomes with two PGA homologues from enterobacteria (i.e. type II asparaginases from 

scherichia coli and Shigella flexneri). Clearly, all these enzymes share a high degree of 

equence similarity. Differences between the Pseudomonas enzymes from those of enteric 

acteria are mainly seen in the region of the leader peptides and the N-termini while all the 

atalytically important residues (marked by ) are strictly conserved. 

 Polar effects of the mutation on downstream genes are unlikely to contribute to the observed 

onsequences of ansB disruption. An analysis of the ansB region in the P. putida KT2440 

enome (Fig. 5.2) shows that ansB is flanked by an endX homolog on one side and a putative 

peron (rbsABC) on the other which encodes a ribose uptake system. Thus, the genes 

lanking ansB in P. putida KT2440 are entirely unrelated to amino acid metabolism. A 

imilar case was reported by Hüser et al. (1999) for P. fluorescence ATCC 13525, where the 

nsB gene is also followed by an ORF (endX) encoding an endonuclease of unknown 

unction. 
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        [      leader peptide   ][→mature protein       
    PpGA   MNAALKTFAPSALALLLILPSSASAKEAE.QQKLANVVILATGGTIAGAG 
    PfGA   MKSALKTFVPGALALLLLFPVAAQAKEVETKTKLANVVILATGGTIAGAG 
    PaGA   MKPLLHAFAPGVMALMLLLPQAAQAKEVAPQQKLSNVVILATGGTIAGAG 
    SfGA              MEFFKKTALAALVMGFSGAALALPNITILATGGTIAGGG 
    EcGA  ............MEFFKKTALAALVMGFSGAALALPNITILATGGTIAGGG 
                      [   leader peptide   ][→         
                                                    
    PpGA   ASAANSATYQAAKLGVDKLIAGVPELADIANVRGEQVMQIASESISNDDL 
    PfGA   ASAANSATYQAAKVGIEQLIAGVPELSQIANVRGEQVMQIASESINNENL  
    PaGA   ASAANSATYTAAKVPVDQLLASVPQLKDIANVRGEQVFQIASESFTNENL 
    SfGA   DSATKS.NYTAGKVGVENLVNAVPQLKDIANVKGEQVVNIGSQDMNDNVW 
    EcGA   DSATKS.NYTVGKVGVENLVNAVPQLKDIANVKGEQVVNIGSQDMNDNVW 
 
                                       

    PpGA   LKLGKRVAELAESKDVDGIVITHGTDTLEETAFFLNLVEKTDKPIVVVGS 
    PfGA   LQLGRRVAELADSKDVDGIVITHGTDTLEETAYFLNLVEKTDKPIIVVGS  
    PaGA   LELGKTVAKLADSDDVDGIVITHGTDTLEETAYFLTLVEHTEKPIVVVGS 
    SfGA   LTLAKKIN..ADCDKTDGFVITHGTDTMEETAYFLDLTVKCDKPVVMVGA 
    EcGA   LTLAKKIN..TDCDKTDGFVITHGTDTMEETAYFLDLTVKCDKPVVMVGA 
 
                                                            
    PpGA   MRPGTAMSADGMLNLYNAVAVASDKQSRGKGVLVTMNDEIQSGRDVSKAV 
    PfGA   MRPGTAMSADGMLNLYNAVAVAGSKDARGKGVLVTMNDEIQSGRDVSKMI  
    PaGA   MRPGTAMSADGMLNLYNAVAVAGDKSARGKGVLITMNDEILSGRDASKMV 
    Sf2a   MRPSTSMSADGPFNLYNAVVTAADKASANRGVLVVMNDTVLDGRDVTKTN 
    EcGA   MRPSTSMSADGPFNLYNAVVTAADKASANRGVLVVMNDTVLDGRDVTKTN 
 
    PpGA   NIKTEAFKS.AWGPMGMVVEGKSYWFRLPAKRHTVNSEFDIKQISSLPQV 
    PfGA   NIKTEAFKS.PWGPLGMVVEGKSYWFRLPAKRHTMDSEFDIKTIKSLPDV  
    PaGA   NIKTEAFKS.PWGPLGMVVEGKSYWFRAPVKRHTVNSEFDIKQISALAPV 
    Sf2a   TTDVATFKSVNYGPLGYIHNGKIDYQRTPARKHTSDTPFDVSKLNELPKV 
    EcGA   TTDVATFKSVNYGPLGYIHNGKIDYQRTPARKHTSDTPFDVSKLNELPKV 
 
    PpGA   DIAYGYGNVTDTAYKALAQNGAKALIHAGTGNGSVSSRVVPALQELRKNG 
    PfGA   EIAYGYGNVSDTAVKALAQAGAKAIIHAGTGNGSVSSKVVPALQELRKQG 
    PaGA   EIAYSYGNVSDTAYKALAQAGAKAIIHAGTGNGSVPARVVPTLQELRKQG 
    Sf2a   GIVYNYANASDLPAKALVDAGYDGIVSAGVGNGNLYKSVFDTLATAAKNG 
    EcGA   GIVYNYANASDLPAKALVDAGYDGIVSAGVGNGNLYKSVFDTLATAAGAG 
 
                              
    PpGA  VQIIRSSHVNQGGFVLRNAEQPDDKNDWVVAHDLNPQKARILAMVAMTKTQ 
    PfGA  VQIIRSSHVNAGGFVLRNAEQPDDKYDWVVAHDLNPQKARILAMVALTKTQ 
    PaGA  VQIIRSSHVNAGGFVLRNAEQPDDKNDWIVAHDLNPQKARILAAVAMTKTQ 
    Sf2a  TAVVRSSRVPTGATT.QDAEVDDAKYGFVASGTLNPQKARVLLQLALTQTK 
    EcGA  TAVVRSSRVPTGATT.QDAEVDDAKYGFVASGTLNPQKARVLLQLALTQTK 
   
    PpGA  DSKELQRIFWEY 
    PfGA  DSKELQRMFWEY 
    PaGA  DSKELQRIFWEY 
    Sf2a  DPQQIQQIFNQY 
    EcGA  DPQQIQQIFNQY 
  
 
Figure 5.1: Alignment of the derived amino acid sequence of periplasmic glutaminase/ asparagi-
nase enzymes from P. putida KT2440 (PpGA), P. fluorescens ATCC13525 (PfGA), Pseudomonas 
aeruginosa PA01 (PaGA), Shigella flexneri 2a strain 301 (Sf2a), and Escherichia coli 
K12(EcGA). Sequence motifs conserved in all of these enzymes are shown in black boxes. 
Catalytically important active site residues are marked by .  
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Figure 5.2: Genetic
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ese findings and our present results suggest that Gln utilization by P. 

rictly depends on the activity of PGA whereas Asn can be taken up and 

dependent systems. In P. fluorescens a cytosolic amidohydrolase with 

 for Asn (Pseudomonas asparaginase, PA) was found (Klöppner, 1999). 

also present in P. putida KT2440, it could mediate the utilization of 

eration with an Asn uptake system that has still to be identified.    

lu-responsive genes in P. putida KT2440  
fy further genes that are up-regulated during growth on acidic amino 

ides, we selected a proteomics approach. 2D-PAGE was used to follow 

of protein synthesis in cells transferred from NH4
+/glucose minimal 

ame medium, ii) to minimal media containing Glu as the sole source of 

en, iii) or to media containing the CCR-active compound fumarate in 

In each case, several samples were taken from the same culture at 

rvals and analyzed under exactly the same conditions to minimize the 

igs. 4.6-4.8). To keep the experimental effort within an acceptable limit, 

d as an inducer. This appeared justified as studies by Klöppner (1999) 

 fluorescens the same set of proteins were induced by all four amino 

Glu, Gln).   Differentially expressed proteins were identified by mass 

). At the time when these experiments were done, the annotated genome 

40 was not yet available in the databases. Therefore, the rather simple 

ntification from the mass distribution of tryptic peptides could not be  
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used for all proteins (about 5500 in strain KT2440). Instead we selected a series of about 

40 possible candidate genes from the unfinished genome and calculated the respective 

peptide masses ourselves. In this way only three spots could be identified in an 

unequivocal fashion. For the other spots the more complicated (and expensive) MALDI-

PSD technique had to be used which yields sequences of the respective peptides and thus 

is more reliable.  

  The key advantages of protein identification by mass spectrometry are the sensitivity of 

the method, the amount of information generated and the speed of the analysis and 

identification. With a sensitivity limit of 10-15 to 10-18 mol of protein, any protein spot that 

can be detected with Coomassie blue staining also contains adequate amounts of protein 

for identification. Further, the analysis is sufficiently automated that peptides are detected 

and product-ion-spectra recorded in a single analysis. The high percentage of successfully 

identified spots (11 out of 13 in this work) demonstrates the efficiency of the approach 

followed. The use of  MALDI-TOF and PSD was fundamental to obtain a high number of 

high-quality mass spectra, even from peptides present in very low abundance.  

  The set of Glu-induced proteins of P. putida KT2440 included at least 9 major members. 

Many of these proteins were found to perform functions that relate them to amino acid 

uptake and metabolism. In parallel, during growth on NH4
+/ glucose at least four proteins 

were up-regulated which appear to be involved in sugar uptake and metabolism. Most of 

the genes induced during growth on glutamate were repressed by growth on glucose-

containing medium. This result strongly indicates that expression not only of PGA but of 

the whole set of Glu-responsive genes is subject to CCR. Most of these genes were also 

repressed by fumarate. Possible functions of the proteins specifically upregulated in 

response to glutamate were derived from sequence comparisons with the respective genes 

in the genomes of P. aeruginosa and other related species. In the following the 

assignments made are discussed in more detail.  

Transcription termination factor Rho (Pp1) 

Spot Pp1 was identified as the Rho protein which has functions in the termination of 

transcription. E. coli has two known modes for termination of RNA transcription. One is 

intrinsic to the function of RNA polymerase, which can spontaneously terminate 

transcription. The other mode is dependent upon the action of Rho. The Rho protein is, for 

instance, known to participate in the regulation of tryptophanase expression in E. coli. 
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Here, tryptophan enhances the transcription of tryptophanase via Rho-mediated 

antitermination (Konan and Yanofsky, 2000). It is still unknown whether comparable 

mechanisms also operate in the regulation of glutamine and glutamate metabolism in P. 

putida.  

Periplasmic glutaminase/asparaginase (Pp3/4) 

Protein spots Pp3/4 were identified as PGA. Although, Pp4 has about the same mass as 

Pp3, it has a slightly lower isoelectric point. Still the origin of minor spot Pp4 (see Fig 4.7) 

was not investigated in detail, but it may correspond to an isoform of PGA in which one or 

more asparagine or glutamine residues have been converted to the respective 

dicarboxylates. However, we cannot exclude the existance of a phosphorylated or 

otherwise covalently modified form of the enzyme. At present it is a matter of speculation 

whether this second form of PGA is an artifact or has a functional role in cellular 

processes.  

ABC transporter ATP-binding protein (Pp5) 

Pp5 was assigned to the ATP-binding subunit of an ABC transporter. Pp5 showed a strong 

similarity to sequences of ATP binding proteins of many different bacterial ABC 

transporters specific for amino acid uptake, among them the glnQ gene product from 

Helicobacter pylori and the ATP binding protein of a histidine transporter from B. subtilis. 

In P. putida KT2440 the closest match is PP1068 which is annotated as 'amino acid ABC 

transporter, ATP-binding protein'. 

  PGA has equal specificity towards Asn and Gln and thus can generate both 

dicarboxylates (Glu and Asp) for uptake by transport systems in the inner membrane. The 

ATP-binding protein Pp5 could belong to such a transport system of the ABC type which 

mediates the uptake of the acidic amino acids and/or their amides. As already discussed 

above, this assumption is supported by the genetic organization of certain Glu-related 

genes in P. putida KT2440, P. aeruginosa PAO1, and P. fluorescens (Fig. 4. 22).  

Aspartate ammonia lyase (Pp6) 

Pp6 was identified as aspartate ammonia lyase (aspartase). In many microorganisms  

L-asparagine is utilized through the consecutive action of two enzymes (Sun and Setlow, 

1991). The product of the PGA catalysed reaction, L-aspartate is converted to fumarate 

and ammonium by aspartate ammonia lyase. Under aerobic conditions this reaction feeds 

the tricarboxylic acid cycle with the carbon skeletons of Asn and Asp. In E. coli and other  
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enterobacteria, the enzyme also assists in anaeorobic fumarate respiration by providing 

fumarate from aspartate (see above).  

Outer membrane porin D (Pp8) 

Pp8 showed strong similarity to the product of the oprD gene of P. aeruginosa which 

encodes a porin involved in the uptake of amino acids and/or peptide (Trias and Nikaido, 

1990). The product of the corresponding P. putida gene (PP1206) was also annotated as a 

type D porin. Ochs et al. (1999) further showed that expression of OprD in P. aeruginosa 

is strongly enhanced by amino acids (including Glu, Arginine and Alanine) and repressed 

by succinate. The arginine-mediated induction of OprD was mediated by the regulatory 

protein ArgR, whereas the glutamate-induced expression of OprD was independent of 

ArgR, indicating the presence of more than a single activation mechanism. These findings 

suggest that the oprD gene product facilitates the passage of amino acids through the outer 

membrane.  

Carboxyphosphonoenol pyruvatephosphonomutase (Pp9) 

Pp9 yielded peptides with similarities to the sequence of a putative carboxyphosphono-

enolpyruvate phosphonomutase. Thus, unlike the proteins discussed above, Pp9 has no 

apparent relation to amino acid metabolism. The only known function of this enzyme is to 

catalyze a step in the biosynthesis of the antibiotic bialaphos in Streptomyces 

hygroscopicus (Lee et al., 1995). However, the deduced amino acid sequence of Pp9 is 

also similar to those of more common phosphopyruvate hydratases from intermediary 

metabolism (e. g. enolase, EC 4.2.1.11, Lee et al., 1995). Thus the annotation of  PP1389 

as a PEP phosphonomutase may be erroneous. Clearly, further experiments are required to 

characterize the role of Pp9 in P. putida KT2440. 

 Four protein spots were identified that were preferentially expressed during growth on 

NH4
+/Glc. Thus it appears that the corresponding proteins are not required during growth 

on glutamate. The proteins upregulated during growth on glucose/NH4
+ (Pp10-Pp13) can 

all be related to the uptake and degradation of glucose (Pp11 and Pp12) or diamines (Pp10 

and Pp13), respectively. 
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2,4-Diaminobutyrate 2-oxoglutarate transaminase (Pp10) 

Pp10 was identified as 2,4-diaminobutyrate-2-oxoglutarate transaminase. A transaminase 

of this type (type III) was shown to catalyze a step in the biosynthesis of 1,3-

diaminopropane by Acinetobacter baumannii (Ikai and Yamamoto, 1997). This enzyme  

 

is known to catalyse the transfer of the side-chain amino group of 2,4-diaminobutyrate to 

2-oxoglutarate to yield aspartic-4-semialdehyde and glutamate. However, other functions 

of a type III transaminase appear also to be possible.   

Fumarase (Pp11)  

Pp11 was identified as fumarase C . This is a 'housekeeping' enzyme that converts 

fumarate to malate (or malate to fumarate) in the tricarboxylic acid cycle and in this way 

contributes to an effient degradation of glucose.   

Sugar ABC transporter, sugar binding protein (Pp12) 

The increased synthesis of a sugar uptake system during growth on glucose is not 

surprising. Pp12 corresponds to a periplasmic sugar-binding protein associated with an 

ABC transporter. The closest homolog of Pp12 in P. aeruginosa (PA3190) was shown to 

be involved in glucose uptake (Sage et al., 1996).  

Putrescine ABC transporter, putrescine binding protein (Pp13) 

Pp13 was identified as the ATP-binding subunit of an ABC transporter responsible for the 

uptake of putrescine (PP5181). Like Pp10, this protein seems to be involved in the 

utilization of diamines. At present it is difficult to explain, why putrescine uptake is up-

regulated during growth on NH4
+/glucose. However, there are indications that diamines 

play a role in the interactions between root bacteria and their host plants. Putrescine, a 

normal component of root exudates, was shown to inhibit growth of P. fluorescens 

WCS365 and its ability to colonize tomato roots (Kuiper et al., 2001). Sauer and Camper 

(2001), studying changes in the gene expression during attachment of P. putida to 

surfaces, found that 15 proteins that were up-regulated following bacterial adhesion and 30 

proteins were down-regulated. The proteins down-regulated after attachment include the 

potF gene product (Pp13) as well as PGA (Pp3/4) and other proteins involved in amino 

acid uptake and metabolism. Although these findings are difficult to interpret at present,  
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they support the notion that profound changes in the metabolism of amino acids and 

polyamines accompany the change from free-living to sessile growth in pseudomonads. 

  A model summarizing the possible involvement of the various identified Glu-responsive 

genes in uptake and utilization of acidic amino acids and their amides is shown in Fig 5.3. 

Most of the assigned functions are speculative at this time. Entry of Gln, Asn, Glu and Asp  

into the cell (top) is facilitated by a porin of the outer membrane (oprD, Pp8). In the 

periplasmic space glutaminase/asparaginase (PGA, Pp3/4) hydrolyzes Gln and Asn to 

yield additional Glu and Asp. These amino acids are bound by one or more periplasmic 

binding proteins associated with ABC transporters. The ATP-binding subunit of one ABC 

transporters was identified in the present work as Pp5. Klöppner (1999) showed that in P. 

fluorescens a corresponding amino acid binding protein is induced by acidic amino acids 

and their amides.  After uptake of Glu and Asp, the latter can be converted to fumarate by 

aspartase (Pp6) and in this way channeled into the TCA cycle. One of the TCA cycle 

enzymes (fumarase, Pp11) is also differentially expressed in the absence and presence of 

amino acids. Finally, DABA transaminase (Pp10) might have a role in linking 

diaminobutyrate (DABA) with Glu and aspartic-β-semialdehyde which can be synthesized 

from Asp.  

  No specific role in the context of amino acid metabolism can yet be assigned to the 

transcription termination factor Rho (Pp1) and to the putative carboxyphosphonoenol 

pyruvatephosphonomutase (Pp9). Of course, for most of the Glu-responsive proteins 

identified here, detailed physiological studies with disruption mutants have to be 

performed to confirm their putative roles in the metabolism of acidic amino acids. To date, 

this has only be done for PGA. 

5.5  Dependency of Glu-responsive genes on σ54 

Our finding that most of the Glu-responsive gene products identified by 2D-PAGE are not 

expressed in a rpoN- mutant of P. putida KT2440 (see Fig. 4.9) gives additional support to 

our assumption that the respective genes are regulated in a coordinate fashion.  By 

contrast, expression of the proteins up-regulated during growth on glucose/NH4
+ (Pp10-

Pp13) are not dependent on a functional σ54.  
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Bacterial sigma (σ) factors are RNA polymerase subunits required for the initiation of 

transcription, i. e. for the formation of an active RNA polymerase holoenzyme (α2ββ'σ). A 

different choice of sigma factors allow the cells to respond to a variety of environmental 

stimuli (see introduction). The core polymerase (E) associated with the σ70 (Eσ70) 

translates housekeeping genes like those encoding enzymes of intermediary metabolism. 

The alternate factors σS, σ32 and σE are involved in various responses to stress like 

depletion of nutrients, extreme temperaturs or pH values or oxidarive stress. 
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e 5.3: Pathways for uptake and utilization of acidic amino acids and their amides.  
xt. DABA - diaminobutyric acid transaminase. 
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The alternate factor σ54 is the only sigma factor that is not homolgous to σ70. Orginally it 

was thought to control only nitrogen assimilation and therefore the gene encoding σ54 was 

called rpoN (Kustu et al., 1989). In most bacteria, the downstream open reading frames in 

the rpoN region are also highly conserved. Their products probably act as co-inducers. 

From the analysis of bacterial gernomes, especially that of E. coli, it became clear that not 

only the Ntr response but many other genes also depend on σ54 for expression. These 

additional genes encode the uptake and metabolism of NH3, Gln and Arg, the degradation 

of propionate and acetoacetate, several hydrogenases, flagellar movement and zinc 

tolerance (Reitzer and Schneider, 2001). Transcription from all known σ54-dependent 

promoters is absolutely dependent on the presence of additional proteins with ATPase 

activity that stimulate transcription (Collado-Vides et al., 1991, Buck et al., 2000). The 

function of these proteins is to facilitate conversion of the closed promoter complex to an 

open one with consumption of ATP. Usually the enhancer proteins are so-called response 

regulators i. e. proteins that transmit environmental signals from a membrane-bound 

sensor kinase to the transcription complex (Chang and Stewart, 1998) are involved in 

these processes. A well-known example is the pair NtrB-NtrC (NRII/NRI) which mediates 

the Ntr response (see Introduction). In E. coli another sensor/ regulator system, 

AtoC/AtoS, activates degradation of acetoacetate, while ZrA/ZrS control the expression of 

proteins involved in zinc tolerance. In P. putida, σ54 is also required for the expression of 

genes responsible for the degradation of toluene and xylenes (Shingler, 2003). In P. 

aeruginosa, the products of rpoN and the downstream ORF2 act as a coinducers of genes 

involved in the assimilation of Gln (Jin et al., 1994). In P. fluorescens, the expression of 

ansB was also shown to dependent on σ54. In addition the putative σ54 binding site was 

identified, which is located at positions -95/-105 from the translation start site (Hüser et al. 

1999). The upstream region of the P. putida KT2440 ansB gene also contains a σ54 

recognition site at a suitable distance from the translation start site. The dependence of 

KT2440 PGA expression on σ54 is further supported by the observation that PGA was 

downregulated in the P. putida KT2440 rpoN negative mutant (see Fig. 4.9).  

  A set of individual genes and/or operons the expression of which is controlled by one and 

the same response regulator is called a regulon. In summary, our present data indicate that 

the proteins upregulated by Glu (and other proteins not yet identified) may all be the 

products of a regulon responsible for their uptake and metabolism. In order to substantiate 

this assumption it has to be demonstrated that a single response regulator binds to and  
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enhances transcription of these genes. This question will be adressed in future 

experiments. 

5.6  Glutamate synthase as a mediator of the Ntr response   

Transposon mutagenesis is a very useful tool for the identification of bacterial genes that 

regulate cellular processes. Gene knockout or targeted gene disruption techniques provide 

important informations about the biological functions of unknown genes. As targeted gene 

replacements by homologous recombination are rare events, they require highly selective 

screening procedures for detection. Once transconjugants of interest have been isolated, 

the identification of sequences flanking the transposon is required for characterization of 

the gene product affected by the insertion. The most popular transposon for use with non-

E. coli species is Tn5 for several reasons: 

1) Tn5 transposes into many different Gram-negative bacteria with high frequency 

2)  it generally inserts with little target sequence specificity, and 

3)  it exhibits low probability of genome rearrangements upon transposition and a 

                high stability once integrated in a genome.  

In this work, a self cloning Tn5 derivative was used to screen for genes involved in the 

regulation of PGA induction. Surprisingly, we found that in most transconjugants the 

transposon had integrated in to the gltB gene coding for large subunit of glutamate 

synthase (GOGAT). Only three of these transconjugants (Tn-SM2, Tn-SM15, and Tn-

SM30) were characterized in detail. Growth studies on different carbon and nitrogen 

sources showed that growth was severely impaired in media containing amino acids as 

sole source of carbon and nitrogen, and also on amino acids in combination with NH4
+.  

  A search of the literature showed that the importance of GOGAT in the regulation of 

nitrogen metabolism in Gram-negative bacteria has been known for a long time. The first 

observations were made 30 years ago with gltB- mutants of Klebsiella (Nagati et al., 1971; 

Brenchley et al., 1973). Later on it was found that GOGAT deficiency in E. coli (Pahel et 

al., 1978; Magasanik, 1996) Bradyrhozobium japonicum (O'Gara et al., 1984) and  

Rhizobium meliloti (Lewis et al., 1990) also caused pleiotropic nitrogen assimilation 

defects, leading to the so called Asm- (nonassimilatory) phenotype which is characterized 

by inability to grow on poor nitrogen sources such as amino acids. These and other  
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findings showed that function of the nitrogen regulatory system (Ntr) of Gram-negative 

bacteria crucially depends on the activity of GOGAT. The reasons for this are still not 

known with certainty. One possible explanation is that GOGAT-deficient mutants are 

unable to deplete the internal glutamine pool and thus cannot derepress the Ntr system 

which is mainly controlled by the ratio [Gln]/[2-oxoglutarate]. This hypothesis, however, 

creates a paradox (Goss et al., 2001), i.e. that in gltB mutants Gln levels appear to be too 

high for derepression of the Ntr system but too low to support growth. An alternative 

model, which was also proposed by Bender and coworkers, suggests that GOGAT-

deficient mutants of E. coli or Klebsiella aerogenes do not suffer from excessive 

intracellular Gln levels but are rather starved for Glu (Goss et al., 2001). Such a situation, 

on the other hand, could occur only if intracellular glutaminase actitivites are too low to 

generate sufficient amounts of Glu from Gln. Another hypothesis proposed for E. coli, 

suggest that inactivation of gltB creates polar effects on the neighbouring nitrogen 

metabolizing gltF gene which is involved in regulation of the Ntr response. In case of P. 

putida KT2440, the polar effect of gltB disruption on gltF, can be ruled out as KT2440 

genome search did not revealed any homolog of the gltF gene in the gltB region. 

  In E. coli  the Ntr- phenotype resulting from gltB disruption was suppressed by mutations 

in NtrB, a component of Ntr system. These mutants were observed to synthesize glutamine 

synthetase constitutively even under nitrogen excess conditions. In some bacteria, 

GOGAT activity is influenced by the gltC gene product which aberrantly regulates the 

levels of  GOGAT activity. In B. subtilis, the GltC protein stimulates expression of gltA as 

well as the gltB operon (Bohannon and Sonenshein, 1989).  

  The phenotype resulting from gltB disruption in P. putida KT2440 is similar to that 

observed in E .coli. Of the amino acids checked, growth of the gltB mutant was impaired 

on Glu, Gln and Asp, while Asn supported growth at significant rates after 12 h (see Fig. 

4.17 and Table 4.6). Growth of the mutants on Asn is probably due to the combined action 

of an Asn-uptake system and the cytosolic Asn-specific asparaginase which has been 

shown to exist at least in P. fluorescens (Klöppner, 1999). GOGAT mutants of other 

bacteria were also reported to show poor or no growth at all on amino acids as sole 

nitrogen source (Kondorosi et al., 1977; Eberl et al., 2000).  
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While the GOGAT-negative transconjugants and the targeted disruption mutant were 

unable to utilize amino acids as the sole source of carbon and nitrogen, they grew at 

almost normal rates in media containing amino acids in combination with glucose. On the 

other hand amino acids supplemented with NH4
+ did not support growth (Table 4.6). This 

clearly indicates that these mutants had lost the ability to utilize amino acids as carbon 

source but can use amino acids as sources of nitrogen. Thus, it appears that in P. putida 

KT2440 GOGAT activity is not required for ammonia assimilation but rather for a 

prerequisite for reactions that channel the carbon skeleton of Glu and Asp into the 

tricarboxylic acid cycle or other catabolic pathways. In agreement with results of Eberl et 

al. (2000) we also found that GOGAT-negative mutants were severely impaired in their 

motility as well as their chemotactic response towards acidic amino acids (Table 4.7). 

Both motility and chemotaxis play an important role in the interactions of rhizobacteria 

with host plants ( O'Toole and Kolter, 1998; Pratt and Kolter, 1998). For many bacterial 

species amino acids act as strong chemoattractants. Gaworzewka and Carlile (1982) 

showed that Rhizobium and Bradyrhizobium spp. are attracted by amino acids and 

dicarboxylic acids present in the root exudates. In E. coli, chemotaxis involves a 

membrane-bound sensor that either binds to the amino acid directly or interacts with the 

binding protein loaded with the amino acid, while in Rhodobacter sphaeroides, 

chemotaxis is thought to require for both uptake and the metabolism of the amino acid 

(Jacobs et al., 1995). Similarly, P. aeruginosa like most other motile bacteria, exhibits a 

chemotactic response towards a wide range of chemical stimuli, including amino acids 

(Craven and Montie, 1985). The taxis toward amino acids is subject to control by nitrogen 

availability in a manner similar to the control of other enzymes of nitrogen metabolism. 

Biochemical evidence indicates that the chemotaxis of P. aeruginosa towards amino acids 

is mediated by methyl-accepting chemotaxis proteins.  

  As mentioned above, it has been proposed that the phenotype resulting from gltB 

inactivation is the result of starvation for Glu (Goss et al., 2001). In contrast to this 

proposal we show here that gltB-mutants of P. putida KT2440 are not at all starved for 

Glu, but rather progressively accumulate Glu as well as Gln, apparently without being able 

to metabolize it (Fig. 4.21). As GOGAT is inactive in the mutant, the accumulation of Glu 

is most probably due to the action of glutamate dehydrogenase which increasingly deplete 

the levels of intracellular 2-oxoglutarate (see scheme 1.1). As Gln is formed at the same  
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time, the ratio [Gln]/[2-oxoglutarate] will rise until the Ntr response is shut off. This, in 

turn, could trigger the loss of motility and chemotaxis and permanently suppress the 

synthesis of proteins necessary for Glu and Asp utilization. For E. coli, it was observed 

that the cells synthesize more Glu and accumulate K+ as a counter ion to restore the cell's 

turgor pressure under osmotic upshift conditions (Csonka and Hanson, 1991). Later, 

Csonka and coworkers (1994) showed that GOGAT-deficient mutants of Salmonella 

enterica serovar Typhimurium are sensitive to osmotic stress when grown under 

ammonia-limiting conditions. These authors proposed that the synthesis of glutamate is 

necessary for growth in hyperosmotic conditions. Still it is not clear whether increased 

synthesis of glutamate is required for the survival during prolonged periods of nitrogen 

starvation.  

At present, it is difficult to give a satisfactory explanation for these rather diverse findings.   

The intracellular levels of the acidic amino acids and their amides are affected by a large 

number of enzymes and transport systems (see Fig. 1.1 ). All of these activities must be 

thoroughly studied in wild type and the mutant cells to obtain a consistent picture of the 

metabolic changes resulting from gltB disruption. One factor that, in our opinion, was not 

sufficiently considered in previous discussions of the gltB- phenotype is the competition 

for substrates and coenzymes. The carbon skeletons of Glu and Asp can be channeled into 

the tricarboxylic acid cycle by oxidative deamination of Glu (cf. Fig. 1. 1, GDH) or by 

eliminating deamination of Asp (enzyme 6, aspartase). Aspartase is one of the enzymes 

which is induced by Glu in wild type P. putida and thus should be repressed in the gltB-

mutant. As GOGAT and GDH have substrates (2-oxoglutarate, Glu) and the coenzyme (i. 

e. NADP/ NADPH) in common, both enzymes will influence each other. When GOGAT 

is inactive, the concentrations of NADPH and 2-oxoglutarate will increase, and the GDH 

equilibrium is shifted towards formation of glutamate. This may be the reason why the 

gltB- mutant accumulates Glu even though GOGAT is missing. If aspartase is also 

inactive, more Glu will be formed via transamination of Asp (enzyme 7, aspartate 

transaminase). The fact that glutamine was formed in our gltB- disruption strain indicates 

that glutamine synthetase (GS, enzyme 3) is active in the mutant. This is supported by our 

finding that GOGAT-negative strains grow well on glucose and Glu, i. e. they must be 

able to synthesize Gln for de novo protein synthesis and other biochemical functions and 

thus should contain sufficient GS activity. Glucose is probably required because its  
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degradation provides the ATP necessary for the synthesis of Gln and Asn. In fact, Gln and 

Asn which can be converted to Glu and Asp without expense of ATP allowed much faster 

growth of the mutants.  If GS is active in the presence of high concentrations of glutamine, 

the Ntr system of P. putida KT2440 must significantly differ from the that of E. coli where 

GS would be repressed under these conditions. Clearly, more detailed comparative studies 

of the amino acids metabolism in gltB mutants and the wild type cells are necessary to 

elucidate the events that lead to the observed phenotype and to discriminate between 

causes and effects.  

 

5.7  aauR/aauS as a novel two-component system in P. putida KT2440 

In this work we have identified a novel two-component system (aauS-aauR) in P. putida 

KT2440 which is involved in the regulation of Gln and Glu utilization. This is the first 

such system known to regulate the metabolism of acidic amino acids and their amides. As 

described in section 4.17, our decision to investigate this particular system 

(PP1067/PP1066) was based on the fact that in P. aeruginosa PAO1 the closest homologs 

of PP1067/PP1066 are clustered with several genes that clearly have roles in the 

metabolism of glutamate. We therefore speculated that PP1067/PP1066 might have a 

similar role. Our present results suggest that this is indeed the case. Mutants with an 

inactive sensor kinase or a response regulator failed to grow efficiently on Glu and showed 

pleiotropic defects in Glu-induced protein induction. For this reason we designated the 

system aau (for acidic amino acids utilization). The letter S stands for ‘sensor kinase’ 

while R refers to ‘response regulator’.   

  The sequence analysis of aauS predicts an open reading frame of 1914 base pairs 

encoding a product with 636 amino acids and a molecular mass of 70,513 kDa, while 

aauR (1329 base pairs) encodes a protein of 443 amino acids and a calculated mass of 

48,710 kDa. Genes that encode a two-component system are usually linked in an operon. 

In P. putida KT2440 the aauR open reading frame (ORF) has a translation initiation codon 

that overlaps with the aauS termination codon, suggesting that expression of aauS and 

aauR is probably also translationally coupled. Annotated sequence alignments of aauS and 

aauR with several related genes are shown in Figs. 5.5 – 5.6. They indicate that aau 

belongs to the same family of the well-characterized dct system which is involved in the 

regulation of dicarboxylate uptake by Rhizobium leguminosarum (recently reviewed by  
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Janausch et al., 2002). A schematic overview of the domain structure of the DctB and the 

DctD is shown in Fig. 5.4. The sensor histidine kinase DctB (top) is composed of a sensor 

domain which is inserted in the inner membrane by two transmembrane helices (TM1 and 

TM2). In between, there is a periplasmic ligand binding domain. The cytoplasmic part of 

the molecule consists of a dimerization domain where autophosphorylation of the 

activated sensor kinase at a histidine residue (H) takes place and a C-terminal kinase 

domain which contains several conserved ATP binding motifs (G1, F and G2) and a so-

called N-Box the function of which is unknown. 

Fig. 5.5 shows that these highly conserved segments all can be found in the predicted 

sequence of AauS as well. Not unexpectedly, AauR, the response regulator component of 

the aau system shows a high degree of sequence homology with DctD, the respective 

regulator of the R. leguminosarum dct system (Fig. 5.6). Both proteins contain a N-

terminal receiver domain where the aspartate residue (D) is located which can become 

phosphorylated by phosphate transfer from the histidyl phosphate residue of DctB. This 

part of the molecule is followed by an extended σ54 interaction domain which binds to the 

σ54 component of the initial transcription complex (see introduction).  

H -CN-

-CN- D

TM1 TM2Periplasmic ligand binding domain H-Box N-Box G1 F G2

Sensor Histidine kinase

ATP binding Autophosphorylation

Phosphorylation DNA binding 

 54 interaction domain H-T-H motifReceiver domain σ

Response regulator

 

Figure 5. 4: Predicted domain structure of AauS and AauR, based on sequence similarity with 
DctB and DctD from R. leguminosarum 
 

At the C terminus there is a DNA-binding domain with a helix-turn-helix motif. In 

addition to the sequences of the aau and dct proteins the  alignments shown in Figs. 5.5 

and 5.6 contain further closely related protein sequences derived from the genomes of P. 

aeruginosa PAO1 (PA 1335, PA1336, PA5512) or P. putida KT2440 (PP0263, PP1401, 
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PP1402). None of these two-component systems has been functionally characterized so 

far.    

The experimental data described in this thesis strongly suggest that the aau system of  

P. putida KT2440 has an important regulatory functions in the utilization of glutamate and 

probably also of glutamine. Growth defects of both the aauS- and aauR- mutants on 

different C and N sources were observed. The growth kinetics of both mutants on amino 

acids (Asp, Glu, Asn, Gln) as sole carbon and nitrogen source showed that the range of 

amino acids that could be used by these two strains was identical, except that the aauS- 

mutant grew poorly on Asp (see Fig. 4.23 and table 4.8). Both mutants grew well on Asn. 

However, the expression of PGA was greatly impaired in both the aauS- and the aauR- 

mutants which indicates that a functional aau is required for the expression of the ansB 

gene. To confirm this in a more direct way it has to be shown that AauR binds to the ansB 

promoter. Experiments with this aim were initiated but could not yet be completed.   

  By 2D-PAGE analysis we further showed that in an aauR-negative strain more than 20 

proteins were not expressed during growth on Glu as sole source of carbon and nitrogen 

(see Fig. 4. 24). This indicates that the aau system not only affects ansB transcription but 

has a more general role in the regulation of amino acid metabolism. 

 In rhizobia, transport and catabolism of dicarboxylic acids play a very important role in 

symbiotic nitrogen fixation. In Rhizobium leguminosarum and Sinorhizobium meliloti, 

transport of  dicarboxylic acid such as succinate which is provided by the plant host is 

taken up by the C4-dicarboxylic transport (Dct) system (Engelke et al., 1987; Finan et al., 

1983; Glenn et al., 1980, Reid and Poole, 1998 ). This system consist of three genes: dctA, 

which encodes the transporter, and two genes, dctB and dctD, which code for the two-

component system already mentioned above. DctB/DctD activate transcription of dctA in 

response to the presence of dicarboxylates (Engelke et al., 1989; Jording et al., 1992; 

Ronson et al., 1987). In R. meliloti, Bradyrhizobium janpnicum, and Azorhizobium 

cauinodans, σ54 has been shown to control C4-dicarboxylate utilization (Kullik et al., 

1991; Ronson et al., 1987; Stigler et al., 1993). DctD has been shown to interact directly 

with both σ54 and the β-sununit of RNA polymerase (Huala et al., 1992; Lee and Hoover, 

1995; Lee et al., 1994). Mutations in any of the three dct genes result in the loss of the 

ability to transport and growth on C4-dicarboxylates.  Our observation that aauS and aauR-

negative mutants of P. putida KT2440 grow well when succinate is supplied as sole source 

of carbon indicates that the aau system in P. putida is different from the Dct system.  
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                                      **** ****TM1*** ****                                     
   RhlDctB  MHKSAMSVSQ KLWPSLPLQH RIRRMWWTYA ALAFLAVVAS LWTSGEIGQH RAEAALEEQA RMDVTLNAAL LRTVLEKYRA 
      AauS    MMKCDPSL LRPAKPAVNS RLIRQ-LLLP PLIILLMVGL GMAGYLISES NGIRTLSENG ERQLELHART VESEISKYTY 
    PA1336    MESPDPPC SVPPSLTVKP RLVRQ-LLLP IPLLLLMLGF GYGGYRISES AGIRALAENG ERQLELHART VESEISKYTY 
    PP1402                  MPFSF RALRLGLITL LIVLGTALSA GWAMHQ-AKR QAMEDDAKRA SQQLGLYANA LHTLIDRYRA 
    PA5512                  MSLS- RPLRLFLLLL PLLGGLLLSM DWAGRQ-ARQ QALRAEGEQV RKQLDLYAGS LQTLIERFRS 
 Consensus  ........s. ...ps$pls. R.lRl.llll .l..ll.ls. gwag.qia.. qa.ral.eqa r.#l.LyA.. l.tliek%ra 
 
             
   RhlDctB  LPFVLSQDTA LAAALVGN-D AGTFERLSQK LEILAAGTKA AVIYVIDKDG IAVSASNWRE PTSFVGNDYR FREYFQGAVE 
      AauS  LPSLLELEDS VSHLLTDP-D GASRQTVNEY LEGLNRRSRS RAIFVLDTNG RVQATSNWRD ADSFLGEDLS FRAYFQTAVR 
    PA1336  LPSLLELERS VSHLLTDP-T PYRRNQVNAY LEGLNRRAGS RAVYLLDTNG RVLATSNWSD PDSYLGEDLS FRAYWQDAMK 
    PP1402  LPAVLALDPE LIAALRGPVD EKVQNALNLK LERINGAANS STLELLDRTG LAIAASNWRL PSSYVGSNYG FRPYFKQTRS 
    PA5512  LPAVLALDPD LRAALAGPID GELQQRLNLK LESINLAARS STLELLDRTG LAVAASNWNL PTSYVGHNYG FRPYFRQTIA 
 Consensus  LPavLal#p. l.aaL.gp.D ...q#rlnlk LE.ln.aa.s stiyllDrtG lavaaSNWrl PtS%vG.#yg FRpYFqqav. 
 
 
   RhlDctB  RGQAEHFALG TVSKKPGLYI SQRI-SGSNG LLGVVVVKVE FDDVEADWNA SGTPSYVVDE RGIVLITSLP SWRFMTIGRI 
      AauS  GEPGRFYGIG STTGEAGYYL AHGL-EEHGK IIGVAVIKVR LDTLEERWQR ARLEAFVSDE NGIIILSSDP ARRLKSVRPL 
    PA1336  GKPGRFYGIG STRGEPGYYL AHGL-VHGGR IIGVAVVKVK MDALEERWEK ARLEAFVSDE NGIIILSSNP ALRLKAVRSL 
    PP1402  QGSGRFYAVG VTSGVPGYFL ASAVNDEHGR FLGAMVVKLE FPELEREWRQ GNDILLVSDA RGITFIANQD GWRYRELQPL 
    PA5512  QGSGRFYAVG VISGIPGYFL SHAVRAEDGS FLGAIVVKLE FPDLERQWNQ TPDLVLASDA KGIVFLANHA GWRYRELEPL 
 Consensus  qgsgrf%avG vtsg.PGy%l ahav..e.g. flGv.VVKve fddlEr.Wnq ..d..lvsDe rGIvflas.p gwRyrel.pl 
 
  
   RhlDctB  AEDRLTAIRE SLQFGAAPLQ PLPLDMVRNL GEGLDVVEIV MP-----GDA GKTRFLDVAT SVPATGWHLQ HLVALGPSVD 
      AauS  TPQIKERLAR SLQYYWWPLN ELQPLARETL ADGVEKLTFP ANTETAHGKP HEVAYLAQTR RLVDTPWHFT LLTPLQDLRR 
    PA1336  SADDKERLAR SMQYYWWALN EWQPLQREPL AAGVEKLSFP ADEQ--HPRG EAVTYLAQTR ALNDTPWNLT LLSPLEDLRR 
    PP1402  SGADRADLAE TRQYDKQPLV PLHHQVLTRF APYSTLSRVQ -------GPE GSTEYLWESL PLEGENWTL- HLLRKP-QVA 
    PA5512  DTVDRFELAE TRQYDRQPLT PLRHQTLRSY GEDRRLARVE -------SAD GEKDYLWQSL DLPNDGWTL- HLLRDTASIQ 
 Consensus  ..ddr..lae slQ%d.qPL. pL.hq.lr.l aeg..l.rv. ....  .g.. g.t.%Lwqsl .lp.tgWhL. hLlrl..sv. 
                           
            321    *** ***TM2**** *****                                                          400 
   RhlDctB  AGIREARMLA LLILLPLLAG AAFLLRRRHT IALRISSE-- QQAREELERR VVERTLDLSQ ARDRLQAEII GHKSTEQKLQ 
      AauS  ESMVQGILVG VAFALLAILG IAWNERRKVI ATRLAAREAL EEANSQLERR IAERTADLRA SNERLKGQIR ERRHAEQTLR 
    PA1336  DAVRNGMLAA IGFALLAFLL IAWNERRKVL ATRLAAREAL QRANGELEVK IAERTADLQA SNARLTAEIH ERQQAEDTLR 
    PP1402  ADGRNAALGA AAVWLSLVFA ALFVSQRLRL ARLR------ QRSRQELERQ VEERTREL-- ---------- ---------R 
    PA5512  DDVATARLAA AGTWLALVFL GLFLHQRWRI ARLR------ QRSREELERL VEQRTADL-- ---------- ---------R 
 Consensus  ad.r.ar$.A a..wL.lvfg aafl.rR.r. arlr...e.. QrareELERr !e#RTa#L.. ...rl.aei. .....eq.lr 
 
            401             **** *H-Box****                                                        480 
   RhlDctB  AVQQDLVQAN RLAILGQVAA GVAHEINQPV ATIRAYADNA RTFLDRGQTA PAGENLESIA ALTERIGSIT EELKTFARKG 
      AauS  HAQDELVQAG KLAAIGQMST SIAHELNQPL AALRTLSGNT VRFLERGALE TASTNLRTMN DLIDRMGRIT ASLRSFARRG 
    PA1336  KAQDELVQAG KLAVIGQMST SIAHELNQPL AALRTLSGNT VRFLQRGKLE TASTNLATIN ELVDRMGRIT ASLRAFARRS 
    PP1402  TAQEGLVQSA KLAALGQMSA AMAHEINQPL TTQRMQLETL RLLLDHGRHD EARQALEPLE QMLTRMAALT SHLKTFARNS 
    PA5512  TAQDGLVQAA KLAALGQMSA ALAHEINQPL TAQRMQLASL RLLLDAGRHD EARQALPRID QMLERMAALT GHLKTFARKS 
 Consensus  taQ#gLVQaa kLAalGQmsa a.AHEiNQPl aaqRmql.nl rlfL#rGrhd eArqnLe.i. q$leRmgaiT .hLktFARks 
 
            481                                                 *****N-Box********                  560 
   RhlDctB  R-GSAEPTGL KDVIEGAVML LRSRFAGRMD TLDIDLPPDE LQVMGNRIRL EQVLINLLQN ALEAVAPKAG EGRVEIRTST 
      AauS  D-DSGQAS-L AKAVEATLQV LANRISACHL QLHHQF--ED QQLAIDQTRL EQILVNLIGN ALDAMAAQP- QPELWLEGEL 
    PA1336  D-DAGQAS-L AKAVDAALLI LHGRLEQDPP TLHRHF--DD VRLGIDQTRL EQILVNLLAN ALDAMSGQA- DRQLWLEGRR 
    PP1402  PMGLRERLDL ATVVDQALHL LEARLRNEEV EVALYLA-RP AWVRGDAIRL EQVLINLLHN ALDAMLDKR- YKRLEIRIEP 
    PA5512  AGGLRERIEL GHVVEQAQQL LLPRIRAERV EIEQALL-WP AWVMGDAIRL EQVLVNLLRN ALDAVAGQE- RPWIRLALQR 
 Consensus  ..gsr#r..L a.v!#qAl.l L..R.r.e.v tl...l..dp aqvmg#aiRL EQ!L!NLL.N AL#Ama.qa. ..rlelr... 
 
                    ** G1-Box*        *F-Box **   *G2-Box*                                                    
   RhlDctB  DAGMVTVTVA DNGPGIPTEI RKGLFTPFNT SK--ESGLGL GLVISKDIVG DYGGRMDVAS -DSGGTRFIV QLRKA      
      AauS  QGDKYRLQVR DNGHGIDPEA RKHLFEPFFT TKPGEHGLGL GLTLSASLAA AAKGSLNVEH PVTGGTAFVL ALPLVSPPSE 
    PA1336  EEERYVLRVR DNGPGIPPAA RVHLFEPFFT TKPGEHGLGL GLTLSASLAT AAGGSLSVQH PESGGTAFEL SLSLV-PDSP 
    PP1402  DEDLWRLSVL DSGGGIAEAD LAKVFDPFFT TKPVGEGLGL GLAISYGIVH EAGGQLRAEN -LPGGARLSL TLPRDLEPVC 
    PA5512  LGGDWVLSVA DNGGGIPAEH LGSVFDPFFT TKPVGEGLGL GLAVSYGIVH ELGGRLQVAN -AEAGAVFSL ILPAAPDDTS 
 Consensus  d.g.w.lsVa DnGpGIp.e. rk.lFdPFfT tKpveeGLGL GLaiSygivh eaGGr$.van ..sgGtrfsl .Lp.a..... 
 
   RhlDctB          
      AauS  SAEHP  
    PA1336  TASPAR 
    PP1402         
    PA5512  VTT 
 Consensus  .....  
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                  ****************************Receiver domain ****************•******************** 
   RhlDctD        MDTL MPVALIDDDK DLRRATAQTL ELAGFSVSAY DGAKAALADL PADFAGPVVT DIRMPEIDGL QLFATLQGMD 
      AauR       MNQAP LTVLIVEDDP HVLLGCQQAL ALEDIACEGV GSAEQALERI GDDFAGIVVS DIRLPGIDGL ELLNRLKARD 
    PA1335                          MLGCQQAL ELEDIPCIGV GSAEEALQRV DRDFAGIVVS DIRLPGIDGL TLLERLKALD    
    PP0263  MTTETLIDSR AQVILVDDDP HLRQALSQTL DLAGLKVVAL AEAQGLAERI EADWPGVVVS DIRMPGIDGL QLLEQLHGRD 
    PP1401          ML NSVIVVDDEA SIRTAVEQWL SLSGFSVELF ARAEACLAHL PQHFPGVIIS DVRMPGMDGL QLLERLQAND 
 
 Consensus  .......d.l ..Vil!#D#. .lr.a..QtL .Lagfsv.a. a.Aeaalarl padfaGv!!s D!R$PgiDGL #LlerLqa.D 
 

     **************Receiver domain *******************                            *********   
  RhlDctD   VDLPVILMTG HGDIPMAVQA IQDGAYDFIA KPFAADRLVQ SVRRASEKRR LVLENRMLRK AAEDAQE-NL PLIGQTPVME 
     AauR   RSLPVVLITG HGDIDMAVGA MRNGAYDFME KPFSPERLVD VVRRALEQRG LSREVVALRR QLAEQSSLEG RIIGRSPAME 
   PA1335   PSLPVVLITG HGDISMAVQA MHAGAYDFME KPFSPERLVE VARRALEQRG LAREVSALRR QLAGRQDLAQ RIIGRSPAIQ    
   PP0263   SELPVLLITG HGDVPLAVQA MRAGAYDFLE KPFATDALLD SVRRALALRR LVLDNRSLRL ALSDRQQLAT RLVGHSPAML 
   PP1401   PDLPVILLTG HGDVPMAVEA MRSGAYDFLE KPFTPQDLLG SLRRALEKRQ LVLENRRLHE QADLKSRLEG TLLGMSQGLQ     
 
 Consensus  .dLPViLiTG HGD!p$AV#A mr.GAYDFle KPFap#rLv. svRRAlekRr Lvl#nr.Lr. ql.d.q.l.. rliG.spa$. 
 
            *************************** σ54 interaction domain *************************************     
   RhlDctD  NLRNILRHIA DTDVDVLVAG ETGSGKEVVA QILHQWSHRR KGNFVALNCG ALPETVIESE LFGHERGAFT GAQKRRTGRI 
      AauR  HLRELIANVA DTSANVLIEG ETGTGKELVA RCLHDFSRRQ SHPFVALNCG GLPENLFESE IFGHEANAFT GAGKRRIGKI 
    PA1335  ALRELIANVG DTSANVLILG ETGTGKELVA RCLHDYSRRH QHAFVALNCG GLPENLFDSE IFGHEAHAFT GANKRRIGKI 
    PP0263  RLREQIGALA GTRADVLILG ETGAGKEVVA RALHDLSSRS EGPFVAINAG ALAESVVESE LFGHEPGAFT GAQKRRIGKF 
    PP1401  QLRRQVLDLA GLPVNVLIRG ETGSGKERVA RCLHDFGPRA AKPFVALNCA AIPESLFEAE LFGHESGAFT GAQGKRIGKL     
 
 Consensus  .LReqi..lA dt.a#VL!.G ETGsGKEvVA rcLH#.s.R. .gpFVAlNcg alpEslfEsE lFGHE.gAFT GA#krRiGki 

                                  
            ************************** σ54 interaction domain **************************************  
   RhlDctD  EHASGGTLFL DEIESMPAAT QVKMLRVLEM REITPLGTNE VRPVNLRVVA AAKIDLGDPA VRGDFREDLY YRLNVVTISI 
      AauR  EHANGGTLFL DEVESMPINL QIKLLRVLQE RTLERLGSNQ SIPVDCRVIA ATKADLDALG QSGQFRSDLY YRLNVVTLEL 
    PA1335  EHANGGTLFL DEIESMPVNL QIKLLRVLQE HTLERLGSNQ SIPVDCRVIA ATKADLAAMG KSGQFRSDLY YRLNVVSLEL    
    PP0263  EFANGGTLFL DEIESMSLDV QVKLLRMLQE RVVERLGGNQ LIPLDIRIIA ATKEDLRQSA DQGRFRADLY YRLNVAPLRI 
    PP1401  EYANGGTVFL DEIESMPLAQ QAKLLRVIQE QKLERLGANQ SISVDLRIIA ATKPDLLEEA RAGRFREDLA YRLNVAELRL 
       
 
 Consensus  EhAnGGTlFL DEIESMpla. QvK$LRvl#e r.lerLG.N# sipv#lR!!A AtK.DL...a ..GrFReDLy YRLNVv.lrl 
 
            ************************** σ54 interaction domain *****************  
   RhlDctD  PPLRERRDDI PLLFSHFAAR AAERFRRDVP PLSPDVRRHL ASHTWPGNVR ELSHYAERVV LGVEGG--GA AAVPPQPTGA 
      aauR  PPLRERREDI LQLFEHFLQQ SALRFDRETP TLDSQTLSRL MAHDWPGNVR ELRNVAERYA LGLPAFKKGP SGGANQGL-- 
    PA1335  PALRDRREDI LLLFEHFLQQ SSLRFDRPAP ELDRATVASL MAHDWPGNVR ELRNVAERFA LGLPVFNKGG QAVQTGGP—     
    PP0263  PPLRERGDDI LVLFQHFADA ASQRHGLSPH ALQPAQRALL LRHDWPGNVR ELQNAAERFA LGLELALDGQ APSAAAPAAP 
    PP1401  APLRERREDI PLLFEHFARA AGEKLGRAAP PLSGAQLAQL LSHDWPGNVR ELANAAERHA LGL-----GS PNIEVAPAGQ     
 
 Consensus  pPLRERr#DI llLFeHFa.a a.erfgr..p pLspaqra.L lsHdWPGNVR EL.naAER.a LGle....G. a....apag. 
 
                                          ***** H-T-H ********** 
   RhlDctD  ----TLPERL ERYEAEIIRD TLSANDGDVR RTIEALGIPR KTFYDKLQRH GINRGGYSSR K        
      aauR  ----LFAEAV EAFERNLLTD ALQRTGGNLS QASQELGMAK TTLFDKVKKY GLA                 
    PA1335  ----RFAEAV EAFEKALLGD ALARHHGNLT QASQDLGMAK TTLFDKVKKY GLQ 
    PP0263  MLSGNLSEQV EQFERSLIAA ELAQPHGSMR SLAEALGIPR KTLHDKLRKH GLNFDGGSGG HDDQEDNR 
    PP1401  ----SLGEQM EAFEAQCLRA ALRQHGGEIK SVMEALQLPR RTLNEKMQRH GLVREDFIGQ A             
    
 Consensus  .....l.Eqv Ea%Ea.llrd aL.q..G..r s..#aLgipr kTl.#Klqkh Gnr.g.slg. ........ 

 

 

Figures 5.5 and 5.6: Sequence alignment of P. putida KT2440 AauS and AauR with related 
proteins (see text). RhlDctB/D – DctB/DctD from R. leguminosarum; PP – protein sequences 
predicted from the P. putida KT2440 genome; PA – protein sequences predicted from the P. aeru-
ginosa PAO1 genome    
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Nishijyo et al. (2001) have recently described a two-component system (CbrA-CbrB) in  

P. aeruginosa that is required for the utilization of several amino acids such as arginine, 

histidine and proline. Although there are several other two-component systems which, 

by homology, are thought to be involved in amino acid metabolism, none of these has 

been characterized in detail so far. 

5.8  Expression and purification of AauR 
In the present work, the response regulator AauR from P. putida KT2440 was 

overexpressed in E. coli as a fusion protein with GST and purified by a standard 

protocol involving affinity chromatography. The GST part of the fusion protein binds 

to immobilized glutathione and the impurities are removed by washing with binding 

buffer. The fusion protein is then eluted under mild, non-denaturing conditions which 

are conducive to preserve the protein in a native form. As the GST tag may interfere 

with protein folding, it can be removed in simple way by proteolytic cleavage. The 

preparation obtained in this way is already sufficiently pure for functional studies such 

as DNA binding experiments while additional purification steps will be necessary 

before a detailed structural characterization of the protein can be started. 
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7. Summary 
 

Pseudomonas putida KT2440 has the ability to utilize a wide range of amino acids as carbon 

and nitrogen sources. Rapid growth of this organism is supported by the acidic amino acids 

(Asp and Glu) and their amides (Asn and Gln) when supplied as sole source of carbon and 

nitrogen, or in combination with other carbon and nitrogen sources such as glucose and NH4
+. 

The acidic amino acids and their amides specifically induce the expression of certain 

nitrogen- metabolizing genes such as the ansB gene which encodes periplasmic 

glutaminase/asparaginase (PGA). Glucose, a preferred carbon source and intermediates of the 

citric acid cycle excerted a carbon catabolite repressing effect on the expression of PGA. In 

order to check the role of PGA in the assimilation of amino acids, a ansB knock-out mutant 

was constructed by homologous recombination. This ansB- strain failed to grow in glutamine 

(Gln) and also did not take up Gln from the medium. Thus PGA seems to have an important 

role in the utilization of Gln.  

 

A proteomics study based on two-dimensional gel electrophoresis revealed that during growth 

of P. putida KT2440 in Glu containing medium a set of at least 9 major proteins were up-

regulated in a coordinate fashion, whereas 4 other proteins were specifically induced during 

growth in NH4
+/Glucose. Most of the identified proteins have some role in the uptake and 

utilization of amino acids. Based up on their assigned functions and genetic organization of 

the respective genes, we propose that they form a regulon involved in the metabolism of 

amino acids. Most of the Glu-induced proteins were subject to carbon catabolite repression by 

fumarate, whereas the proteins up-regulated by NH4
+/Glucose were unaffected. In addition, 

most of the Glu-responsive proteins seem to depend on the alternate sigma factor σ54 for ex-

pression, as indicated by their greatly reduced expression profile in an otherwise isogenic 

rpoN- mutant. A semi-quantitative RT-PCR study showed that the effect of Glu observed on 

the proteomics level is taking place at the level of transcription. 

 

By transposon mutagenesis it was found that the expression of ansB depends on a functional 

gltB gene which encodes the major subunit of glutamate synthase (GOGAT). Transconjugants 

with inactivated gltB and a targeted gltB disruption mutants were unable to utilize amino acids 

as sole source of carbon and nitrogen, whereas amino acids in  
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combination with glucose supported rapid growth of all mutants. In contrast to wild-type P. 

putida KT2440, transconjugants with insertions in the gltB gene were nonmotile and failed to 

show any chemotactic response towards Asn, Asp, Gln or Glu. Thus, GOGAT activity also 

affects the expression of motility as well as the chemotactic genes. In contrast to the wild-type 

strain, the GOGAT-negative strains also failed to survive for longer times in nitrogen-

depleted medium. The gltB- strain accumulated large amounts of both glutamine and 

glutamate within the cells while the wild type did not. The central roles of GOGAT in 

nitrogen metabolism and the metabolic basis of the gltB- phenotype are discussed.  

  

Finally, a novel two-component system (aau) was identified which seems to be involved in 

the utilization of acidic amino acids. Disruption mutants defective in the response regulator 

(AauR) and the sensor kinase component (AauS), respectively, were constructed and the 

resulting phenotype analyzed. Growth of both mutants was severely impaired in glutamate 

and glutamine-containing media. By contrast, both strains grew at normal rates when 

succinate was supplied in addition to amino acids. This finding indicate that the aau system is 

related to, but not identical with the dct two-component system which is involved in the 

utilization of succinate by rhizobia. 2D electrophoresis experiments showed that more than 20 

proteins were no longer induced by Glu in the AauR-negative mutant. This suggests that the 

aau system has a central role in the regulation of glutamate metabolism. The AauR protein 

was overexpressed in E. coli as a fusion protein with GST. After purification of this protein, 

AauR was released by proteolytic cleavage and is now available for functional studies. 
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7. Zusammenfassung 
Pseudomonas putida KT2440 ist in der Lage, Aminosäuren als einzige Kohlenstoff-und 

Stickstoffquelle zu nutzen. Die sauren Aminosäuren (Asp, Glu) und ihre Amide (Asn, Gln) 

allein oder im Kombination mit weiteren C- und N-Quellen führen zu raschem Wachstum von 

P. putida KT2440. Diese Aminosäuren induzieren auch die Expression verschiedener Gene 

aus dem Stickstoff-Stoffwechsel u. a. das ansB-Gen, das für eine periplasmatisch lokalisierte  

Glutaminase/Asparaginase (PGA) kodiert. Glucose, eine gute C-Quelle, und Intermediate des 

Citrat-Zyklus reprimieren die ansB-Expression im Sinne einer Katabolit-Repression. Um die 

Rolle der PGA bei der Aminosäure-Assimilation zu untersuchen, wurde eine knock-out 

Mutante konstruiert und durch homologe Rekombination in das KT2440-Genom eingeführt. 

Diese ansB- Mutante war nicht mehr in der Lage, auf Glutamin (Gln) als einziger C- und N-

Quelle zu wachsen oder Gln aus dem Medium aufzunehmen. Dies zeigt, dass die PGA in der 

Verwertung von Gln eine zentrale Rolle spielt. 

 

Ein Proteomics-Ansatz  auf der Basis der 2D-Gelelektrophorese zeigte, dass beim Wachstum 

von P. putida KT2440 auf Glutamat (Glu) mindestens 9 Proteine in koordinierter Weise 

verstärkt exprimiert wurden, während einige andere Proteine beim Wachstum auf NH4
+-

Glucose induziert wurden.  Die meisten der durch Glu induzierten Gene scheinen an der 

Aufnahme und am Stoffwechsel von Aminosäuren beteiligt zu sein und bilden 

möglicherweise ein Regulon, d. h. einen durch ein und dasselbe Regulatorprotein induzierten 

Satz funktionell verwandter Gene. Die Mehrzahl der durch Glu induzierten Gene zeigte auch 

Katabolit-Repression durch Fumarat, während die auf  NH4
+-Glucose verstärkt exprimierten 

Gene nicht auf Fumarat ansprachen. Außerdem scheinen alle Glu-aktivierten Gene zur 

Expression den alternativen Sigma-Faktor σ54
 zu benötigen, da Glu in einer sonst isogenen 

σ54-negativen Mutante keine induzierenden Eigenschaften zeigte. Durch semiquantitative RT-

PCR wurde nachgewiesen, dass die im Proteom beobachteten Effekte von Glu auf 

Transkriptionsebene stattfinden. 

 

Durch Transposon-Mutagenese wurde weiterhin gezeigt, dass die Expression von ansB vom 

intakten Zustand des gltB-Gens abhängt, das für die große Untereinheit der Glutamat-

Synthase (GOGAT) kodiert. Einige Transposon-Mutanten mit Insertionen in gltB sowie eine 

gezielt hergestellte gltB-knockout-Mutante waren nicht mehr in der Lage,  
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Aminosäuren als einzige C- und N-Quelle zu nutzen, während ihr Wachstum normal war, 

wenn diese Aminosäuren zusammen mit Glucose angeboten wurden. Transkonjuganten mit 

Insertionen im gltB-Gen waren – im Gegensatz zum Wildtyp - außerdem unbeweglich und 

nicht mehr zur Chemotaxis gegenüber Asn, Asp, Glu und Gln befähigt. Dies zeigt, dass die 

Aktvität der Glutamat-Synthase indirekt auch Chemotaxis und Motilität von P. putida 

KT2440 kontrolliert. Die erwähnten Mutanten waren schließlich auch nicht mehr in der Lage, 

in Abwesenheit einer Stickstoffquelle längere Zeit zu überleben. Die intrazellulären Spiegel 

von Gln und Glu waren jedoch im Vergleich zum Wildtyp stark erhöht. Die Bedeutung dieser 

Befunde im Hinblick auf die Rolle der GOGAT im Stickstoffstoffwechsel wird diskutiert. 

 

In der vorliegenden Arbeit wurde schließlich ein zuvor nicht beschriebenes Zweikomponen-

tensstem (aau) identifiziert, das bei der Regulation des Stoffwechsels der sauren Aminosäuren 

eine zentrale Rolle zu spielen scheint. Die für die beiden Komponenenten des Systems 

kodierenden Gene (aauR und aauS) wurden durch homologe Rekombination inaktiviert. Die 

Transkonjuganten zeigten stark vermindertes Wachstum auf Glu und Gln, während die 

Verwertung von Asn und Asp weniger beeinträchtigt war. Auch das Wachstum auf Succinat 

als C-Quelle war normal. Dies zeigt, dass aau mit dem gut untersuchten dct-System, das die 

Aufnahme von Dicarbonsäuren in Rhizobien reguliert, zwar verwandt aber nicht identisch ist. 

Die Bedeutung des aau-Systems geht auch aus der Tatsache hervor, dass in einer aauR-

negativen Mutante im Vergleich zum Wildtyp mehr als 20 Proteine nicht mehr durch Glu in-

duzierbar waren. Das AauR-Protein, der Reponse-Regulator des Systems, wurde als Fusions-

protein mit GST in E. coli überexprimiert. Nach dessen Reinigung durch Affinitäts-

chromatographie wurde AauR proteolytisch in weitgehend homogener Form freigesetzt und 

steht damit für funktionelle Untersuchungen zur Verfügung. 
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8.  Appendix 
 
8.1 Abbreviations 
 
8.1.1 Amino acids 
 
 Ala (A)   Alanine 

Arg (R)   Arginine 

Asn (N)   Asparagine 

Asp (D)   Aspartate 

Cys (C)   Cysteine 

Gln (Q)   Glutamine 

Glu (E)   Glutamic acid 

Gly (G)   Glycine 

His (H)   Histidine 

Ile (I)    Isoleucine 

Leu (L)   Leucine 

Lys (K)   Lysine 

Met (M)   Methionine 

Phe (F)   Phenylalanine 

Pro (P)    Proline 

Ser (S)    Serine 

Thr (T)   Threonine 

Tyr (Y)   Tyrosine 

Val (V)   Valine 

 

8.1.2 Antibiotics 

Amp    Ampicillin 

Cb    Carbenicillin 

Cmp    Chloramphenicol 

Gm    Gentamycin 

Kan    Kanamycin 

Tet    Tetracycline 
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8.1.3  Enzymes 

AR    Adenylyl removing 

ATase    Adenylyltransferase 

CIP    Calf intestinal alkaline phosphatase 

GDH    Glutamate dehydrogenase 

GOGAT   Glutamate synthase 

GS    Glutamine synthetase 

HPK    Histidine protein kinase 

PGA    Periplasmic glutaminase/asparaginase 

UR    Uridylyl removing 

UT    Uridylyltransferase 

 

8.1.4 Microorganisms 

A. brasilense   Azospirillum brasilense 

B. subtilis   Bacillus subtilis 

E. chrysanthemi  Erwinia chrysanthemi 

E. coli    Escherichia coli 

K. pneumoniae  Klebsiella  pneumoniae 

P. aeruginosa (PA)  Pseudomonas aeruginosa 

P. putida (Pp)   Pseudomonas putida 

R. meliloti   Rhizobium meliloti 

S. aureus   Staphylococcus aureus 

S. meliloti   Sinorhizobium meliloti 

S. typhimurium  Salmonella typhimurium 

 

8.1.5  General 

α-KG    Alpha-ketoglutarate 

2-D    Two-dimensional 

A    Absorption 

Å    Ångstrom [10-8 cm] 

aau    Acidic amino acid utilization  

aauR     Gene encoding response regulator AauR 
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aauS    Gene encoding sensor kinase AauS 

ABC    ATP binding cassette 

ADP    Adenine diphosphate 

AMP    Adenine monophosphate 

Amt    Ammonium transport system 

ansB     Gene encoding periplasmic glutaminase/asparaginase 

APS    Ammonium persulfate 

ATP    Adenine triphosphate 

bp    Base pair 

cAMP    Cyclic adenine monophosphate 

CCR    Carbon catabolite repression 

cDNA    Complementary DNA 

CIP    Calf intestinal phosphatase 

crc    Carbon catabolite regulatory protein 

Da    Dalton 

DABA    Diaminobutyric acid transaminase 

dct    Dicarboxylic transport system 

DNA    Deoxynucleic Acid 

DTT    Dithiothreitol 

EDTA     Ethylenediaminetetracetic acid 

fnr    Fumarate nitrate reductase 

Fum    Fumarate 

g    Relative centrifugal force 

gltB     Gene encoding major subunit of glutamate synthase 

GSP    Gene specific primer 

GST    Glutathione S-transferase 

HPLC    High Performance Liquid Chromatography 

IEF     Isoelectric focussing 

IEPcalc    Calculated isoelectric point 

IHF    Integration host factor 

IPGs     Immobilized pH gradient strips 

IPTG     Isopropyl β-D thiogalactoside 
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IR    Inverted repeats 

IS    Insertion sequences 

kb    Kilobase 

kDa    Kilodalton 

kV    Kilovolt 

L-AHA    L-aspartic acid β-hydroxamate 

LB medium   Luria-Bertani medium 

LPS    Lipopolysaccharide 

M    Molar 

Maldi-PSD   Matrix assisted laser desorption ionization-post source decay 

Maldi-TOF   Matrix assisted laser desorption ionization Time-of-flight 

MCP    Methyl accepting chemotactic protein 

mg    miligram 

min    Minute 

MOPS    3-[N-Morpholino]-propane sulphonic acid 

MS    Mass spectrometry 

N    Nitrogen source 

Na2CO3   Sodium carbonate 

NaIO4    Sodium periodide 

nt    Nucleotide 

Ntr    Nitrogen regulatory system 

OAA    Oxaloacetic acid 
oC    degree centigrade 

OD    Optical density 

ORF    Open reading frame 

OX    Oxoglutarate 

PCR    Polymerase chain reaction 

PGPR    Plant growth promoting rhizobacteria 

Pi    Inorganic phosphate 

pI    Isoelectric point 

PITC    Phenylisothiocynate 

PMSF     Phenylmethanesulfonyl fluoride 

RNA    Ribonucleic acid 
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RP    Reverse phase 

rpm    Revolutions per minute 

rpoN    gene encoding σ54 factor 

RR    Response regulator 

RT-PCR   Reverse transcriptase polymerase chain reaction 

σ    Sigma factor 

SDS    Sodium dodecyl sulfate 

SDS-PAGE    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Sucr    Sucrose 

TBE    Tris borate-EDTA buffer 

TCA    Tricarboxylic acid 

TE    Tris-EDTA buffer 

TEMED   N' N' N' N'-Tetramethylendiamine 

TFA    Trifluoroacetic acid 

Tn    Transposon 

Tris    Tris(hydroxymethyl)-aminomethane 

U    Activity unit (µmol.min-1) 

UTP    Uridine triphosphate 

UV    Ultra voilet 

V    Volt 

v/v    Volume by volume 

W    Watt 

w/v    Weight by volume 

WT    Wild type 
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8.2 Peptide sequences 
 
Amino acid sequences of proteins identified by MALDI-PSD-MS as compared to the 
respective gene sequences derived from the P. putida KT2440 genome. Internal peptide 
sequences identified by MS data are highlighted and underlined 
 
 
Transcription termination factor (Pp1) 
 
MNLTELKQKPITDLLEMAEQMGIENMARSRKQDVIFALLKKHAKSGEEISGDGVLEILQD 

GFGFLRSADASYLAGPDDIYVSPSQIRRFNLRTGDTIVGKIRPPKEGERYFALLKVDTIN 

FDRPENAKNKILFENLTPLFPNKRLKMEAGNGSTEDLTGRVIDLCAPIGKGQRGLIVAPP 

KAGKTIMLQNIAANITRNNPECHLIVLLIDERPEEVTEMQRTVRGEVVASTFDEPPTRHV 

QVAEMVIEKAKRLVEHKKDVVILLDSITRLARAYNTVIPSSGKVLTGGVDAHALEKPKRF 

FGAARNIEEGGSLTIIATALVETGSKMDEVIYEEFKGTGNMELPLDRRIAEKRVFPAINI 

NRSGTRREELLTADDELQRMWILRKLLHPMDEIAAIEFLVDKLKQTKTNDEFFLSMKRK 

 

ABC transporter ATP-binding protein (Pp5) 

MAGQAPAKKDLRMISIKNVNKWYGDFQVLTDCSTEVKKGEVVVVCGPSGSGKSTLIKCVN 

ALEPFQKGDIVVDGTSIADPKTNLPKLRSRVGMVFQHFELFPHLTITENLTIAQRKVLGR 

SEAEATKKGLALLDRVGLSAHAKKHPGQLSGGQQQRVAIARALAMDPIVMLFDEPTSALD 

PEMVSEVLDVMVQLAQEGMTMMCVTHEMGFARKVANRVIFMDKGSIIEDCTKEEFFGDQS 

ARDQRTQHLLSKILQH 

 

Aspartase ammonia lyase (Pp6) 
MIYIMSSAASFRVEKDLLGTLEVPADAYYGIQTLRAANNFHLSGVPLSHYPKLVVALAMV 

KQAAADANRELGHLSDAKHAAISAACARLIKGDFHDQFVVDMIQGGAGTSTNMNANEVIA 

NVALEAMGHQKGEYQYLHPNNDVNMAQSTNDAYPTAIRLGLLLGHDALLASLDSLIQAFA 

AKGKEFDHVLKMGRTQLQDAVPMTLGQEFRAFATTMTEDLQRLRSLAPELLTEINLGGTA 

IGTGINADPGYQALAVQRLATISGHPLVPAADLIEATSDMGAFVLFSGMLKRTAVKLSKI 

CNDLRLLSSGPRTGINEINLPARQPGSSIMPGKVNPVIPEAVNQVAFAIMGNDLALTVAA 

EGGQLQLNVMEPLIAYKIFDSIRLLQRAMDMLREHCIVGITANEQRCRELVEHSIGLVTA 

LNPYIGYENATRIARVALESGRGVLELVREEKLLDDAMLDDILRPENMIAPRLVPLKA 
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Outer membrane protein (Pp8) 

MRVMKWSMIALAVSAGTSQLAMASAQDESKGFIEDSKLSVKTRMLYFSRDFRNNEGGQSR 

REETGLGFVGTFESGFTQGTVGVGVDAIGMLGLKLDSGKGRAGTGLFPTGSDGRSQDDYS 

KGGGAVKFRISDTVLKVGDQFTALPVFATDDSRLLPEIAQGTLITSNEIEGLTLHAGHFT 

SLTAQEQTNRDSFGLKEANVVGGTYAFTDNLSTSLYYSKVEDYWRKYYANVNWALPISDN 

QGLVFDFNIYDTKSEGSAEYRAFDGDKLDNRAFSLSGAYNIGAHTFTLAYQKVTGDGDYG 

YGIDGGGTIFLANSVARSDFNAEDEKSWQARYDLNFAEYGIPGLTFMTRYVRGSDANVAG 

TSNGKEWERDVDIKYVLQEGPAKDLSFRVRQATYRSSDGVYYDSPSIDELRLIVEYPLSI 

L 

 

2,4-Diaminobutyrate 2-oxoglutarate  transaminase  (Pp10) 

MPQPLYEFTDSPLLQRQQQQESNARSYPRRIPLALRRARGIHVEDVEGRQFIDCLAGAGT 

LALGHNHPVVVEAIQRVLADELPLHTLDLTTPVKDRFVQDLFGILPEALRREAKVQFCGP 

TGTDAVEAALKLVRTATGRSTVLAFQGAYHGMSQGALNLMGSHGPKQPLGALLGNGVQFM 

PYPYDYRCPFGLGGEAGVKANLHYLENLLLDPESGVPLPAAVILEVVQGEGGVVPADIEW 

LKGVRRITEQAGVALIVDEIQSGFARTGRMFAFEHAGIVPDVVTLSKAIGGSLPLAVVVY 

RDWLDTWKPGAHAGTFRGNQMAMAAGSAVINYLVEHRLAEHAEAMGQRLRGHLQRLQRDY 

PQLGDIRGRGLMLGVELVDPQGQPDALGHPPANRDLAPKVQRECLKRGLILELGGRHGAV 

VRFLPPLIISAEQIDEVAQRFSAAVAAAVGSV 

 

Sugar ABC transporter, sugar-binding protein (Pp12) 

MNSTLRLAAAISFASLIPLGAQAADAKGSVEVVHWWTSGGEKAAVDVLKAQVEKDGFIWK 

DGAVAGGGGATAMTVLKSRAVAGNPPGVAQIKGPDIQDWAATGLLDADVLKDVAKEGKWD 

SLLDKKVADTVKYDGDYVAVPVNIHRINWLWINPEVFKKAGIDKAPTTLDEFYAAADKLK 

AAGFIPLAHGGQPWQDSTVFESVVLSVMGVDGYKKALVDLDSATLTGPQMVKALTELKKV 

ATYMDPDGKGQDWNLEAAKVINGKAGMQIMGDWAKSEWTLAKKTAGKDYQCVPFPGTDKS 

FLYNIDSLVVFKQNNAGTSAGQQDIARKVLGEDFQKVFSINKGSIPVRNDMLADMGKYGF 

DACAQTSAKDFLADAKTGGLQPSMAHNMATTLAVQGAFFDVVTNYINDPKADPADAAKKL 

AAAIKAAQ 
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