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1. Introduction 
1.1 Role of primary sensory neurons of the dorsal root ganglion  

The dorsal root ganglion (DRG) is embedded within the vertebral column along the 

dorsolateral side of the neural tube. The DRG contains primary sensory neurons and 

non-neuronal cells such as Schwann cells, satellite cells, macrophages, microglia-like 

cells and mast cells. DRG neurons are pseudounipolar. One process projects a long 

distance to peripheral tissues such as the skin, where it detects sensory stimuli. The 

other branch relays this information to the dorsal horn of spinal cord or to the brain 

stem (1, 2).  

Individual DRG neurons respond selectively to specific types of stimuli 

because of morphological and molecular specialization of their peripheral terminals. 

There is functional specialization among DRG neurons on the basis of what 

environmental stimulus they detect. Distinct classes of these neurons recognize 

painful stimuli (nociception), innocuous stimuli such as light touch 

(mechanoreception), and positional information (proprioception) (1).  

Nociceptive (pain) neurons detect noxious thermal, mechanical (high-

threshold) or chemical stimuli. Among the pain sensing neurons, there is further 

biochemical and functional diversity. Some DRG neurons are classified as peptidergic, 

releasing neuropeptides such as calcitonin gene-related peptide (CGRP) and substance 

P (SP) in response to noxious thermal stimuli and inflammation (1, 3, 4). All SP-

positive DRG neurons are known to contain CGRP and these neurons are considered 

to be a part of nociceptive population of sensory neurons (5, 6). Some neurons are 

classified as vanilloid receptor 1 (VR1, also referred to as TRPV1) expressing 

neurons, which is essential for the development of inflammatory thermal hyperalgesia 

(7-9). VR1, a member of the transient receptor potential (TRP) channel family, is an 

non-selective ion channel on sensory neurons that is activated by temperatures 

exceeding 43.8°C, and by capsaicin, the main pungent ingredient in hot chili peppers 

as well as by protons (7-9). VR1 is expressed predominantly by small-size to 

medium-size sensory neurons (8). 

One very important function of the primary sensory neurons is to provide the 

information about the occurrence or threat of injury. The perception of pain 

contributes to this function. Inflammation is the major cause of pain (10). During 

inflammation proinflammatory cytokines such as tumor necrosis factor alpha (TNFα) 

and interleukin-1 beta (IL-1β) are released by a variety of cells (e.g., macrophages) to 
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regulate the inflammatory responses (11). Studies in animals have demonstrated 

mechanical and thermal hyperalgesia after systemic or local injection of TNFα, IL-

1β or lipopolysaccharide (LPS) (12-15). Overexpression of proinflammatory 

cytokines can lead to systemic syndromes such as septic shock. Therefore, the 

responses to TNFα, IL-1β or LPS must be controlled. The question how these 

molecules signal to primary sensory neurons of DRG has not yet been resolved. 

1.2 TNFα in the dorsal root ganglion 

TNFα is a multipotent proinflammatory cytokine that induces a wide variety of 

responses including apoptosis in some cells and proliferation in others (16). The 

principal physiological function of TNFα is to stimulate the recruitment of 

neutrophils and monocytes to the site of infection and to activate these cells to 

eradicate microbes. TNFα is the principal mediator of the acute inflammatory 

response to Gram-negative bacteria and other infectious microbes and is responsible 

for many systemic responses of severe infections such as septic shock, which is 

characterized by vascular collapse, disseminated intravascular coagulation, and 

metabolic disturbances (17). The activated mononuclear phagocytes are the major 

cellular source of TNFα. In addition, T cells can also be a cellular source of TNFα 

during the immune response (18). In the nervous system, microglia and astrocytes are 

believed to be the primary source of TNFα (19-23). In the peripheral nervous system, 

TNFα has been shown to be produced in macrophages and Schwann cells (24, 25). 

Recent reports have described the presence of TNFα in primary sensory neurons and 

its axonal transport in the intact and injured rat sciatic nerve (26-29). TNFα 

immunoreactivity has been detected in a subpopulation of rat DRG neurons and was 

reported to be upregulated after chronic constriction injury of the sciatic nerve (28, 

29). However, whether TNFα is truly synthesized by primary sensory neurons has not 

yet been demonstrated. 

1.3 TNF receptor subtypes and their expression in primary 

sensory neurons of the dorsal root ganglion 

The ability of TNFα to influence cellular functions depends on the expression of TNF 

receptors and activation of specific intracellular signaling pathways. There are two 

distinct TNF receptors of 55 kD (type I TNF receptor-TNFR1, or p55) and 75 kD 

(type II TNF receptor-TNFR2, or p75). The majority of TNFα effects are transmitted 
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through TNFR1. However, recent studies of knockout mice indicate that TNFR2 

plays an important role in neurodegeneration (30).  

Analysis of mice lacking TNFR1 or TNFR2 indicates that TNFR2 is critical to 

proliferation of oligodendrocyte progenitors and remyelination (30). In retinal 

ischemia, TNFR1 augments neuronal death, whereas TNFR2 promotes 

neuroprotection (31). Complementary DNAs coding for human and mouse TNFR2 

have been reported (32-34). The gene structures of the human and mouse TNFR2 

gene have been determined (35, 36). However, except of one previous report 

describing three transcripts of the rat TNFR2 gene in microglia (37), the full length 

cDNA and the structure of the rat TNFR2 gene have not yet been fully characterized. 

TNFR1 and TNFR2 have been localized in rat DRG neurons by 

immunohistochemistry (27, 29, 38, 39), but proof of their neuronal biosynthesis by 

demonstrating their mRNAs is still missing. In DRG cultures containing both neurons 

and non-neuronal cells, Pollock and coworkers demonstrated positive 

immunofluorescence on neurons for both TNF receptors (38). However, a cellular 

expression analysis of TNFR1 and TNFR2 at the mRNA level has not been performed. 

One previous report has described TNFR1 and TNFR2 transcripts in neurons of 

mouse trigeminal ganglia (40), but the neuronal signals for TNFR2 are extremely low, 

close to background. Therefore, it is of critical importance to further investigate the 

cell-specific expression of TNF receptors in rat primary afferents at the mRNA level. 

1.4 TNFα and nociception 

Several studies have shown that TNFα is involved in the generation of inflammatory 

pain, neuropathic pain and hyperalgesia through its actions in the periphery and in the 

central nervous system (CNS) (14, 15, 41-53). Intracerebroventricular ( i.c.v.) 

injection of TNFα induces thermal hyperalgesia in rats (54). Intrathecal 

administration of TNFα not only produces hyperalgesia but also changes the spinal 

cord neuronal responses to nociceptive stimuli in the rat (50). Acutely administered 

TNFα to the nerve trunk elicits an acute mechanical hyperalgesia in the awake rat 

(45). Endoneural injection of TNFα has been also shown to induce axonal 

degeneration, demyelination and thermal hyperalgesia and to evoke ectopic activity in 

isolated nerve fibers when applied topically (44). Recombinant TNFα can excite 

nociceptors and induce heat-evoked release of CGRP from the peripheral nerve 

terminals in the rat skin model (55). In chronic constriction injury (CCI), an animal 

model of injury-induced painful mononeuropathy, inhibition of the synthesis, release, 
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or functional neutralization of TNFα results in reduced pain-associated behavior (46-

48). Thalidomide, a selective blocker of TNFα production can reduce thermal 

hyperalgesia and mechanical allodynia in animals with CCI (53). Neutralizing 

antibodies against TNFα can reduce pain-related behavior in CCI and partial sciatic 

nerve transection (PST) (47, 48). Administration of soluble TNFR1 attenuates 

mechanical allodynia in a rat model of neuropathic pain. TNFα-induced hyperalgesia 

seems to depend on TNFR1 (46, 56). Epineural injection of neutralizing antibodies 

against TNFR1 in mice subjected to CCI reduces thermal hyperalgesia and 

mechanical allodynia, while application of neutralizing antibodies against TNFR2 

does not (46). Antisense oligodeoxyribonucleotides against TNFR1 reduces 

hyperalgesia (56). However, whether and which TNF receptor is involved in 

nociceptive responses is not fully understood. Thus, it needs to be investigated which 

category of primary sensory neurons is responsible for the TNFα-induced nociception. 

1.5 IL-1β and IL-1R1 and their expression in the dorsal root 

ganglion 

IL-1 is a 17 kDa polypeptide produced by a large variety of cells including 

macrophages, fibroblasts, keratinocytes, synoviocytes, mast cells, glial cells, and 

neurons (57, 58). The activated mononuclear phagocytes are the major cellular source 

of IL-1. IL-1 production by mononuclear phagocytes is induced by bacterial products 

such as LPS and by other cytokines such as TNFα. Biologically active IL-1 consists 

of two distinct forms called IL-1α and IL-1β, respectively. The principal function of 

IL-1 is as a mediator of the host inflammatory response to infections and other 

inflammatory stimuli. IL-1 is a pleiotropic proinflammatory cytokine. In addition to 

its immune functions, IL-1 is involved in nociceptive behavior (19, 59) and seems to 

play a role in neural regeneration after axotomy in rat DRG (60). In cultured DRG 

cells, IL-1β has been shown to induce the release of SP (61, 62).  

The ability of IL-1 to influence cellular functions depends on the expression of 

the appropriate receptor. Two different membrane receptors for IL-1 have been 

characterized. The type 1 receptor (IL-1R1) is the major receptor for IL-1-mediated 

biologic responses. The type 2 receptor (IL-1R2) does not transmit any signal and its 

major function is to act as a decoy receptor that competitively inhibits IL-1 binding to 

the type I signaling receptor (57, 58, 63-67). IL-1R1 knockout mice no longer respond 

to intraperitoneal or intracerebroventricular injected IL-1 (68-71). In the same way, 
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IL-1R1 inhibition by a neutralizing antibody injected in the lateral ventricle of the 

brain abrogates the behavioral effects of intracerebroventricular applied IL-1β (72). In 

contrast, inhibition of IL-1R2 potentiates this effect (73). 

The constitutive expression of IL-1 receptors has been described on both glia 

and neurons in several brain regions (66, 72, 74-81). So far only one study by Copray 

and coworkers (82) reported the expression of IL-1β and IL-1R1 in rat DRG neurons. 

Based on in situ hybridization using non-radioactive labeled probes or 

immunocytochemistry these authors have suggested that both IL-1β mRNA and IL-

1R1 mRNA are expressed in DRG neurons (82). They further suggested that IL-1β 

acts on primary sensory neurons in an autocrine or paracrine manner (82). However, 

non-neuronal cells in the DRG including macrophages which represent the most 

likely source of IL-1β synthesis have not been shown to synthesize IL-1β. Therefore, 

it is necessary to further investigate neuronal and non-neuronal expression pattern of 

IL-1β and IL-1R1 in DRG with more sensitive methods including in situ 

hybridization with radioactive labeled probes and laser capture microdissection (LCM) 

in combination with RT-PCR. 

1.6 IL-1β and pain 

IL-1 has been shown to be involved in nociceptive behavior (19, 59). When 

administered centrally or peripherally, IL-1β has been found to induce hyperalgesia in 

diverse animal pain models (59). The nociceptive responses to IL-1β in rats have been 

reported after central administration by various routes. Intracerebroventricular (i.c.v.) 

injection of IL-1β in rats exerts biphasic effects on thermal and mechanical 

nociception; lower doses cause hyperalgesia but higher doses induce analgesia as 

assessed by the hot-plate test and paw-pressure test (19, 83-86). I.c.v. injection of low 

doses of IL-1β enhances the response of wide dynamic range (WDR) neurons in the 

trigeminal nucleus caudalis to noxious pinch (84). Furthermore, it has been 

demonstrated that IL-1β is hyperalgesic when microinjected into discrete regions of 

the hypothalamus and neighboring brain areas (87, 88). When delivered intrathecally, 

IL-1β enhances dorsal horn neuronal responses, including the acute responses to C-

fiber stimulation, wind-up and post-discharge and also causes the development of 

mechanical allodynia and hyperalgesia (50, 89, 90). 

Peripheral administration of IL-1β in rats does affect nociceptive behavior in 

mice and rats. Intraperitoneal (i.p.) injection of IL-1β has been shown to produce 



Introduction 
 

6 

hyperalgesia as assessed by the tail-flick and the hot-plate test (14, 91). Intra-plantar (i. 

pl.) injection of IL-1β has revealed its central role in the pathophysiology of 

inflammatory pain and hyperalgesia (92, 93). When administered subcutaneously, IL-

1β is able to produce a dose-dependent increase in the sensitivity of rat paws to 

mechanical stimulation (13, 92-94). Cutaneous hyperalgesia induced after a plantar 

injection of IL-1β to the hind-paw skin has been investigated by recording action 

potentials of the rat dorsal root in response to mechanical and thermal stimuli. It has 

been demonstrated that small diameter cutaneous nerves are activated (92). However, 

which category of primary sensory neurons is responsible for IL-1β-induced 

nociception is not known. In particular, it is not known how IL-1R1 is related to 

presumed nociceptive neurons expressing CGRP, SP or VR1. 

1.7 Effects of LPS on primary sensory neurons of the dorsal root 

ganglion 

Lipopolysaccharide (LPS) is a constant component of the outer cell membrane of 

gram-negative bacteria, which can activate monocytes/macrophages to produce a 

number of proinflammatory cytokines such as TNFα, IL-1β, and IL-6 (95). Over-

response to LPS can lead to systemic inflammatory syndrome or septic shock (95). 

Therefore, the responses to infection or LPS must be controlled. However, whether 

the primary sensory neurons can directly detect an infectious state by sensing LPS is 

not known. A recent report has revealed that circulating cytokines and endotoxin are 

not necessary for the activation of the sickness or corticosterone response produced by 

peripheral E. coli challenge (96). Subcutaneous injection of replicating E. coli 

produces a robust fever and corticosterone response at a time when there are no 

detectable increases in circulating cytokines (TNFα, IL-β and IL-6) or endotoxin (96). 

This suggests the existence of a neural pathway for the detection of bacterial infection 

signaling from the periphery to the central nervous system. LPS has been shown to 

affect DRG neuronal activities in vivo and in vitro (97-99). Infusion of bacterial 

lipopolysaccharide close to the sciatic nerve caused an increase of NADPH-d-positive 

neurons in the rat L4 dorsal root ganglia on the treated side, whereas sham operation 

had no effect (97). In cultured DRG neurons, LPS can evoke CGRP release and 

increase [Ca(2+)](i) (98, 99). 
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1.8 LPS-related receptors 

Recognition of LPS is a complex process. LPS is first bound to a serum protein LBP 

(LPS-binding protein) (100), which functions by transferring LPS monomers to CD14 

(101). CD14 is a high affinity LPS receptor that can either be secreted into the serum 

(soluble CD14, sCD14) or be expressed on the surface of macrophages (membrane 

CD14, mCD14). However, mCD14 does not have a cytoplasmic signaling domain 

(101, 102). Recent studies suggest that toll like receptor 4 (TLR4) functions as the 

signal-transducing receptor for LPS (103-106). The effects of LPS on DRG neurons 

could be directly mediated by neuronal LPS receptors. However, it is not known 

whether TLR4 and/or CD14 are expressed in DRG neurons under in vivo conditions. 

Therefore, it is of particular interest to investigate the possible expression pattern of 

TLR4 and CD14, the receptors related to LPS signaling, in DRG. 

1.9 LPS and inflammatory pain 

Primary sensory neurons respond to noxious stimuli and thus provide a signal to alert 

the organism of potential injury (10). Pain is experienced predominantly and most 

severely when the inflamed site is mechanically stimulated by being moved or 

touched. This tenderness or lowered threshold is referred to as hyperalgesia. 

Inflammatory pain is a critical defensive and protective reaction to injury or infection. 

The process of inflammation is conducting the removal of the injured tissue and the 

eradication of bacteria (11). LPS has been shown to induce hyperalgesia associated 

with inflammation (14, 50, 91, 107-110). Nociceptive responses induced by LPS in rat 

and mouse have been reported following various routes of administration. Intrathecal 

administration of LPS has been found to produce thermal hyperalgesia as measured 

by the plantar test (111), whereas both thermal hyperalgesia and tactile allodynia were 

observed in the rat hind paw following intracerebroventricular (i.c.v.) administration 

(10, 50). The intraplantar (i.pl.) injection of LPS produced central sensitization 

thereby reducing the threshold for nociceptive stimuli in the tail-flick and hot-plate 

tests (94). Intraperitoneal (i.p.) administration of LPS produced hyperalgesia in rat 

hind paws as measured by thermal threshold (110). However, which category of 

primary sensory neuron is responsible for LPS-induced inflammatory pain is not 

known. 

1.10 Aims 

The aims of this thesis were the following: 
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1. Characterization of the rat TNFR2 gene  

To investigate the gene expression of rat TNF receptors, the basic information of 

rat TNFR2 gene needed to be obtained. Therefore, the cDNA sequence and the 

gene structure of rat TNFR2 had to be characterized first followed by the analysis 

of the tissue-specific expression and the regulation of rat TNFR2 gene by LPS. 

2. Characterization of the constitutive and LPS-induced cell specific expression 

pattern of TNF receptors in DRG 

To examine the effects of systemic LPS on the expression of TNF receptors in rat 

DRG, RT-PCR and Northern blot analysis were performed on RNA extracts of 

control rats and of rats after LPS challenge. To prove the neuronal expression of 

TNF receptors in primary sensory neurons and to clarify which TNF receptor is 

expressed in DRG neurons, the cellular expression pattern of these receptors were 

analyzed by laser capture microdissection combined with RT-PCR and by in situ 

hybridization. The sensory cell line F11 was used as an in vitro model to 

investigate the neuronal expression of TNF receptors. To address the molecular 

basis of TNFα-induced nociceptive effects on primary sensory neurons, 

colocalization of anticipated neuronal TNF receptor in presumed nociceptive 

DRG neurons expressing CGRP, SP or VR1 was investigated using double 

labeling ISH. 

3. Investigation of the constitutive and LPS-induced expression pattern of 

TNFα in the DRG 

To clarify whether TNFα is synthesized in primary sensory neurons or non-

neuronal cells, the cellular expression pattern of TNFα was examined under 

unchallenged conditions and after LPS treatment using RT-PCR analysis on RNA 

extracts of microdissected cells and by in situ hybridization. 

4. Examination of the constitutive and LPS-induced expression pattern of IL-1β 

and IL-1R1 in DRG 

To solve the controversial question as to whether IL-1β is synthesized in DRG 

neurons and to further prove the neuronal expression of IL-1R1, the expression of 

IL-1β and IL-1R1 mRNAs was investigated under unchallenged conditions and 

after LPS treatment using RT-PCR analysis of DRG RNA extracts and of RNA 

extracts from microdissected DRG neurons. To determine the cellular distribution 
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of IL-1β and IL-1R1 in DRG, in situ hybridization was performed using 

radioactive labeled probes. In order to confirm the neuronal expression of IL-1R1, 

Northern blot analysis was conducted on poly(A)+ RNA isolated from F11 cells 

and from DRGs. To address the molecular basis of IL-1β-induced nociceptive 

effects on primary sensory neurons, colocalization studies of IL-1R1 in presumed 

nociceptive DRG neurons expressing CGRP, SP or VR1 were performed using 

double labeling ISH. 

5. Analysis of toll-like receptor 4 and CD14 expression in DRG and the 

influence of LPS 

To address the question whether primary sensory neurons can directly detect an 

infectious state by sensing LPS, the expression of the LPS related receptors, TLR4 

and CD14 was investigated under unchallenged conditions and after LPS 

treatment using RT-PCR and Northern blot analysis of DRG total RNAs or 

poly(A)+ RNA, and/or using RT-PCR analysis of the RNAs from the 

microdissected cells. To investigate the cellular distribution of TLR4 and CD14 in 

DRG, in situ hybridization was performed. In order to address the molecular basis 

of LPS-induced nociceptive effects on primary sensory neurons, colocalization 

studies of neuronal LPS receptors in presumed nociceptive DRG neurons 

expressing CGRP, SP or VR1 were carried out using double labeling ISH.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Equipment  

β-γ Detector LB122 Berthold Amersham, Braunschweig 

Cell culture incubatorHERAcell Heraeus, Hanau, Germany 

CM 3050 Kryostat Leica, Nussloch 

DNA-Engine PTC-200 MJ Research, Watertown, USA 

Gene Amp PCR System 9700 Perkin Elmer, Foster City, USA 

Gel Doc 1000 BioRad, Hercules, USA 

Mini-PROTEAN II electrophoresis cell BioRad, Hercules, USA 

HM 500 OM Kryostat  Microm, Walldorf 

Hybridization oven Bachofer, Reutlingen 

MCID M5 Image analysis system Imaging Research, St. Catharines, Canada 

Microscope AX 70 Olympus Optical, Hamburg, Germany 

PixCell II Laser-Capture-Microscope  Arcturus, San Diego, USA 

Power supply units BioRad, Hercules, USA 

Mini Trans-Blot Electrophoretic Transfer Cell BioRad, Hercules, USA 

Turboblotter Schleicher&Schuell, Dassel 

UV Stratalinker 2400 Stratagene, Amsterdam, Netherlands 

Wallac 1410, Liquid Scintillation Counter Pharmacia, Freiburg 

2.1.2 Chemicals and reagents 

Acetic anhydride Sigma, Deisenhofen 

Acrylamide/Bisacrylamide Roth, Karlsruhe 

Agar Fluka, Buchs 

Agarose Gibco-BRL, Neu Isenburg 

Ammonium persulfate Serva, Heidelberg 

Ampicillin Gibco-BRL, Karlsruhe 

Antibiotic-Antimycotic (100 x) Gibco-BRL, Karlsruhe 

5-bromo-4-chloro-3-indolyl-phosphate-4-

toluidine salt (BCIP) Roche, Mannheim 

Boric acid Merck, Darmstadt 

Bromphenol blue sodium salt Serva, Heidelberg 

Calcium Chloride Merck, Darmstadt 

Chloramphenicol Sigma, Munchen 

Chloroform Merck, Darmstadt 

Cresylviolet Fluka, Buchs 
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D19 developer Kodak, New Haven, USA 

Denhardt’s Reagent (50 x) Sigma, Deisenhofen 

DePex Serva, Heidelberg 

Deoxynucleoside triphosphate (dNTP) Roche, Mannheim 

Dextransulfate (Na-Salt) Sigma, Deisenhofen 

Digoxigenin RNA Labeling Mix Roche, Mannheim 

Dimethylformamide Fluka, Buchs 

Dimethyl sulfoxide (DMSO) Sigma, Deisenhofen 

Dithiothreitol (DTT) Roche, Mannheim 

Dulbecco’s Minimal Essential Medium 

(DMEM ) Gibco-BRL, Karlsruhe 

Diethyl pyrocarbonate (DEPC) Roche, Mannheim 

Ethanol Merck, Darmstadt 

Ethidium bromide Roth, Karlsruhe 

Ethylene diaminetetraacetic acid (EDTA) Merck, Darmstadt 

Fetal bovine serum (FBS) Gibco-BRL, Karlsruhe 

Formamide Merck, Darmstadt 

Formaldehyde, 37% Merck, Darmstadt 

Glacial acetic acid Merck, Darmstadt 

Glycerol Merck, Darmstadt 

Glycine Roth, Karlsruhe 

Guanidine hydrochloride Roth, Karlsruhe 

Ham’s F10 Nutient Mixture Sigma, Deisenhofen 

HAT Supplement (100 x) Gibco-BRL, Karlsruhe 

(2-Hydroxyethyl)-1-piperazineethanesulphonic 

acid (HEPES) Roth, Karlsruhe 

Isopropanol Sigma-Aldrich, Seelze 

isopentane (2-methyl butane) Fluka, Buchs 

Isopropylthio-β-D-galactoside (IPTG) Applichem, Darmstadt 

K5, Autoradiography emulsion Ilford, London, UK 

L-glutamine 200 mM (100 x) Gibco-BRL, Karlsruhe 

β-mercaptoethanol Sigma, Deisenhofen 

Methanol Sigma-Aldrich, Seelze 

Methyl blue Sigma, Deisenhofen 

Na2-EDTA Merck, Darmstadt 

NaOH Merck, Darmstadt 

NBT (4-Nitroblue- Tetrazol - chloride ) Roche, Mannheim 

NLS (normal lamb serum) Sigma, Deisenhofen 

Ethylphenyl-polyethylene glycol (NP-40) USB, Cleveland, Ohio 

Non-fat dried milk Roche, Mannheim 
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NorthernMax Pre/Hybridization Buffer Ambion, Austin, USA 

NTB2, Autoradiography emulsion Eastman Kodak, Rochester, NY 

NTP (nucleoside triphosphate) Roche, Mannheim 

Phenol/chloroform/isopropanol(25 : 24 : 1)  Roth, Karlsruhe 

Phenylmethylsulfonyl fluoride (PMSF) Sigma, Deisenhofen 

Pepstatin A Sigma, Deisenhofen 

Poly (dI-dC) Sigma-Aldrich, Seelze 

RNase inhibitor MBI Fermentas, St.Leon-Rot, Germany 

Roenteroll, developer for X-ray film Tetenal, Norderstedt 

Rotiphorese Gel 30 Roth, Karlsruhe 

SDS (Sodium dodecyl sulfate) Roth, Karlsruhe 

Sodium acetate Roth, Karlsruhe 

Sodium azide Merck, Darmstadt 

Sodium acetate Merck, Darmstadt 

Sodium chloride Merck, Darmstadt 

Sonicated salmon sperm DNA Sigma, Deisenhofen 

Superfix, Fixer for X-ray film Tetenal, Norderstedt 

TEMED, tetramethyl ethylene diamine Roth, Karlsruhe 

Tissue-Tek O.C.T compound Sakura, Zoetwerwounde, Netherlands 

Triethanolamine (TEA) Sigma, Deisenhofen 

3-(Triethoxysilyl) propylamine Merck, Darmstadt 

Tris (hydroxymethyl) aminomethane  Roth, Karlsruhe 

Triton X100 Sigma, Deisenhofen 

TRIzol  Gibco-BRL, Karlsruhe 

tRNA Roche, Mannheim 

Tryptone Peptone DIFCO, Detroid, USA 

Trypsin-EDTA solution (10x) Gibco-BRL, Karlsruhe 

Tween 20 Merck, Darmstadt 

X-gal peQLab, Erlangen 

Xylene Cyanol Sigma, Deisenhofen 

Xylol Roth, Karlsruhe 

Yeast extract DIFCO, Detroit, USA 

2.1.3 Buffers and solutions 

DEPC-treated H2O  

 10% (v/v) DEPC in ethanol was diluted in H2O to 0.1% (v/v). 

 incubated at 37°C overnight with shaking and autoclaved 

20 × SSC  

 3 M NaCl 
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 0.3 M sodium citrate 

 pH 7.0 

Denhardt´s reagent  

 1% (w/v) Ficoll 400 

 1% (w/v) polyvinylpyrrolidone 

 1% (w/v) bovine serum albumin 

10 x PBS (pH 6.75):  

 1.53 M NaCl 

 77 mM Na2HPO4 

 23 mM NaH2PO4 

TE (pH 8.0)  

 10 mM Tris (pH 8.0), 

 1 mM EDTA (pH 8.0) 

TAE (pH 8.0):  

 40 mM Tris-acetate 

 2 mM EDTA (pH 8.0) 

10 x HEPES Buffer  

 200 mM HEPES (Sigma) 

 10 mM Na2-EDTA 

 pH 7.8, adjust with NaOH 

 Filter and autoclave 

RNA Sample Buffer  

 1 ml 10 x HEPES 

 5 ml Formamide 

 1.6 ml 37% Formaldehyde 

RNA Loading Buffer  

 50% glycerol 

 0.5% Bromophenol blue 

 0.5% Xylene Cyanol 

RNA gel electrophoresis buffer 

 1 x HEPES buffer 

 6% Formaldehyde 

In situ hybridization buffer 

 600 mM NaCl 

 10 mM Tris HCl pH 7.5 

 1 mM EDTA-Na2 

 0.05% (w/v) tRNA (20 mg/ml) 

 1 x Denhardt´s 

 10% (w/v) Dextransulphate 

 100 µg/ml Sonicated salmon sperm DNA 
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 50% (v/v) Formamide 

 20 mM DTT 

Cresyl violet solution  

 0.5% cresylviolet 

 60 mM sodium acetate 

 340 mM acetic acid 

The solution is stirred in the dark for 7 days and filtered 

RNase buffer  

 10 mM Tris HCl pH 8.0 

 0.5 M NaCl 

 1 mM EDTA 

 40 µg/ml RNase A (10 mg/ml in ddH2O) 

 1 U/ml RNase T1 (500,000 U/ml stocking solution) 

4% PFA buffer (Formaldehyde/PBS solution) 

Solution 1  

 40 g (60 g) paraformaldehyde (PFA) 

 500 ml (750 ml) ddH2O (preheat water and cool to 50 - 55°C) 

 stirring in the hold and adding concentrated NaOH slowly until the solution cleared 

Solution 2  

 100ml (150 ml) 10 x PBS + 400 ml (600 ml) ddH2O (1 : 5 dilute) and cooled on ice 

 Mix both solutions together and cool to RT 

 Adjust pH with concentrated HCl to 7.3 - 7.4 

 Filter the solution and store at 4°C 

SDS sample buffer( 2 × )  

 1.0 ml glycerol 

 0.5 ml β-mercaptoethanol 

 3.0 ml 10% SDS 

 1.25 ml 1.0 M Tris-HCl pH 6.7 

 1-2 mg bromophenol blue 

10 x Tris-glycine SDS electrophoresis buffer 

 250 mM Tris 

 2.5 M Glycine 

 1% SDS 

 pH8.3 

Transfer buffer  

 25 mM Tris 

 192 mM glycine 

 20% (v/v) methanol 

 pH 8.3 

TBS (Tris buffered saline) 
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 10 mM Tris-HCl, pH 8.0 

 150 mM NaCl 

Digoxigenin detection buffer 

Buffer 1  

 100 mM  Tris-HCl, pH 7.5 

 150 mM   NaCl 

Buffer 2  

 100 mM Tris-HCl, pH 9.5 

 100 mM NaCl 

 50 mM   MgCl2

Block-buffer  

 In buffer 1 

 10% NLS (normal Lambserum) 

 0.01% Triton X-100 

Chromogensolution  

 10 ml buffer 2 

 45 µl NBT (4-Nitroblue-Tetrazol-chloride ) 

 35 µl BCIP (5-bromo-4-chloro-3- indolyl-phosphate ) 

2.1.4   Cell lines 

The rat dorsal root ganglion/mouse neuroblastoma hybridoma cell line F11 was 

provided by Dr. Mark C. Fishman (Massachusetts General Hospital - Harvard Medical 

School, Boston, Massachusetts, USA) (112).  

2.1.5   Animals 

Wistar rats (200 - 225g, male) were purchased from Charles River (Sulzfeld, Germany). 

2.1.6  Radioactive nucleotides 

[α-35S] UTP (1000 Ci/mmol) Amersham Biosciences, Freiburg 

[α-35S] CTP (1000 Ci/mmol) Amersham Biosciences, Freiburg 

[α-32P] UTP (3000 Ci/mmol) Amersham Biosciences, Freiburg 

2.1.7  Antibodies 

Goat anti rat TNFR1 Santa Cruz, California 

Anti-Dig-Fab fragment Roche, Mannheim 

Anti-goat IgG secondary antibody dianova, Hamburg  

2.1.8  Kits 

PolyATract mRNA Isolation System Promega, Mannheim 
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QIAGEN Plasmid  Maxi Kit QIAGEN, Hilden 

QIAprep Spin Miniprep Kit QIAGEN, Hilden 

QIAquick PCR Purifiation Kit QIAGEN, Hilden 

QIAquick Nucleotide Removal Kit QIAGEN, Hilden 

QIAquick Gel Extraction Kit QIAGEN, Hilden 

RNeasy Mini Kit QIAGEN, Hilden 

Advantage 2 PCR Kit BD Biosciences Clontech, USA

Smart RACE cDNA Amplification Kit BD Biosciences Clontech, USA

Avidin/Biotin Blocking Kit Vector, Burlingame, CA 

2.1.9 Enzymes 

Taq DNA polymerase Applied Biosystems, Foster City, USA 

AmpliTaq Gold DNA Polymerase Applied Biosystems, Foster City, USA 

PfuTurbo high fidelity DNA polymerase Stratagene,  La Jolla, USA 

RNA Polymerase (SP6, T7) Roche, Mannheim 

RNase A Roche, Mannheim 

RNase T1 Roche, Mannheim 

Superscript II Reverse Transcriptase Gibco-BRL, Karlsruhe  

T4-DNA-Ligase Promega, Mannheim 

DNase I Roche, Mannheim 

AatII Roche, Mannheim 

NdeI New England Biolab, Schwalbach/Taunus 

NcoI New England Biolab, Schwalbach/Taunus 

NotI New England Biolab, Schwalbach/Taunus 

PstI Roche, Mannheim 

SacI New England Biolab, Schwalbach/Taunus 

SacII  New England Biolab, Schwalbach/Taunus 

SpeI New England Biolab, Schwalbach/Taunus 

SphI New England Biolab, Schwalbach/Taunus 

2.1.10   Oligonucleotides 

The PCR primers were designed using the online program Primer 3 (http://www-

genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi) except the EST (expressed 

sequence tag) primers. All the oligonucleotides were synthesized by MWG-Biotech 

(Ebersberg, Germany). The optimal annealing temperature was calculated using the 

primer analysis software Oligo 6 (Molecular Biology Insights, West Cascade, USA). 
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Gene GenBank # Primer Name Sequence Annealing Tm Product size 

rCD14F84 ttgttgctgttgcctttgac 

rCD14R1160 gagcaaagccaaagttcctg 
60°C 1077 bp 

r/mCD14F273 taccttctaaagcgtgtggaca 
CD14 AF087943 

r/mCD14R996 tatccagcctgttgtaactgag 
57°C 724 bp 

rTNFR1F983 gggattcagctcctgtcaaa 

rTNFR1R1382 atgaactccttccagcgtgt 
56°C 400 bp 

RTNFR1F704 tcccctgtaaggagaaacagaa 
TNFR1 M63122 

RTNFR1R1902 gctttttctccacaatcacctc 
60°C 1199 bp 

RTNFR2F66 gttctctgacaccacatcatcc 
U55849 

rTNFR2R521 gtcaataggtgctgctgttcaa 
57°C 456 bp 

RTNFR2F28 aatggaaacgtgatatgcagtg 

RTNFR2R727 gcatcgtgaacgtctgtagc 
58°C 702 bp 

rTNFR2F1 ttcggagtggccagttcaaga 
AF142499 

rTNFR2R405 gaagcaggtcgccagtcctaacatca 
  

rTNFR2F2814 atttataagcaggaattctgtccagca 

rTNFR2F3569 ctgccttacccactgagccatcttgcc 

rTNFR2F2174 ccttccttcagggaatctcagggactg 

rTNFR2R2808 tgctggacagaattcctgcttataaat 

TNFR2 

EST primers 

rTNFR2R3569 ggcaagatggctcagtgggtaaggcag 

  

rTNFαF15 catgatccgagatgtggaact 
TNFα NM_012675 

rTNFαR708 tcacagagcaatgactccaaag 
60°C 694 bp 

Upper primer 384 tctgtgactcgtgggatgatga 
IL-1β M98820 

Down primer 708 atcttcttctttgggtattgtttgg 
56°C 325 bp 

Upper-1162 gggtcggaaattgaatggg 
IL-1R1 M95578 

Lower-1687 cctcgatggtatcttcccc 
54°C 526 bp 

Upper5’-328 aagcttgaatccctgcatagagg 

Lower3’-1927 tgtctctatgcgattgaaactgc 
53.8°C 1600 bp 

Upper5’-1431 aagcttgaatccctgcatagagg 
TLR4 AF057025 

Lower3’-1929 tgtctctatgcgattgaaactgc 
60°C 499 bp 

rCGRPA1U acagataatagccccagaaagaag 
αCGRP M11597 

rCGRPA322L gctcacaagtgacaacattaacag 
60°C 345 bp 

rVR1F15 ttgctccatttggggtgtgc 
VR1 AF029310 

rVR1R842 cagggacaggggcagctcac 
60°C 828 bp 

rGAPDHF119 cgaccccttcattgacctcaactacatg 
GAPDH AF106860 

rGAPDHR345 ccccggccttctccatggtggtgaagac 
59°C 227 bp 
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2.1.11   cDNA constructs 

All the cDNA fragments were subcloned into the pGEMT vector. The plasmids which 

contain the specific gene fragments were linearized by different restriction enzymes. 

RNA polymerase using to produce sense or antisense RNA probes was indicated. 

Gene Insert Enzyme Probe RNA polymerase 

NotI sense T7 rTNFα 694 bp 

AatII antisense SP6 

NotI sense T7 rTNFR1 1199 bp 

NcoI antisense SP6 

NdeI antisense T7 rTNFR2 702 bp 

AatII sense SP6 

NotI antisense T7 rIL-1β 587 bp 

NcoI sense SP6 

PstI sense T7 rIL-1R1 526 bp 

KspI antisense SP6 

AatII sense T7 rTLR4 1600 bp 

NdeI antisense SP6 

AatII sense T7 rCD14 1077 bp 

SacI antisense SP6 

SpeI antisense T7 rαCGRP 345 bp 

KspI sense SP6 

SphI sense T7 rVR1 828 bp 

SpeI antisense SP6 

SalI sense T7 rGAPDH 227 bp 

ApaI antisense SP6 

2.1.12   DNA, RNA and protein size markers 

0,25 - 9,5 kb RNA-ladder Gibco-BRL, Karlsruhe  

1 kb DNA-ladder Gibco-BRL, Karlsruhe  

100 bp DNA ladder Gibco-BRL, Karlsruhe  

1 kb DNA ladder MBI Fermentas, St.Leon-Rot, Germany 

100 bp  DNA ladder MBI Fermentas, St.Leon-Rot, Germany 

Prestained SDS - PAGE standard BioRad, Herculed, USA 
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2.1.13   Other supplies 

BioMax Film KODAK, USA 

CapSure LCM Transfer Film TF-100 Arcturus, San Diego, USA 

Eppendorf tubes Eppendorf, Hamburg 

Hybond PVDF Amersham Biosciences,Freiburg 

Hybond N Nylon membrane Amersham Biosciences,Freiburg 

Hyperfilm β-max Amersham Biosciences,Freiburg 

Hyperfilm ECL Amersham Biosciences,Freiburg 

Hyperfilm MP Amersham Biosciences,Freiburg 

Micro Bio-Spin P-30 Columns BioRad, Hercules, USA 

PAP-pen Beckman Coulter, France 

Sterile plastic ware for cell culture Greiner, Germany 

Tissue-Tek Cryomold Miles, Elkhart, USA 

2.2 Methods 

2.2.1 Animal treatment 

Animal care and procedures were conducted according to institutional guidelines. All 

rats were housed in clean plastic cages and had ad libitum access to food and water and 

kept on a 12 h-12 h light-dark cycle. The rats were injected intraperitoneally (i.p.) with 

a dose of 500 µg/kg BW of lipopolysaccharide (LPS) (serotype 0127: B8, Sigma, 

Munich, Germany). LPS was prepared at a concentration of 1 mg/ml in PBS. At 

different time points after the injection the rats were killed by exposure to 100% CO2 

and tissues were rapidly removed and either embedded in Tissue-Tek OCT compound 

(Sakura, Zoeterwoude, The Netherlands) by immersion in -50°C cold 2-Methylbutane 

(Fluka) on dry ice for cutting or frozen immediately in liquid nitrogen for RNA 

extraction.  

2.2.2 Cell culture 

F11 cells were grown in Ham’s F12 medium, supplemented with 15% Hyclone defined 

fetal bovine serum (FBS), 1 x HAT Supplement, 1 x Antibiotic-Mix and 200 mM 

Glutamine at 37°C under 5% CO2 in tissue culture flasks (Greiner Labortechnik GmbH, 

Germany). The cells were passaged with 0.05% Trypsin/0.02% EDTA at 80-90% 

confluences. Subcultures were cultivated in a ratio of 1:5 once a week using 

Trypsin/EDTA. The cells were harvested for RNA and protein extraction at 70-80% 

confluences.  
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2.2.3 Laser capture microdissection (LCM) 

The DRG tissues were cut on a Leica cryostat (Leica, Nussloch, Germany) in 10 µm 

thick sections and mounted on glass slides. The sections were stored at –70°C. At room 

temperature, the frozen sections were air-dried for 15 min, stained with 0.5% cresyl 

violet for 15 min, washed in deionized water for 3 min, 2 min once in 70%, 96% and 

twice in 100% isopropanol alcohol, 5 min twice in Xylol and finally dried completely 

in air. Neuronal and non-neuronal cells were microdissected using the PixCell II LCM 

System (Arcturus, San Diego) with 7.5 µm Laser Spot Size, 70 mW Pulse Power, 0.6 

ms Pulse Width. After capturing, the caps were plugged into the 0.5 ml plastic tubes 

(Eppendorf, Köln, Germany) containing 100 µl TRIzol (GibcoBRL, Karlsruhe, 

Germany). The tubes were inverted and stored at –20°C. 

2.2.4 RNA isolation from tissues and F11 cells 

Total RNA was isolated from different tissues and F11 cells using TRIzol Reagent 

according to the manufacturer’s protocol. Total RNA was incubated with RNase-free 

DNase I (Roche Diagnostics, Mannheim, Germany) at 37°C for 30 min and purified 

using RNeasy Mini Kit (QIAGEN, Hilden, Germany). Poly(A)+ RNA was prepared 

using Poly(A)+ Tract mRNA Isolation system III (Promega, Mannheim, Germany) 

according to the manufacturer’s instruction. The tubes with the LCM caps were 

vortexed vigorously and centrifuged briefly. Glycogen (Roche) was added as carrier to 

a final concentration of 250 µg/ml. The RNA pellet was dissolved in RNase-free 

deionized water and incubated with RNase-free DNase I at 37°C for 30 min. The 

reaction was extracted once with phenol-chloroform (ROTH, Karlsruhe, Germany). 

After precipitation and washing, the RNA pellet was dissolved in RNase-free water and 

stored at –70°C. 

2.2.5 cDNA synthesis 

2.2.5.1 Synthesis of cDNA for PCR 

cDNA was synthesized using SUPERSCRIPT II reverse transcriptase (GibcoBRL) in 

total volume of 20 µl. About 2.5 µg DNase I treated total RNA was incubated with 

oligo(dT) 12-18 (1.25 µM, Amersham Pharmacia Biotech, Freiburg, Germany) at 70°C 

for 10 min in a volume of 11 µl and chilled on ice for 2 min. The reaction was 

performed in the presence of dithiothreitol (DTT) (10 mM), reverse transcriptase (200 

U), dNTPs (500 µM), the first strand buffer (GibcoBRL) and incubated at 16°C for 10 
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min, at 42°C for 1 h and at 94°C for 5 min to inactivate the enzyme. The cDNA was 

diluted to 50 µl by adding 30 µl PCR grade water and stored at –20°C. 

2.2.5.2 Synthesis of cDNA for RACE 

For RACE cDNA synthesis the SMARTTM RACE cDNA Amplification Kit 

(CLONTECH Laboratories) was used. For 5’-RACE the cDNA was synthesized using 

a modified lock-docking oligo(dT) primer (termed the 5’-RACE cDNA Synthesis 

Primer or 5’-CDS) and the SMART II oligo. The 3’-RACE cDNA is synthesized using 

a traditional reverse transcription procedure, but with a special oligo(dT) primer. This 

3’-RACE cDNA Synthesis Primer (3’-CDS) includes the lock-docking nucleotide 

positions as in the 5’-CDS primer and also has a portion of the SMART sequence at its 

5’-end.  The first strand cDNA for 5’- and 3’-RACE were synthesized using 1 µg 

DNase I treated spleen total RNA and Superscript II reverse transcriptase (GibcoBRL) 

according to the manufacturer’s protocol modified with addition of MnCl2 to a final 

concentration of 2 mM (113). After reverse transcription, the first strand product was 

diluted by adding 100 µl Tricine-EDTA buffer provided by the manufacturer. First-

strand cDNA was stored at -20°C. 

2.2.6 Polymerase chain reaction (PCR) 

All PCR reactions were performed on a GeneAmp 9700 cycler or PTC-200 cycler using 

5 µl cDNA in a total volume of 50 µl, containing forward and reverse primers (0.2 µM 

of each), 1 x PCR buffer, 1.5 mM MgCl2, 200 µM dNTPs mixture and 1U AmpliTaq 

Gold (Roche) polymerase. All the PCR fragments were amplified by forward and 

reverse primers using following program: 1 cycle at 95°C for 5 min, 25 to 45 cycles (30 

sec at 94°C, 30 sec at optimal annealing temperature, extension at 72°C for different 

time according to the length of the PCR fragments, 1 min/kb) and 10 min final 

extension at 72°C. As positive control glyceraldehydes phosphate dehydrogenase 

(GAPDH) was used as house keeping gene yielded a 227 bp PCR product (AF106860, 

nt. 119 – 345). Negative controls included RNA subjected to RT-PCR without reverse 

transcriptase, and PCR with water replacing cDNA. PCR products of 10 µl from each 

reaction were loaded and separated on 1.5% agarose gel containing ethidium bromide 

(EtBr). The gels were visualized under an ultraviolet transilluminator (BioRad). The 

PCR products were subcloned and sequenced. The sequence identity of the PCR 

products was confirmed by comparing with the GenBank database. 
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2.2.7 Rapid amplification of cDNA ends (RACE) of the rat TNFR2 gene 

The first 5’-RACE PCR was carried out with the universal primer mix (UPM) provided 

by the manufacturer and a gene specific primer (RTNFR2R521) gtcaataggtgctgctgttcaa. 

The nested PCR for 5’-RACE was carried out with the Nested Universal Primer (NUP) 

provided with the kit and the gene specific nested primer (rTNFR2R405) 

gaagcaggtcgccagtcctaacatca. The first PCR for 3’-RACE was carried out with the gene 

specific primer (rTNFR2F2174) ccttccttcagggaatctcagggactg and (RTNFR2R2808) 

tgctggacagaattcctgcttataaat and UPM. The nested PCR for 3’-RACE was performed 

with the nested primer (rTNFR2R3569) ggcaagatggctcagtgggtaaggcag and NUP. The 

DNA polymerase is Advantage 2 Polymerase Mix (Clontech). The 5’- and 3’-RACE 

PCR products were subcloned into pGEMT vector and sequenced in Sequence 

Laboratories Goettingen (Goettingen, Germany). 

2.2.8 DNA agarose gel electrophoresis 

1.5% agarose gel was routinely used to separate DNA fragments in a size range of 100 

to 10.000 bp (114). The appropriate amount of agarose was dissolved in 1 × TAE buffer 

by boiling for a few minutes in a microwave oven. When the gel solution had cooled 

down to about 60°C, ethidium bromide was added to a final concentration of 0.5 µg/ml. 

The solution was then poured into a gel mold. Suitable combs were used for generating 

the sample wells. The gel was allowed to harden for some 30 - 45 min. The gel was 

mounted in the electrophoresis chamber which was filled with 1 x TAE running buffer 

until the gel was just submerged. DNA samples and size standards were mixed with 0.1 

volumes of 10 × loading buffer and applied to the wells. A voltage of 2 - 10 V/cm was 

applied until the bromophenol blue and xylene cyanol FF dyes had migrated an 

appropriate distance through the gel. After completion of the electrophoresis gel was 

examined under UV transilluminator and photographed using a gel documentation 

system (BioRad). 

2.2.9 Cloning of PCR products into plasmid vectors 

The QIAquick PCR Purification Kit (QIAGEN) was used to purify PCR products. The 

purified PCR fragments were ligated into pGEM-T Vector (Promega) followed by 

transformation into DH5α of E. coli according to manufacturer’s instruction. The 

plasmids were isolated by using QIAfilter Plasmid Maxi Kit (QIAGEN) and sequenced 
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in Sequence Laboratories (Goettingen) with universal primer T7, SP6 and gene specific 

primers. Sequences were then confirmed by homology search using BLAST 2.0 

(http://www.ncbi.nlm.nih.gov). 

2.2.10 In vitro transcription 

In vitro transcription reactions were carried out in a volume of 10 µl contained 1 µg 

linearized plasmids, 10 mM DTT (GibcoBRL), 20 - 40 U RNase inhibitor (MBI 

Fermentas, St.Leon-Rot, Germany), 1 x buffer, 200 U T7 or SP6 RNA polymerase 

(Roche), 0.5 mM NTPs mixture with 35S-UTP or both 35S-UTP and 35S-CTP (>1000 

Ci/mmol, Amersham Pharmacia Biotech, Freiburg, Germany) or digoxigenin-11-UTP 

(Roche) replaced UTP or both UTP and CTP. After 90 min incubation at 37°C, 10 U 

RNase-free DNase I was added into the reactions and incubated for another 15 min. 

After adding RNase-free water to 20 µl and 20 µl sodium carbonate buffer (pH 10.2, 80 

mM NaHCO3 – 120 mM Na2CO3), for limited hydrolysis the reactions were incubated 

at 60°C for the appropriate time (t = Lo - Lf/ K* Lo * Lf, Lo: the cDNA length, Lf: 

expected length of the probes (it is 250 bp in our laboratory), K is 0.11 in our case) 

(115, 116). The reactions were stopped by adding 2 µl 10% acetic acid. RNase-free 

water of 28 µl was added and probes were purified using Micro Bio-Spin P-30 columns 

(BioRad). To produce 32P-UTP (>3000 Ci/mmol, Amersham) labeling antisense RNA 

probes for Northern blot same procedure except the step of sodium carbonate buffer at 

60°C incubation was used. 

2.2.11 In situ hybridization 

2.2.11.1 Coating of glass slides 

The glass slides were first washed with detergent at 60°C for 1 h with slightly shaking. 

The detergent was completely removed under running water. The slides were rinsed 

three times in deionized water. After 45 min washing in 70% ethanol with slightly 

shaking, the slides were dried by baking at 60°C. After immersion in 2% TESAP in 

acetone for 30 sec, the slides were soaked 30 sec twice in acetone and twice in 

deionized water. Slides were then dried completely by baking overnight at 42°C.  
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2.2.11.2 Preparation of tissue sections 

Tissues were cut on a Leica cryostat (Leica) to 14 µm thick sections and thaw-mounted 

on adhesive slides and stored at -70°C. 

2.2.11.3 Prehybridization 

Frozen sections were removed from the freezer and air dried at room temperature for 15 

min and fixed in 4°C pre-cooled 4% paraformaldehyde in phosphate-buffered-saline 

(PBS) for 60 min at room temperature. After three washes in 10 mM PBS (pH 7.4) for 

10 min each and incubation in 0.4% Triton X-100 for 10 min, the slides were rinsed in 

deionized water and transferred to 0.1 M triethanolamine (pH 8.0) (Sigma). Acetic 

anhydride (Sigma) was added under stirring to a final concentration of 0.25% (v/v) and 

further incubated for 10 min. The slides were washed for 10 min in 10 mM PBS (pH 

7.4) and rinsed in deionized water prior to dehydration in 50% and 70% isopropanol. 

Finally, the slides were air-dried at room temperature at least for 15 min and stored at -

20°C. 

2.2.11.4 Hybridization 

In situ hybridization was performed as described previously (115, 116). Briefly, the 

frozen prehybridized sections were air dried and marked. The radioactive probes were 

diluted to 5 x 104 dpm/µl (single radioactive labeling) or 1 x 105 dpm/µl (double 

radioactive labeling) in hybridization solution. Appropriate amounts of hybridization 

solution containing radioactive antisense or sense RNA probes were applied to the 

sections. Slides were coverslipped and incubated at 60°C in humid box containing 50% 

formamide for 16 h. Sense probes were used as nonspecific controls. 

2.2.11.5 Posthybridization and detection 

Coverslips were removed and slides were washed in 2 x SSC and 1 x SSC for 20 min 

each followed by incubation in pre-heated to 37°C RNase buffer (10 mM Tris, pH 8.0, 

0.5 M NaCl, 1 mM EDTA) containing 1 U/ml RNase T1 and 20 µg/ml RNase A 

(Roche) for 30 min at room temperature. Slides were washed at room temperature in 1 

x, 0.5 x, and 0.2 x SSC for 20 min each, at 60°C in 0.2 x SSC for 60 min and at room 

temperature in 0.2 x SSC and deionized water for 15 min each. The tissue was 

dehydrated in 50% and 70% isopropanol and then air-dried. 
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Air-dried hybridized slides were exposed to Kodak BioMax MR Film (Amersham) for 

6 h to 24 h. After exposure to X-ray film, the sections were coated with nuclear 

emulsion NTB-2 (Eastman Kodak, Rochester, NY). The coated slides were dried 

overnight in a dark box in the dark room. The dried slides were exposed for 3 to 42 

days at 4°C. The slides were developed for 4 min in Kodak D-19 developer solution 

and fixed for 10 min in Tetenal Superfix25 solution (Tetenal Photowerk, Norderstedt, 

Germany) at room temperature. The developed slides were washed overnight in 

running tap water. After staining with 0.5% cresyl violet for 15 min, the slides were 

washed in deionized water for 3 min, once in 70% and 96% and twice in 100% 

isopropanol alcohol for 2 min each. After final incubation in Xylol twice for 5 min, the 

sections were coated with DePex and covered with glass coverslips. The sections were 

analyzed under an Olympus AX70 microscope (Olympus) and photographed under 

bright or dark field illumination. 

2.2.12 Double in situ hybridization 

For double ISH the digoxigenin labeled probes of αCGRP, SP, VR1 were added to a 

final concentration of 1 ng/µl in the hybridization solution containing radioactive 

probes. Hybridization and washing procedures were the same as described above 

except dehydration in alcohol was omitted. For the detection of non-radioactive hybrids, 

the slides were incubated for 1 h with blocking-buffer (buffer 1 containing 10% normal 

lamb serum, 0.01% Triton X-100). After rinsing in buffer 1, the slides were incubated 

with 1: 1000 diluted antibody (alkaline phosphatase-conjugated anti-DIG Fab 

fragments in 1: 10 diluted blocking buffer by buffer 1) overnight at 4°C and 1 h at 37°C. 

Excessive antibody was removed by washing in buffer 1 for 10 min twice. Slides were 

equilibrated in buffer 2 (100 mM Tris, pH 9.5, 100 mM NaCl; 50 mM MgCl2) prior to 

color reaction. The color reaction was performed using the solution containing 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and nitroblue tetrazolium salt (NBT) 

(Roche). The color development was controlled under the microscope. After 4 h for 

αCGRP and SP and after 10 h for VR1, respectively, slides were washed in deionized 

water for at least one day with several changes. For detection of 
35

S-labeled probes, the 

slides were dipped in K5 Emulsion (ILFORD Imaging, Mobberley Chershire, UK), 

which was diluted 1: 1 in water. Sections were exposed at 4°C for various times. The 

cellular distribution of silver grains and the violet precipitate was studied under an 
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AX70 light microscope (Olympus). At high magnification, the number of double–

labeled cells was determined. All digoxigenin-labeled cells were counted, regardless of 

their labeling intensity. Radioactive-labeled cells were counted at the same 

magnification in brightfield illumination. For each probe at least 3 sections were 

counted. The number of digoxigenin- and radioactive-labeled cells was counted twice 

to ensure accuracy. The percentage of double-labeled cells was calculated and 

expressed as the percentage of digoxigenin-labeled (αCGRP, SP, VR1 positive cells) 

and radioactive-labeled cells.  

2.2.13 Northern Blot Analysis 

2.2.13.1 RNA agarose gel electrophoresis 

RNA was separated on a denatured formaldehyde agarose gel. 10 µl RNA was mixed 

with 10 µl RNA sample buffer and 2 µl RNA gel-loading buffers. After 10 min 

incubation at 65°C the RNA samples were placed on ice for 2 min. The RNA samples 

were vortexed and centrifuged briefly before loading into the wells of a 1.5% agarose 

gel prepared in 1 x HEPES electrophoresis buffer containing 6% formaldehyde. 

Electrophoresis was carried out at 5 V/cm in 1 x HEPES formaldehyde electrophoresis 

buffer (114). 

2.2.13.2 RNA transfer 

The separated RNAs were transferred from the agarose gel to a positively charged 

nylon membrane by downward capillary transfer (117) using the Turboblotter Rapid 

Downward Transfer Systems (Schleicher&Schuell, Dassel). After electrophoresis the 

RNA gel was rinsed in deionized water for four times 15 min each and maintained in 

deionized water prior to transfer. The nylon membrane was wetted by immersion in 

distilled water and then equilibrated in 20 x SSC buffer for 5 min. The transfer system 

was used according to the manufacturer’s instruction. The transfer was performed 

overnight using 20 x SSC at room temperature. Following transfer, the membrane was 

gently washed in 2 x SSC for 5 min and placed briefly on a sheet of Whatman paper to 

remove any excess of 2 x SSC buffer. RNA was covalently bound to the membrane by 

crosslinking the molecules to the matrix under UV light (254nm) for a total dose of 120 

mJ/cm2 using a UV Stratalinker.  

26 



Materials and Methods 
 

2.2.13.3 Detection of 18S and 28S RNA or RNA markers 

Membranes were incubated in a solution of 0.02% Mehtyl blue in 0.3M Na-acetate 

pH5.5 for 2-3 min and washed 3 times in ddH2O for 2-5 min each. Air-dry the 

Membranes were air-dried and photographed to document the bands for 18S RNA and 

28S RNA or for the RNA markers. 

2.2.13.4 Hybridization of blot and detection of mRNAs 

Membranes were prehybridized with NorthernMax solution (Ambion, Cambridgeshire, 

UK) at 68°C for 30 min and hybridized for 14-20 h with 1- 4 x 106 cpm/ml 32P-labeled 

antisense RNA probes at 68°C. After washing in preheated 2 x SSC containing 0.1% 

SDS for 5 min twice and washing with preheated 0.1 x SSC containing 0.1% SDS for 

15 min twice at 68°C, membranes were exposed to Hyperfilm-MP (Amersham 

Pharmacia Biotech, Freiburg, Germany) for 20 min to 24 h. X-ray films digitized and 

analyzed using NIH image. 

2.2.14 Western blot analysis 

2.2.14.1 SDS polyacrylamide gel electrophoresis 

SDS polyacrylamide gel electrophoresis was carried out in a discontinuous gel system 

using Mini-PROTEAN II Cell (BioRad) according to manufacturer’s instruction. The 

12% resolving gel solution was poured into the assembled gel mold between two glass 

plates separated by 1 mm thick spacers leaving some 2 cm space for the stacking gel. The 

gel surface was overlaid with water in order to prevent inhibition of polymerization by 

oxygen. After polymerization was completed (30 min), the stacking gel (always 4%) was 

poured on top of the resolving gel, and the comb was inserted. After polymerization of 

the stacking gel (30 min) the comb was removed and the gel mounted in the 

electrophoresis chamber. Both electrode reservoirs were filled with 1 x SDS 

electrophoresis buffer, the wells were cleaned and samples loaded. Electrophoresis was 

performed at 200 V constant voltages setting until the bromophenol blue dye had reached 

the bottom of the gel. 

2.2.14.2 Protein transfer and detection 

The cellular protein was extracted using TRIzol reagent after total RNA isolation 

according to the manufacturer’s protocol. The vacuum dried protein was dissolved in 
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1% SDS solution and the concentration was measured using the Bradford method (Bio-

Rad Protein assay, BioRad). The protein was boiled in 1 x SDS sample buffer for 4 min. 

The denatured samples were loaded in 30 µg protein per lane, separated on 12% SDS-

PAGE and transferred to Hybond PVDF membrane (Amersham) using Mini Trans-Blot 

Electrophoretic Transfer Cell (BioRad) according to manufacturer’s instruction. 

Transfer was performed overnight at 4°C, 30 V. After overnight blocking with 3% BSA 

(SERVA, Heidelberg, Germany) in Tris-buffered saline with 0.1% Tween-20 (TBST) 

at 4°C, membranes were incubated with Avidin/Biotin Blocking Kit (Vector, 

Burlingame, CA) to block endogenous avidin and biotin. Membranes were then 

incubated with goat anti-rat TNFRp55 polyclonal antibody (Santa Cruz) for 1 hour at 

room temperature in a dilution of 1: 50000 in TBST. After 5 washes for 5 min each, the 

membranes were incubated for 1 h with Biotin-Sp-donkey anti-goat IgG secondary 

antibody (dianova, Hamburg, Germany) in a dilution of 1: 5000 in TBST at room 

temperature. After 5 washes in TBST for 5 min each, the membranes were incubated 

with ABC complex (Vector) for 1 h at room temperature. Detection was perormed 

using ECL (enhanced chemiluminescence) reagents according to manufacturer’s 

instruction and exposed 1 min to Hyperfilm ECL (Amersham). 
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3 Results 

3.1 Characterization of the rat TNFR2 gene 

3.1.1 Full length cloning of rat TNFR2 cDNA 

In order to investigate the gene expression of TNFR2 in rat DRG, the full coding 

sequence and the gene structure of rat TNFR2 had to be obtained first. To obtain the 

full length cDNA of rat TNFR2 gene, rat expressed sequence site tags (EST) with 

homology to the mouse TNFR2 (M59378) were searched in the GenBank database. 

Using the EST sequence information, the reverse primers (rTNFR2F3569) 

ctgccttacccactgagccatcttgcc and (rTNFR2F2814) atttataagcaggaattctgtccagca were 

designed. Based on a partial cDNA sequence of rat TNFR2 (AF142499), a forward 

primer (rTNFR2F1) ttcggagtggccagttcaaga was designed. Using these pair primers and 

Pfu DNA polymerase, two PCR fragments of a 2353 bp (primer rTNFR2F1 + 

rTNFR2F2814) and of a 3429 bp (primer rTNFR2F1 + rTNFR2F3569) were obtained 

from RNA extracts of rat spleen. Based on these cDNA sequences the primers for 5’- 

and 3’-RACE PCR reactions were designed. The RACE PCR fragments were 

subcloned into pGEMT vector and sequenced. All the sequences from PCR fragments, 

5’- and 3’-RACE fragments were integrated using the GeneTool software. Three cDNA 

sequences were obtained and submitted to GenBank (GenBank Acc. Nr.: AF498039, 

2924 bp; AY191268, 4194 bp and AY191269, 5328 bp). To minimize coding sequence 

mistakes, a primer pair (rTNFR2F15) cagctagagcgcagcagag and (rTNFR2R1555) 

ctcagaaaaagtcatgaagttcca spanning the full coding region was used to perform RT-PCR 

with Pfu DNA polymerase. The same coding region was found in all the three cDNAs. 

The full coding sequence of rat TNFR2 gene had 90.3% and 74.1% sequence homology 

with that of mouse and human, respectively. 

3.1.2 Alignment of rat TNFR2 putative amino acids with that of mouse 

and human 

The nucleotide sequence of rat TNFR2 contains an open reading frame of 1422 

nucleotides that codes for a protein of 474 amino acids, which shares a homology of 

86% and 60% with that of mouse and human, respectively. As shown in Fig. 1, the 

putative peptide begins with a signal peptide of 22 amino acids. A potential 29-amino 

acid transmembrane domain separates the 235-amino acid extracellular domain and the 
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188-amino acid intracellular domain. The putative extracellular region contains a 

cysteine-rich region. The amino acids of the extracellular domain show 55% identity 

with that of hTNFR2 and 83% identity with that of mTNFR2. The amino acids of the 

intracellular region show 70% identity with that of hTNFR2 and 87 % identity with that 

of mTNFR2; however, the intracellular region of rTNFR2, which has the same number 

of amino acids as that of mTNFR2, has an additional 13 amino acids at its C terminus 

as compared with hTNFR2.  

 

Fig. 1 Amino acid alignment of rTNFR2 with mTNFR2 and hTNFR2 
The putative TNFR2 peptide contains 474 amino acids including a signal peptide (position 1-22), an 
extracellular region (position 23-258), a transmembrane region (position 259-288) and a cytoplasmic 
region (position 289-474). The extracellular region contains a cysteine-rich region (position 45-76). 
Identical residues of rTNFR2, mTNFR2 and hTNFR2 are indicated by black letters. 

3.1.3 Structure of the rat TNFR2 gene 

The gene structure of rat TNFR2 was elucidated by comparing rat TNFR2 cDNA 

sequences with the rat genome database in GenBank. The rat TNFR2 gene contains 10 

exons that are located on chromosome 5q36. The coding region is divided into 10 exons 

and 9 introns, covering approximately 41 kb of sequence. The intron/exon boundaries 
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were located by comparing rTNFR2 cDNAs with the rat genome database. Exon size 

ranges from 35 bp (exon 8) to 4116 bp (exon 10) truncated by 9 introns ranging from 

16443 bp (intron 1) to 263 bp (intron 5). Position, size, and splice junctions of each 

exon and intron are listed in Table 1. All the splice junctions conform to the GT/AG 

consensus sequences. The rat TNFR2 coding sequence starts at base 70 of exon 1 and 

extends to the initial 314 bp of exon 10, which includes 3’-untranslated region (3’-

UTR). As shown in Fig. 2, exon 1 comprises the 5’-UTR, signal peptide and the N-

terminus of the mature TNFR2 protein. The extracellular domain is encoded by exons 2 

to 6, the transmembrane region by exons 6 and 7, and the intracellular region by exons 

8 to 10.  

Table 1 Exon/Intron Organization of the rat TNFR2 gene 

 

Exon Exon size(bp) cDNA position Splice donor Splice acceptor Intron Intron size(bp) 

1 147 1-147 AAGgtgggtgactcttga cttattgccttccagGTT 1 16443 

2 103 1148-250 CTGgtgagaggcagctgc tccttgcttcctcagGCC 2 1960 

3 129 251-379 ATGgtgagtggcctgagc ctttccatcctctagACC 3 1105 

4 153 380-532 CAAgtaaggacccttctt gattttctcttcaagGAA 4 517 

5 94 533-626 CATgtgagtgttgactcc atcttcctccctcagTTG 5 263 

6 233 627-859 TTGgtaagtccccagtct ctgtcttcttcccagGTC 6 743 

7 78 860-937 AAAgtaaggttctggtcc ctctcttcattgtagAGA 7 332 

8 35 938-972 GTGgtgagtatctctgtg cccttttcttcccagCCT 8 2921 

9 208 973-1180 CAGgtaagaggcaggaac tcttgtacttcacagATT 9 3766 

10 4116 1181-5296     

 

Fig. 2 Organization of rat TNFR2 gene 
Schematic diagram illustrating the gene structure of rat TNFR2. The rat TNFR2 gene contains 10 exons 
and 9 introns. Exons and introns are drawn to scale. Putative protein domains are indicated. The poly(A) 
signal sequences used by the different rat TNFR2 transcripts are capitalized and underlined. 
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3.1.4 Tissue-specific distribution of rat TNFR2 transcripts 

To examine whether rat TNFR2 transcripts are expressed in a tissue-specific manner, 

Northern blot analysis was performed on different rat tissues using specific antisense 

RNA probes spanning exon 5 to exon 10 (GenBank: AF498039, nt. 541-1242). As 

shown in Fig. 3A, three TNFR2 transcripts were observed in all the tissues examined. 

Weak signals for the three TNFR2 transcripts were detected in neural tissues including 

brain, spinal cord and DRG. Strong signals for the three transcripts were observed in 

peripheral tissues including lung, spleen and kidney. The highest levels of TNFR2 

transcripts were found in spleen and lung. No evidence for tissue-specific transcription 

was found. The three rat TNFR2 transcripts consisted of a major band of 4.4 kb and 

two minor bands of 3.1 kb and 5.4 kb. As shown in Fig. 3B, the 4.4 kb transcript was 

the most abundant followed by the 3.1 kb transcript and the 5.4 kb transcript. 

 

 

 
Fig. 3 Northern blot analysis of 
TNFR2 transcripts in rat tissues 

(A) Three alternative transcripts of the rat 
TNFR2 gene were observed in different tissues. 
Note abundant expression of TNFR2 in spleen 
and lung. Two microgram poly(A)+ RNA 
aliquots from different tissues were hybridized 
with rat TNFR2 antisense RNA probes. The 
membrane was exposed to X-ray film for 16 h. 
The same membrane was hybridized with 
GAPDH antisense RNA probes and exposed to 
X-ray film for 30 min. The GAPDH signals 
were used to normalize sample loading. (B) The 
amount of three transcripts is different. The 
transcripts with the size of 4.4 kb are expressed 
stronger than that of 3.1 kb and 5.4 kb in all 
tissues tested. 

3.1.5 LPS-induced regulation of TNFR2 gene in rat spleen  

LPS is known to enhance TNFR2 mRNA expression in macrophages and monocytes 

(118). To examine the kinetics of LPS-induced transcription of the TNFR2 gene, rats 

were treated with LPS (500 µg/kg BW) for 1 to 12 h and TNFR2 mRNA levels in rat 

spleen were evaluated by Northern blot analysis. The analysis of the X-ray film 

revealed that the systemic injection of LPS increased the expression of TNFR2 

transcripts in the spleen. As shown in Fig. 4, LPS stimulation caused an increase of all 
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three TNFR2 transcripts already 1 h after injection. The levels of TNFR2 mRNAs 

peaked at 3 h after LPS treatment and were reduced to control levels at 12 h after LPS 

injection (Fig. 4A). Densitometry revealed a 2.4-fold increase of TNFR2 transcripts at 3 

h after systemic LPS as compared with the controls. The 3.1 kb transcript increased up 

to 2.9 fold, the 5.4 kb transcript up to 2.5 fold and the 4.4 kb transcript up to 1.9 fold. 

The 3.1 kb transcript increased more than the other two transcripts (Fig. 4B). 

 

 

 
 
 
Fig. 4 Northern blot analysis of 
TNFR2 transcripts in rat spleen 
(A) Three TNFR2 transcripts were detected in 
control and peaked at 3 h after systemic LPS. 
GAPDH as house keeping gene was detected to 
normalize the samples loading. Exposure time: 
1 h for TNFR2 and 0.5 h for GAPDH. One 
microgram poly(A)+ RNA was loaded per lane. 
(B) Densitometry revealed that TNFR2 
transcripts increased up to 2.4 fold 3 h after 
systemic LPS as compared with the controls. 
Systemic LPS caused an increase of the 3.1 kb 
transcripts up to 2.9 fold. The 5.4 kb transcripts 
and the 4.4 kb transcripts increased up to 2.5 
fold and 1.9 fold, respectively.  

3.2 Expression of TNF receptors in rat dorsal root ganglion 

3.2.1 RT-PCR detection of TNF receptors in RNA extracts of rat dorsal 

root ganglion  

To investigate the expression of TNF receptors in rat DRG under basal conditions and 

after systemic LPS, RT-PCR analysis was performed on total RNA extracts using gene-

specific primers. As shown in Fig. 5, after 35 cycles of PCR amplification, TNFR1 

transcripts, which could be detected in RNA extracts of DRGs from an untreated rat, 

appeared to be slightly increased at 6 h after LPS treatment. In contrast, in RNA 

extracts of DRGs from an untreated rat only a faint band representing TNFR2 mRNA 

could be detected, which peaked at 3 h after LPS injection and was already decreased at 

6 h after LPS injection. 
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Fig. 5 RT-PCR analysis of TNF 
receptor transcripts in RNA extracts 
of DRGs from control rats and from 
rats after systemic LPS 
RT-PCR with total RNA of rat DRG: control, 3 
h after LPS treatment and 6 h after LPS 
treatment. TNFR1 (upper panel) could be 
detected in all samples with a subtle increase at 
6 h after LPS. TNFR2 (middle panel) was 
detected at very low levels in the control, but 
increased to peak levels at 3 h after LPS 
treatment and decreased to control levels at 6 h 
after LPS. GAPDH as house-keeping gene 
exhibited no difference between the samples 
(lower panel). –RT: RT-PCR without reverse 
transcriptase as negative control. M: 100bp 
ladder.  

3.2.2 Northern blot analysis of TNF receptor expression in rat dorsal root 

ganglion: effects of LPS 

To determine LPS effects on the expression of TNF receptor transcripts in rat DRG 

Northern blot analysis was performed. For TNFR1 a single transcript of 2.3 kb was 

observed, while for TNFR2 three mRNA species of 5.4 kb, 4.4 kb and 3.1 kb were 

detected. Densitometry revealed a 2.5-fold increase of TNFR1 mRNA in DRG at 6 h 

after LPS (Fig. 6A). In contrast, TNFR2 mRNA levels increased about 2.7 fold already 

at 3 h after LPS treatment (Fig. 6B).  

 

 

 
 

Fig. 6 Northern blot analysis of TNF 
receptor transcripts in rat DRG 
(A) For the detection of TNFR1 mRNA 10 µg 
total RNA was loaded per lane. A single 
transcript of 2.3 kb was observed. Densitometry 
revealed a 2.5-fold increase of TNFR1 mRNA 
at 6 h after LPS as compared with control. 
GAPDH as house keeping gene was detected. 
Exposure time: 16 h for TNFR1 and 2 h for 
GAPDH. (B) For the detection of TNFR2 
mRNA 2 µg poly(A)+ RNA was loaded per lane. 
Three transcripts of 5.4 kb, 4.4 kb and 3.1 kb 
were observed. Densitometry revealed a 2.7-
fold increase of TNFR2 mRNA at 3 h after LPS 
as compared with control. Exposure time: 16 h 
for TNFR2, 20 min for GAPDH. 
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3.2.3  RT-PCR analysis of TNF receptor expression in microdissected 

dorsal root ganglion neurons 

To determine which type of TNF receptors is expressed in DRG neurons, the method of 

laser capture microdissection (LCM) in combination with RT-PCR was employed. 

Perikarya of primary afferents were microdissected from rat DRG sections (Fig. 7A, B, 

C) and total RNA was isolated. As shown in Fig. 7D, TNFR1 mRNA but not TNFR2 

mRNA could be detected in RNA extracts of microdissected DRG neurons after 45 

cycles of amplification by RT-PCR. 

 

 

 
Fig. 7 Detection of TNF receptor 
transcripts in microdissected DRG 
neurons 
(A) Before laser-capture microdissection 
(LCM). (B) After LCM. (C)  Microdissected 
material. About 150 laser pulses were carried 
out. (D) RT-PCR analysis on the RNA extracts 
of microdissected DRG neuronal perikarya 
showed specific amplicons for TNFR1 but no 
PCR products for TNFR2. –RT: RT-PCR 
without reverse transcriptase.  M: 100 bp ladder. 
The scale bar in A: 100 µm. 

3.2.4 TNF receptor expression in the F11 cell line 

To lend further support to the arising concept that TNFR1 rather than TNFR2 can 

mediate TNFα effects on primary sensory neurons, the expression of TNFR1 and 

TNFR2 were tested in the primary sensory cell line F11. As shown in Fig. 8A, RT-PCR 

analysis revealed that TNFR1 mRNA but not TNFR2 mRNA was constitutively 

expressed in F11 cells. In addition, using Western blot analysis a specific band of 55 

kDa representing TNFR1 protein could be demonstrated in protein extracts of F11 cells 

as shown in Fig. 8B (a). After incubation with the secondary antibody alone no 

immunostaining was seen as shown in Fig. 8B (b). 
 

35 



Results 
 

 

 
Fig. 8 RT-PCR and Western blot 
analysis of TNF receptors in F11 cell 
line  
(A) In RNA extracts of F-11 cells constitutive 
expression of TNFR1 but not of TNFR2 mRNA 
was detected by RT-PCR. (B) Western blotting 
showed a single band of 55 kDa representing 
TNFR1 protein (a). Incubation with the 
secondary antibody alone revealed no 
immunostaining (b). 

3.2.5 Cellular distribution of TNF receptor mRNAs in rat dorsal root 

ganglion and regulation of their expression after LPS 

To identify the cells expressing TNF receptors in the rat DRG ISH studies were 

performed. Serial sections through the lumbar (L4) dorsal root ganglion were 

hybridized with specific riboprobes for TNFR1 and TNFR2, respectively. 

Hybridization signals representing TNFR1 were observed over large and small 

perikarya (Fig. 9A, B, E and F). High resolution microscopic analysis of emulsion 

coated slides revealed that silver grains representing TNFR1 mRNA were present in all 

of DRG neurons (Fig. 9E) and also in some DRG non-neuronal cells (Fig. 9E). 

Systemic LPS treatment caused an increase of TNFR1 mRNA levels not only in DRG 

neurons but also in non-neuronal cells (Fig. 9F). TNFR2 mRNA was detected at low 

levels in DRG of control rats (Fig. 9C). However, strong scattered signals for TNFR2 

were detected in DRG of rats 3 h after LPS treatment (Fig. 9D). Under high resolution 

bright field illumination the silver grains for TNFR2 transcripts were exclusively 

observed over non-neuronal cells (Fig. 9G and H). 
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Fig. 9 Cellular distribution of TNFR1 and TNFR2 mRNAs in rat DRG  
Low power darkfield images: (A) Strong hybridization signals for TNFR1 mRNA were found in a 
DRG section of a control rat. (B) TNFR1 hybridization signals appeared to be increased at 6 h after LPS. 
(C) Weak hybridization signals for TNFR2 mRNA were found in a DRG section of a control rat. (D) 
Hybridization signals for TNFR2 were found to be increased at 3 h after LPS.  

High resolution brightfield images: (E) Strong labeling over neurons, which were recognized by their 
large faintly-stained nucleus (asterisks) and weak labeling over non-neuronal cells, which were 
recognized by their small dark-stained nucleus (arrows). (F) Increased labeling intensity for TNFR1 at 6 
h after LPS both in neurons (asterisks) and in non-neuronal cells (arrows). (G) Hybridization signals for 
TNFR2 were found only over non-neuronal cells (arrows), but not over neurons (asterisks). (H) Systemic 
LPS treatment increased the hybridization signals only in non-neuronal cells (arrows). Exposure times: 7 
days for TNFR1, 10 days for TNFR2. Scale bar in A: 200 µm and in E: 10 µm. 
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3.2.6 Relationship of TNFR1 expression with putative nociceptive 

neurons expressing SP, CGRP or VR1 

To investigate whether TNFR1 is expressed in putative nociceptive neurons of rat DRG 

double labeling in situ hybridization studies were performed using VR1 as a marker for 

a subset of nociceptive primary afferents and the neuropeptides SP and CGRP as 

markers for the peptidergic subpopulations involved in the transmission of 

inflammatory pain (3, 4, 7-9). TNFR1 mRNA was found in nociceptive neurons 

expressing CGRP (Fig. 10A), SP (Fig. 10B) and VR1 (Fig. 10C). However, TNFR1 

mRNA was also found in DRG neurons not expressing CGRP, SP or VR1. 

 

 

 

 

Fig. 10 Colocalization of TNFR1 and 
CGRP, SP or VR1 
Double labeling in situ hybridization 
demonstrates double labeled DRG neurons 
(arrow heads) by the probes for (A) TNFR1 and 
αCGRP; (B) TNFR1 and SP; (C) TNFR1 and 
VR1. Digoxigenin labeling for the detection of 
αCGRP, SP and VR1 is recognized as dark 
reaction product and 35S-labeling for the 
detection of TNFR1 mRNA is seen as grains. 
Note that many neurons were also present with 
labeling only for TNFR1 probes (arrows in A - 
C). Exposure time: 7 days. Size bar in C: 10 µm. 

3.3 Constitutive and LPS-induced cell-specific expression of TNFα 

mRNA in rat dorsal root ganglion 

To examine whether TNFα is synthesized in primary afferent neurons, the expression 

pattern of the TNFα gene at the mRNA level was investigated using in situ 

hybridization. In DRG sections of control rats specific hybridization signals for TNFα 

could not be detected (Fig. 11A). However, 1 h after systemic LPS treatment, the 

hybridization signals for TNFα were observed in many small cells scattered throughout 
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DRG sections (Fig. 11B). Microscopic analysis revealed that the silver grains 

representing TNFα mRNA were located in non-neuronal cells (Fig. 11C). To confirm 

the non-neuronal expression and to exclude a low basal expression of TNFα in primary 

sensory neurons, the sensitive technique of RT-PCR was used to analyze the RNA 

extracts of microdissected DRG neurons (Fig. 11D - F) and non-neuronal cells 

(Fig.11G - I). TNFα could be detected neither in neuronal RNA extract of control rats 

nor in that of LPS treated rats (Fig. 11J). However, 1 h after LPS treatment, TNFα was 

detected in RNA extract of microdissected non-neuronal cells, while TNFα transcripts 

remained undetectable in the RNA extract of microdissected neurons (Fig. 11J). 

 

Fig. 11 Detection of TNFα mRNA in rat DRG by in situ hybridization and in 
microdissected cells by RT-PCR 

ISH: Darkfield images showing (A) absence of positive hybridization signals for TNFα mRNA from a 
lumbar DRG section of an untreated rat and (B) strong hybridization signals for TNFα mRNA in a 
lumbar DRG section of a rat 1h after LPS. (C) High resolution brightfield image showing the silver 
grains representing TNFα mRNA over non-neuronal cells at 1h after LPS treatment (arrows) and the 
absence of specific hybridization signals over neuronal perikarya (asterisk).  

LCM: (D and G) before LCM, (E and H) after LCM, (F and I) microdissected materials. From each 
sample about 200 microdissected neurons and the microdissected non-neuronal cells from approximately 
200 laser pulses were subjected to RT-PCR analysis. (J) Specific PCR products for TNFα were 
amplified only from the RNA extracts of microdissected non-neuronal cells at 1 h after LPS. Scale bar in 
A: 200 µm, in C and F: 10 µm. 
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3.4 Expression of IL-1R1 and IL-1β in rat dorsal root ganglion 

3.4.1 RT-PCR detection of IL-1R1 and IL-1β in RNA extracts of rat dorsal 

root ganglion  

To investigate whether IL-1R1 and IL-1β are expressed in rat DRG and whether their 

expression is regulated by systemic application of LPS, total RNAs of DRG from 

untreated rats and from LPS treated rats were analyzed by RT-PCR. Both IL-1R1 and 

IL-1β could be detected in the RNA extracts of DRG from untreated rats after 40 cycles 

of amplification. LPS had no apparent effect on IL-1R1 transcript levels at 6 h after i.p. 

application (Fig. 12 upper panel). However, 3 h after LPS, IL-1β transcripts appeared to 

be significantly increased (Fig. 12 middle panel). 

 

 
 
 
 

Fig. 12 RT-PCR analysis of IL-1R1 
and IL-1β in rat DRG 
Photographs of agarose gel stained with 
ethidium bromide show RT-PCR products for 
IL-1R1 and for IL-1β amplified from DRG total 
RNA extracts. LPS seems to have no effects on 
the levels of IL-1R1 mRNA in rat DRG at 6 h 
after LPS (upper panel), while IL-1β mRNA 
levels have dramatically increased at 3 h after 
LPS treatment as compared with control 
(middle panel). GAPDH as house-keeping gene 
exhibits no difference between the samples 
(lower panel). The size of PCR products is 
indicated. –RT: RT-PCR without reverse 
transcriptase as negative control. M: 100 bp 
ladder. 

3.4.2 RT-PCR analysis of IL-1R1 and IL-1β expression in microdissected 

dorsal root ganglion neurons 

In order to investigate whether IL-1R1 and IL-1β are expressed in rat DRG neurons, 

RT-PCR analysis on RNA extracts of microdissected DRG neurons was performed. In 

RNA extracts of microdissected neuronal perikarya specific PCR products for IL-1R1 

but not for IL-1β could be detected after 45 cycles of amplification (Fig. 13D). 
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Fig. 13 RT-PCR analysis of IL-1β 
and IL-1R1 on RNA extracts of 
microdissected rat DRG neurons 
Photographs show: (A) before microdissection 
(B) after microdissection (C) microdissected 
material (D) RT-PCR analysis on the RNA 
extracts from about 400 neuronal perikarya 
microdissected from the sections of a rat 3 h 
after LPS treatment.  –RT: RT-PCR without 
reverse transcriptase as negative control. M: 
100 bp ladder.  

3.4.3 Northern blot analysis of IL-1R1 expression in rat dorsal root 

ganglion and in the F11 cell line 

To further prove the neuronal expression of IL-1R1 Northern blot analysis was carried 

out on the poly(A)+ RNA extracts of rat DRG and of the sensory cell line F11. As 

shown in Fig. 14, a single distinct band of 5.7 kb for rat IL-1R1 mRNA similar to that 

in rat parietal cells (119) was observed in the poly(A)+ RNA extract of F11 cells and in 

that of rat DRG as well.  

 

 

 

 

Fig. 14 Detection of IL-1R1 in rat 
DRG and in the F11 cell line by 
Northern blot  
A distinct band of 5.7 kb for rat IL-1R1 mRNA 
was detected in poly(A)+ RNA extract (5µg) of 
rat DRG and in that of F11 cells. Exposure time: 
48 h. RNA size marker is indicated. 

3.4.4 Cell-specific expression of IL-1R1 mRNA in rat dorsal root ganglion 

To localize IL-1R1 mRNA in rat DRG, ISH was performed on the sections of rat L4 

DRG. Hybridization signals for rat IL-1R1 mRNA were observed in a subset of cells 

through a section (Fig. 15A). Under brightfield illumination, the silver grains 

representing for IL-1R1 mRNA were found in a subset of DRG neurons (asterisks in 

Fig. 15C), which were recognized with large faint-stained nucleus and in non-neuronal 

cells (arrows in Fig. 15C) as well, which were recognized with small dark-stained 
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nucleus. Cell counting showed approximately 60% of rat DRG neurons expressing IL-

1R1 mRNA. Most of these neurons were found to be small to medium size in diameter. 

LPS treatment had no effect on the levels of IL-1R1 mRNA (data not shown). 

 

 

 

 

 

 

Fig. 15 Localization of IL-1R1 mRNA 
in rat DRG 
Low power darkfield images show (A) 
hybridization signals for IL-1R1 mRNA in a 
subset of cells through a rat DRG section and 
(B) no specific hybridization signal in a section 
hybridized with sense probes. (C) High power 
bright field image show the neuronal (asterisks) 
and non-neuronal (arrows) localization of the 
hybridization signals for IL-1R1 in a DRG 
section. RNA probes for IL-1R1 were labeled 
with both 35S-UTP and 35S-CTP. Exposure time: 
6 weeks. Scale bar in A: 200 µm and in C: 10 
µm. 

3.4.5 Relationship of IL-1R1 expression with putative nociceptive 

neuronal populations expressing SP, CGRP and VR1 
To determine the neuronal subpopulations expressing IL-1R1, the expression of IL-1R1 

mRNA in pain related neurons was examined. αCGRP and SP were used as markers for 

peptidergic neurons involved in the nociceptive transmission and VR1 was used as a 

marker for polymodal nociceptive neurons. Double labeling ISH was performed. As 

shown in Fig. 16 and table 2, approximately 64% of αCGRP positive cells were found 

to express IL-1R1 mRNA and about 38% of IL-1R1 mRNA expressing neurons were 

found to express αCGRP (Fig. 16A). Approximately 48% of substance P positive cells 

were found to express IL-1R1 and about 30% of IL-1R1 expressing neurons were found 
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to express SP (Fig. 16B). Approximately 77% of VR1 mRNA positive cells were found 

to express IL-1R1 and about 51% of IL-1R1 mRNA expressing neurons were found to 

express VR1 (Fig. 16C). 

Table 2 Percentage of neurons coexpressing IL-R1 with CGRP, SP or VR1 
mRNAs in rat DRG  

 

Number of single labeled 

neurons per section* 

Number of double labeled 

neurons per section 

Percetage of double labeled 

neurons in single labeled neurons

αCGRP 78 64% 

IL-1R1 132 
50 

38% 

SP 61 48% 

IL-1R1 95 
29 

30% 

VR1 139 77% 

IL-1R1 209 
107 

51% 

* Note: For coexpression of IL-1R1 with CGRP or SP, 6 sections were counted. For coexpression of IL-
1R1 with VR1, one section was counted. 
 

 

 

 

 

 

Fig. 16 Colocalization of IL-1R1 and 
αCGRP, SP or VR1 in rat DRG 
Brightfield images show (A) colocalization of 
IL-1R1 and αCGRP, (B) colocalization of IL-
1R1 and SP, (C) colocalization of IL-1R1 and 
VR1. Digoxigenin-labeling is recognized as 
dark reaction products and radioactive-labeling 
is seen as grains. Double labeled cells are 
indicated by double arrows. The neuronal cells 
expressing IL-1R1 mRNA but not expressing 
αCGRP, SP or VR1 are indicated by single 
arrows. The neuronal cells expressing αCGRP, 
SP or VR1 but not expressing IL-1R1 mRNA 
are indicated by arrow heads. Scale bar in A: 10 
µm. 
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3.4.6 Constitutive and LPS-induced cellular distribution of IL-1β in rat 

dorsal root ganglion 

To detect the cellular distribution of IL-1β mRNA in rat DRG under untreated 

conditions and under LPS treatment ISH was carried out. The sections of rat L4 DRG 

from untreated rats and from rats 3 h after LPS treatment were investigated. No specific 

hybridization signals for IL-1β mRNA were observed in DRG sections of untreated rats 

(Fig. 17A). However, IL-1β could be detected in the RNA extract of DRGs from 

untreated rats by RT-PCR (see Fig. 12). This suggests that IL-1β mRNA is expressed at 

very low levels, which can not be detected by ISH at current exposure conditions. 

Strong hybridization signals for IL-1β mRNA were detected in DRG sections of rats 3 

h after LPS treatment (Fig. 17B). This is in agreement with RT-PCR results. When the 

sections were analyzed at high magnification the silver grains representing IL-1β 

mRNA were found over non-neuronal cells. No specific labeling for IL-1β was found 

over neurons (Fig. 17C). 

 

 

 

 

 

Fig. 17 Localization of IL-1β mRNA 
in rat DRG 
Low power darkfield images show (A) no 
specific hybridization signal for IL-1β in a 
DRG section of an untreated rat and (B) 
specific hybridization signals for IL-1β in a 
DRG section of a rat 3 h after LPS treatment. 
High power brightfield image show (C) the 
silver grains representing hybrids for IL-1β 
mRNA over non-neuronal cells (arrows) but not 
over neurons (asterisk). The non-neuronal cells 
are recognized with small dark-stained nucleus. 
The neurons are recognized with large faint-
stained nucleus. Exposure time: 1 week. Scale 
bar in A: 200 µm and in C: 10 µm. 
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3.5 Expression of LPS receptors in rat dorsal root ganglion 

3.5.1 RT-PCR detection of TLR4 and CD14 in RNA extracts of rat dorsal 

root ganglion 

To investigate whether the LPS related receptors TLR4 and CD14 are expressed in rat 

DRG and whether TLR4 and CD14 are regulated by systemic injection of LPS, RT-

PCR analysis was performed. As shown in Fig. 18, TLR4 could be detected after 40 

cycles of amplification in DRG RNA extracts both from untreated rats and from rats 6 h 

after LPS treatment. LPS had no apparent effect on TLR4 transcript levels at 6 h after 

i.p. application. CD14 was also detectable in RNA extracts of DRG both from untreated 

rats and from rats 6 h after LPS treatment after 35 cycles of amplification. However, 

CD14 transcripts appeared to be significantly increased at 6 h after LPS injection. 

 

 

 
Fig. 18 RT-PCR analysis of TLR4 
and CD14 in rat DRG  
Photographs of agarose gel stained with 
ethidium bromide show RT-PCR products for 
TLR4 and for CD14 amplified from DRG RNA 
extracts. LPS seems to have no effects on the 
levels of TLR4 mRNA in rat DRG at 6 h after 
LPS (upper panel), while CD14 mRNA levels 
have dramatically increased at 6 h after LPS 
treatment as compared with control (middle 
panel). GAPDH as house-keeping gene exhibits 
no difference between the samples (lower 
panel). The size of PCR products is indicated. –
RT: RT-PCR without reverse transcriptase as 
negative control. M: 100 bp ladder. 

3.5.2 Northern blot analysis of TLR4 and CD14 expression in rat dorsal 

root ganglion 

RT-PCR suggests that TLR4 is constitutively expressed in rat DRG and that LPS has no 

apparent effect on TLR4 expression. In order to further confirm the constitutive 

expression of TLR4 mRNA in rat DRG, Northern blot analysis was performed on the 

poly(A)+ RNA of DRGs pooled from untreated rats. As shown in Fig. 19A, a single band 

of 3.4 kb for rat TLR4 similar to that in cardiac myocytes (120) was observed. RT-PCR 

also indicates that CD14 mRNA is dramatically upregulated by LPS in rat DRG at 6h 

after intraperitoneal application. In order to quantify the increase of CD14 mRNA levels 

in rat DRG after LPS injection, Northern blot analysis was performed. A single band of 
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1.6 kb for rat CD14 similar to that in hepatocytes (121) was observed in DRG total RNA 

extracts both from untreated rats and from rats 6 h after LPS treatment. In agreement with 

the result of RT-PCR, CD14 mRNA levels were found to be significantly increased at 6 h 

after LPS administration. Density analysis revealed an approximately 300-fold increase 

of CD14 mRNA levels at 6 h after LPS as compared with untreated control (Fig.19B). 

 

 

 
 
Fig. 19 Northern blot analysis of 
TLR4 and CD14 mRNA in rat DRG 
(A) Photograph shows a single band of 3.4 kb for 
rat TLR4 mRNA in the poly(A)+ RNA (5 µg) of 
DRGs pooled from untreated rats. RNA size 
marker is indicated. (B) A single band of 1.6 kb 
for rat CD14 mRNA in DRG total RNA extracts 
(20 µg) both from an untreated rat and from a rat 
6h after LPS treatment. Densitometry shows an 
approximately 300-fold increase of CD14 
mRNA levels in rat DRG at 6 h after LPS. 
Exposure time: 17 h for TLR4, 15 h for CD14 
and 2.5 h for GAPDH. 

3.5.3 RT-PCR analysis of TLR4 expression in microdissected dorsal root 

ganglion neurons 

In order to examine whether TLR4 mRNA is expressed in rat DRG neurons, RT-PCR 

analysis was performed on the total RNA extract of the microdissected DRG neurons. 

As shown in Fig. 20D, specific PCR products for TLR4 could be detected after 45 

cycles of amplification. This suggests that the mRNA encoding TLR4 is constitutively 

expressed in rat DRG neuronal cells. 

 

 
 
Fig. 20 Detection of TLR4 transcripts in 
RNA extracts of microdissected DRG 
neurons 
(A) Before microdissection. (B) After 
microdissection. (C) Microdissected material. 
(D) A specific band of PCR products for TLR4 
was detected after 45 cycles of amplification on 
the RNA extract of about 400 microdissected 
neurons. –RT: RT-PCR without reverse 
transcriptase as negative control.  
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3.5.4 Cellular distribution of constitutive TLR4 expression in rat dorsal 

root ganglion 

RT-PCR analysis of the RNA extract of microdissected DRG neurons suggested that 

TLR4 mRNA is constitutively expressed in rat DRG neurons. To investigate the 

cellular distribution of TLR4 mRNA and to clarify whether the neuronal expression of 

TLR4 is in all DRG neurons or restricted to a subset of DRG neurons, ISH studies were 

performed. As shown in Fig. 21A, specific hybridization signals for TLR4 were 

observed in rat DRG. Under brightfield illumination, the silver grains representing rat 

TLR4 mRNA were found in a subset of DRG neurons (asterisks in Fig. 21C), which 

were recognized by their large faintly-stained nucleus and in non-neuronal cells (arrows 

in Fig. 21C) as well, which were recognized by their small dark-stained nucleus. Cell 

counts showed that approximately 62% of rat DRG neurons expressed TLR4 mRNA. 

Most of these neurons were found to be small to medium size in diameter. LPS 

treatment had no effect on the levels of TLR4 mRNA (data not shown). 

 

 

 

 

Fig. 21 Cellular distribution of TLR4 
mRNA in rat dorsal root ganglion 
Low power darkfield images illustrate (A) 
specific hybridization signals for TLR4 mRNA 
in a section of a rat L4 DRG and (B) no specific 
hybridization signal in a section hybridized with 
sense probes. High power brightfield image 
show (C) the neuronal (asterisks) and non-
neuronal (arrows) localization of the 
hybridization signals for TLR4 in a DRG 
section. RNA probes for TLR4 were labeled 
with both 35S-UTP and 35S-CTP. Exposure time: 
40 days. Scale bar in B: 200 µm and in C: 10 
µm. 
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3.5.5 Relationship of TLR4 expression with putative nociceptive neuronal 

populations expressing SP, CGRP or VR1 

To determine the neuronal subpopulations expressing TLR4, the expression of IL-1R1 

mRNA in pain related neurons was examined. αCGRP and SP were used as markers for 

peptidergic neurons involved in the nociceptive transmission and VR1 was used as a 

marker for polymodal nociceptive neurons. Double labeling ISH was performed using 

radioactive labeled probes for the detection of TLR4 mRNA and digoxigenin labeled 

probes for the detection of the mRNAs coding αCGRP, SP or VR1. As shown in Fig. 

22 and table 3, approximately 50% of αCGRP positive cells were found to express 

TLR4 mRNA and about 24% of TLR4 mRNA expressing neurons were found to 

express αCGRP (Fig. 22A). Approximately 50% of substance P positive cells were 

found to express TLR4 and about 15% of TLR4 expressing neurons were found to 

express SP (Fig. 22B). Approximately 51% of VR1 mRNA positive cells were found to 

express TLR4 and about 24% of TLR4 mRNA expressing neurons were found to 

express VR1 (Fig. 22C). 

Table 3 Percentage of neurons coexpressing TLR4 with CGRP, SP or VR1 
mRNAs in rat DRG 

 

Number of single lebeled 

neurons per section* 

Number of double labeled 

neurons per section 

Percentage of double labeled 

neurons in single labeled neurons

αCGRP 116 50% 

TLR4 236 
58 

24% 

SP 74 50% 

TLR4 243 
37 

15% 

VR1 68 51% 

TLR4 144 
35 

24% 

* Note: For coexpression of TLR4 with CGRP or VR1, 5 sections were counted. For coexpression of 
TLR4 with SP, 4 sections were counted. 
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Fig. 22 Colocalization of TLR4 and 
αCGRP, SP or VR1  
Brightfield images show (A) colocalization of 
TLR4 and αCGRP, (B) colocalization of TLR4 
and SP, (C) colocalization of TLR4 and VR1. 
Digoxigenin-labeling is recognized as dark 
reaction product and radioactive-labeling is 
seen as grains. Double labeled cells are 
indicated by double arrows. The neuronal cells 
expressing TLR4 mRNA but not expressing 
αCGRP, SP or VR1 are indicated by single 
arrows. The neuronal cells expressing αCGRP, 
SP or VR1 but not expressing TLR4 mRNA are 
indicated by arrow heads. Scale bar in A: 10 µm. 

3.5.6 Constitutive and LPS-induced cellular distribution of CD14 in rat 

dorsal root ganglion 

To examine the cellular distribution of CD14 mRNA in DRG from controls and after 

LPS treatment, ISH was performed on sections of rat L4 DRG. No specific 

hybridization signals for CD14 mRNA were observed in DRG sections of untreated rats 

(Fig. 23A). However, CD14 could be detected in DRG RNA extracts of untreated rats 

by RT-PCR (see Fig. 18) and by Northern blot (see Fig. 19B). These results suggest 

that CD14 mRNA is expressed at very low levels and could not be detected by ISH at 

current exposure conditions. Strong specific hybridization signals for CD14 mRNA in 

DRG were detected 6 h after LPS treatment (Fig. 23B). This is in agreement with the 

results of RT-PCR and Northern blot. As shown at high magnification in Fig. 23C, the 
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silver grains representing CD14 mRNA were found only over non-neuronal cells. No 

specific labeling for CD14 was found over neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Cellular distribution of CD14 
mRNA in rat DRG 
Low power darkfield images show (A) no 
specific hybridization signal for CD14 in a 
DRG section of an untreated rat and (B) strong 
specific hybridization signals for CD14 in a 
DRG section of a rat 6 h after LPS treatment. 
High power brightfield image (C) shows the 
silver grains for CD14 mRNA over non-
neuronal cells (arrows) but not over neurons 
(asterisk). The non-neuronal cells are 
recognized by their small dark-stained nucleus. 
The neurons are recognized by their large 
faintly-stained nucleus. Exposure time: 2 weeks. 
Scale bar in A: 200 µm and in C: 10 µm. 
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4 Discussion 
The following essential new findings have been obtained in this thesis.  

(1) For the first time, the structure and the organization of the rat TNFR2 gene has 

been identified and the tissue-specific distribution and LPS-induced regulation of 

its three variants have been characterized. 

(2) TNFR1 mRNA is expressed in all DRG neurons including presumed nociceptive 

neurons coding for VR1, SP and CGRP whereas TNFR2 mRNA is totally absent 

from DRG neurons; TNFR1 mRNA and TNFR2 mRNA are constitutively 

expressed in DRG non-neuronal cells and their expression is increased after 

systemic LPS. 

(3) Like DRG neurons, the sensory cell line F-11 expresses TNFR1 but not TNFR2 

and thus, is uniquely suited to study TNFR1-mediated intracellular signaling and 

cellular functions independent from that of TNFR2 effects. 

(4) There is no evidence for but strong evidence against constitutive or LPS-induced 

expression of TNFα and IL-1β mRNAs in DRG neurons. 

(5) IL-1R1 and TLR4 mRNAs are expressed in a major subpopulation of DRG 

neurons and exhibit substantial coincidence with presumed nociceptive neurons 

expressing VR1, SP or CGRP. In addition, IL-1R1 and TLR4 mRNAs exhibit 

constitutive expression in non-neuronal cells of the rat DRG. 

(6) In contrast to the functional LPS receptor TLR4, the LPS receptor accessory 

protein CD14 is totally absent from DRG neurons under normal and LPS 

stimulated conditions. However, in DRG non-neuronal cells CD14 expression is 

induced by LPS. 

4.1 Identification, structural characterization, tissue-specific 

distribution and LPS-induced regulation of the rat TNFR2 gene 

This thesis describes the complete characterization of the cDNA sequence and the 

structure of the rat TNFR2 gene. Three cDNAs encoded by the rat TNFR2 gene have 

been identified. They contain the same 5’-untranslated sequence and the same full 

coding region. The rat TNFR2 gene is demonstrated to contain 10 exons and 9 introns 

that are located on chromosome 5q36. Therefore, the overall organization of the rat 

TNFR2 gene is identical to that of human and mouse, which also contain 10 exons and 

9 introns as reported previously (35, 36). 
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Northern blot analysis performed in this thesis has revealed that three different 

transcripts for the rat TNFR2 gene exist in all tissues examined including DRG, spinal 

cord, brain, spleen, lung and kidney. These data conform to previous observations of 

three mRNAs of the rat TNFR2 gene found in microglia (37). Comparing the mRNA 

transcripts of the rat TNFR2 gene with those of the human (122) and mouse TNFR2 

gene (36) revealed that the rat TNFR2 gene transcribes three mRNAs, while the human 

and mouse TNFR2 genes transcribe only two mRNAs. This indicates that the TNFR2 

gene transcription occurs in a species-specific manner. The possible functional 

implications of three TNFR2 transcripts in the rat as compared with two TNFR2 

transcripts in the mouse and human remain to be shown. 

Multiple transcripts from the same gene can be due to alternative splicing of 

exons, different cleavage with subsequent polyadenylation at the 3’-end and different 

initial transcription sites. For example, the two transcripts of human TNFR2 are due to 

different initial transcription sites (122). Like the two mouse TNFR2 transcripts (36), 

multiple transcripts of the rat TNFR2 gene are due to different 3’-end cleavage.  

The relative abundance of the three transcripts of the rat TNFR2 gene differs. 

The 4.4 kb transcript is most abundant followed by the 3.1 kb and 5.4 kb transcripts. 

Comparing the 3’-UTR of the three transcripts of the rat TNFR2 gene, three typical 

polyadenylation signals (AATAAA) (123, 124) have been found within 45 nucleotides 

upstream of the 3’-end cleavage site in the 4.4 kb transcript ( see Fig. 2), but only one 

relatively commonly used polyadenylation signal (ATTAAA) in the 5.4 kb transcript 

and only one shortened version (ATAAA) of the consensus polyadenylation signal 

sequence in the 3.1 kb transcript is encountered. This may account for the more 

abundant expression of the 4.4 kb mRNA as compared with that of the 3.1 kb and 5.4 

kb transcripts. 

LPS-induced regulation of the three rat TNFR2 mRNAs in the spleen and DRG 

is different. In the spleen, systemic LPS treatment predominantly increases the 3.1 kb 

transcript, while the 4.4 kb and the 5.4 kb transcripts are only marginally increased by 

LPS. In DRG, however, systemic LPS treatment causes a greater increase of the 4.4 kb 

transcript than of the 3.1 kb and 5.4 kb transcripts. This suggests tissue-specific or cell-

specific regulation of individual transcripts of the rat TNFR2 gene after systemic LPS. 

The evidence obtained in the present study that TNFR2 transcripts exhibit tissue-

specific and cell-specific expression and regulation pattern needs to be further 

elaborated in other tissues, cell types and conditions of stimulation. The possible role of 
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differential regulation of TNFR2 transcripts in the peripheral nervous system (i.e. DRG) 

and in the immune system (i.e. spleen) is a matter of speculation at present. 

4.2 Functional implications of TNFR1 and TNFR2 expression in rat 

dorsal root ganglion  

4.2.1 Expression of TNFR1 but not of TNFR2 in dorsal root ganglion 

neurons and the sensory F-11 cell line 

Based on sensitive methods of ISH and of RT-PCR in combination with LCM, this 

study provides strong evidence that TNFR1 but not TNFR2 is expressed in DRG 

neurons and that all DRG neurons express TNFR1. Previously, neuronal TNFR1 

expression has been found in trigeminal ganglia of the mouse (40) and in primary 

sensory neurons of the trigeminal mesencephalic nucleus of the mouse (125). The total 

lack of neuronal expression of TNFR2 in rat DRG demonstrated in the present study is 

in contrast to the reported presence of  TNFR2 expression in mouse trigeminal ganglia, 

though at very low levels (40). The presence of TNFR1 but absence of TNFR2 

expression in DRG neurons corresponds well to the observation that TNFR1 but not 

TNFR2 was found to be expressed in the sensory cell line F-11 as revealed by RT-PCR 

and Western blot analysis in the present study. There is no previous report on TNF 

receptor expression in the F-11 cell line. Thus, the present study is the first to provide 

evidence that the F-11 cell line represents a new tool to study TNFR1-mediated 

intracellular signaling and cellular functions independent from that of TNFR2-mediated 

effects. 

The neuronal expression of TNFR1 may suggest that TNFα-induced 

hyperalgesia is at least partially dependent on TNFR1. Indeed, neutralizing antibodies 

against TNFR1 but not against TNFR2 reduce thermal hyperalgesia and mechanical 

allodynia in the CCI mouse (126). Intrathecally applied antisense 

oligodeoxynucleotides to TNFR1 decrease not only TNFR1 protein expression in 

peripheral nerve terminals of DRG neurons but also reduce inflammatory hyperalgesia 

in the rat (56).  

Taken together, the present data in conjunction with studies on TNF receptor 

mediated functions of primary sensory neurons by others provide strong evidence that 

TNFR1 but not TNFR2 is the neuronal TNF receptor of primary sensory neurons of the 

rat DRG with functional significance for nociceptive signaling. 
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In contrast to these results, several recent studies of others have demonstrated 

positive immunostaining for TNFR2 in DRG neurons of rats and mice (27, 38, 39). 

However, TNF receptor immunostaining likely to occur in DRG non-neuronal cells has 

not been observed by these authors. Analysis of the cellular expression of TNFR1 and 

TNFR2 in DRG at the mRNA level was not performed. In light of the absence of 

TNFR2 mRNA from DRG neurons but presence of TNFR2 mRNA in DRG non-

neuronal cells shown in this study, it seems very unlikely that TNFR2 protein is truly 

expressed in DRG neurons. The reported TNFR2 immunostaining in DRG neurons (27, 

38, 39) is probably due to non-specific immunostaining which cannot be explained at 

present, however. Therefore, the view of TNFR2 expression in DRG neurons should be 

dismissed. 

4.2.2 Cell-specific plasticity of TNFR1 and TNFR2 expression in the 

dorsal root ganglion after LPS treatment 

The present study has shown that systemic application of LPS enhances the expression 

of TNFR1 mRNA in DRG neurons and that of both TNFR1 and TNFR2 in DRG non-

neuronal cells. It has been demonstrated previously that LPS causes an increase of 

TNFR1 and TNFR2 expression in the rat brain but the cells involved have not been 

clearly identified (127). In the mouse brain, LPS-induced TNFR2 mRNA is restricted 

to non-neuronal cells while TNFR1 mRNA occurs both in neurons and some non-

neuronal cells (125). As the present study demonstrated that a specific subpopulation of 

DRG neurons is endowed with the LPS receptor TLR4 but not with the LPS receptor 

accessory protein CD14 (see below) it is concluded that the LPS-induced increase of 

TNF receptor expression in DRG neurons is at least in part directly mediated by 

neuronal TLR4. As its shown in this thesis that TNFR1 and TNFR2 expression in non-

neuronal DRG cells is increased after LPS and that non-neuronal cells express CD14 

and TLR4 it is conceivable that both CD14 and TLR4 mediate the LPS-induced 

regulation of non-neuronal TNFR1 and TNFR2. In addition concomitant induction of 

TNFα in and release from DRG non-neuronal cells has to be taken into account (see 

below). The LPS-induced enhancement of TNFR1 expression in DRG neurons is 

suggested to amplify TNFα signaling in primary afferents resulting in increased 

sensitization to inflammatory cytokines. 
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4.2.3 Possible roles of TNFR1 in DRG neurons and of TNFR1 and TNFR2 

in DRG non-neuronal cells in pain and other sensory functions 

The expression of TNFR1 in small diameter presumed nociceptive neurons expressing 

SP, CGRP or VR1 demonstrated in this thesis is in line with a large body of evidence 

for an involvement of TNFα in nociceptive responses (43, 45, 50, 128, 129). TNFα is 

known to induce the release of SP and CGRP from peripheral terminals (9, 130, 131). 

Recombinant TNFα excites nociceptors and enhances heat-evoked release of CGRP 

from peripheral nerve terminals (55). Acute application of TNFα to peripheral axons 

induces ectopic activity in nociceptive primary afferent fibers (44). Blockade of TNFα 

or TNFR1 reduces pain behavior (56, 126, 132). By revealing expression of TNFR1 on 

peptidergic and VR1 positive nociceptive neurons, the possible molecular and cellular 

mechanisms for direct activation of primary sensory neurons of DRG by TNFα in the 

course of inflammatory pain and of neuropathic pain have been identified in this thesis. 

The finding that the expression of the TNFR1 gene is virtually pan-neuronal and 

not restricted to presumed nociceptive neurons in the rat DRG clearly implies a much 

broader role of TNFα in primary sensory functions than nociception alone. The most 

obvious possibility is that TNFR1 expressing neurons function as immunosensors (2, 

133) by sensing any TNFα released in the periphery during the immune response and 

during inflammation, either by being in contact with TNFα secreting cells or by being 

exposed to circulating TNFα. For example, TNFα contributes to nerve growth factor 

(NGF)-dependent neuronal cell death during development (134). Neutralizing 

antibodies against either TNFα or TNFR1 rescued many sensory neurons following 

NGF deprivation in vitro (134). Continuous presence of TNFα is required for 

preservation of synaptic strength at excitatory synapses. TNFα enhances synaptic 

efficacy by increasing surface expression of AMPA receptors (135). Preventing the 

actions of endogenous TNFα has the opposite effects. Through its effects on AMPA 

receptor trafficking, TNFα may play a role in synaptic plasticity and modulating 

responses to neural injury (135). Very recently, however, a neuronal protective effect of 

TNFα in glutamate-induced neuronal cell death has been demonstrated in neuron-

microglia cocultures (136). 

Taken together, the neuronal expression of TNFR1 but not of TNFR2 in DRG 

strongly suggests that endogenous and exogenous TNFα are likely to influence primary 
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sensory functions and neurotransmission directly by acting on TNFR1, both at the level 

of cell bodies and at the terminals in DRG and periphery. Similar considerations apply 

to the spinal cord where TNFα can be synthesized by and released from glial cells (50, 

137, 138). The non-neuronal expression of both TNFR1 and TNFR2 in DRG and their 

plasticity after LPS indicate that endogenous and exogenous TNFα would activate the 

non-neuronal cells via both TNFR1 and TNFR2. The activation of these non-neuronal 

cells is likely to result in the release of TNFα and other mediators, which can be 

expected to directly act in a paracrine manner on primary sensory neurons (Fig. 24 and 

Fig. 26).  

4.2.4 Cellular source of TNFα in rat dorsal root ganglion 

In this study it was shown that systemic application of LPS induces the expression of 

TNFα mRNA in DRG non-neuronal cells. These TNFα  expressing cells most likely 

represent resident macrophages or dendritic cells but may also include mast cells, i.e. 

cell types known to occur in DRG and shown to be capable of TNF synthesis (25, 139-

142). In the peripheral nervous system TNFα has been demonstrated in macrophages 

(139), mast cells (142), Schwann cells (25, 141) and fibroblasts (140). To 

unequivocally determine the cellular identity of the non-neuronal cells expressing 

TNFα double labeling studies at the mRNA and protein level need to be performed.  

Several studies have described the presence and axonal transport of TNFα in 

DRG neurons (27-29). Based on immunocytochemistry, TNFα has been reported to be 

present in a subpopulation of primary afferents after chronic constriction injury (CCI) 

of the sciatic nerve (27, 28) and neuronal biosynthesis of TNFα has been proposed.  An 

increase of TNFα mRNA in rat DRG after nerve injury has been reported but the 

cellular source of TNFα synthesis has not been determined (143). If the view that 

TNFα protein is synthesized by DRG sensory neurons is correct, TNFα mRNA should 

be expressed by DRG neurons. Contrary to the assumptions in the literature that DRG 

neurons synthesize TNFα the present study provides no evidence for but major 

evidence against TNFα gene expression in DRG neurons. Sensitive and specific 

radioactive ISH revealed neither constitutive nor LPS-induced expression of TNFα 

mRNA in rat DRG neurons. Using the sensitive RT-PCR method on RNA extracts of 

microdissected DRG cells, TNFα transcripts were easily detected in DRG non-neuronal 

cells of the rats 3h after LPS treatment but not in DRG neurons of normal or LPS-
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treated rats. This conforms well to similar expression pattern as revealed by in situ 

hybridization in this study which demonstrated TNFα to be clearly restricted to non-

neuronal cells. There is a theoretical possibility that the presence of immunostained 

TNFα protein in DRG neurons as reported by Schäfers et al. (28, 29) and by Shubayev 

and Myers (27) could be due to neuronal uptake of TNFα. However, direct evidence for 

TNFα uptake by DRG neurons is missing. TNFα originating from the circulation or 

from juxtaneuronal non-neuronal cells could bind to neuronal TNFR1 with subsequent 

internalization resulting in the presence of immunostainable TNFα in DRG neurons. 

Surprisingly, the authors claiming the presence of specific TNFα immunoreactivity did 

not comment on TNFα immostaining in non-neuronal cells. Therefore, the total lack of 

TNFα mRNA from DRG neurons as unequivocally revealed in this study may rather 

point to the conclusion that the reported TNFα immunostaining in DRG neurons is non-

specific. Therefore, the view of TNFα biosynthesis in DRG neurons should be 

dismissed. 

 

 

 

Fig. 24 Schematic diagram demonstrating the cellular and molecular basis of 
TNFα-mediated signaling in primary sensory neurons and non-neuronal cells in 
rat DRG 

TNFR1 is expressed in all DRG neurons. Both TNFR1 and TNFR2 are expressed in DRG non-neuronal 
cells. LPS induces expression of TNFα that occurs exclusively in non-neuronal cells. Endogenous or 
exogenous TNFα is likely to directly act on DRG neurons via TNFR1, both at the level of cell bodies and 
at the terminals inside DRG and in the periphery. Similar considerations apply to the spinal cord where 
TNFα can be synthesized by and released from glial cells. In addition, endogenous and exogenous TNFα 
can be expected to act on DRG non-neuronal cells by acting on TNFR1 and/or TNFR2. TNFR1 
expressing DRG neurons may function as immunosensors to sense TNF during immune responses or 
inflammation. For more details and references see related text. 
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4.3 Functional implications of IL-1β and IL-1R1 expression in rat 

dorsal root ganglion 

4.3.1 Cellular source of IL-1β in rat dorsal root ganglion 

The present study clearly shows that LPS-induced expression of IL-1β mRNA occurs in 

DRG non-neuronal cells and provides strong evidence against expression of IL-1β 

mRNA in DRG neurons. Previously, using less sensitive in situ hybridization with non-

radioactive (digoxigenin) labeled probes and immunocytochemistry, Copray and 

coworkers have reported that IL-1β mRNA and IL-1β protein are expressed in about 

70% of rat DRG neurons but did not comment on IL-1β expression in DRG non-

neuronal cells (82). This is in contrast to the present study, which demonstrated by very 

sensitive ISH with radioactive labeled probes, that hybridization signals for IL-1β could 

be detected neither in DRG neurons of control rats nor in DRG neurons of LPS-treated 

rats. Further evidence for absence of IL-1β expression in DRG neurons was provided 

by the highly sensitive method of RT-PCR analysis of extracts of microdissected DRG 

neurons of both control rats and LPS-treated rats which consistently failed to detect IL-

1β transcripts. Therefore, it is concluded that LPS-induced expression of IL-1β mRNA 

in rat DRG occurs exclusively in non-neuronal cells with no constitutive or LPS-

inducible expression of IL-1β mRNA in DRG neurons. This obvious discrepancy to the 

data by Copray et al. (82) can be explained by the following considerations. It is 

conceivable that IL-1β immunostaining demonstrated by Copray and coworkers (82) is 

due to uptake of IL-1β by DRG neurons from the circulation or non-neuronal local cells. 

On the other hand, non-radioactive in situ hybridization involves a step of 

immunocytochemistry to visualize digoxigenin-labeled probes with anti-digoxigenin 

antibodies which imply the possibility for non-specific overstaining of DRG neurons. 

Given the proven absence of IL-1β mRNA from DRG neurons in this study, however, 

the view of DRG neurons expressing IL-1β should be dismissed. 

4.3.2 Possible roles of IL-1R1 expression in neuronal and non-neuronal 

cells of rat dorsal root ganglion 

The present study is the first to clearly show that IL-1R1 mRNA is constitutively 

expressed in a subpopulation of rat DRG neurons and in some DRG non-neuronal cells, 

too. Previously, Copray and coworkers have demonstrated that IL-1R1 is expressed in 
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virtually all DRG neurons and all non-neuronal DRG cells using ISH with non-

radioactive (digoxigenin) labeled probes (82). In this study, however, IL-1R1 mRNA 

could be detected neither in DRG neurons nor in DRG non-neuronal cells when using 

ISH with single radioactive (35S-UTP) labeled probes (data not shown). It was 

necessary to use the more sensitive method of ISH with double radioactive (35S-CTP 

and 35S-UTP) labeled probes, to reveal IL-1RI mRNA in a specific subset of DRG 

neurons and DRG non-neuronal cells. In contrast to the data by Copray et al. (82), there 

was no evidence for pan-neuronal and pan-non-neuronal expression of IL-1R1 in DRG. 

By demonstrating substantial coincidence of IL-1R1 expressing neurons with 

presumed nociceptive neurons expressing VR1, SP or CGRP in rat DRG, the present 

study has provided a possible mechanism for a direct influence of endogenous and 

exogenous IL-1β on DRG neurons to evoke nociceptive responses. Indeed, blocking of 

IL-1R1 reduces pain associated behavior (59, 60, 90-92, 144, 145). Using IL-1ra it has 

been demonstrated that endogenous IL-1β is involved in inflammatory hyperalgesia 

produced by intraplantar injection of complete Freund’s adjuvant, or endotoxin in rats 

(93, 146). Peripheral administration of IL-1β causes hyperalgesia, presumably due to 

activation of peripheral sensory fibers (92). Electrophysiological studies have shown 

that small diameter cutaneous nerves are activated by local injection of IL-1β in rats 

(92). 

Furthermore, coexpression of IL-1R1 with CGRP and SP in presumed 

nociceptive DRG neurons suggests that endogenous and exogenous IL-1β stimulated 

the release of these neuropeptides from DRG neurons and modulated neurogenic 

inflammation by direct actions on IL-1R1 bearing sensory neurons. Indeed, IL-1β has 

been shown to cause the releasing of CGRP (55) and SP (61, 62). A recent report by 

Opree and Kress suggests that IL-1β can induce a pronounced and transient 

sensitization of the heat-evoked CGRP release from nociceptors in vitro in the rat skin 

model (55). IL-1β in skin can induce the release of substance P (SP) from peripheral 

nerve terminals (147). SP is able to degranulate mast cells (148), stimulates 

macrophages to release TNFα, IL-1β, and IL-6 (149), and induces inflammatory 

responses in the skin (150). In cultured DRG neurons, IL-1β appeared to induce the 

release of substance P (61, 62). Coexpression of IL-1R1 with VR1 in the presumed 

nociceptive DRG neurons suggests the possibility that endogenous and exogenous IL-

1β directly sensitizes the VR1 positive neurons to mediate noxious heat in nociceptors 
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during inflammation. It has been shown that capsaicin-induced vasodilatation is 

enhanced by IL-1β (151). However, according to the percentage of IL-1R1 expressing 

DRG neurons and the percentage of DRG neurons simultaneously expressing IL-1R1 

and CGRP, SP or VR1 (Fig. 25), there are some DRG neurons expressing IL-1R1 but 

not expressing CGRP, SP or VR1. This indicates that the neuronally expressed IL-1R1 

may be involved in a broder role than pain. 

Moreover, presumed central terminals of IL-1R1 expressing DRG neurons 

could be the target of IL-1β synthesized by and released from spinal glial cells during 

spinal cord injury or inflammation (50, 152). However, both nociceptive (50, 137) and 

antinociceptive (153) effects of spinal IL-1β have been reported. Therefore, nociceptive 

and antinociceptive roles of spinal IL-1β need to be further clarified. 

The non-neuronal expression of IL-1R1 in DRG demonstrated in this study also 

suggests the possibility of indirect effects of IL-1β on primary sensory neurons. IL-1β 

has been shown to enhance the neurite regeneration from transected nerve terminals in 

cultured adult DRG explants via stimulating surrounding non-neuronal cells to secrete 

neurotrophic factors (60). The cutaneous levels of nerve growth factor (NGF) are 

increased after intraplantar injection of IL-1β in rats (60, 93). NGF is known to play a 

major role in the development of inflammatory hyperalgesia (154, 155).  

Taken together, the evidence provided by this study strongly suggests that 

endogenous and exogenous IL-1β is likely to influence primary sensory 

neurotransmission especially that related to nociception and neurogenic inflammation 

by directly acting on IL-1R1 expressing DRG neurons or by indirectly acting on IL-

1R1 expressing non-neuronal cells which then release other mediators to act on primary 

sensory neurons. Endogenous and exogenous IL-1β is likely to act on primary sensory 

neurons in a paracrine manner and the non-neuronal cells in an autocrine and/or 

paracrine manner (Fig. 25 and Fig. 26). 
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Fig. 25 Schematic diagram demonstrating the cellular and molecular basis of IL-
1β-mediated signaling in primary sensory neurons and non-neuronal cells in rat 
DRG 
IL-1R1 is expressed in a subset of rat DRG neurons and in non-neuronal cells as well. LPS induces 
expression of IL-1β that occurs exclusively in non-neuronal cells. Endogenous or exogenous IL-1β may 
directly act on DRG neurons via the neuronally expressed IL-1R1, both at the level of cell bodies and at 
the terminals inside DRG, in the periphery and in the CNS especially in the spinal cord, where IL-1β can 
be synthesized by and released from glial cells. In the periphery multiple sources for the synthesis and 
release of IL-1β are known, especially macrophages. In addition, endogenous and exogenous IL-1β can 
be expected to act on DRG non-neuronal cells via IL-1R1 expressed by non-neuronal cells. For more 
details and references see related text.  

4.4 Functional implications of TLR4 and CD14 expression in rat 

dorsal root ganglion 

For the first time, this study has shown that the LPS receptor TLR4 is expressed in a 

subset of DRG neurons and that the LPS receptor accessory protein CD14 is totally 

absent from DRG neurons both in control rats and in LPS-treated rats. TLR4 and CD14 

are the components of the receptor complex for bacterial endotoxin (LPS) (103, 104, 

156, 157). Recent studies suggest that TLR4 is the functional receptor for LPS (103-

106). This discovery was made by positional cloning of the Lps gene in the LPS-non-

responsive C3H/HeJ mouse strain (105, 106), and was confirmed in TLR4 knockout 

mice (104). The expression of TLR4 in DRG neurons and the absence of CD14 from 

DRG neurons suggest that LPS may directly activate primary DRG sensory neurons via 

TLR4. As DRG neurons were shown to lack CD14 the question arises whether soluble 

CD14 (sCD14) that could be provided from the serum is required. The sCD14 has been 

shown to be required for TLR4-dependent recognition of lipopolysaccharide by 
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epithelial cells (158). Whether activation of primary sensory neurons by LPS really 

requires sCD14 remains to be investigated.  

By demonstrating the expression of TLR4 on presumed nociceptive neurons 

coding for CGRP, SP or VR1 the present study provides substantial evidence for the 

possibility that LPS directly activates nociceptive DRG neurons and thus can directly 

cause nociceptive behavior. Furthermore, LPS could directly influence neuropeptide 

release from peripheral nerve endings of peptidergic sensory neurons during the course 

of neurogenic inflammation. In fact LPS has been shown to induce hyperalgesia 

associated with inflammation (14, 50, 91, 107-110). Additionally, LPS has been 

reported to be a potent stimulus for the systemic release of CGRP in rat and pig (159-

161). Accumulation of plasma CGRP is greatly diminished in endotoxin-tolerant rats 

exposed to endotoxin (161). LPS-induced release of CGRP from cultured rat DRG 

neurons has also been reported (99). LPS has been shown to induce the release of SP in 

experimental cystitis in mice (162). The coexpression of TLR4 and VR1 demonstrated 

in this thesis suggests that LPS may influence heat sensation of DRG neurons perhaps 

by interference with intracellular signal transduction cascades of TLR4 and VR1. In 

fact LPS has been shown to reduce the thermal nociceptive thresholds in rats (108).  

The constitutive expression of TLR4 in non-neuronal DRG cells and the LPS-

induced expression of CD14 in non-neuronal DRG cells revealed in this study indicate 

that indirect actions of LPS resulting in activation of primary DRG sensory neurons are 

also possible. LPS may act on DRG non-neuronal cells via TLR4 and CD14 to cause 

increased synthesis and release of TNFα and IL-1β as well as of many other mediators. 

These mediators may then directly act on DRG sensory neurons. Apparently both IL-1β 

and TNFα are crucial for the induction of LPS hyperalgesia (14, 59, 109, 110, 129). 

LPS-induced hyperalgesia is blocked either by IL-1 receptor antagonist (IL-1ra) or by 

TNF binding protein, which functionally acts as a TNFα antagonist (14, 91). Therefore, 

the LPS-induced pain or hyperalgesia is partially contributed by endogenous IL-1β and 

TNFα. The presence of IL-1R1 and TNFR1 in primary nociceptive sensory neurons in 

rat DRG provides a reasonable explaination for these effects.  

The enhanced expression of CD14 by LPS in DRG non-neuronal cells may 

facilitate the responses of primary sensory neurons to LPS. In fact a priming effect of 

LPS to enhance endotoxin-induced thermal hyperalgesia and mechanical allodynia after 

a second application of LPS as compared with a single dose of LPS has been reported 
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(108). Intraperitoneal administration of LPS had no significant effect on either thermal 

or mechanical thresholds in the first few hours after injection; however, priming rats by 

i.p. LPS produced a reduction in both thermal nociceptive thresholds and mechanical 

response thresholds in rats given a subsequent i.p. injection of LPS (108).  

Taken together, the neuronal expression of TLR4 in DRG strongly suggests that 

LPS can directly activate primary sensory neurons resulting in increased nociceptive 

behavior and neurogenic inflammation. This implicates that the primary sensory 

neurons may directly sense LPS liberated during bacterial infections. These data 

together with a recent report showing E. coli-induced sickness at a time with no 

detectable increases in circulating cytokines or endotoxin (96) suggests a neural 

pathway from the periphery to the brain during gram-negative bacterial infection. In 

addition indirect effects via non-neuronal DRG cells endowed with TLR4 have to be 

taken into account (Fig.26). 

 

 

Fig. 26 Schematic diagram demonstrating the cellular and molecular basis of LPS-
mediated effects on primary sensory neurons and non-neuronal cells in rat DRG 
The LPS receptor TLR4 is expressed in a subset of rat DRG neurons while the LPS accessory protein 
CD14 is absent from neurons. Both TLR4 and CD14 are expressed in DRG non-neuronal cells. LPS 
entering from the blood stream is likely to directly act on DRG neurons via TLR4, both at the level of 
cell bodies and at the terminals. In addition, LPS can be expected to act on DRG non-neuronal cells by 
acting on TLR4 and CD14. This is likely to result in the induction or enhancement of biosynthesis and 
release of TNFα and IL-1β in the non-neuronal cells. These mediators would then act on DRG neurons 
in a paracrine manner and act on DRG non-neuronal cells in a paracrine and/or autocrine manner. 
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5 Summary 
The proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin 1 

beta (IL-1β) as well as bacterial lipopolysaccharide (LPS) are known to affect primary 

afferent functions related to pain and neurogenic inflammation. However, it is not 

completely understood how these molecules signal to primary sensory neurons of the 

dorsal root ganglion (DRG). In order to clarify this question RT-PCR, Northern blot, 

Western blot, RT-PCR in combination with laser capture microdissection (LCM) and in 

situ hybridization (ISH) with radioactive-labeled probes as well as double ISH were 

employed. These methods were used to determine the cell-specific expression pattern of 

TNFα, IL-1β and their functional receptors as well as of LPS-related receptors in 

neuronal and non-neuronal cells of rat DRG as well as in the sensory cell line F11. 

The following essential new findings and conclusions have been obtained. 

(1) For the first time, the rat TNFR2 gene was characterized with 10 exons and 9 

introns, which are located in chromosome 5q36. Three cDNAs for the rat TNFR2 

gene were identified. Their full coding region was found to be identical. Three 

transcripts of the rat TNFR2 gene were observed in neural tissues (i.e. DRG, 

spinal cord and brain) and in peripheral tissues (i.e. spleen, lung and kidney). The 

regulation of TNFR2 transcripts by LPS seemed to occur in a tissue- and cell-

specific manner as demonstrated for the spleen and DRG. 

(2) TNFR1 mRNA was found to be constitutively expressed in all DRG neurons 

including presumed nociceptive neurons coding for neuropeptides calcitonin 

gene-related peptide (CGRP), substance P (SP) or vanilloid receptor 1 (VR1) and 

to be increased after LPS. In contrast to the literature, TNFR2 mRNA was found 

to be totally absent from DRG neurons of control rats and of rats after LPS 

challenge. TNFR1 mRNA and TNFR2 mRNA were found to be constitutively 

expressed in DRG non-neuronal cells and to be increased after systemic LPS. The 

data provided by this study suggest that TNFα may influence DRG sensory 

functions by directly acting on TNFR1 in neurons or by indirectly acting on both 

TNFR1 and TNFR2 in non-neuronal cells. 

(3) Like DRG neurons, the sensory cell line F-11 was found to express TNFR1 but 

not TNFR2. Therefore, the F11 cell line is uniquely suited to study TNFR1-

mediated intracellular signaling and cellular functions independent from that of 

TNFR2 effects. 
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(4) There was no evidence for but strong evidence against constitutive or LPS-

induced expression of TNFα and IL-1β mRNAs in DRG neurons. LPS-induced 

expression of TNFα and IL-1β mRNAs in DRG occurred exclusively in DRG 

non-neuronal cells. Thus, the previously reported concept that TNFα and IL-1β 

are synthesized by DRG neurons should be dismissed. To the contrary, the present 

data indicate that endogenous TNFα and IL-1β in DRG are exclusively 

synthesized by non-neuronal cells implicating that they may act on DRG neurons 

in a paracrine manner. 

(5) In contrast to a previous report indicating that IL-1R1 is expressed in all DRG 

cells, the present study demonstrated that IL-1R1 mRNA is expressed only in a 

subpopulation of DRG neurons and in some DRG non-neuronal cells as well. IL-

1R1 exhibited substantial coincidence with presumed nociceptive neurons 

expressing VR1, SP or CGRP. The results of the present study suggest that 

endogenous and exogenous IL-1β may directly activate DRG neurons via IL-1R1 

to preferentially modulate nociceptive functions. In addition, IL-1β may act on 

DRG non-neuronal cells to cause further release of IL-1β. 

(6) For the first time, the functional LPS receptor-TLR4 was demonstrated to be 

expressed in DRG neuronal and non-neuronal cells at the mRNA level. The 

neuronal expression of TLR4 was limited to a subset of DRG neurons where it 

exhibited substantial coincidence with presumed nociceptive neurons expressing 

VR1, SP or CGRP. The mRNA coding for the LPS receptor accessory protein 

CD14 was totally absent from DRG neurons of control rats and of rats after 

systemic LPS. LPS-induced expression of CD14 occurred in DRG non-neuronal 

cells. The present data indicate that LPS may directly act on primary sensory 

neurons via TLR4 or indirectly act on primary sensory neurons via TLR4 and 

CD14. This implies that primary sensory neurons of DRG may detect an 

infectious state by directly sensing LPS via TLR4. 

Taken together, this study provides new insights into the cellular and molecular basis of 

TNFα, IL-1β and LPS mediated primary sensory neurotransmission related to pain and 

neurogenic inflammation. In addition, the present study provides new evidence that the 

primary sensory neurons of DRG may have an important role as immunosensors to 

detect and control microbial infection and inflammation. 
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7 Abbreviations 
All units of measurement are abbreviated according to the International System of units 
(SI). 

A Adenosine 
ATP Adenosine triphosphate 
BCIP 5-bromo-4-chloro-3-indolyl-phosphate 
bp Base pairs 
BSA Bovine serum albumin 
C Cytosine 
cDNA Complementary DNA 
CNS central nervous system 
DEPC Diethyl pyrocarbonate 
DMEM Dulbecco’s Minimal Essential Medium 
DNA Deoxyribonucleic acid 
DNase Deoxyribonuclease 
dNTPs 2-deoxynucleoside-5-triphosphates 
DTT Dithiothreitol 
et al. and others 
EDTA Ethylene diaminetetraacetic acid 
EST Expressed Sequence Tags 
EtBr Ethidium bromide 
FBS Fetal bovine serum 
G Guanosine 
GPI glycol-sylphosphatidylinositol 
HEPES (2-Hydroxyethyl)-1-piperazineethanesulphonic acid 
HRP Horse radish peroxidase 
IL-1 Interleukin 1 
IL-1α Alpha interleukin 1 
IL-1β Beta interleukin 1 
IL-1R1 IL-1 receptor type 1; 
IL-1R2 IL-1 receptor type 2 
IL-1ra IL-1 receptor antagonist; 
IPTG Isopropyl-β-D-thiogalactoside 
JNK c-Jun N-terminal kinase 
kb Kilobase pairs 
kD Kilodaltons 
LBP LPS-binding protein 
LPS lipopolysaccharide 
LRR leucine-rich repeats 
mCD14 membrane CD14 
MyD88 myeloid differentiation primary response gene 
NBT Nitroblue tetrazolium salt 
NFκB Nuclear factor kappa B 
p38 p38 MAPK 
PAGE Polyacrylamide gel electrophoresis 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
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PMSF Phenylmethylsulfonyl fluoride 
RNA Ribonucleic acid 
RNase Ribonuclease 
rpm Revolutions per minute 
RT-PCR Reverse transcription PCR 
sCD14 soluble CD14 
SDS Sodium-dodecyl-sulphate 
SSC Standard sodium citrate buffer 
T Thymine 
TAE Tris-acetate-EDTA buffer 
TBE Tris-borate-EDTA buffer 
TE Tris-EDTA 
TEA Triethanolamine 
TESAP 3-(Triethoxysilyl) propylamine 
TLR toll-like receptor 
TNF tumor necrosis factor 
TNFR TNF receptor 
Tris Tris(hydroxymethyl)-amino-methane 
U Unit 
UV Ultraviolet 
X-gal 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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