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I. Summary 

Molecular motors are protein machines, which power almost all forms of 

movement in the living world. Among the best known are the motors that hydrolyze 

ATP and use the derived energy to generate force. They are involved in a variety of 

diverse cellular functions as vesicle and organelle transport, cytoskeleton dynamics, 

morphogenesis, polarized growth, cell movements, spindle formation, chromosome 

movement, nuclear fusion, and signal transduction. Three superfamilies of molecular 

motors, kinesins, dyneins, and myosins, have so far been well characterized. These 

motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in 

the case of myosins) as tracks to transport cargo materials within a cell. 

Analysis of fungal genomes revealed at least 10 distinct kinesins in filamentous 

fungi, some of which are not found in yeasts. We used the motor domain of 

conventional kinesin (KinA) from Aspergillus nidulans to perfom BLAST searches at 

the public A. nidulans genome database, at the Whitehead Center for Genome 

Research (Cambridge USA), and identified eleven putative kinesin motors. They 

grouped into nine of the eleven families, two kinesins being found in the Unc104 

familiy and interestingly, one did not fall into any of the known families.  

The present work analyses the function of a kinesin-like protein in A. nidulans, 

KipB, which is a member of the Kip3 kinesin family. This family includes one 

representative in Saccharomyces cerevisiae (Kip3, the family founding member), two 

in Schizosaccharomyces pombe, Klp5 and Klp6 and one in Drosophila, Klp67A, the 

single one reported so far for higher eukaryotes in this family. Kip3 kinesins are 

implicated in microtubule disassembly and are required for chromosome segregation 

in mitosis and meiosis.  

To assess the function of KipB kinesin in A. nidulans, a kipB disruption strain was 

constructed. Analysis of the ∆kipB mutant revealed new features concerning the 

cellular functions of Kip3 proteins, but also some conserved ones. kipB is not 

essential for vegetative growth, and meiosis and ascospore formation were not 

affected in the ∆kipB mutant. 

The KipB protein was shown to be involved in the turnover of interphase 

cytoplasmic, mitotic and astral microtubules. ∆kipB mutants are less sensitive to the 
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microtubule-destabilizing drug benomyl, and the microtubule cytoskeleton of 

interphase cells in ∆kipB mutants appears altered. Interestingly, spindle morphology 

and positioning were severely affected. Spindles were highly mobile, could overpass 

each other, moved over long distances through the cytoplasm, and displayed in 64% 

of the cases an extremely bent shape, latter feature being the first time reported for 

Kip3 kinesins. Mitotic progression was delayed in the ∆kipB mutant and a higher 

number of cytoplasmic microtubules remained intact during mitosis. ∆kipB 

heterozygous strains showed an increased instability of diploid nuclei, which proved 

once more KipB involvement in mitosis, along with ∆kipB clear genetic interaction 

with a mutation in another mitotic kinesin in A. nidulans, bimC4. 

An N-terminal GFP-KipB construct localized to cytoplasmic microtubules in 

interphase cells and to spindle and astral microtubules during mitosis, in a 

discontinuous pattern. Speckles of GFP-KipB appeared to be aligned in the cell. 

Time-lapse video microscopy indicated that the spots were moving independently 

towards the microtubule plus ends. This advanced the hypothesis that KipB could 

display processivity and intrinsic motility along microtubules, or that other kinesins 

involved in organelle motility are able to target the KipB protein to the microtubule 

plus ends. In the case of C-terminally truncated GFP-KipB protein versions, a 

stronger GFP signal was obtained and colocalization with α-tubulin-GFP revealed 

that they uniformly stain cytoplasmic, mitotic and astral microtubules. This suggests 

that the C-terminus is important for the correct localization and the movement of KipB 

protein along microtubules. 
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Zusammenfassung 

Molekulare Motoren sind Maschinen, die fast alle Bewegungsvorgänge in 

lebenden Organismen antreiben. Die am besten untersuchten Motoren hydrolysieren 

ATP und nutzen die Energie, um Kraft zu erzeugen. Sie sind an einer Vielzahl von 

zellulären Funktionen beteiligt, wie z.B. dem Vesikel- und Organelltransport, der 

Steuerung der Cytoskelettdynamik, der Morphogenese, dem polaren Wachstum, 

Zellbewegungen, der Spindelbildung, der Chromsomenbewegung, der Zellkernfusion 

und der Singaltransduktion. Drei Superfamilien von molekularen Motoren, Kinesin, 

Dynein und Myosin, sind sehr gut untersucht. Diese Motoren benutzen Mikrotubuli 

(im Falle von Kinesin und Dynein) oder Aktinfilamente (im Falle von Myosin) als 

Schienen, um Cargoes in der Zelle zu transportieren. 

Die Analyse von pilzlichen Genomen ergab das Vorhandensein von mindestens 

10 verschiedenen Kinesinen in filamentösen Pilzen, von denen einige nicht in der 

Bäckerhefe vorkommen. Eine BLAST-Suche der genomischen A. nidulans 

Datenbank am Whitehead Center for Genome Research (Cambridge, USA) mittels 

der Motordomäne von konventionellem Kinesin (KinA) aus A. nidulans ergab elf 

mögliche Kinesinmotoren, die in neun der elf Familien eingruppiert werden konnten. 

Interessanterweise wurden zwei Vertreter der Unc104-Familie gefunden und ein A. 

nidulans-Kinesin konnte in keine der beschriebenen Familien eingeordnet werden. 

In der vorliegenden Arbeit wurde das kinesin-ähnliche Protein, KipB, in Aspergillus 

nidulans untersucht. KipB gehört zur Familie der Kip3 Kinesine. Diese Familie besitzt 

einen Vertreter in Saccharomyces cerevisiae (Kip3, das namensgebende Kinesin), 

zwei in Schizosaccharomyces pombe, Klp5 und Klp6 und einen in Drosophila, 

Klp67A, das einzige bekannte Kinesin dieser Familie in höheren Eukaryoten. Kip3-

Kinesine sind an der Mikrotubulidepolymerisierung beteiligt, und werden für die 

Chromsomentrennung während der Mitose und Meiose benötigt. 

Das kipB-Gen wurde im Genom von A. nidulans deletiert und der Phänotyp 

untersucht. Das Gen war nicht essentiell für das vegetative Wachstum oder die 

asexuelle oder sexuelle Differenzierung. In der Mutante war allerdings die Dynamik 

aller Mikrotubuli in der Zelle, wie z.B. der interphase, cytoplasmatischen, der 

mitotischen und der astralen Mikrobutuli gestört. ∆kipB-Mutanten waren weniger 
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empfindlich gegenüber dem mikrotubuli-destabilisierenden Agens Benomyl und das 

Mikrotubulicytoskelett der Zellen erschien verändert. Interessanterweise war die 

Spindelpositionierung und die Spindelmorphologie stark beeinträchtigt. Die Spindeln 

waren sehr mobil und bewegten sich über lange Strecken im Cytoplasma, wobei sie 

sich teilweise aneinander vorbei bewegten. In 64 % der Fälle erschien die Spindel 

stark gebogen. Der Verlauf der Mitose war verlangsamt und cytoplasmatische 

Mikrotubuli waren auch während der Mitose zu sehen, obwohl diese in Wildtypzellen 

depolymerisiert werden. ∆kipB-Mutantenstämme zeigten eine erhöhte Instabilität der 

diploiden Zellkerne, was wiederum eine Rolle von KipB in der Mitose belegt. 

Ausserdem wurde eine genetische Interaktion mit einer Mutation in einem weiteren 

Kinesingen, bimC4, gefunden.  

Das KipB-Protein wurde durch eine N-terminale GFP-Fusion subzellulär in einer 

punktförmigen Verteilung entlang von cytoplasmatischen Mikrotubuli in 

Interphasezellen und an Spindel- und astralen Mikrotubli während der Mitose, 

lokalisiert. Die GFP-KipB Punkte bewegten sich unabhängig voneinander entlang der 

Mikrotubuli. Diese Bewegung könnte durch eine eigene Motoraktivität oder durch 

andere Motoren hervorgerufen werden. Wenn das Protein zu den Mikrotubuli-

Plusenden gelangt, depolymerisiert es die Filamente. C-terminal verkürzte Versionen 

von KipB, die mit GFP fusioniert wurden, lokalisierten gleichmäßig entlang der 

Mikrotubuli. 
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Rezumat 

Motoarele moleculare sunt maşini proteice care guvernează aproape toate formele 

de mişcare din lumea vie. Printre cele mai cunoscute dintre ele se numără şi 

motoarele care hidrolizează ATP şi folosesc energia obţinută astfel pentru a genera 
forţă. Aceste motoare sunt implicate in multiple funcţii celulare, cum ar fi transportul 
veziculelor şi al organitelor, dinamica citoscheletului celular, morfogeneza, fuziunea 

nucleelor in celulă, precum şi transmiterea semnalelor celulare. In momentul de faţă, 
trei superfamilii de motoare moleculare au fost caracterizate: kinezinele, dineinele si 
miozinele. Kinezinele si dineinele folosesc microtubulii, iar miozinele filamentele de 

actină pentru a asigura transportul biomoleculelor in interiorul celulei. 
Analiza genomurilor din fungi a dezvăluit prezenţa a cel puţin 10 kinezine in fungii 

filamentoşi, dintre care câteva nu se regăsesc in drojdii. Noi am folosit domeniul 

motor al kinezinei convenţionale (kinA) din Aspergillus nidulans pentru a efectua 

cautări de tip BLAST in baza publică de date a genomului din A. nidulans la 
Whitehead Center for Genome Research, în Cambridge USA şi am putut identifica 

11 potenţiale kinezine motoare. Ele se grupează in 9 din cele 11 familii, două fiind 

găsite in familia de kinezine Unc-104 si în mod interesant, una dintre ele nu s-a 
grupat in nici una dintre familiile cunoscute. 

În prezenta lucrare se analizează funcţia unei proteine de tip kinezină (în A. 
nidulans) numită kipB, aceasta facând parte din familia de kinezine Kip3. Această 

familie cuprinde un reprezentant in Saccharomyces cerevisiae (Kip3, kinezina care a 

fondat familia), doi in Schizosaccharomyces pombe, Klp5 and Klp6 si unul in 
Drosophila, Klp67A, de altfel singura kinezină din această familie raportată până in 
prezent in eucariote. Kinezinele din familia Kip3 sunt implicate in dezasamblarea 

microtubulilor şi sunt necesare pentru segregarea cromozomilor in mitoză şi meioză.  
Pentru a stabili funcţia kinezinei KipB in A. nidulans s-a creat o tulpină mutantă în 

kipB (∆kipB), în care gena kipB a fost distrusă prin înlocuirea unei porţiuni a regiunii 

de transcripţie (ORF) cu gena argB pentru un marker nutritiv in A. nidulans. Analiza 
mutantului ∆kipB a dezvăluit elemente noi în ceea ce priveşte funcţia proteinelor de 

tip Kip3-kinezine, dar si anumite funcţii conservate in această familie. Gena kipB nu 

este esenţială pentru creşterea vegetativă a fungului A. nidulans, iar meioza si 
formarea ascosporilor nu au fost afectate in ∆kipB.  
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S-a demonstrat în lucrarea de faţă ca proteina KipB este implicată în stabillitatea 
microtubulilor citoplasmatici în interfază, dar şi în mitoză, în stabilitatea microtubulilor 
astrali. Mutanţii ∆kipB sunt mai puţin sensibili la o substanţă cu proprietatea de 

depolimerizare a microtubulilor numită benomyl, iar structura microtubulilor celulelor 

in interfază aparţinând tulpinei mutante apare modificată. Foarte interesant, 
poziţionarea şi morfologia fusului de diviziune sunt puternic afectate in acelaşi 
mutant. Fusurile de diviziune au apărut in ∆kipB extrem de mobile, cu capacitatea de 

a se dispune in paralel unele faţă de altele in lungimea hifei, iar forma acestora a fost 
în 64% din cazuri sever cubată. Aceste observaţii au fost in contrast cu forma şi 

comportarea fusurilor de diviziune în mitoză din forma sălbatică de A. nidulans, în 
care fusurile se dispun în locuri fixe şi la distanţe egale unele de altele, iar forma lor 
este dreaptă şi fără curburi. Progresia în mitoză a fost întârzâiată în ∆kipB, în plus, 

un număr crescut de microtubuli citoplasmatici a rămas intact si nedepolimerizat in 
celulă. Tulpinile heterozigote ∆kipB împreună cu forma sălbatică au prezentat o 

instabilitate crescută a nucleilor diploizi pentru benomyl, ceea ce a demonstrat încă o 
dată implicarea proteinei KipB în mitoză, alături de interacţiunea genetică a ∆kipB cu 

mutantul termosenzitiv bimC4, BimC fiind altă kinezină implicată în mitoză in A. 
nidulans.  

Localizarea subcelulară a kinezinei KipB s-a făcut prin intermediul unui construct 
genetic ce a constat in fuzionarea KipB cu o proteină-marker fluorescentă (GFP-
green fluorescent protein). Semnalul fluorescent s-a localizat in formă discontinuă 

punctată impreună cu microtubulii citoplasmatici în interfază si cu microtubulii astrali 

în mitoză. Observaţiile microscopice au indicat că punctele fluorescente se mişcă 
independent spre capătul plus (+) al microtubulilor. Aceasta a îndreptăţit ipoteza că 

kinezina KipB poate prezenta procesivitate şi motilitate de-a lungul microtubulilor, sau 

că alte kinezine implicate în mişcarea biomoleculeor in celulă pot direcţiona proteina 
KipB spre capătul plus (+) al microtubulilor. În cazul formelor de KipB incomplete în 
C-terminal, s-a observat un semnal GFP mai puternic, iar colocalizarea cu α-

tubulină-GFP a arătat ca aceste forme marchează microtubulii citoplasmatici, mitotici 

şi astrali în toată lungimea lor. Aceasta a sugerat că regiunea C-terminală a kinezinei 

KipB este importantă pentru localizarea corectă şi pentru mişcarea ei de-a lungul 
microtubulior. 
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II. Introduction 

A cell, like a metropolitan city, must organize and deal permanently with its 

restless macromolecule community. Designating meeting points and deciding the 

right timing for different molecules implicated in cell traffic are of fundamental 

importance in management of the processes inside the cell. Just as disruption of 

commercial traffic impairs the welfare of a city, defective molecular transport can 

result in developmental defects as well as cardiovascular and neuronal diseases 

(Vale & Milligan, 2000). 

Within every living cell exists a complex highway system of motors that move 

along filamentous tracks. Biomotors and the tracks they move on are ubiquitous in 

the myriad processes occurring within the cell. They are responsible for muscle 

contraction, cell division, and transport of vesicles. They also power bacteria’s 

flagella and the cilia within our lungs. These systems serve as host of other cellular 

functions, many of which we are only beginning to understand. Examples are the 

“highway systems” which serve structural, transport and motility purposes, and which 

also may provide a communication function across the intercellular environment. 

Interest in motor proteins has expanded enormously in recent years. They provide 

fascinating systems for understanding how proteins use ATP energy to power 

thermodynamically unfavourable events, like the unidirectional motion.  

From a cell biological perspective, these motors are involved in virtually every 

imaginable cell biological process (Fig. II.1). Their function involves well-known 

mechanical activities, such as mitosis, cytokinesis and cell migration. However, there 

are also some recently discovered molecular motors with unanticipated roles, such 

as involvement in signal transduction pathways (Schnapp, 2003).  

Landmark discoveries of cytoplasmic transport have been, and continue to be, 

made through advances in microscopy. The development of video-enhanced contrast 

microscopy in the early 1980s enabled the visualization of small membranous 

organelles (Allen et al., 1982) and large protein complexes (Kozminski et al., 1993). 

With this clearer view of the cell interior, the tremendous amount of directed 

cytoplasmic motion became apparent. The use of the green fluorescent protein for 

tagging organelles, proteins, and RNA led to another wave of discovery of 
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intracellular movement. In addition, recent genomic sequencing projects have 

uncovered the complete inventories of molecular motors in several organisms. Such 

data, combined with information from functional studies, are providing clues on the 

origins of the molecular motors and the intracellular transport strategies employed by 

various organisms. While prokaryotes contain cytoskeletal filaments, the cytoskeletal 

motors appear to be an early eukaryotic invention. The complexity of these so-called 

“Toolbox” motors expanded in higher eukaryotes through gene duplication, 

alternative splicing, and the addition of associated subunits, which enabled new 

cargoes to be transported. Remarkably, fungi, parasites, plants, and animals have 

distinct subsets of Toolbox motors in their genomes, suggesting an underlying 

diversity of strategies for intracellular transport (Vale, 2003). 

 

 

Fig. II.1: Summary of diverse roles of cytoskeletal motors. (1) Retrograde transport of 
centrosomal components. (2) Anterograde and retrograde transport of intermediate 
filaments. (3) Anterograde and retrograde transport of ribonucleoprotein (RNP) complexes. 
(4) Myosin, kinesin and dynein motors interact with components of the microtubule plus-end 
complex. (5) Anchorage of dynein at the actin-rich cell cortex. (6) Interaction of a kinesin-like 
protein with actin. (7) Catenin-mediated anchorage of dynein at adherens junctions. (Taken 
from Schliwa & Woehlke (2003)) 
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1. Cytoskeleton 

Cell movements are produced by large structures built of many different protein 

molecules, which together form the cytoskeleton. This is a distinct part of the cell: a 

cohesive meshwork of filaments formed by the self-assembly of protein molecules 

(Bray, 1992). The cytoskeleton of eukaryotic cells pervades the cytoplasm. It 

comprises three broad classes of proteins: actin filaments, microtubules and 

intermediate filaments. In addition to establishing cell and tissue shape, the 

cytoskeleton — along with associated motor proteins — influences a wide range of 

fundamental cellular functions, including cell migration, movement of organelles and 

cell division. The cytoskeleton is now no longer considered to be a rigid scaffold, but 

instead is viewed as a complex and dynamic network of protein filaments that can be 

modulated by internal and external cues. Because the present work analyses the 

function of a kinesin-like protein (KipB), which has strong influence onto the stability 

of microtubules in hyphae of Aspergillus nidulans, the following chapter will introduce 

briefly just this component of the cytoskeleton.  

Microtubules 

Microtubules are key actors in the cytoskeleton of eukaryotic cells. Together with 

actin filaments they play an important role in organising the spatial distribution of 

organelles within the cell and they can be either extremely stable as is the case in 

cilia and flagella or very dynamic as in the mitotic spindle. Microtubules are ∼25 nm 

diameter hollow tubes with walls made from tubulin heterodimers (α- and β-tubulin) 

interacting head-to-tail to form protofilaments aligned lengthwise along the 

microtubule (Fig. II.2). Microtubules in eukaryotic cells consist of thirteen 

protofilaments, some exceptions to this rule being noted, as microtubules with 8 to 20 

or more protofilaments in Caenorhabditis elegans (Savage et al., 1989). Microtubules 

have both a structural and a dynamic polarity. The structural polarity is conferred by 

the alignment of the tubulin heterodimer along the protofilament. During in vitro 

assembly, microtubules show a dynamic polarity with one end, called the plus end, 

growing and shrinking more quickly than the other. In the cell, microtubules grow out 

from the microtubule organizing centre (MTOC) towards the cell membrane with the 

plus end leading. They usually remain attached to the MTOC by their minus end. γ-
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tubulin, a protein highly homologous to the α/β-tubulins is also localized at the MTOC 

and plays an important role in microtubule nucleation by interacting with α-tubulin 

(Oakley, 2004). Microtubules are highly dynamic, and exhibit a nonequilibrium 

behavior termed dynamic instability. In this process, microtubules undergo rapid 

stochastic transitions between growth and shrinkage, due to the association and 

dissociation, respectively, of tubulin dimers from the microtubule ends. The transition 

from growing to shrinking is termed a catastrophe, whereas the reverse behavior is 

referred to as a rescue (Desai & Mitchison, 1997; Howard & Hyman, 2003) (Fig. II.2). 

 

Fig. II.2: Microtubule structure and dynamics. (A) Microtubule lattice. The α-subunit of 
tubulin is at its minus end and the β-subunit at the plus end. (B) Dynamic instability of 
microtubules. Microtubules growing out from a centrosome switch between phases of 
growing and shrinking. The figure shows a hypothetical aster at two different times. The 
different colours represent different microtubules. The red and yellow microtubules are 
shrinking at both times. The blue microtubule is growing at both times. The green 
microtubule, growing at the first time, has undergone a catastrophe by the second time. The 
brown microtubule, shrinking at the first time, has undergone a rescue by the second time. 
(Revised after Howard et al., (2000)).  

 

The microtubule networks provide directional pathways for dynein and kinesin and, 

together with these motors, engage in intracellular transport, the organisation of 

organelles in the cytoplasm and in cell division. (Wade et al., 1998). Microtubules 

function thus as (i) an internal scaffold that provides structural support and helps 

maintain the position of cytoplasmic organelles; (ii) the motile elements of cilia and 

flagella; (iii) a part of the molecular machinery that moves materials and organelles 
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from one part of a cell to another: (iv) active components in chromosome separation 

during mitosis and meiosis (Karp, 1996).  

2. Motor protein superfamilies 

Molecular motors are amazing biological machines that are responsible for most 

forms of movement we encounter in the cellular world. Three types of cytoplasmic 

motors, which form also three superfamilies are known: myosins, which move on 

actin filaments, and dyneins and kinesins, which use microtubules as tracks. The 

mechanism they use to convert chemical energy into mechanical work is both simple 

and ingenious. In all three motor classes, ATP hydrolysis causes a small 

conformational change in a globular motor domain that is amplified and translated 

into movement with the aid of accessory structural motifs. Additional domains outside 

the motor unit are responsible for dimerization, regulation and interactions with other 

molecules (Schliwa, 2003). 

The founding member of the myosin family, filament-forming class II muscle 

myosin, was discovered nearly a century ago, and its role in muscle contraction has 

been studied extensively. Because of the large amount of knowledge acquired 

regarding the properties, myosin II is referred to as “conventional” myosin; all other 

types of myosin are referred to as “unconventional” (Schliwa, 2003). Dynein was first 

discovered in cilia in the early 1960s and later shown to be present in the cytoplasm 

of all eukaryotic cells. Kinesin was identified in squid and mammalian brain in the mid 

1980s using in vitro motility assays (Vale et al., 1985).  

The affiliation to a motor superfamily is amino acid identity within the motor 

domain, a region of the polypeptide, which is responsible for force generation and is 

situated at the N-terminus. Albeit there are defined “signature” motifs in the regions 

that contact nucleotide or polymer, which display even greater identity, the overall 

amino acid identity for this domain is 20-60%. In the case of myosin, the motor 

domain consists of a region of about 800 amino acids that includes actin- and 

nucleotide-binding sites. Dynein exhibits a less precise perimeter of the motor 

domain, but conservation between family members extends over most of its large ~ 

4500 amino acids polypeptide chain. For kinesin, the conserved region containing the 
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microtubule- and nucleotide-binding regions is significantly smaller, and is 

represented by ~ 320 amino acids.  

The non-motor regions or “tail” domains can differ considerably in size, structure 

and amino acid sequences, particularly among members of the kinesin and myosin 

motor superfamilies. These domains are thought to play roles in determining the 

biological functions of the motor proteins, and confer unique self-assembly properties 

(e.g. oligomerization or filament formation) as well as binding interactions, as the 

connection to cargoes or attachment of motors to the membranes (Kreis & Vale, 

1999). However, relatively little is known about motor protein cargo, and even less is 

known about how motor proteins interact with their cargo or how this regulates 

transport. It is now well documented that motors can move many other types of 

cargo, including protein complexes and complexes of nucleic acids with proteins. The 

ability of motor proteins to transport such a wide array of cargo is due, in part, to the 

fact that the tail domains are quite divergent from one another. This has allowed them 

to evolve into adaptors, linking themselves to cargo through interactions with receptor 

proteins on the cargo surface (Karcher et al., 2002). 

3. Kinesins 

Although of the same importance and interest, dyneins and myosins will not be 

treated further in detail, because they do not represent the topic of this study. The 

focus will be instead oriented to the kinesin motor superfamily, with an emphasis on 

kinesin families in direct connection with the KipB kinesin analysed in the present 

work. 

The microtubule motor protein kinesin, also known as conventional kinesin, was 

identified in 1985 as the motile force underlying movement of particles along the 

microtubules of the giant axon of the squid (Vale et al., 1985). Kinesin was shown to 

be capable of binding to microtubules and, in the presence of ATP, of moving 

towards the fast polymerizing/depolymerizing plus ends of microtubules, representing 

the first cytoplasmic microtubule motor protein to be discovered. Kinesin motor 

proteins have been found in all eukaryotes examined to date, including the protista, 

fungi, invertebrates, animals and higher plants. The number of kinesins identified to 

date in genomes that have been fully sequenced and at least partially annotated 
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varies from 6 in budding yeast to 19 in C. elegans, 24 in Drosophila, 45 in humans 

and 61 in Arabidopsis (Endow, 2003).  

3.1. General structural features of kinesin motors 

In 1990, the first hint of the existence of a kinesin superfamily emerged when 

genes were discovered in S. cerevisiae (Meluh & Rose, 1990) and A. nidulans (Enos 

& Morris, 1990) that contain a 350 amino acid region, which is 30-40% identical to 

the motor domain of the first discovered kinesin (termed conventional kinesin). 

Beyond the boundary of the motor domain, however, the sequences of these two 

kinesin-related proteins show no similarity to one another or to conventional kinesin. 

These findings suggested that a highly conserved motor domain had become 

combined with different non-motor domains that could target motors to different cargo 

within the cell and allow them to carry out unique force-generating functions. Motor 

domain refers to the force-producing element of the protein, which is itself divided 

into two major parts: one part, the globular catalytic core, is conserved throughout the 

superfamily and its three-dimensional structure has been solved. The second part 

termed the neck region is an adjacent ~40 amino acids found on either the N or C 

terminus of the catalytic core. The neck, which is conserved only within certain 

kinesin classes, appears to work in concert with the catalytic core to produce 

movement. Beyond the motor domain, many kinesin proteins contain a long α-helical 

coiled-coil domain termed the stalk. Finally, there is often an additional globular 

domain at the end of the stalk. This domain, the tail, is thought to target the motor to 

a particular cargo within the cell (Fig. II.3) (Vale & Fletterick, 1997). 
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Fig. II.3: The “Toolbox” of cargo-transporting motor protein kinesin. The motor catalytic 
domains are displayed in blue, mechanical amplifiers in light blue, and tail domains 
implicated in cargo attachment are shown in purple. Tightly associated motor subunits (light 
chains) are shown in green (Modified after Vale, 2003). 

3.2. Kinesin directionality and motility 

Kinesin motors can be categorized on the basis of several features of their 

movement along microtubules. The first of these is directionality of movement. Minus-

end kinesin motors move toward the more stable minus ends of microtubules, 

whereas plus-end motors move in the opposite direction, toward the dynamic plus 

ends. Most of the kinesin proteins, whose directionality has been determined, 

including conventional kinesin, are plus-end motors; Drosophila Ncd and other C-

terminal motor kinesins are minus-end motors. To date, there is an absolute 

correlation between kinesin directionality and domain organization; all minus-end 

kinesins have their motor domain C-terminal to the coiled-coil stalk (Badoual et al., 

2002). Directionality of kinesin movement is now believed to be a property associated 

with the neck. By constructing and analyzing chimeric motors between plus- and 

minus-end kinesins (Case et al., 1997; Endow & Waligora, 1998), or mutating the 

neck of native motors, researchers have shown that the neck of the Ncd motor is 

required for minus-end motor directionality. Not only can the Ncd neck confer minus-

end directionality on a conventional kinesin catalytic domain (Endow & Waligora, 

1998), but remarkably, mutation of a single neck residue of Ncd causes the motor to 

move in either direction on microtubules (Endow & Higuchi, 2000). So, disrupting the 

neck-motor interactions causes the motor to move in either direction along the 
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microtubule, indicating that the interactions are essential for directed movement of 

the motor to the microtubule ends.  

A second property of motor movement that can be used to categorize kinesins is 

processivity. Processive motors take multiple steps along a microtubule before 

dissociating from the filament, whereas nonprocessive motors take only a single step 

before dissociation. Conventional kinesin is a highly processive motor that moves 

several microns along the microtubule before detaching, a distance corresponding to 

several hundred 8-nm steps (Svoboda et al., 1993). In contrast to conventional 

kinesin, the Drosophila motor Ncd is not only minus-end directed, but also is a 

nonprocessive kinesin protein (Endow & Barker, 2003).  

3.3. Kinesin motors as molecular machines  

Remarkably, motor proteins hydrolyze nucleotides and translocate along a 

filament, converting chemical energy from ATP hydrolysis directly into work without 

undergoing an intermediate heat or electrical conversion step, as do man-made 

machines.  

Kinesin is expected to undergo several small conformational changes that may 

comprise several working strokes, culminating in 8 nm steps along the microtubule; 

thus understanding the mechanism by which the motor walks along the microtubule 

is essential to understand how the motor works. The nucleotide state of the two 

heads at each substep of the motor along the microtubule must be established, 

together with the conformational changes that occur and the changes that result in 

the force-generating strokes of the motor. The stepping mechanism of conventional 

kinesin is currently controversial: most workers favor a hand-over-hand mechanism in 

which the two heads of the motor bind alternatively to the microtubule and hydrolyze 

ATP (Fig. II.4, A, see also movie 1) (Schliwa, 2003). However, some researchers 

have proposed a model in which only one of the two heads hydrolyzes ATP and 

advances in an ‘‘inchworm’’ fashion along the microtubule, dragging the second head 

along (Fig. II.4, B and C) (Hua et al., 2002). The recent work found that some kinesin 

molecules exhibit a marked alternation in the dwell times between sequential steps, 

causing these motors to "limp" along the microtubule. Limping implies that kinesin 

molecules strictly alternate between two different conformations as they step, 
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indicative of an asymmetric, hand-over-hand mechanism (Fig. II.4, D) (Asbury et al., 

2003). 

 
 

Fig. II.4: Models for kinesin stepping. (A) In the symmetric hand-over-hand model, the 
trailing head always passes the leading head on the same side (red arrows in front of the 
coiled-coil neck). (B) In the asymmetric inchworm model, only the leading head hydrolyses 
ATP while the trailing head is pulled up passively. Here, ‘asymmetric’ refers to ATP 
hydrolysis occurring only in one head. (C) In a symmetric inchworm model, both heads would 
hydrolyse ATP, and hydrolysis in the trailing head would push the leading head forward. (D) 
In an asymmetric hand-over-hand model, torsion generated during a step would be 
accommodated by the flexible hinge domain above the neck during one step (red arrow) and 
relieved by uncoiling in one of the next step(s), as shown by the green arrow behind the 
neck. (Taken from Schliwa, (2002)). 

3.4. Cellular function of kinesins 

Conventional kinesin and other members of the kinesin family bind ATP and 

microtubules at specific sites in their conserved motor domain, and use the energy 

from ATP hydrolysis to produce force and move along microtubules. The nonmotor 

region of the motor protein is believed to interact with other proteins or cellular 

components, enabling the motors to perform essential roles in vesicle and organelle 

transport, spindle function and chromosome motility, and regulation of microtubule 

dynamics. The large number of kinesin proteins in many organisms has given rise to 

the idea that different kinesin proteins could bind to specific vesicles or organelles 

and transport them between cellular compartments. The adaptor or receptor proteins 
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that couple kinesin motors to proteins associated with membrane-bounded cargo 

have recently begun to be identified using genetics, yeast two-hybrid screens, and 

coprecipitation by antibodies. Several of the adaptor or receptor proteins identified so 

far are components of large complexes that may include other receptor and signaling 

proteins, e.g. the AP-1 adaptor complex (Nakagawa et al., 2000), amyloid precursor 

protein (Kamal et al., 2000) and JNK signaling pathway interacting proteins (Verhey 

et al., 2001). 

Besides their roles in vesicle and organelle transport, a large number of kinesin 

proteins have been implicated in chromosome distribution by their localization to the 

meiotic/mitotic apparatus or mutant effects on spindles or chromosomes. The motors 

can bind to and crosslink spindle fibers and use energy from ATP hydrolysis to move 

directionally along microtubules, performing essential roles in spindle assembly and 

maintenance, centrosome duplication, and attachment of centrosomes to poles. 

Several of the kinesin motors are associated with chromosomes and may play a role 

in mediating chromosome attachment to the spindle (Levesque & Compton, 2001) or 

congression to the metaphase plate (Wood et al., 1997).  

Unexpectedly, some kinesin microtubule motor proteins have been found to 

destabilize or depolymerize microtubules, providing a link between regulation of 

microtubule depolymerization and assembly, and force-producing proteins associated 

with the spindle and chromosomes (Endow, 2003). 

3.5. Kip3 family of kinesins 

Kip3 kinesin was discovered as the sixth and the final kinesin-related gene in S. 

cerevisiae and is the founding member of a new kinesin family named Kip3 

(Lawrence et al., 2002; West et al., 2001). 

The Kip3 protein is involved in nuclear migration in S. cerevisiae, by moving the 

nucleus to the bud site in preparation for mitosis. Interphase nuclei are pushed 

around in the mother cell through growing and shrinking microtubules emanating 

from the spindle pole body. Prior to mitosis nuclei move towards the budding neck. 

This first movement depends on the function of Kip3 whereas the subsequent 

distribution of the two daughter nuclei is dependent on cytoplasmic dynein, 

microtubules and cortex-associated proteins as Num1, which is an essential element 

of the cortical attachment mechanism for dynein-dependent sliding of microtubules in 
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the bud. (DeZwaan et al., 1997; Heil-Chapdelaine et al., 2000, Miller et al., 1998,). 

Microtubules emanate from the spindle pole body and grow towards the cortex. 

Associated to the growing plus ends are several proteins, which are delivered at the 

cortex and in turn mediate contact between astral microtubules and the cortex 

(Gundersen & Bretscher, 2003; Maekawa et al., 2003). Deletion of Kip3 in S. 

cerevisiae did not impair vegetative growth and caused only a slight increase of 

binucleate mother cells at low temperature. These effects were much stronger in 

dynein (dyn1) deletion strains at low temperature and largely increased in kip3/dyn1 

double mutants at high temperature. These results suggested that Kip3 is 

responsible for spindle positioning in the absence of dynein and thus serves 

overlapping functions with this motor (Cottingham et al., 1999; Cottingham & Hoyt, 

1997). 

Recently, two other Kip3 homologous kinesins, Klp5 and Klp6, were characterized 

in the yeast Schizosaccharomyces pombe, with catalytic properties similar to those of 

KinI kinesins (Garcia et al., 2002; Garcia et al., 2002; West et al., 2002; West et al., 

2001). The biological function of the KinI family members is less clear than in the 

case of conventional kinesin. The KinI family received this nomenclature due to the 

location of the motor domain and the structure of the protein (Ovechkina & 

Wordeman, 2003). Kinesins of this family are monomeric proteins and are not able to 

move along microtubules in the conventional sense but instead catalyse the 

depolymerization of microtubules in vivo and in vitro (Desai et al., 1999; Hunter et al., 

2003; Moores et al., 2002). In mammals a KinI protein, CgMCAK localizes to the 

kinetochores in early prophase and MCAK deficiency results in chromosome 

segregation defects. This may be explained through an altered microtubule 

depolymerization rate. Overexpression of the gene resulted in depolymerization of 

cytoplasmic and spindle microtubules suggesting roles of this kinesin family also 

outside of mitosis (Maney et al., 1998). The studies of KinI kinesin family members in 

different organisms demonstrate that despite similar biochemical properties the 

cellular processes affected may be different. Hence, although the members of KinI 

and Kip3 families appear to have closely related functions, such as the microtubule 

depolymerization, the placement of their motor domains is different (central in KinI 

and N-terminal in Kip3), in consequence they are still described as separate entities 

until more data and phylogenetic analysis prove otherwise (Schoch et al., 2003).  
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In S. pombe, Klp5 and Klp6 are structurally very similar and deletion of either one 

or of both is not lethal (West et al., 2001). In contrast to S. cerevisiae kip3 mutants, 

nuclear migration is not affected in ∆klp5 or ∆klp6 strains. However, microtubules are 

stabilized in both fungi and mitosis and meiosis are impaired in S. pombe (West et 

al., 2002). Klp5 and Klp6 are required for normal chromosome movement in 

prometaphase, although this function is not essential for successful mitosis. On the 

other hand the two kinesins are essential for meiosis (West et al., 2001). Klp5/6-GFP 

fusion proteins localized to spindle and cytoplasmic microtubules with no bias to 

either the plus or the minus end of the filaments (Garcia et al., 2002; West et al., 

2001). 

Other studies have also shown that in klp5 mutants, spindle checkpoint proteins 

Mad2 and Bub1 are recruited to mitotic kinetochores for a prolonged duration, 

indicating that these kinetochores are unattached. Further analysis showed that there 

are kinetochores to which only Bub1, but not Mad2, localizes. These kinetochores are 

likely to have been captured, yet lack tension. Thus Klp5 and Klp6 appear to play a 

role in a spindle-kinetochore interaction at dual steps, capture and generation of 

tension. Two other proteins, Alp14 and Dis1, belonging to the TOG/XMAP215 family 

(its protein members play a positive role in microtubule stability by stimulating the 

growth rate at the plus end, are important for spindle formation, and localize to the 

spindle poles) are known to stabilize microtubules and be required for the bivalent 

attachment of the kinetochore to the spindle (Garcia et al., 2001). Despite apparent 

opposing activities towards microtubule stability, Klp5/Klp6 and Alp14/Dis1 share an 

essential function, as either dis1klp or alp14klp mutants are synthetically lethal, like 

alp14dis1. Therefore, it was proposed that Klp5/Klp6 and Alp14/Dis1 play a 

collaborative role in bipolar spindle formation during prometaphase through 

producing spindle dynamism (Fig. II.5) (Garcia et al., 2002). 
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Fig. II.5: Role for Klp5/Klp6 and Alp14/Dis1 in the formation of bipolar mitotic spindles. 
Alp14 and Dis1 (shown as Alp14 in the figure) localize to both the mitotic spindles (shown by 
filaments consisting of tubulin dimers (white and red circles)) and the mitotic kinetochores 
(closed black circles). Klp5 and Klp6 (shown as Klp) also localize to the mitotic kinetochores. 
In their absence, the major defect is failure in the attachment of the kinetochores to which 
Bub1 and Mad2 localize. Furthermore, at least Klp5 and Klp6 have an additional role in 
generation of tension at the kinetochores upon attachment. In the absence of Klp5 and Klp6, 
the kinetochores fail to produce tension, as the spindles tend only to polymerize without the 
poleward force (depicted by wavy spindles). These tension-less kinetochores recruit Bub1, 
but not Mad2 (Taken from Garcia et al., (2002)).  

 

A very recent report suggested that Klp5/6 cooperate with the Ras1-Scd1 pathway 

to influence proper formation of the contractile ring for cytokinesis (Li & Chang, 2003). 

Ras G proteins act as molecular switches for signal transduction pathways that are 

important for cell proliferation, differentiation, cell death, and organization of the 

cytoskeleton. Ras1 is the only Ras G protein in S. pombe, and has two distinct 

outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor 

(GEF) for Cdc42 (a member of the Rho GTPase subfamily, which participates in 

many signalling pathways, but is particularly important in cytoskeletal remodelling 

(Etienne-Manneville & Hall, 2002)), to control morphogenesis and chromosome 

segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, 

to control mating (Papadaki et al., 2002). Klp5/6 can form a complex with both Scd1 

and Cdc42; furthermore, inactivation of Klp5/6 together with inactivation of the Ras1-
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Scd1 pathway leads to abnormal cytokinesis. The abnormal cytokinesis appears to be 

caused by improper contractile ring formation, as the double-mutant cells frequently 

contain F-actin rings that are either mispositioned or fragmented in the cell cortex. 

Klp5 and Klp6 are thus likely to influence cytokinesis in a microtubule-dependent 

fashion and may act as plus-end motors to play a role in transporting cytokinesis 

regulatory proteins (Li & Chang, 2003). 

Functional data for members of the Kip3 family are still limited in higher 

eukaryotes, excepting the Drosophila ortholog, Klp67A, which was shown as 

implicated in mitochondrial movement (Pereira et al., 1997). Recent functional 

analyses have demonstrated a requirement for Klp67A in the regulation of 

microtubule growth and stability during both Drosophila mitosis and male meiosis. 

Depletion of this microtubule plus end-directed motor increased the length and 

perturbed the morphology of spindle microtubules, beginning as early as prophase 

and extending through ana-telophase, and Klp67A mutations disrupted central 

spindle formation in both blastoderm embryos and spermatocytes and impaired 

centrosome separation. Therefore the proposed scenario was that Klp67A activity in 

Drosophila is required for spindle microtubules to interact properly during centrosome 

migration, metaphase spindle formation, chromosome segregation, and central 

spindle assembly, when microtubule ends must dynamically search and capture their 

appropriate targets (Gandhi et al., 2004). 

Hence, the overall information currently available about the members of this family 

suggests that they are likely to conduct a conserved and important function in all 

fungal species (Schoch et al., 2003). 

3.6. Kinesins in filamentous fungi 

The characteristic growth form of filamentous fungi is the hypha. It is generated by 

germination of spores followed by continuous deposition of new cell material at the 

hyphal tip. As hyphal tips extend out into the medium, cytoplasm and various 

organelles migrate forward relative to the stationary cell walls (Chandra, 1996). Thus, 

filamentous fungi (such as Aspergillus nidulans and Neurospora crassa), rely on long 

distance organelle movement along microtubules to achieve fast tip growth, and the 

main players in this process are the motor proteins, among which kinesins are of a 

great importance. 
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In filamentous fungi, members of the kinesin superfamily of microtubule-

associated motors are not only involved in long-distance transport of organelles and 

vesicles, but are also important for spindle formation and function. Analysis of fungal 

genomes indicates that there are at least 10 distinct kinesins in filamentous fungi 

(Table II.1), and several of these motors are not found in yeasts (Xiang & Plamann, 

2003). Two kinesin subfamilies, KRP85/95 and MCAK/KIF2, clearly do not have any 

known fungal members, due probably to the fact that the kinesins belonging to those 

families are implicated in processes not existent in filamentous fungi (e.g. assembly 

and maintainance of ciliary and flagellar organelles, or roles in axonal transport in 

mammalian neuron cells) (Schoch et al., 2003).  

Fungal kinesins show interesting differences in composition, structure and 

properties relative to conventional kinesins of higher eukaryotes. For example, the 

fungal kinesins apparently lack light chains that are typically part of conventional 

kinesin of higher eukaryotes (Kirchner et al., 1999). Fungal kinesins are also about 

four times faster in in vitro motility assays and show greater processivity when 

compared to human conventional kinesin (Kirchner et al., 1999; Lakamper et al., 

2003). Studies have also shown that the fungal kinesin has a special neck domain 

directly adjacent to the motor domain. The presence of the neck region together with 

its adjacent motor domain containing the head and the neck-linker regions is not 

sufficient for dimerization, which is different from the case in higher eukaryotes 

(Kallipolitou et al., 2001).  

Table II.1: Motor proteins in filamentous fungi 
(Modified after Xiang & Plamann, (2003)) 

Family/Class Possible functions 
Conventional kinesin/KHC Vesicle/organelle transport, nuclear 

positioning 
Unc104/KIF1 (a long and a short 
version) 

Vesicle/organelle transport 

Chromokinesin/KIF4 Vesicle/organelle transport, DNA 
binding 

BimC Spindle assembly 
C-terminal motor Spindle assembly 
Kip2/CENP-E Microtubule stabilizing, kinetochore 

binding 
Kip3 Microtubule dynamics 
KID Chromosome movement in metaphase  
MKLP1 Spindle midzone organization and 

cytokinesis 
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3.7. Kinesin-like proteins of Aspergillus nidulans 

The fungus A. nidulans is a useful model system for understanding the molecular 

basis of eukaryotic cellular morphogenesis as well as for asking more specific 

questions about several important motors required for nuclear distribution, mitosis or 

organelle movement. Genetic dissection of some of these processes identified a 

number of novel genes, among which three encoded kinesin–like proteins: BimC, 

KlpA and KinA.  

The first member of the BimC family of kinesins was discovered in a genetic 

screen for temperature-sensitive lethal mitotic genes in A. nidulans as a mutant that 

was “blocked in mitosis” (Enos & Morris, 1990). Temperature-sensitive bimC mutants 

grown at the restrictive temperature failed to separate their duplicated spindle pole 

bodies during early stages of mitosis, resulting in mitotic defects such as abnormal 

spindle morphology and failure of nuclear division. The bimC gene proved to encode 

a 132 kDa, 1184 residue polypeptide with an N-terminal putative motor domain 

sharing 42% sequence identity with the motor domain of the kinesin heavy chain, 

providing the first direct evidence for the participation of a member of the kinesin 

superfamily in mitotic spindle function (Enos & Morris, 1990).  

A motor with an opposing force is KlpA, a member of the C-terminal motor domain 

kinesin family. Deletion of this gene from the genome of A. nidulans causes a 

suppression of the bimC4 mutation, suggesting that loss of KlpA function redresses 

unbalanced forces within the spindle induced by mutation in bimC. klpA could 

complement a null mutation in Kar3 (protein required for yeast nuclear fusion during 

mating and spindle formation (Page et al., 1994)), indicating that the primary amino-

acid sequence conservation between tail domains of kinesin-like proteins is not 

necessarily required for conserved function (O'Connell et al., 1993). 

The most recent report on kinesins in A. nidulans is about KinA, a homologue of 

conventional kinesin. Disruption of the gene led to a reduced growth rate and a 

nuclear positioning defect, resulting in formation of nuclear clusters with a dynamic 

behaviour. The mutant phenotypes are pronounced at 37°C, but rescued at 25°C. In 

addition, kinesin-deficient strains were less sensitive to the microtubule destabilizing 

drug benomyl, and disruption of conventional kinesin suppressed the cold sensitivity 

of an α-tubulin mutation (tubA4), suggesting that conventional kinesin of A. nidulans 

plays a role in cytoskeletal dynamics, by destabilizing microtubules (Requena et al., 
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2001). It was also shown that KinA is involved in the localization of both cytoplasmic 

dynein and dynactin to the plus ends of microtubules in A. nidulans, because in the 

deletion mutant of kinA, the microtubule plus-end accumulation of both cytoplasmic 

dynein and dynactin are significantly diminished (Zhang et al., 2003). 

The genetic tractability of filamentous fungi has made them excellent systems to 

study the function and regulation of the cytoskeleton and motor proteins. The recent 

availability of fungal genomes has revealed that many components of the 

cytoskeleton, including the cytoplasmic dynein pathway and the kinesin superfamily, 

are more closely related to those of higher eukaryotes than to those of the yeasts 

(Xiang & Plamann, 2003). Future studies are needed to further define specific roles 

for each motor, especially in the context when more proteins can function 

redundantly, and to address the interaction between them and the microtubule 

cytoskeleton for coordinated intracellular roles. 

Started as an investigation for new roles of kinesin-like proteins of A. nidulans in 

nuclear migration, the present work analyses the role of a Kip3-like kinesin, KipB in 

mitosis and microtubule stability in A. nidulans. A combination of genetic, molecular 

and biochemical methods, fluorescence, time-lapse and confocal microscopy was 

chosen to examine KipB functions. 
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III. Materials and Methods 

1. Equipment and chemicals 

Chemicals were purchased from Sigma (Taufkirchen), Roth (Karlsruhe), 

Boehringer (Mannheim), Applichem (Darmstadt), Merck (Darmstadt), Biomol 

(Hamburg), ICN (Eschwege) and Difco Laboratories (Detroit, MI, USA). Restriction 

enzymes and other DNA-modifying enzymes were obtained from New England 

Biolabs (NEB, (Frankfurt), Amersham (Braunschweig), or Invitrogen (NV Leek, The 

Netherlands). The enzymes for PCR were bought from Promega (Mannheim) 

Qbiogene (Heidelberg) or Roche Diagnostics (Mannheim). The radionucleotide [α-
32P]-dATP was provided by Hartmann Analytics (Braunschweig). Autoradiographic 

films were from Kodak (Rochester, NY, USA) or Fuji (New RX, Fuji, Japan). The filter 

(Miracloth) was from Calbiochem-Novabiochem (Bad Soden/Ts.). Anti-HA antibody 

was purchased from Covance/Babco (Freiburg), anti-α-tubulin primary antibody and 

anti-mouse IgG (Fab specific) peroxidase conjugate secondary antibody, from Sigma 

(Steinheim), and anti-actin from ICN Boichemicals (Eschwege). 

Table III.1: Equipment used in this study 
Equipment Type Manufacturer 

SORVALL RC 5B plus (HB-6) 
SORVALL RC 28S 

SORVALL, Bad 
Homburg 

Centrifuge with rotors 

Centrifuge 5403 Eppendorf, Hamburg 
Electroporation apparatus Gene Pulser II, Pulse Controller Bio-Rad, Munich 
Electrotransfer apparatus Mini Trans-blot Electrophoretic 

Transfer Cell 
Bio-Rad, Munich 

Hybridization oven Personal HybTM Stratagene, Heideberg

PCR machine Rapid Cycler Idaho Technology, 
Idaho Falls, ID, USA 

SDS-PAGE apparatus Mini Protean II Bio-Rad, Munich 
UV-cross Linker UV Stratalinker 2400 Stratagene, Heideberg

UV/Visible 
spectrophotometer 

Ultrospec 3100 pro Amersham Pharmacia 
Biotech, Freiburg 
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Table III.2: Kits used in this study 
Kit Manufacturer 
BM Chemiluminescence Blotting Substrate (POD) Roche, Mannheim 
DNeasy Plant Kit Qiagen, Hilden 
Nucleobond AX Macherey-Nagel, Düren 
RNeasy Mini Kit Qiagen, Hilden 
QIAEX II Gel Extraction Kit (150) Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden 

2. Organisms used in this study and microbiological methods 

2.1. Organisms 

In this work were used the following Aspergillus nidulans and Escherichia coli 

strains: 

Table III.3: A. nidulans and E. coli strains used in this study 
Strain Genotype Source 

SRF200 pyrG89; ∆argB::trpC∆B; pyroA4; veA1 (Karos & Fischer, 
1999) 

GR5 pyrG89; wA3; pyroA4; veA1 (Waring et al., 
1989) 

FGSC 26 biA1; veA1 FGSC∗, Kansas, 
USA 

GFP-tubA pyrG89; wA2; pyroA4; GFP::tubA::pyr4 (Han et al., 2001) 

MO62 argB2; bimC4; nicA2 V. Efimov 
(Piscataway, USA)

RMS011 pabaA1, yA2; ∆argB::trpC∆B; trpC801, veA1 (Stringer et al., 
1991) 

RMS012 diploid; biA1; ∆argB::trpC∆B; methG1; veA1, trpC801 / 
pabaA1, yA2; ∆argB::trpC∆B; trpC801, veA1 

(Stringer et al., 
1991) 

SJW02 GFP-tubA x RMS011 progeny strain, wA2; 
∆argB::trpC∆B; pyroA4; alcA(p)::gfp::tubA 

J. Warmbold, 
Marburg 

SNR1 yA2; ∆argB::trpC∆B; pyroA4; veA1; kinA::pyr4; 
(SRF200 transformed with pRF645 crossed to SAS7 
(A. Singh, Marburg) 

(Requena, et al., 
2001) 

SRS29 SRF200 transformed with pRS54 and pDC1 (pyrG89; 
∆argB::trpC∆B; pyroA4; veA1; gpd(p)::N-cit-1::gfp) 

(Suelmann & 
Fischer, 2000) 
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XX3 pyrG89; nudA1, chaA1, veA1 N. R. Morris, 
Piscataway, USA 

SPR1 SRF200 transformed with pPR13, homologous 
integration (disruption construct) (pyrG89; ∆kipB::argB; 
pyroA4; veA1) 

This study 

SPR2 GR5 transformed with pPR11 and pRG1 (wA3; 
pyroA4; veA1; alcA(p)::kipB::gfp) 

This study 

SPR3 GR5 transformed with pPR12 and pRG1 (wA3; 
pyroA4; veA1; kipB::HA)  

This study 

SPR13 SPR1 x RMS011 progeny strain, kipB disruptant 
(pabaA1, yA2; ∆kipB::argB; trpC801; veA1)  

This study 

SPR22 SPR1 x RMS011 progeny strain, kipB disruptant 
(pyrG89; ∆kipB::argB; trpC801; veA1) 

This study 

SPR26 SPR1 x RMS011 progeny strain, kipB disruptant 
(pyrG89; ∆kipB::argB; pyroA4; trpC801; veA1)  

This study 

SPR30 SPR13 x GFP-tubA progeny strain, (pyroA4; 
GFP::tubA::pyr4; ∆kipB::argB) 

This study 

SPR36 SPR1 x SNR1 progeny strain, double mutant (pyroA4, 
∆kipB::argB; veA1; ∆kinA::pyr4) 

This study 

SPR51 SPR1 x SNR1 progeny strain, ∆kinA mutant (pyroA4, 
veA1; kinA::pyr4) 

This study 

SPR55 GR5 x SPR13 progeny, diploid strain, (∆kipB/kipB; 
trpC801; veA1) 

This study 

SPR60 SPR22 x SPR13 progeny, diploid strain, (∆kipB/∆kipB, 
trpC801; veA1) 

This study 

SPR80 SPR26 transformed with pRS54 (∆kipB::argB; pyroA4; 
trpC801; veA1; gpd(p)::N-cit-1::gfp)  

This study 

SPR88 MO62xSPR13 progeny, double mutant (∆kipB::argB; 
yA2; bimC4; nicA2) 

This study 

SPR90 MO62xSPR13 progeny, double mutant (∆kipB::argB 
bimC4; nicA2) 

This study 

SPR93 RMS011 transformed with pDC1, wild type (pabaA1, 
yA2, trpC801, veA1) 

This study 

SPR96 SRF200 transformed with pPR38, homologous 
integration (∆argB::trpC∆B; pyroA4; veA1; 
alcA(p)::gfp::kipB) 

This study 
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SPR98 SRF200 transformed with pPR38, ectopic integration, 
(∆argB::trpC∆B; pyroA4; veA1; alcA(p)::gfp::kipB) 

This study 

SPR99 SJW02 (GFP-tubA) transformed with pPND1 and 
pDC1, ectopic integration, pyroA4; veA1; 
alcA(p)::mRFP1::kipB)  

This study 

SPR101 SPR96 trasformed with pPND1, ectopic integration, 
(pyroA4; veA1; alcA(p)::gfp::kipB; alcA(p)::mRFP1::kipB)  

This study 

SSK13 SRL1xRMS011 progeny strain, ∆kipA mutant (pabaA1; 
∆kipA::pyr4; wA3; veA1) 

(Konzack et al., 
2004) 

SSK28 SSK13xSPR26 progeny strain, double mutant (pabaA1; 
pyroA4; wA3; ∆kipA::pyr4; ∆kipB::argB; veA1) 

(Konzack et al., 
2004) 

SSK70 SSK44xSPR36 progeny strain, double mutant 
(∆kipA::pyr4; ∆kinA::pyr4; wA3; veA1) 

S. Konzack, 
Marburg 

SSK73 SSK44xSPR36 progeny strain, triple mutant (∆kipA::pyr4; 
∆kinA::pyr4; ∆kipB::argB; pyroA4; wA3; veA1) 

(Konzack et al., 
2004) 

SSK80 SSK44xXX3 progeny strain, double mutant (pabaA1; 
∆kipA::pyr4; wA3; nudA1, veA1) 

S. Konzack, 
Marburg 

Escherichia coli   

XL1-Blue recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac 
[F’proABlacIQZ.M15::Tn10 (TetR)] 

Stratagene, 
Heidelberg 

Top10F’ F’[lacIQ, Tn10 (TetR)] mcrA .(mrr-hsdRMS-mcrBC ), 
O80 lacZ .M15.lacX74, deoR, recA1, araD139.(ara-
leu)7679, galU, galK, rpsL, (StrR) endA1, nupG 

Invitrogen, 
Leek, 
Netherlands 

∗FGSC: Fungal Genetic Stock Center, Kansas, USA 

2.2. Cultivation and growing of microorganisms 

Media for E. coli were prepared as previously described (Sambrook et al., 1989), 

(Table III.4) and supplemented in function of each experiment, with antibiotics and 

necessary reagents (Table III.5). Ingredients were added to ddH2O water, poured into 

bottles with loosen caps and autoclaved 20 min at 15 lb/in2. For solid media, 15 g 

agar per liter was added. Glassware and porcelain was sterilized in the heat sterilizer 

for 3 h at 180°C. Heat-sensitive solutions such as antibiotics, amino acids and 

vitamins were filer-sterilized with 0.22 um pore filter membrane (Millipore, France), 

and added to the media after autoclaving. Minimal and complete media for A. 

nidulans growth were prepared according to the protocols (Pontecorvo et al., 1953). 

For protoplast transformation of A. nidulans, 0.6 M KCl as osmoprotective substance 
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was added into minimal media (Table III.6). The supplemented vitamins, amino acids 

and nucleotides for auxotrophic A. nidulans strains were listed in Table III.7. 

2.3. Growth conditions and storage of transformed E. coli and A. 
nidulans strains 

Cultures of transformed E. coli strains were overnight cultivated on LB plates with 

appropriate antibiotics at 37°C. Liquid culture was inoculated from a single colony 

and incubated in LB medium containing appropriate antibiotics at 37°C with 180 rpm 

overnight shaking. For storage of E. coli strains, freshly grown bacterial suspension 

was adjusted to 15% end concentration of sterile glycerol and frozen at –80°C. 

The A. nidulans strains were grown on minimal or complete medium plates. 

Colony pieces were cut from an agar plate and suspended in 15-20% sterile glycerol 

and stored at –80°C. 

2.4. Determination of spore viability 

For determination of the viability of spores, A. nidulans strains were freshly 

inoculated and grown onto appropriate agar plates for 2 days at 37°C. To obtain a 

clean suspension, sterile ddH2O containing 0.02% Tween 20 was added to the plate, 

and the spores were harvested by gently scraping with a sterile inoculating wire the 

surface growth of the agar plate, followed by vigorously shaking until complete 

separation of the spores from the fruiting bodies and for breaking the spore clumps. 

Then, the dispersed fungal spore suspension was filtrated through sterile Miracloth 

into a sterile falcon tube (50 ml) 2-4 times to remove large mycelial fragments and 

clumps of agar which could interfere with the counting process. The final washed 

residue was diluted several times, in such a manner that the resultant spore 

suspension contained 1x103 ± 2x102 or 1x102 ± 20 spores per ml. The number of 

spores was determined with a Neubauer Improved counting chamber (depth 0.1 mm, 

square width: 0.05 mm) (Plan Optik GmbH, Elsoff), according to manufacturer 

protocols. Finally, agar plates were inoculated with different spore concentrations, 

incubated at 37°C for 2 days, and the number of colonies grown onto the plates was 

compared with the number of spores initially inoculated. 
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2.5. Induction of the alcA promoter 

In this study, some of A. nidulans strains were carrying constructs expressed 

under the control of alcA promoter. For induction of this promoter, the strains were 

grown overnight (6-10 h) in medium with glucose, and then the medium was washed 

with sterile water, followed by a replacing with a medium containing 2% ethanol or 

2% threonine (and lacking glucose), where the promoter can be induced. Also, 

especially for preparation of samples designated to be used for microscopy, the 

spores were inoculated overnight or for one day directly in the inducing medium and 

subsequently observed.  

Table III.4: Media for E. coli  
Medium Ingredients (l liter) 
LB 10 g Bacto-Trypton; 5 g Bacto-Yeast Extract; 10 g NaCl  
SOC 20 g Bacto-Trypton; 1 g Bacto-Yeast Extract; 5 g NaCl; 0.185 g 

KCl; 2.03 g MgCl2 x 7H2O; 2.46 g MgSO4 x 7H2O; 3.6 g Glucose 

Table III.5: Antibiotics and supplements for E. coli media  
Substance End concentration 
Ampicillin (Ap) 100 µg/ml 
Kanamycin (Km) 50 µg/ml 
X-Gal 40 µg/ml 
IPTG 8 µg/ml 

Table III.6: Media and stock solutions for A. nidulans  
Media or Stock Preparation (per liter)  
20 x Salt stock solution 120 g NaNO3; 10.4 g KCl; 10.4 g MgSO4 x 7H2O; 30.4 g 

KH2PO4  

1000 x Trace elements 
stock solution 

22 g ZnSO4 x 7H2O; 11 g H3BO3; 5 g MnCl2x 4H2O; 5 g 
FeSO4 x 7H2O; 1.6 g CoCl2 x 5H2O; 1.6 g CuSO4 x 5H2O; 
1.1 g (NH4)6Mo7O24 x 4H2O; 50 g Na4 EDTA; adjust to pH 
6.5-6.8 using KOH  

Minimal medium (MM)  50 ml Salt stock solution; 1 ml Trace elements stock 
solution; 20 g Glucose; adjust to pH 6.5 using 10 N NaOH  

Complete medium (CM) Minimal medium with 2 g Peptone; 1 g Yeast extract; 1 g 
Casamino-acids; 1 ml Vitamin stock solution; 1 ml Trace 
elements stock solution; adjust to pH 6.5 using 10 N 
NaOH 
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Table III.7: Vitamins, amino acids and medium components  
Component Stock Concentration Volume per liter 

Biotin 0.05 % 1ml 
PABA 0.1% 1ml 
Pyridoxin-hydrochloride 0.1 % 1 ml 
Arginine 500 mM 10 ml 
Uracil - 1 g 
Uridine 500 mM 10 g 

3. Genetic methods in A. nidulans 

Genetic tests on A. nidulans strains were basically done after the commonly used 

protocols (Käfer, 1977); (Morris, 1976); (Pontecorvo et al., 1953); and (Clutterbuck, 

1969).  

3.1. Crossing of A. nidulans  

The strains used for crossing were inoculated side by side onto CM plus 

appropriate markers plates for 2 days, until the mycelium of both strains fused at the 

borders. Small agar square blocks were cut from these fused edges and transferred 

to MM plates, where just the growth of a heterokaryon is possible. Plates were sealed 

with adhesive tape and incubated 10-14 days at 37°C or 30°C in a humid chamber. 

The fruiting bodies (cleistothecia) developed after this time were isolated with help of 

a sterile inoculating needle, rolled until completely clean from Hülle-cells on the 

surface of an agar plate, and smashed in an Eppendorf tube with 0.5 ml sterile 

ddH20. An aliquot of the ascospore suspension obtained in this way was inoculated 

onto CM agar plates. After 3 days incubation, the grown colonies were transferred 

onto MM plates with different appropriate markers, to test for the missing auxotrophic 

marker. If more strains were analyzed, they were inoculated onto raster plates, which 

contained 20 colonies. 

3.2. Construction of A. nidulans diploid strains 

A. nidulans is a highly amenable organism for generation of diploid cells. The 

aerial hyphae of the fungus produce long chains of conidia (asexual spores). Each 

conidium has a single nucleus, and the phenotype of any individual spore is 
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dependent only of the genotype of its own nucleus, which makes certain kinds of 

selective techniques possible. If two haploid strains are mixed, the hyphae fuse and 

then both types of nuclei are present in a common cytoplasm, the heterokaryon. 

Following heterokaryon formation, some nuclei that are genetically the same will 

fuse, as well as those that are genetically different, so the diploid nuclei are formed. 

These nuclei will undergo mitosis, the crossing-over can occur, and the diploid 

segregants can be checked for chromosome loss by the degree of haploidization. 

The diploid strains are stable on minimal medium, but rather unstable onto benomyl 

plates, because this drug can cause mitotic instability, by destabilizing the spindle 

microtubules, and give rise to a random and fast haploidization. 

To create diploid strains necessary for this study, a wild-type (GR5) and a kipB 

mutant strain (SPR13) were crossed, as well as two different mutant strains (SPR13 

and SPR22). After the obtaining of the heterokaryon as described above, the spores 

were harvested by very gentle scrapping of the heterokaryon surface, suspended into 

sterile ddH2O and filtered several times, until the complete separation from the 

fruiting bodies and traces of agar. Each time samples were taken from the filtrate and 

checked at the microscope, to prove the efficiency of the filtration. The spore 

suspension was then mixed with warm selective agar medium (MM) and plated. After 

the solidification of the medium, another layer of agar was poured onto the first one, 

in order to apply a selection pressure for spore germination, so that just spores 

containing the nuclei of both parental strains could grow further. The stable diploids 

obtained like that were inoculated onto benomyl-containing agar plates and were 

analyzed for the number of formed haploid sectors. 

4. Molecular biological methods 

4.1. Plasmids and cosmids 

In this study the following plasmids and cosmids were used. 

Table III.8: Plasmids and cosmids used in this study 
Plasmids/ Cosmids  Construction Source 

pBluescript KS- Cloning vector Invitrogen (NV Leek, 
The Netherlands) 
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pCR2.1-TOPO TA-cloning vector for cloning of PCR fragments Invitrogen (NV Leek, 
The Netherlands) 

pCMB17apx alcA(p)::GFP, pyr4; for N-terminal fusion of 
GFP to proteins of interest 

V. Efimov 
(Piscataway, USA) 

pDC1 A. nidulans argB gene in pIC20R (Aramayo et al., 
1989) 

pHW-arg A KpnI–XhoI-released argB from pDC1 inserted 
into pBluescript KS– 

(Wei et al., 2001) 

pRG1 Contains N. crassa pyr4-gene  (Waring et al., 1989) 

pRS31 gpd(p)::gfp::stuA into pBluescript KS– (Suelmann et al., 
1997) 

pRS54 gpd(p)::N-cit-1::gfp into pBluescript KS– (Suelmann & 
Fischer, 2000) 

pPR5 kipB containing cosmid (BamHI short fragment, 
3.3 kb) form pUI library 

This study 

pGR1 Subclone BamHI of kipB –short fragment- from 
pPR5 into pBluescript KS- 

This study 

pPR7 3.6 kb SacI-BamHI fragment of kipB cloned into 
pBluescript KS- 

This study 

pPR11 alcA(p)::kipB::sgfp, (kipB BamHI fragment from 
pPR7) into pBluescript KS– 

This study 

pPR12 3xHA epitopes in NotI into pGR1, kipB natural 
promoter (kipB::HA)  

This study 

pPR13 argB gene with BamHI sites cloned in BglII  
sites of kipB from pPR7 (disruption construct)  

This study 

pPR17 kipB containing cosmid (entire gene)  from pUI 
library  

This study 

pPR19 4.3 kb kipB SacI subclone from pPR17 cloned 
into pBluescript KS- 

This study 

pPR21 4.5 kb PCR product of kipB ORF from 5’ end 
SacI site, without the Stop codon 

This study 

pPR38 1.2 kb kipB  from ATG, PCR product with AscI  
and PacI sites from pPR19 inserted into 
pCMB17apx 

This study 

pPND1 GFP replaced with mRFP1 (KpnI-AscI) into 
pPR38, alcA(p)::mRFP::kipB, pyr4 

This study 



Materials and Methods 

37 

4.2. DNA manipulations 

4.2.1. Plasmid DNA preparation from E. coli cells 

For isolation of plasmid or cosmid DNA (Sambrook et al., 1989) an alkali-lysis 

method was used. For DNA small volumes (miniprep), 2.5 ml of overnight liquid 

culture was centrifuged 1 min at 13000 rpm, the pellet resuspended in 200 µl Tris-

EDTA Buffer, then 200 µl of Alkali-lysis buffer added and gently mixed, followed by 

addition of 200 µl neutralization buffer (Table III.9). After 10 min centrifugation, 

plasmid DNA-containing supernatant was precipitated with 0.7 vol. isopropanol, 

followed by 70% EtOH washing. The dried pellet was resuspended in TE buffer. For 

large DNA volumes (midipreps), plasmid DNA from 100 ml E. coli overnight liquid 

culture was extracted using a Macherey-Nagel Nucleobond Plasmid DNA 

Purification Kit, according to the manufacturer protocols.  

Plasmid DNA concentration was determined via absorption measurement with 260 

and 280 nm in a spectrophotometer (Pharmacia LKB-UltrospecIII), with a quartz 

cuvette or by comparison between the intensity of ethidium bromide DNA bands on 

agarose gels and the intensity of defined standards. 

Table III.9: Solutions used for plasmid extraction (miniprep) 
Tris-EDTA buffer  5 ml 1M Tris-HCl (pH 7.5); 2 ml 0.5M EDTA (pH 8.0); 10 mg 

RNAse in 100 ml  
Alkali-lysis buffer 0.2 M NaOH; 1% SDS 
Neutralization buffer 1.5 M K-Acetate, pH 4.8 
TE buffer 10 mM Tris-HCl; 1 mM EDTA; pH 8.0 

 

4.2.2. Genomic DNA preparation from A. nidulans 

Preparation of A. nidulans genomic DNA was done by inoculation in a 9 cm plastic 

Petri dish of around 20 ml fresh liquid minimal media with spore suspension from a 

colony grown on an agar plate, followed by incubation for 12-15 h at 37°C. Then, the 

mycelium was harvested with a spatula, pressed briefly until dry between paper 

towels, and frozen in liquid nitrogen. The frozen mycelium was grounded in liquid 

nitrogen or kept at –80°C until isolation. A. nidulans genomic DNA was extracted with 
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the DNeasy Plant Mini Kit (Qiagen, Hilden). To check DNA yield and quality, 5 µl 

extracted DNA was used via running a 1% agarose gel.  

4.2.3. Digestion of DNA by restriction endonucleases 

DNA samples (200 ng–1 µg) were digested by restriction endonucleases using 

corresponding reaction buffers. Generally, restriction digests were prepared in 20 µl 

total volume, with 0.5-1 µl restriction enzyme (1-20 U/µl) and incubated at 37°C from 

1 h to overnight. In other cases, enzyme, DNA, buffer volumes and reaction times 

varied depending on the specific requirements. For enzyme inactivation, the sample 

was incubated at 65°C for 10 min. A. nidulans genomic DNA was generally digested 

overnight. In the case of different enzymes, the restriction digest was carried out first 

in the buffer with low salt concentration or the buffer compatible to both enzymes. 

4.2.4. Dephosphorylation of digested DNA  

After the digestion with restriction enzymes, the vector was dephosphorylated by 

Shrimp alkaline phosphatase (SAP) to remove the phosphate group at 5’-end, which 

prevented self-ligation of the vector. 0.1 unit / µM 5’-end with buffer was added to the 

sample. The mix was incubated 45 min at 37ºC. Less SAP and shorter incubation 

time were used for the protruding 5’ termini than for recessed 5’ termini. If two 

enzymes with incompatible termini were used, the dephosphorylation process was 

omitted. 

4.2.5. DNA precipitation  

Contamination by small nucleic acid fragment, protein and salt can be reduced to 

acceptable level by precipitating the DNA. In order to do this, 2.5 volume of ethanol 

and 1/10 3.0 M NaAc (pH 5.2) were added to the DNA solution. The sample was 

mixed, kept at –80ºC for 10 min and centrifuged for 10 min at 10.000 rpm. The 

supernatant was discarded and the pellet was washed with 70% EtOH, followed by 

centrifugation at 10.000 rpm for 5-10 min. The pellet of purified DNA was completely 

in a speed vacuum or at 50ºC for 10-20 min, and then dissolved in sterile water or TE 

buffer.  
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4.2.6. DNA ligation  

DNA ligation was performed using T4 ligase (NEB, Frankfurt) at 16ºC or Fast 

LinkTM System (Biozym, Hessisch Oldendorf) in a volume of 10-20 µl. Around 50 ng 

vector was used in one ligation. The ratio of vector to insert was 1: 2-3 and 1:5-10 

respectively for cohesive and blunt end ligation. For the cloning of PCR products, 

restriction enzyme sites were added to both primers, or TA cloned. For TA cloning, 

the PCR products amplified with Expand (Roche, Mannheim) or other proof reading 

polymerases (e.g. Pfu, Promega, Madison, WI, USA) were cloned into pCR2.1 TOPO 

(Invitrogen, NV Leek, The Netherlands). 

4.2.7. DNA agarose gel electrophoresis  

The separation and identification of DNA fragments was done by running them 

through agarose gels (0.8-1.2%), which were prepared by boiling agarose into 0.5 or 

1 x TAE buffer and pouring it into gel chambers. DNA samples were mixed with 1/10 

10 x DNA Loading buffer. As standard DNA marker an Eco130I-cut λ DNA (MBI 

Fermentas, St. Leon-Rot) was used, and gels were run for 30 min - 4 h in gel 

chambers with 0.5 or 1x TAE buffer. Then, the gel was stained for 15-30 min in 0.5 x 

TAE buffer with ethidium bromide (1 µg/µl). The DNA bands were visualized in the 

gel at 302 nm UV light. Photos were taken using a camera (INTAS, Goettingen) 

connected to a video printer.  

 

50 x TAE buffer (pH 8.0) 40 mM Tris-Acetate; 1 mM EDTA; pH 8.0 
10 x Loading buffer 20% Ficoll 400; 0.1 M Na2EDTA (pH 8.0); 1% SDS; 0.25% 

Bromphenol blue; 0.25% Xylene cyanol 

 

4.2.8. PCR 

Polymerase chain reaction (PCR) was performed with Taq (Qbiogene, 

Heidelberg), Expand (Roche, Mannheim) or Pfu (Promega, Madison, WI, USA) 

polymerases according to manufacturer protocols. Oligonucleotides synthesis was 

made by MWG Biotech (Ebersberg) and the concentration used for a PCR reaction 

volume of 10-100 µl was 5-20 pM. As DNA template were used plasmid or cosmid 

DNA (0,2-10 ng) and genomic DNA (10-20 ng). The PCR reactions were carried out 

in a capillary Rapid Cycler (Idaho Technology, Idaho Falls, ID, USA). The 
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polymerization duration and annealing temperatures varied in function of each 

application. PCR programs were generally used with 30-40 cycles, at a denaturation 

temperature of 94°C, and a polymerization temperature of 68-72°C. In the case of 

oligonucleotides containing restriction sites, the PCR reaction was first carried out for 

4-5 cycles at a lower annealing temperature (5-10°C) then the melting temperature of 

the primers. RT-PCR was carried out using SUPERSCRIPTTM II RNase H- Reverse 

Transcriptase (Invitrogen) according to the manufacturer protocol. 

 

Standard PCR reaction in a Rapid Circler 

1 µl 2.5 mM dNTP 

1 µl DNA template  

1 µl 10 x buffer 

1 µl 50 mM MgCl2 

1 µl 10 x BSA 

1 µl 10 x Ficoll 

1 µl each 5 µM Primer A and B 
0.2 µl Taq DNA polymerase 

1.8 µl  Autoclaved ddH2O 

 

Oligonucleotides used in this study (Table III.10) were synthesized by MWG 

Biotech (Ebersberg). 

Table III.10: Primers used for PCR in this study 

KipB_A 5'-CCGACAACCATCCGACGC -3' 
KipB_B 5'-CAATTCCGTATGCTTCTCGC-3' 
KipB_C 5'-GCGAGAAGCATACGGAATTG-3' 
KipB_D 5'-CGGATTCCCTCTGCTGCG-3' 
KipB_E 5'-GTCGACGCAGCAGAGGGAATC-3' 

KipB_F 5'-CTCGTATCGAATTACTTGAAGTTG-3' 
KipB_G 5'-GAATCGGTGAGGCTCTGG-3' 
KipB_K 5'-GCGCGCGGTCTAAAGG-3' 
KipB_L 5'-TTAGATCTGGGTTGTCGTGAATTGAG-3' 
KipB_M 5'-GCGCAAGGTCTTAACATTGCCT-3' 
KipB_N 5'-AGAGACACTGATGTTATTGTG-3' 
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KipB_Z 5'-CCTTCCATCGAACGCTCC-3' 
KipB_T1 5'-CGATGTTCACCGCGCAAG-3' 
KipB_T2 5'-GAAACCGCCAATAGCACTC-3' 
KipB_T3 5'-CTCGCCGTCGTAAGATGG-3' 
KipB_T4 5'-GAGGGCCTAGGACAGCAG-3' 
KipB-Ngfp-fwd 5'-GGCGCGCCCGGGATGGGGGCCTCAAGCGAC-3' 
KipB-Ngfp-rev 5’-CGCTTTGAGTTCGTTAATTAATGCC-3’ 

KpnI_mRFP1_fwd 5’-CGGTACCATGGTCTCCTCCGAGG-3’ 
AscI_mRFP1_rev 5’-CGGCGCGCCGGCGGTGGA-3’ 
KipB-TOPO-GFPfwd 5'-CGAGCTCCTGGGTCTAGG-3' 
argB-3’raus 5’-GACTCTCCTCATTCCATAC-3’ 
sGFP-Xba-2F 5'-ATCTAGAAATGGTGAGCAAGGGCGAG-3' 
sGFP-Xba-2R 5'-ATCTAGAATTTGTACAGCTCGTCCATG-3' 
M13(-20)Forward 5'-GTAAAACGACGGCCAG-3' 
M13Reverse 5'-CAGGAAACAGCTATGAC-3' 

 

4.2.9. Spore PCR 

Extraction of DNA from filamentous fungi for PCR analysis is usually time 

consuming and generally expensive, especially when is done in order to check a 

great number of transformants for different mutations. To avoid this, conidia of A. 

nidulans were used directly for PCR analysis, without isolation of DNA. The PCR 

assay was performed with conidia obtained from freshly grown colonies on agar 

plates, at 37°C or 30°C for 2 days. The spores were harvested by gently scrapping 

the colony surface with a sterile wire and transferred to the lid of an Eppendorf cup 

filled with 100 µl sterile water. Collection of medium by this harvest it was avoided, 

since agar may inhibit the PCR reaction. The samples were strongly vortexed, and 

appropriate spore concentration was adjusted for a reaction tube (104-106 spores per 

reaction), followed by freezing them for 10-15 min. at –80°C. Alternatively a master 

mix was prepared as for a normal PCR reaction, with the special addition of 0.1% 

Triton X-100. The mix was added proportionally to the samples and they were 

generally subjected to the following PCR conditions: denaturation at 95°C for 5 min., 

30 cycles of 95°C for 1 min. / appropriate annealing temperature and times/ 72°C for 

2-5 min., followed by 72°C for 5-10 min. 



Materials and Methods 

42 

4.2.10. DNA isolation from agarose gel 

For isolation of DNA fragments, 0.8%-1% “low melting” gel was often used. The 

low melting gel separated by gel electrophoresis at 50 V was stained in 0.5-1 x TAE 

with ethidium bromide. The appropriate DNA bands were cut out under UV light. The 

DNA purification was carried out according to the protocol of WizardTM PCR Preps 

DNA Purification System (Promega, Madison, WI, USA). Alternatively, the DNA from 

normal agarose gels was isolated with the QIAEX II Gel Extraction System (Qiagen, 

Hilden). 

4.2.11. DNA sequencing 

DNA sequencing was done by commercial sequencing (MWG Biotech, 

Ebersberg). 

4.2.12. Transformation of E. coli 

The transformation of electrocompentent E. coli cell was done as described 

(Ausubel et al., 1995). After dialyzation of ligation reaction, 2 µl ligation solution and 

50 µl E. coli electrocompetent cells were mixed and filled into a transformation 

cuvette (PEQLAB, Erlangen). The plasmids were transformed by electroporation 

(Gene-Pulser, Bio-Rad) into electrocompentant E. coli cells XL1-Blue (Stratagene, La 

Jolla, USA). Alternatively, chemical competent E. coli strain TOP10 F’ (Invitrogen, 

Leek, Netherlands) was used according to the distributor protocols. 

4.2.13. Transformation of A. nidulans  

Standard procedures of Aspergillus protoplast transformation were used (Yelton et 

al., 1984). Spores were harvested from freshly grown plates (~109 conidia), 

inoculated in 500 ml volume minimal medium with appropriate components, and 

shaked at 30ºC in water bath for 12-16 h until spores germinated. The culture was 

filtered through sterile Miracloth followed by washing using Wash solution. The 

washed mycelium was collected on ice in a sterile 100 ml Erlenmeyer flask with 5 ml 

of Osmotic medium. After addition of GlucanX (Novozyme) (200 mg/ml sterile water) 

and 5 min. incubation on ice, BSA (6 mg/0.5 ml sterile water) was added into the 

flask. Subsequently, the digestion mixture was incubated at 30ºC in water bath for 1-

3 h until enough protoplasts became free. Then, it was transferred into a 30 ml Corex 

tube and 10 ml of Trapping buffer was slowly added, followed by a centrifugation at 
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5000 rpm for 15 min using HB-6 rotor. The obtained protoplast band was transferred 

into a new sterile tube, followed by washing two times using STC with centrifugation 

at 7000 rpm for 8 min. The protoplast pellet was gently resuspended in 200-1000 µl 

STC for transformation (for the solutions used, see Table III.11). 

100 µl protoplasts in STC and 100 µl DNA (10 µg DNA filled up to 100 µl STC) 

were mixed and incubated 25 min at room temperature in a falcon tube. Then, 2 ml 

PEG was added and the tube was rolled until the mixture was homogeneous, 

followed by 20 min incubation at room temperature. Finally, 8 ml STC was added and 

the entire mixture was spread onto osmotically stabilized medium (MM + 0.6 M KCl) 

with appropriate selection markers. The plates were incubated at 37ºC until colonies 

were formed after 3-4 days. 

Table III.11: Solutions used for A. nidulans transformation 
Mycelium wash solution 0.6 M MgSO4 
Osmotic medium 1.2 M MgSO4, 10 mM Na3PO4 buffer, pH 5.8 
Trapping buffer 0.6 M sorbitol, 0.1 M Tris-HCl, pH 7.0 
STC 1.2 M sorbitol, 10 mM CaCl2, 10 mM Tris-HCl, pH 7.0 
PEG 60% PEG 4000, 10 mM CaCl2, 10 mM Tris-HCl, pH 7.0 

 

4.2.14. DNA-DNA hybridization (Southern blot analysis)  

DNA-DNA hybridization (Southern blot analysis) was performed using radioactive 

α-32P-dATP (Sambrook et al., 1989). The preparation of radioactive probes was 

made by means of random priming (USB, Freiburg). The DNA samples isolated 

through agarose gel were transferred by capillarity to the positively charged nylon 

filter (Biodyne A, Pall, Ann Arbor, MI, USA). The filter was cross-linked under UV 

radiation with a dose of 1.2 x 105 µJ (UV Stratalinker 2400, Stratagene, Heidelberg). 

The probe was purified through prespin MobiSpin S-300 Column (Mo Bi Tec GmbH, 

Göttingen). The membrane was then prehybridized in Hybridization solution or 

QuickHyb commercially prepared hybridization solution (Stratagene Europe, 

Amsterdam, The Netherlands) supplemented with 100 µg/ml Salmon sperm DNA 1-2 

h, and respectively 45 min. at 68ºC and then hybridized 2-3 h with the probe at 68ºC, 

followed by stringent washing at 68ºC. The first washing step consisted in 2 times of 

2 x SSC / 0.1% SDS 2 x washing solution for 10 min, and then the second step of 2 
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times each 10 min 0.1-0.2 x SSC / 0.1% SDS 0.2 x washing solution. The detection 

was accomplished by mean of autoradiography using the films from Kodak 

(Rochester, NY, USA) or Fuji (New RX, Fuji, Japan). If the filter was reused, a 

process of striping was carried out in 0.5% SDS at 95ºC for 2-4 times. The striping 

result was radioactively checked (for the solutions used, see Table III.12). 

Table III.12: Solutions used for Southern blot 
Hybridization solution 5 x SSC; 1% skim milk; 0.1% lauroylsarcocine sodium salt; 0.02% 

SDS 
Acidic solution 0.25 M HCl 
Denaturation solution 100 g NaOH; 438.3 g NaCl in 5 l 
Neutralization solution 242 g Tris; 347 g NaCl in 4 l; pH 7.2  
20 x SSC 441.3 g Na3Citrate; 876.3 g NaCl in 5 l, pH 7.0 
2 x Washing solution  100 ml 20 x SSC; 10 ml 10% SDS in 1 l 
0.2 x Washing solution 10 ml 20 x SSC; 10 ml 10% SDS in 1 l 

 

4.2.15. Colony hybridization  

For colony hybridization, colonies of E. coli were transferred to nylon membranes 

(HybondTM-N, Amersham, Braunschweig) and treated according to manufacturer 

specifications. DNA was fixated to the membrane through UV cross-linking and 

analysed in a Southern blot experiment as described at point 4.2.14. 

4.3. RNA manipulations  

4.3.1. Isolation of total RNA from A. nidulans 

For isolation of total RNA, 500 ml CM liquid culture inoculated with spore 

suspension from one plate was shaken at 200 rpm for 14 h at 37ºC. The overnight 

grown mycelium was harvested, dried between paper towels, frozen in liquid nitrogen 

and grounded in a mortar. RNA isolation from grounded mycelium powder was 

carried out with TRIZOL (Gibco or Invitrogen) according to manufacturer protocol. 

The RNA was finally dissolved in 40-50 µl sterile DEPC H2O with 0.5 U/µl RNase 

inhibitor (Promega, Mannheim). The RNA concentration was measured in a 

photometer (Pharmacia LKB, UltrospecIII). The RNA samples were diluted to 1 µg/µl 

with DEPC H2O containing RNase inhibitor. The samples were kept at –80°C. 
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4.3.2. DNA-RNA hybridization (Northern blot analysis) 

DNA-RNA hybridization (Northern blot) was accomplished as described 

(Sambrook et al., 1989). The RNA was denatured with formamide and separated in 

denaturing formaldehyde agarose gel, followed by capillary transfer to a positively 

charged nylon membrane (Biodyne Plus, Pall, Ann Arbor, MI, USA). The size 

estimation was done with the RNA marker of Promega (Mannheim). The membrane 

was cross-linked as for Southern blot. It was stained afterwards with Methylene blue 

(0.03%) and washed using H2O, after which clear rRNA bands appear. A photo of the 

gel was taken via a camera (INTAS, Göttingen) and a video printer. The filter was 

subsequently destained in Destaining solution. The prehybridization was performed 

in Northern hybridization solution with 100ug/ml Salmon sperm DNA 1-2 h at 42°C 

and then hybridized overnight with the probe at 42°C, followed by stringent washing 

at 65-68°C, 1 time in 2 x SSC / 0.1% SDS for 10 min, and then 2 times each, 10 min 

in 0.5 x SSC / 0.1% SDS. The detection was carried out with radioactive labeled 

probes as for Southern Blot (for the solutions used, see Table III.13). 

Table III.13: Solutions used for Northern blot 
DEPC water 0.1% DEPC, stir overnight, autoclave 
10 x MOPS  0.4 M MOPS (pH 7.0); 0.1 M sodium acetate; 0.01 M 

EDTA, autoclave 
RNA sample buffer 100 µl formamide, 38 µl 37% formaldehyde, 20 µl 10 x 

MOPS, 42 µl DEPC water, 20 µl RNA loading Buffer 
RNA loading buffer 80% formamide; 1 mM EDTA; 0.1% bromphenol blue; 

0.1% xylene cyanol 
Northern staining solution 0.03% methylene blue in 0.3 M Na-Acetate 
Northern destaining solution 1% SDS; 1 x SSC 
100 x Denhardt solution 10 g ficoll 400; 10 g polyvinylpyrrolidone; 10 g BSA 

(Pentax fraction V); H2O to 500 ml, filter and store at –
20˚C in 25 ml aliquots 

Prehybridization / Hybridization 
solution 

5 x SSC; 1% SDS; 5 x Denhardt solution; 50% 
formamide 

Northern running buffer 100 ml 10 x MOPS, 20 ml 37% formaldehyde, 880 ml 
DEPC Water 

Northern mini gel 0.36 g Agarose, 21 ml DEPC water, boiling, after 
reaching 70˚C, add 6 ml 37% formaldehyde and 3 ml 
10 x MOPS  
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4.4. Description of DNA constructs (plasmids) 

4.4.1. Cloning of the kipB gene 

The partial sequence obtained from Cereon Genomics LLC (Cambridge, USA) 

was used to design primers (KipB_A, B or KipB_C, D) for amplification of a specific 

kipB fragment. This fragment was used to identify two cosmids carrying a part of the 

gene (pPR5) and its entire length (pPR17), from a cosmid library pUI. From the first 

cosmid, a 3.3 kb kipB containing (short fragment) BamHI restriction fragment was 

subcloned into the pBluescript KS- (Invitrogen (NV Leek, The Netherlands) (pGR1). 

Because the sequencing of this plasmid revealed that the 3’ BamHI site was 

introduced artificially through construction of the cosmid library and the translation of 

the DNA insert continued into the pGR1 plasmid, the second cosmid was used for 

subcloning of 4.3 kb SacI fragment of kipB into pBluescript KS- (pPR19). Whereas 

the ORF also did not finish within the SacI fragment, the 3’ end of the gene was 

amplified by PCR, with genomic DNA as template (KipB-TOPO-GFPfwd, KipB_T2) 

and the entire ORF of kipB was subsequently cloned into the pCR2.1 TOPO vector 

(Invitrogen (NV Leek, The Netherlands) (pPR21).  

4.4.2. Cloning of the kipB disruption construct (pPR13) 

A BamHI–BamHI-released argB fragment from pHW-arg (Wei et al., 2001) was 

cloned into the BglII sites of kipB gene (short version, plasmid pPR7), in order to 

disrupt the motor domain of the protein (for scheme see results, Fig. IV.6). This 

plasmid was cut finally with BamHI, which releases the entire construct. Homologous 

integration of the construct (pPR13) in A. nidulans would lead to a deletion of 18 bp 

of the kipB gene. In addition to the deletion, the argB gene disrupts the coding region 

of kipB. The disruption construct was transformed into the arginine-auxotrophic A. 

nidulans strain SRF200. 

4.4.3. GFP labeling of KipB (pPR11; pPR38) 

For the C-terminal construct of the KipB::GFP fusion protein the plasmid pGR1, 

which contained 3.3 kb kipB-including ORF BamHI short fragment was used. This led 

to a truncated version of the protein, in which the first 690 amino acids were fused to 

GFP. The alcA promoter was cloned upstream of kipB as a KpnI-XhoI fragment and 

sgfp as an XbaI restriction fragment downstream into the polylinker of pBluescript 
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KS- (pPR11). For the N-terminal construct, a 1.2 kb (starting from ATG) fragment of 

kipB from pPR19 was amplified with the primers: KipB-Ngfp-fwd with an AscI site 

added in 5’ and KipB-Ngfp-rev and cloned into pCMB17apx plasmid (kindly provided 

by V. Efimov, Piscataway, USA) into AscI-PacI sites (pPR38). Homologous 

recombination of this construct into the kipB locus would lead to a N-terminal GFP 

fusion of the entire KipB protein under the control of the alcA promoter and a 

truncated 5'-region under the natural promoter. First construct (pPR11) was 

transformed into A. nidulans strain GR5 and the second one (pPR38) into the strain 

SRF200. 

4.4.4. mRFP1-labeling of KipB (pPND1) 

mRFP1 (red fluorescent protein monomer) was amplified with the primers 

KpnI_mRFP1_fwd and AscI_mRFP1_rev, and cloned into the  KpnI-AscI sites of 

pPR38 plasmid, replacing the sGFP. This resulted into a N-terminal mRFP1 fusion of 

1.2 kb (starting from ATG) fragment of KipB, under control of the alcA promoter. The 

construct was transformed into A. nidulans strains SJW02 and SPR96.  

4.4.5. HA-labeling of KipB (pPR12) 

The HA epitope was cloned downstream of kipB as a NotI restriction fragment into 

the polylinker of pGR1 (same truncated version of the protein as for pPR11). This 

construct led to an HA fusion of KipB truncated protein expressed under the natural 

promoter. The plasmid (pPR12) was transformed into A. nidulans strain GR5. 

5. Biochemical methods 

5.1. Isolation of protein from A. nidulans  

For protein extraction, spores were incubated overnight in liquid media at 37°C 

shaking with 200 rpm. The grown mycelium was filtered, dried and grounded in liquid 

nitrogen as for genomic DNA extraction. Then, it was resuspended in the same 

amount of a protein extraction buffer (20 mM TrisCl pH 8.0; 0-0.2 % Triton X-100; 

150-300 mM NaCl, 10 µl Protease Inhibitor Cocktail, SIGMA, Taufkirchen). The slurry 

was centrifuged at 13.000 rpm at 4°C for 5-10 min and the total protein concentration 

of the supernatant measured according to Bradford (Bradford, 1976). After 

centrifugation, the supernatant was stored at -80°C or aliquots selected for analysis 



Materials and Methods 

48 

were heated at 95°C for 10 min together with loading buffer (240 mM Tris/HCl, pH 

6.8; 8 % SDS; 40 % Glycerol; 12 % DTT; 0.004 % Bromophenole blue) prior to 

loading.  

5.2. Determination of protein concentration (Bradford Assay) 

Protein concentration was determined according to Bradford (Bradford, 1976) 

using the Bio-Rad protein assay (Bio-Rad, München). This measurement is based 

upon Coomassie Brilliant Blue G-250 dye-binding assay. Acryl-cuvettes (Sarstedt, 

Nümbrecht) were used for the determination of protein concentration. 200 µl Bio-Rad 

Protein Dye (Bio-Rad) were added to samples and standard (BSA, bovine serum 

albumine) (0-50 µg / 0.8 ml H2O with diluted sample isolation buffer), afterwards they 

were gently mixed to avoid bubbles. After 10 min, the measurement was carried out 

in the photometer (Pharmacia LKB, UltrospecIII) at 595 nm. 

5.3. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

For immunodetection of the proteins a Western blot was performed. The SDS-

PAGE gel consisted of a resolving gel topped by a stacking gel. The separating gel 

was casted between the glass plates using Bio-Rad Mini Protean II equipment and 

overlayed with a thin layer of ddH2O. After gel polymerisation, the water was 

removed and the gel chamber was filled up with stacking gel. The protein samples 

were diluted to appropriate concentrations using 4 x Laemmli sample buffer, heated 

at 95ºC for 10 min and loaded onto the gel. Electrophoresis took place at room 

temperature, first at 50 V until the sample moved out from the wells and then 100-120 

V until tracking dye reached the bottom of separating gel (for the solutions used, see 

Table III.14).  

Table III.14: Solutions used for polyacrylamide gels preparation 

Solutions Stacking gel Separating gel 
 4% 6% 10% 12% 
Acrylamid / Bisacrylamid 40% 0.36 ml 1.1 ml 1.9 ml 2.25 ml 
1 M Tris-HCl pH 6.8 0.45 ml    

1 M Tris-HCl pH 8.8  1.88 ml 1.88 ml 1.88 ml 
H2O 2.8 ml 4.4 ml 3.6 ml 3.25 ml 
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10% SDS 36 µl 125 µl 125 µl 125 µl 
10% APS 15 µl 40 µl 40 µl 40 µl 
TEMED 3 µl 5 µl 5 µl 5 µl 

 
10 x Electrophoresis running 
buffer 

30.3 g Tris; 144 g Glycine; 2 g SDS in1 liter of ddH2O. 

5.4. Western blotting  

After electrophoresis, the proteins were transferred from the gel to Hybond ECL 

nitrocellose membrane (Amersham-Pharmacia Biotech, Freiburg). Electroblotting 

was performed in a “sandwich” assembly in Transfer buffer for 3 h to overnight at 60 

V at 4°C using Mini Trans-Blot Apparatus (Bio-Rad, Munich). After transfer, the 

membrane was stained for 5 min in Ponceau S solution, and then washed with water 

until the protein bands were distinctly visible. The membrane was washed in TBS-T 

solution 4 x 5 min, blocked in Blocking solution for 1 h, then hybridized for 1-2 h at 

room temperature or overnight at 4°C with the primary antibody diluted in Blocking 

solution. Afterwards, the membrane was washed again 4 x 5 min in TBS-T, incubated 

with the secondary antibody for 1 h at room temperature, followed by 4 x 5 min 

washing in TBS-T (for the solutions used, see Table III.15). HA epitope was detected 

with a monoclonal anti-HA antibody (IgG1, developed in mouse, Babco, Freiburg), 

and a secondary antibody (anti-mouse IgG, peroxidase conjugate, SIGMA, 

Taufkirchen). The detection was done with the BM chemiluminescence kit from 

Roche (Mannheim). 

Table III.15: Solutions used for Western blot 
10 x Transfer buffer 30.3 g Tris; 144 g Glycine in 1 liter of ddH2O. 
Transfer buffer 800 ml H2O, 100 ml 10 x Transfer buffer, 200 ml methanol 
Ponceau S  0.1% Ponceau-S in 1% Acetic acid, reusable 
10 x TBS 24.2 g Tris, 80 g NaCl in 1 liter of ddH2O, pH 7.6 
TBS-T 1 x TBS, 0.1% Tween 20 (100%) 
Blocking solution TBS-T with 3% BSA 
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6. Fluorescence microscopy, live-cell image acquisition and 
analysis 

Cells were grown in glass bottom dishes (World Precision Instruments, Berlin) in 2 ml 

of MM + glycerol + pyridoxine and/or arginine or MM + 2 % ethanol + pyridoxine 

and/or arginine medium. For time lapse studies, cells were incubated at 30°C for 15 

hr or at RT for 24 hr and images were captured at RT, with an Axiophot microscope 

(Zeiss, Jena), a Planapochromatic 63X or 100X oil immersion objective lens, and a 

50 W Hg lamp. In the case of DAPI staining for visualization of nuclei, strains 

(FGSC26 and SPR1) were grown for 8 hr at 37°C onto coverslips with 500 µl 

appropriate medium, and subsequently fixed for 30 min at 37°C in 4% formaldehyde 

in PME buffer (50 mM PIPES, 5 mM EGTA, 1 mM MgSO4 (pH 6, 9)). The cells were 

then digested with 4 mg/ml glucanase, 2 mg/ml yeast lytic enzyme and 11 mg/ml 

driselase (InterSpex Products) for one hour at room temperature. This was followed 

by three washes with PME buffer, and for staining of the nuclei mounting media with 

Vectashield DAPI (Vector Laboratories Inc., Burlingame CA) was used. 

Images were collected and analyzed with a Hamamatsu Orca ER II camera 

system with optional RGB modus, and Wasabi software (version 1.4). Time-lapse 

series were obtained with an automated Wasabi program that acquires series of 

images with 3, 10 or 20 s of pause time, 0.5 or 0.75 s exposure time, and about 40 

exposures in a sequence. Image and videos processing was done with Photoshop 

6.0 (Adobe) and freeware programs as ImageJ and VirtualDub. 
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IV. Results 

1. Cloning of the kipB gene 

To gain insights into the organization and function of Aspergillus nidulans kinesins, 

the genomic DNA database at Cereon Genomics LLC (Cambridge, USA) was 

analysed, and partial sequences of putative kinesin motors were obtained (Fig. IV.1, 

C: 1-2). One of them was localized on chromosome III, was 788 bp in length and 

encoded a peptide with high homology to the Kip3 kinesin from Saccharomyces 

cerevisiae, being called kipB. This partial sequence was used to design primers to 

isolate two correspondent cosmids from the pUI library (kindly provided by B. Miller, 

Idaho, USA). One of them (pPR5) contained a 3.3 kb BamHI fragment of the kipB 

gene (called later “short fragment”), which was subcloned (pGR1) and sequenced 

(Fig. IV.1, C: 3-4). Sequencing revealed that the 3’ BamHI site was introduced 

artificially through construction of the cosmid library. In addition, translation of the 

DNA insert continued into the pGR1 plasmid, suggesting that pPR5 did not contain 

the entire kipB gene, therefore a second cosmid (pPR17) was isolated and a 4.3 kb 

SacI restriction fragment was subcloned and sequenced (pPR19) (Fig. IV.1, C: 5-6). 

Since the ORF did also not finish within the SacI fragment, the 3’ end of the gene 

was amplified by PCR, with genomic DNA as template (from the 5’ SacI site until the 

Stop codon), cloned into pCR 2.1 vector (Invitrogen, NV Leek, The Netherlands) and 

sequenced (pPR21) (Fig. IV.1, C: 5-7). All sequences were assembled to the final 

SacI-NruI fragment, compared to the sequence available at Whitehead Center for 

Genome Research (Cambridge, USA) after the public release of A. nidulans genome 

sequence, and considered as the final genomic locus.  

In order to deduce a putative kinesin protein sequence and the intron-exon 

borders, a correspondent cDNA sequence was amplified by RT-PCR and compared 

with the genomic DNA sequence. The determination of intron positions was done by 

PCR amplification with the same primers of overlapping fragments covering the 

entire ORF and having as template cDNA and genomic DNA. By running the PCR 

products in 1% agarose gels, a shift was detected between the cDNA and the 

genomic DNA amplified with the primers KipB_A and KipB_B (Fig. IV.1, A and B). 

This revealed one 56 bp intron, located at the N-terminus of the predicted protein 
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(Fig. IV.1, A, B and C). The position of the intron is conserved in comparison to 

Schizosaccharomyces pombe kinesin genes klp5 and klp6. Using a promoter 

prediction program (http://www.fruitfly.org/seq_tools/promoter.html), a putative 

promoter could be identified, with the start of transcription 78 bp upstream of the 

translation start (Fig. IV.1, C). A kipB specific probe hybridized in a northern blot to a 

3.5 kb transcript (Fig. IV.2, A). After the removal of the intron sequence, the open 

reading frame consisted of 989 amino acids, with a predicted molecular mass of 

108.7 kDa and a calculated isoelectric point of 9.9.  

To detect the KipB protein in crude cell extracts the initial construct containing the 

first 690 amino acids was used (plasmid pGR1, with short version of KipB), because 

at that time the artificial BamHI site was thought to belong to the gene and the Stop 

codon was situated very close to it. The 3.3 kb BamHI fragment from pGR1 was 

tagged C-terminally with 3 HA epitopes under the control of the alcA promoter, and 

the plasmid (pPR12) was transformed into wild type strain GR5. One of the 

transformant strains (SPR3 – truncated KipB-HA) with 2 integrations was selected 

and was processed for a Western blot (Fig. IV.2, B). A specific band of about 76 kDa 

could be detected, which was in good agreement with the short putative KipB protein 

with a deduced molecular mass of 76.7 kDa. The full length KipB protein has not 

been analyzed by western blot yet. 

Fig. IV.1: Locus of A. nidulans kinesin kipB. (A) Scheme of the kipB gene locus. The 
open reading frame and the transcript are indicated by arrows and the intron position is 
marked with a white box. (B) Agarose gel photo with determination of the intron position by 
PCR amplification of overlapping fragments covering the entire ORF and having as template 
cDNA and genomic DNA. First and last lanes for each primer combination represent genomic 
DNA from wild type and kipB-containing cosmid (pPR17) and the middle lane shows the 
cDNA. The white arrow points to the PCR product that displays a shift between the genomic 
and the cDNA, and which contains the intron. The DNA marker used: Gene RulerTM 100 bp 
DNA Ladder, from MBI Fermentas, Germany. Primers positions are depicted in (A). (C) 
Genomic sequence of the kipB gene, with the deduced protein sequence. The segment of 
4771 bp from chromosome III includes the ORF (2973 bp), and one intron of 56 bp, in the N-
terminal region of kipB. An asterisk above the putative promoter sequence indicates the 
predicted start of transcription. Between 1  -  2 : the initial Cereon sequence; 3  - 4 : BamHI 
short fragment (pGR1);  5 -  6 : SacI subclone (pPR19) from the cosmid pPR17;  5 -  7 : PCR 
amplified full open reading frame (pPR21). 
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Fig. IV.2: Detection of the kipB 
transcript and the KipB protein (A) 
Northern blot analysis of kipB. RNA was 
isolated from mycelia of FGSC26, 
incubated at 37°C, harvested after 16 h 
of vegetative growth, and hybridized to a 
kipB-specific probe. (B) Protein extracts 
(RMS011 (wt) and SPR3 (truncated KipB 
(690 aa.)-HA)) were subjected to 
Western blot analysis and probed with 
anti-HA antibodies. The asterisk at the 
right of the panel marks the position of 
the protein and the absence of the signal 
for the wt (FGSC26). 

2. Analysis of the protein sequence 

Examination of the domain morphology of the KipB protein revealed the 

characteristic pattern of a kinesin. The highly conserved motor domain starts about 

60 amino acids downstream of the initiation codon, and consists of about 320 amino 

acids. It contains an ATP-binding motif (or P-loop) near aminoacid position 130 

(GxxxxGKT), and the C-terminal half of the motor domain displays the highly 

conserved regions termed switch I (SSRSH) and switch II (DLAGSE), which are 

involved in microtubule-binding (Fig. IV.3 and IV.4, A) (Song et al., 2001). 

Comparison with other Kip3-like proteins revealed 45.7 % identity with Neurospora 

crassa, 33.5 and 35.3 % identity with S. pombe Klp5 and Klp6 respectively, and 

30.4% with S. cerevisiae Kip3. The identity between the proteins is much higher in 

the motor domains: 85% with N. crassa, 68% with Klp5 and 59% with Klp6 from S. 

pombe and 61% with Kip3 from S. cerevisiae. The N-terminal region starts with a 

short nonmotor sequence of 65 amino acids. The latter one displays after the first 6 

amino acids a sequence of 18 aa, which is conserved among the compared proteins 

(Fig. IV.3 and IV.4, A). The significance of the 18 amino acid motif is yet unknown 

(West et al., 2001). The nonmotor, COOH-terminal 600 amino acids exhibited very 

low sequence similarity to the nonmotor regions of the other kinesin-related proteins, 

or to proteins in the current DNA, protein and EST databases. Also, in the COOH-

terminal domain short regions with a significant probability for a coiled-coil formation 

were detected, similar to the proteins from S. cerevisiae and S. pombe (Fig. IV.4, B). 
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The positions of these regions are conserved (DeZwaan et al., 1997), (West et al., 

2001), and they can potentially mediate protein multimerization. 

MGA- - SSDSSSI SVTVRVRPFTI REAAQLTKCEDGPL- - F - - LGDGSLAGAPAPKLN- - - - - - - - - - - - - - - - - - - - - - - - - - QKGLRSI I KVI DDRCLVFDPPEDNPV- - - - - - - - - QKF 
MSGYPDPNASSI TVAVRVRPFTI REAAQL- - - DEGTV- - F - - LGDGSLAAAPTPKLN- - - - - - - - - - - - - - - - - - - - - - - - - - QRGI RPVI KVVDDRCLVFDPPEDNPI - - - - - - - - - QKF 
MS- - - - - RQSSI TVTVRVRPFSTAESANLI ASSDRLS- - F - - GTSSSLRNPGSGRQ- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I RRVVKVLDGRVLVFDPPDETTATLSAT- - - NRRL 
MK- - - - - EGSSI SVAVRVRPFTEREKGLLAETPKSKE- - F - - LGDGSLAVSNTSSNT- - - - - - - - - - - - - - - - - - - - - - - - FCTNGI RKI VRVLDDNVLI FDPPEENP- - - - - - - - - - - - L 
MNV- PETRQSSI VVAI RVRPFTSMEKTRLVNEASGAEANF PGLGDSSLI LPMSNNSDSDI DI DAEEGSTRSKRNSLLRRKVI RPEGI RKI VDCVDDRMLI FDPADRNPLNKVSDQVLNSMR 

SRS- - VVPN- GKRV- - - - - - - - - - - - - - KDQTFAFDRI FDQNATQGEVYEATTRSLLDSVLDGYNATVFAYGATGCGKTHTI TGTPQQPGI I FLTMQELFERI EERKSEKHTELSLSFLEI  
SRS- - VVPAMGKKV- - - - - - - - - - - - - - KDQVFAFDRI FDENASQVEVYEGTTKGLLDSVLDGYNATVFAYGATGCGKTHTI TGTPQSPGI I FLTMQELFEKI NERSGEKHTEVTLSYLEI  
STSQQSLARLSRKSNNSAGF - - - - - - - GRDLRYAFDRVFDETATQQQVYERTARPLLDNI LDGFNATI FAYGATGCGKTHTI SGTMQDPGLI YLTLKELFERMDHLRDEKI FDLRLSYLEI  
AKVQKSLLPAGKR- - - - - - F - - - - - - - - RDVRYAFDRLFGEEASQEDVYKGTTEPLLDSVLQGYNATVFAYGATGCGKTHTI SGRPDDPGI I FLTMRALLDRVEGLKRTMNVDI SVSYLEI  
ARATKATASSI NNSNATNKF SSQRRRHGGEI KFVFDKLFDETSSQARVYKETTSPLLDSVLDGFNSTVFAYGATGCGKTYTVSGTPSQPGI I FLAMEELFNKI TDLKDEKDFEI SLSYLEI  

YNETI RDLLVPGGA- - - KS- GLSLREDSNKAVSVSGLSSHSPKSVQEVMDMI MKGNACRTMSPTEANATSSRSHAVLQI NVAQKDRNADI NE- - - - - - PHTM- ATFSI I DLAGSERASATK 
YNETI RDLLVPPGSATNKQ- GLMLREDSNQGVSVAGLTSHKPKDVQEVMDMI VQGNEYRTVSPTAANAVSSRSHAVLQI NVAQKDRNAAVNE- - - - - - PHTM- ATLSI I DLAGSERASATK 
YNETI RDLLVSPTPNQAKP- - LNLREDADRRI TVPGLTSLSPESLEEI I DI I MKGNANRTMSPTEANAASSRSHAVLQVTLI QKPRTAGI NED- - - - - - HTL- ATLSI I DLAGSERATATK 
YNEKI RDLLVQDPLSMEKPKSLNI CEDAEQNVSVPGLSYFTPTNLEEVMEI I I RGNSNRTMSPTEANAVSSRSHAVLQI YI TQTPKSGEKQEESESQNSHKVRSVFSFI DLAGSERASATK 
YNERI RDLLKPETPS- - - - KRLVI REDTQNHI KVANLSYHHPNTVEDVMDLVVQGNI NRTTSPTEANEVSSRSHAVLQI HI MQTNKLVDLTSQ- - - - - - HTF- ATLSI I DLAGSERAAATR 

NRGERLFEGANI NKSLLALGSCI NALC- - DPRKRNHVPYRNSKLTRLLKFSLGGNCKTVMI VCVSPSSQHFDETQNTLRYANRAKNI QTKVTRNVFNVNRHVKDFLVKI DEQMALI NELKA 
NRGERLLEGANI NKSLLALGSCI NALC- - DPRKSNHVPYRNSKLTRLLKFSLGGNCKTVMI VCVSPSSEHFDETQNTLRYANRAKNI QTKVTRNVFNVNRHVKDFLVKI DEQMALI NELKA 
LRGSRLFEGANI NKSLLALGNCI NALC- - DPHRRAHVPYRDSKLTRLLKFSLGGNCRTVMI VCVSPSSVHYEETHNTLKYANRAKNI KTEVLRNMI SVDRHVSQYVKAI VELREQI SELEN 
NRGKRLVEGANI NRSLLALGNCI NSLC- - EPRRRQHVPYRDSKLTRLLKFSLGGNCRTCMI VCI SPSSEHYDETHNTLKYGNRAKNI KTKVSRNVVSVDRHVSEYVRTI YELRQKVSI LQK 
NRGI RLHEGANI NRSLLALGNCI NALCLNDGSRSCHI PYRDSKLTRLLKFSLGGNCKTVMI VCI SPSSSHYDETLNTLKYANRAKEI KTKI I RNQQSLSRHVGSYLKMI TEQKRQI EELRE 

- - - - - QQRESEKVAFAKFKKQTEKKDAAVREGLARI RNAYDHSLPERQERI NNMI RLKQVSRRI GLLSSWI AAFDNVCAN- - - - SENEVPLSNLQAVRKTAQGI LLELEGSRQHYHQRLAK 
- - - - - QQRDAEKVFFAKFLKQSEKRDAVVREGLARLHAAYEHAEKDRTEVI GLMKQQRAI ERRI GLLSSWI AAFDSVCDARGCASEEEMP- APLTTI RRTAVGI LNELESTRNHVHQRLGR 
RLAQI DLSSQSNGSDQDAVTQSFAHESKLAEARNLLRMTFEETLPLQNDTI NKVEKVKHFDDSI RVLKYWLS- - - - - CYERI LPNSADERVFLVRSK- - - - - - - LESLLTRRAEI I ADI DP 
RI AE- - - - ESKQLALNKEVRKI SSREI KMLDARSMLKNSF DGSRDLQKSLI EHVRTLRRI EDEI TLTKMWI S- - - - - - I AKESDAMSGHNI KSVETR- - - - - - - LAKLYDQRSLI TAKVNP 
REEKM- - - - - I SLKLTKYKLNKEKI QLAI NECVNRVQQTYAGV- - - - - ETYQVAKTLKSLI - - - - - - - - - - - - - - - LCKRR- - - - - - - - - - - - FLQMVKLEVDNLI LLFEREESTAAEMQP 

STWDRGMTSAVENAVQQLQEFDTSD- - - KSDVTNLRREAELLRANTEREALSAVAEQDKAGD- AAVVQLLLQAHFEI ASSI ERI MHLSEEEAVEMGKRSLTKMLDSCCTATSNVVKPDSNL 
CNWERALDTALQHSI SQLPAMGGNSEGCNTERDI LAREAELLRTGFMRDAYHEVVEQDKAGD- AAI LQTLLMAQFEMMASLEELLRMEERQAMEHAKAMVNRLLETGLQAVGQVVKPDGSL 
ELVYQKFQRSVSHI I NTY- - - - - KQEGATMYADVLQDEVDLLKSI I ENQVLDA- - - QNKVDEFTPVLESLLRSSFKASS- - - - LLK- - - - - - - EGGMQELFSI LEK- - - - - - - - - - - - - - -  
EEI CKTFQNSI SHI VSSF- - - - - KGEGADMYADMLQDDVDLLKSI I ENQI LDA- - - KHESETFSSTSRKLI QNLFL- - - - - - - - - - - - - - - - - - - - - - - LFPLLPG- - - - - - - - - - - - - - -  
- - - - - - - - - - - - - VI SNCRMI SG- - - - - - - - - QLYNKI HELEMKFDETDTLSSVI HQVHSI DLN- - - - - - - - - - - - - - - - - - - - - KLREMEDWDETYDLVY- - LESCLNQI SELQRNE- - -  

PPMPTFSPSKHSPAKAKKR- - - LSLAI VPPSKSLNATVALHPTAPTSP- - - - - - - - - - - - - - - - - - - TRGSPRRRKMGTGR- KSVSFSPKKAPAKP- - - - - - - PKRSVRWKDDE- EDGTLT 
PT- AGYQGTGLSVPKLRRKSGAI NGAKTI PQPMFSASAALTTAI PTSTETAMDI STEPEADVEGQLESWDGESVPHLSPVKARKVAYASSKKAGTSFTFTPVKKKHSVRWRDDETEEGTLA 
- - - - - - - - - - - - - - - - - - WLLGI GLGEKPNI SVLSESYKLNSTSDDSRTI NRD- - - - - - - - - - - - - RVHSFPTQPLLNNNLPRMFFV- - - KSPKKPVVFSKRSPKKRVRFDD- - - - - - - - -  
- - - - - - - - - - - - - - - - - - NAI DVNESLARAFDQLVGI VPSEPTI QVPNLI EKG- - - - - - - - - - - - - K- - - - - - APLLS- - - - - MFEI - - - - - PRSPSRFKARSPSKAAR- - - - - - - - - - - -  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I LVNSSI MTE- - - - - - - - - - - - - - - - - KLMSD- - - - - - - - - - - - - PGLNSRFKFLS- - - - - KWL- - - - - - - - - -  

EI QKTPQKREATL- - I HRSVSPQEPGLPRASPI PRGI PVPTRN- - - - - - - FSPSGGSSPI PTPSDQPLSI PKNNRFKTGFLSKK- - - - TGSSP- - - - - - - - - - - I PAPPTVALSVSDRSS-  
DFEKTPQKWDSSPGEPENGI SPVRPPMPSYLGGMKSPPPPQRDNTDEDVEMDDGAGPALSSI PDLSGLSI GKPNRFQAGFLSKSRTSLAGSTPGATI TGNGVLQSQPPPVFNLNLTNSNNS 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SMSTSDSGAS- - - - - - - - - - - - - - - - - - - - - - - - -  
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
- MNRTPN- - - - - - - - - - - - I ESI I QDLV- - - - - - - - - - - - - - - HI DEEFE- - - - - - - - - - - - - - - - - - - - - - - - SFARTF I ANPDSNFTNTNI NI I NTTAADLAV- - - - - - - - - - - - - - - -  

- - - - - - - - - - - - - - PLRDI EGS- - - - - - - - - - SFLNRASTERPSRI AVRTPSGNY- SPSPAQPETKGEWKASKDD- - - - - VRRI STAM- - - - - - - RRI SI GSFGTSASAT- - - - - - - - - - -  
I SQQNGGGEEKPTQPLRSI PVSRAANAYSSPI SYSAKTSNAAPSTTNTMNSGNHDGSPKI PQPPTTSSLQQVDENQPPVTARKSSSRLSLGSAI PRRLSTSPRSGSGGSTDSDNSLVI DPL 
- - - - - - - - - - - - - - - - - - - - - - - - - - AYNSPI - - - QTSKLKNMNFFNTMHMP- - - STPAHKRPENKN- - - - - - - - - - - - - - - QI DVEI NLTSPVSPMLEDKPEPGL- - - - - - - - - LI KSPL 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V- - - LKKPLKKRVRFS- - EVP- - - TTSSVPPVEI KN- - - - - - - - - - - - - - - K- - - - - - - - - - - - - - - DS KPK- - - - - - - - - - - - - VEKS L 
- - - - - - - - - - - PAETLQR- - - - - - - QNFS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - QKKVKWTSPDLSPSP- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MI EPQP 

- - - - ALRAHRRRSPTS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ATYGSS- - - - - - - - - - - - - - - - PPENTMFTAQARRMAKG-  
KLRSALQEKKRRDRLSLMSGTAASI AKAKRRASSAAPLPNGPGGGNGSASTPGPAVSRPSI AKVSHRASI GHGRSSI GGHRASFGGSLHGRASMGAHHRASI GAGGHPGLGGAGRRSSMGV 
EKKQEVNSESTQLDQLLAED- - - - - - - - - - SSTDDVSLPH- - - - - - - - - - LDTI DLDGSPVPKVPD- - - LNFSRANMDS- - PTF- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
DK- HNMNNDRS- - - - FLVPS- - - - - - - - - - RDARNS- - - - - - - - - - - - - - LTSLSLHSN- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
ELEPELHQDQDAI A- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SEVDVSMQDTTFNE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

- - - - - - - - - - - - - - - - - EKELENKPAVLGPR- - - - - - - - - - - SLPI KKNTS- - - QRRTTFG- - - - - - - - - - - - - - - - - - - - GDI RPRDFSFSGRDI - - - - - - - - - - - - - - - - - - - - - - - - R 
GGGPLASATNGI SRHRKGSGLEKSAAVATTRKGGI PLPTI AGSPPVRSGTTGLAARRASLGPNSAWLVESGMMGPKSGI GLTNAQPRRMGI NGNGSGFGKGSPNGGEEDHNSASGTMAANR 
- - - - - - - - - - - I LNNEAI HNFDFSKP- - KTRQSLSSLTTLHLSNPA- - - N- - - - - - - - - - - - - - - - I I RKSL- - - - - - - - - - - - - - - - - - - - - - - - - - - - - SMAENEEEKA- T         
- - - - - - - - - - - VAKNKSSHSSKWPT- - - - - - HTLSPI I TTALKQPVRRI S- - - - - - - - - - - - - - - - LVSQPL- - - - - - - - - - - - - - - - - - - - - - - - - - - - - QKTGGTENTPNA         
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - QGPSTPSAPTTAVPRRKMRSSL- - - - - - - - - - - - - LTHQSLLATA- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

LSAI GGF                                                                                                                   
LSGFGSFDGKNRRI TI GAGPI GKKSSSSLWQ                                                                                           
                                                                                                                          
                                                                                                                          
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - RK                                                                                           
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Fig. IV.3: Alignment of A. nidulans KipB with homologous kinesin sequences from N. 
crassa (NCU06144.1), S. pombe (Klp5 and Klp6) and S. cerevisiae (Kip3). The alignment 
was done with DNAstar using MEGALIGN (CLUSTAL) with a window size of 5 and a gap 
length penalty of 10. The beginning and the end of the highly conserved motor domains are 
indicated by asterisks above the sequences. The ATP-binding motif is boxed (orange) and 
the putative microtubule binding pocket is indicated by lines (green) above the sequences. 
The 18 amino acid motif at the N-terminus, which is conserved among the compared proteins 
is highlighted by a dashed line (grey) above the sequences. The putative coiled-coil domains 
are marked by the diamond (blue) above the sequences. 
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Fig. IV.4: Domains and coiled-coil prediction for the KipB protein. (A) Schematic 
drawing of different domains, with correspondent colour display onto the protein alignment 
from Fig IV.3. (B) Coiled-coil prediction (Lupas et al., 1992) for KipB (window size 14). 
Significant coiled-coil probability was found between amino acids 390-408, and 500-600. 

 

The sequence of A. nidulans kipB was deposited in the EMBL database and is 

available under the accession number AJ620863. 

After obtaining the full length kipB gene sequence, the question which rose was if 

there are other kipB kinesin homologues in A. nidulans genome, as it was described 

for klp5 and klp6 in S. pombe (West et al., 2001). Upon completion of the A. nidulans 

genome sequencing project at the Whitehead Center for Genome Research 

(Cambridge, USA), the public databases were thus searched using the BLAST 

program available at this site (http://www-

genome.wi.mit.edu/annotation/fungi/aspergillus/index.html) for kinesin-like proteins 

(Fig. IV.5) (study realized in collaboration with Sven Konzack, Marburg). The motor 

domain of A. nidulans KipB protein was used to identify eleven putative kinesin 

motors.  
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Fig. IV.5: Relatedness analysis of the eleven A. nidulans and the ten N. crassa kinesins. A most 
likely phylogenetic tree of 74 kinesins was built with Treepuzzle (http://www.tree-puzzle.de/) using a 
maximum-likelihood algorithm. For evaluation of statistical significance of the topology 25.000 
replicating puzzling steps were performed. The substitution model Whelan-Goldman 2000 was used 
because it produced a consensus tree, which was in good agreement with the published data (Schoch 
et al., 2003). For the construction of the tree we have chosen fungal kinesin sequences and additional 
kinesins from other organisms characteristic for the different families. It has to be noted that for A. 
nidulans exon/intron boarders were only experimentally determined in the case of BimC, KlpA, KinA, 
KipA and KipB. In the case of N. crassa only the conventional kinesin NcKHC has been analyzed 
experimentally. The other primary structures of the proteins of A. nidulans and N. crassa are based on 
the predictions in the annotation process at the Whitehead Institute. The N. crassa Kip3 homologue 
was annotated manually. The origin of the kinesin sequences was abbreviated: An = A. nidulans; Nc = 
N. crassa; Spo = S. pombe; Ce = Caenorhabditis elegans; Mm = Mus musculus; Um = U. maydis; Sc 
= S. cerevisiae; Ch = Cochliobolus heterostrophus; Hs = Homo sapiens; Ca = Candida albicans; Dm = 
Drosophila melanogaster; Cg = Cricetulus griseus; Sp = Strongylocentrotus purpuratus. The A. 
nidulans and the N. crassa sequences were boxed. 
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They grouped into nine of the eleven families, two kinesins being found in the 

Unc104 family and one did not fall into any of the known families. The ten N. crassa 

kinesins (identified through similar procedure of motor domain search at http://www-

genome.wi.mit.edu/annotation/fungi/neurospora/index.html were closely related to 

the A. nidulans proteins. In comparison, in the single cell organisms S. cerevisiae 

reside six and in S. pombe nine kinesins (Schoch et al., 2003). 

3. Molecular analysis of kipB functions 

3.1. kipB disruption 

The cellular function of kipB was investigated through the construction of a null 

mutant by homologous recombination (Fig. IV.6, see also Chapter III). The motor 

domain was disrupted by insertion of the nutritional marker gene argB (Fig IV.6, A). 

Colony purified arginine prototrophic transformants of strain SRF200 were tested for 

the integration event at the kipB locus by Southern blot analysis using different 

restriction digests (Fig. IV.6, B, left) and by PCR tests (with primers: forward at the 3’ 

end of argB and reverse at the 3’ end of kipB) (Fig. IV.6, B, right). Two of 43 strains 

harboured the knock-out situation. In a cross with an argB deletion, kipB wild type 

strain (RMS011) the kipB disruption (∆kipB) co-segregated with the argB marker. 

Two strains obtained in the cross (SPR13 and SPR22) were chosen for further 

phenotypic analysis with respect to polarized growth, mitochondrial movement and 

nuclear distribution. Observation of colony growth on plates at different temperatures 

(permissive temperature, 37°C and two restrictive temperatures, 30°C, 42°C) 

revealed no difference for the mutant strain, in parameters as colony diameter, 

growth speed or polarized growth (Fig. IV.7). 

In S. cerevisiae several studies have shown that Kip3, the KipB homologue is 

required for migration of the nucleus to the bud site in preparation for mitosis 

(DeZwaan et al., 1997). The distance over which the nucleus has to migrate from the 

center of the cell is rather short and the mitotic machinery contributes significantly to 

this distribution process. In filamentous fungi, nuclei migrate long distances to follow 

the growing hyphal tip. During the migration process nuclei divide and individual 

nuclei are left behind to populate the entire mycelium (Suelmann & Fischer, 2000). 

Therefore the analysis of nuclear movement in A. nidulans can reveal insights into a 

very complex machinery driving organelles within the cell. Since the kipB gene 
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appeared as a real candidate in this process, its putative role in nuclear migration in 

A. nidulans was studied. Thus, the movement of GFP-labeled nuclei has been 

followed in living hyphae by fluorescence microscopy. Time-lapse studies of nuclear 

migration in both wild type and mutant indicated no particular phenotype for ∆kipB, 

except a slight tendency of nuclei to remain clustered for short periods after their exit 

from mitosis. After that, they distributed normally in the same even pattern as in the 

wild type (Fig. IV.8 and movies 2 and 3). 

The interest in studying mitochondrial dynamics and morphology came after a 

report was published about two similar kinesin-related proteins (KRPs) from the 

higher plant Arabidopsis, named MKRP1 and MKRP2 (for mitochondria-targeted 

KRP), and which contained an N-terminal mitochondrial targeting signal (MTS). They 

were considered to represent a new subclass of KRPs that might work within 

mitochondria (Itoh et al., 2001). To check if KipB could be implicated in this process, 

a plasmid (pRS54) containing the green fluorescent protein (GFP) targeted to 

mitochondria of A. nidulans, by its translational fusion to 76 amino acids of the N-

terminus of citrate synthase (from A. niger; Acc. No. 63376), which harbor the signal 

sequence required for mitochondrial import (Suelmann & Fischer, 2000), was 

transformed into a ∆kipB mutant (SPR26). The transformant strains were screened 

for fluorescence, one of them (SPR80) and a wild type strain containing the same 

plasmid (SRS29) were chosen for further analysis. Fluorescence microscopy 

investigation of mitochondrial morphology and movement revealed the same tubular 

structures within the hyphae, mainly oriented in the longitudinal axis of the cell (Fig. 

IV.9 and movies 4 and 5) (Suelmann & Fischer, 2000). 
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Fig. IV.6: Disruption of the kipB gene. (A) Scheme of the strategy. The nutritional marker 
gene argB was inserted into kipB and thereby deleted 18 bp. (B, left) Southern Blot analysis 
of a kipB disruption strain (SPR1). Genomic DNA of a wild type (FGSC26) and the kinesin 
disruptant strain were isolated, restricted with SacI (left) and EcoRV (right), separated on a 
1% agarose gel, blotted and hybridized with the probe indicated in A. (B, right) PCR check 
of the same wild type and mutant strains, with the primers indicated in (A). The DNA marker 
used: Lambda DNA/Eco130I (StyI), from MBI Fermentas, Germany. 
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SPR93
(wt)

SPR13
(∆kipB)

37°C 

42°C 

30°C 

 

Fig. IV.7: Colony growth of wild type (SPR93) and the kipB disruptant (SPR13). Strains 
were inoculated on agar plates at different temperatures (37°C, 42°C and 30°C). 

 

 
Fig. IV.8: Nuclear distribution in a wild type and a ∆kipB mutant strain. Conidia of a 
wild-type strain (FGSC26) and a kinesin mutant strain (SPR1) were germinated on 
microscope coverslips, at 37°C overnight, fixed with 4% formaldehyde, mounted with 
VECTASHIELD mounting medium with DAPI and observed by fluorescence microscopy. 
(A) wild type (FGSC26), (B) ∆kipB strain (SPR1). Scale bar 5µm. 
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Mitochondria-GFP
(gpd(p)::N-cit-1::gfp) 

Phase-contrast 

  

Fig. IV.9: Mitochondrial morphology in a wild type and a ∆kipB mutant strain. A wild-
type strain (SRS29) and a kinesin mutant strain (SPR26), which were transformed with a 
sGFP construct targeted to mitochondria (pRS54) (Suelmann & Fischer, 2000), were 
selected and compared for mitochondrial morphology. (A) wild type (SRS29); (B) ∆kipB 
mutant strain (SPR80). 

 

The absence of differences between the wild type and the ∆kipB mutant strains in 

all the features analysed above suggests that KipB is not involved in those processes 

or other kinesin motors are able to substitute for the function of KipB. 

3.2. Disruption of kipB affects microtubule stability 

The next step for investigation of KipB function was to look for a role of the protein 

in the organization of the microtubule cytoskeleton. Early reports about homologous 

genes as kip3 in S. cerevisiae and klp5 and klp6 in S. pombe proposed roles for 

them in microtubule stability and organization. In order to assess this function, the 

sensitivity to the microtubule-destabilizing drug benomyl for both the wild type and 

mutant was analysed. While the wild type failed to grow at concentrations between 

0.75-0.9 µg/ml, the ∆kipB mutant was still able to grow and was only inhibited at 

concentrations above 0.95 µg/ml (Fig. IV.10). The difference in benomyl-sensitivity 

was independent of the growth temperature. These results suggest that the kinesin 

KipB destabilizes microtubules in A. nidulans.  
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Fig. IV.10: Effect of different benomyl concentrations on colony growth of wild type 
(SPR93) and the kipB disruptant (SPR13). Strains were inoculated on agar plates at 37°C 
supplemented with the indicated benomyl concentrations dissolved in DMSO. 

 

To study directly an effect of the kipB mutation on microtubule stability, the 

microtubule cytoskeleton in wild type and a ∆kipB mutant strain (SPR30) where 

alpha-tubulin was labeled with GFP was compared. In single cell yeasts such as S. 

cerevisiae or S. pombe the effect of mutations of genes encoding microtubule-

destabilizing components can be easily documented since the cytoplasmic or astral 

microtubules in those strains elongate even after contacting the cortex. As a result 

microtubules appear bent along the cortex (Behrens & Nurse, 2002). In filamentous 

fungi differences in the cytoplasmic microtubule network were rarely reported 

(Requena et al., 2001). Likewise, in the ∆kipB mutant only a slight effect in 

comparison to wild type interphase cells could be detected. Microtubules appeared 

more curved, which could be due to continuous growth after reaching the hyphal tip 

(Fig. IV.11, A). However, it is difficult to follow a single MT along the entire length 

through the compartment. A striking difference in microtubule organization became 

obvious when mitotic cells were analysed. During mitosis cytoplasmic microtubules 
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are almost entirely depolymerized to provide tubulin subunits for the assembly of the 

mitotic spindle and the formation of astral microtubules (Ovechkina et al., 2003). In 

the ∆kipB mutant strain, however, several cytoplasmic microtubules were observed 

during mitosis (Fig. IV.11, B). In addition, astral microtubules grew to long filaments. 

 

Fig. IV.11: Morphology and microtubule organization in a ∆kipB mutant strain and wild 
type. Microtubules were observed as α-tubulin-GFP by fluorescence microscopy (see 
Materials and Methods). Upper row: wild type; lower row:  ∆kipB strain. (A) Cytoplasmic 
microtubules. In wild type they are long and straight, while they display a curved pattern in 
∆kipB. (B) Two mitotic spindles can be seen. In wild type one cytoplasmic MT remained 
while in the ∆kipB strain three filaments are visible. Scale bar equals 5 µm. 

 

3.3. KipB is involved in the positioning and morphology of mitotic 
spindles 

During the course of the analysis of mitotic cells, it was noticed that the mitotic 

spindles were not properly distributed in hyphae. Mitosis in wild type is almost 

synchronous in one hyphal compartment (see movie 6) and since nuclei are evenly 

spaced before entering mitosis, mitotic spindles remain distributed and fixed at their  
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Fig. IV.12: Positioning of mitotic spindles in wild type and ∆kipB disruptants. Images 
from a time-lapse series are displayed (times in seconds are indicated in the upper right of 
each panel). (A) Wild type synchronized mitoses, with evenly distributed spindles along the 
length of the hypha (see movie 6). (B) Mitosis in the ∆kipB mutant strain, with defects in 
spindle positioning, morphology (sharp angled bow-like structures) showing high mobility 
through the cytoplasm, which leads to overlapping of the spindles (arrows) (see movie 7). 
Scale bar equals 5 µm. (C) Quantification of different spindle morphologies and spindle 
behaviour in wild type and the ∆kipB mutant strain.  
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positions (Fig. IV.12, A). In contrast, mitotic spindles of ∆kipB mutants were highly 

mobile, overpassed each other and frequently moved long distances through the 

cytoplasm (Fig. IV.12, B, and movie 7). However, interphase nuclei were again 

evenly distributed.  

During their migration process 64 % of the spindles appeared with a bent shape 

(53 spindles, two independent strains were analyzed). In wild type such a shape was 

only observed in 23 % of the cases (52 spindles analyzed). Time-lapse studies 

revealed that the some longer astral filaments radiating from one pole of the spindle 

could make contact backward of the connection point of the asters from the opposite 

pole, thus pulling the entire spindle structure and bringing the opposite poles in the 

same plane, and thus sharply bending the spindle structure. In a ∆kipB mutant strain 

where spindle pole bodies (SPBs) were visualized through ApsB-GFP tagged protein 

(ApsB was shown to associate with SPBs, (Veith et al., 2004)), it was observed the 

situation when the SPBs reversed direction momentarily and consequently they were 

drawn closer together (Fig. IV.13, see also movies 8 (wild type) and 9 (mutant)). This 

often resulted in severely curved spindles, which sometimes could be rescued by the 

dragging of the disturbed pole back to its initial position, this probably through the 

action of another emerging astral microtubule, capable to attach to the first position at 

the cortex. 

Fig. IV.13: Morphology of 
mitotic spindles in wild type 
and ∆kipB disruptants. (A) 
Elongation of the mitotic 
spindle during mitosis in wild 
type. Spindle pole bodies 
(SPBs, marked with arrows) 
remain at the opposite poles of 
the spindle. (B) Bending of the 
spindles in ∆kipB mutant. One 
of the SPBs remained at a 
fixed position (arrow), while the 
opposite one migrates 
backwards (arrowhead), 
arriving in the same plane with 
the first SPB. See also movies 
8 (wild type) and 9 (mutant). 
Scale bar equals 5 µm. 

A 

B 
0 sec. 100 sec. 220 sec. 

0 sec. 100 sec. 220 sec. 
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3.4. kipB disruption causes a delay in mitotic progression 

To determine if any stage of mitosis is affected in the ∆kipB mutant, spindle 

behaviour in both wild type and the mutant was compared by live-imaging. In fungi, 

mitosis starts with an early prophase, when the SPB’s divide and separate towards 

opposite sites, generating a half-spindle. In metaphase the bipolar spindle is 

completely formed and the chromosomes are attached to the spindle microtubules 

via the kinetochores. The chromosomes are usually scattered over the middle one-

third to one-half of the spindle rather than arranged in a metaphase plate. Anaphase 

occurs in two stages. During anaphase A, the chromatids are separated and migrate 

asynchronously along the entire length of the spindle to the respective spindle poles, 

and the astral microtubules are starting to be developed. During anaphase B, the 

spindle elongates rapidly between the two SPB’s and the astral microtubules reach 

their maximal length (Aist & Morris, 1999). The first stage (prophase to metaphase) 

had a short duration (60-80 sec). Then, the mutant exhibited a much longer 

anaphase A, with duration of 400-600 sec, in comparison to wild type with 160-200 

sec (Fig. IV.14) (see movies 10 (wild type) and 11 (mutant)). 
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Fig. IV.14: kipB disruption causes a delay in mitotic progression. Time-lapse analysis of 
mitosis in germlings of wild type (strain GFP-tubA) (see movie 10) (A) and ∆kipB mutant 
(SPR30) (see movie 11) (B). Microtubules were labeled with GFP. The stages of mitosis are 
indicated in the upper left corner of the pictures. Prophase to metaphase (= I)(short spindle); 
anaphase A (= II)(spindle elongates very slowly, appearance of astral microtubules (indicated 
by arrows)), anaphase B (= III)(spindle elongates rapidly and doubles or triples in length). 
Cells were grown overnight at 30°C and were observed at room temperature. Images were 
taken every 20 sec., a selection of which is displayed here. The time points (in sec) are 
indicated in the upper right corner of the pictures. Scale bar equals 5 µm. (C) Summary of 
the time intervals of different mitotic phases in wild type and ∆kipB mutant strain. (see also 
movies 10 (wild type) and 11 (mutant)). 
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3.5. Genetic interaction of ∆kipB with bimC4 

Since KipB appeared to play a role in mitosis, the ∆kipB mutation was tested for 

genetic interaction with a temperature sensitive kinesin motor mutation, bimC4. The 

first member of the BimC family of kinesins was discovered in a genetic screen for 

temperature-sensitive lethal mitotic genes in A. nidulans as a mutant that was 

“blocked in mitosis”. The proteins belonging to the BimC family are bipolar motor 

proteins that exert their function by crosslinking and sliding apart antiparallel 

microtubules (Kashina et al., 1997). A cross between a ∆kipB mutant (SPR13) and a 

temperature sensitive bimC4 strain (MO62) was performed. Two bimC4/∆kipB double 

mutant strains (SPR88 and SPR90) were selected and their growth was compared 

with the growth of strains with corresponding single mutations (Fig. IV.15). This 

assay was performed at permissive (30°C), at restrictive (42°C) and at semi-

permissive temperature (37°C) for bimC4. The double mutant displayed increased 

temperature sensitivity compared with the two single mutants. At intermediate 

temperature the double mutant showed a stronger growth defect than the bimC4 

mutant, suggesting genetic interaction of the two kinesins (Fig. IV.15). 
 

 

 
 
 
 
 

Fig. IV.15: Disruption of 
kipB is synthetically lethal 
with bimC4. Comparison of 
colony growth of SPR93 
(wt), MO62 (bimC4), SPR13 
(∆kipB) and two double 
mutants (SPR88 and 
SPR90), at 37°C, 42°C for 3 
days and 30°C for 5 days.  
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3.6. Gene dosage of kipB determines the frequency of chromosome 
loss in a diploid strain 

To further investigate the effect of the ∆kipB mutation on nuclear division, a wild 

type and the ∆kipB mutant were compared for chromosome loss during mitosis. 

Since conidiospores of A. nidulans are haploid, any loss of one of the eight 

chromosomes would lead to the death of the spore and thus a germination defect. 

However, no difference in the viability of conidiospores harvested from the two 

strains was found, suggesting a more subtle effect of the mutation. Therefore it 

became interesting to study putative chromosome loss in diploid strains (Fig. IV.16, 

A). Those strains can be obtained from conidiospores generated in a heterokaryon. 

With a low frequency diploid spores are formed and can be stably maintained when a 

selection pressure is applied. If they loose one chromosome during mitosis, they 

reduce the number to the haploid set of chromosomes and in the absence of the 

selection pressure they can grow to mature colonies (Käfer, 1977). If strains with 

green spores were used in combination with strains with yellow spores for the 

construction of the diploid or strains with white spores in combination with strains with 

yellow spores, haploidization can be easily visualized through the colors of a colony 

and sectors with different colors. Chromosome-loss can be stimulated by the 

application of low benomyl concentrations. Diploid strains between the kipB mutant 

(yellow spores) (SPR13) and a wild type (white spores) (GR5) and a homozygous 

∆kipB diploid strain (yellow and green spores in the haploid parents) (SPR13 and 

SPR22) were constructed and compared the frequency of haploidization with a 

diploid wild type strain (RMS012). The frequency of sectors with different colors was 

very low in wild type and increased with increasing benomyl concentrations. In 

comparison diploids heterozygous for the kipB mutation (kipB/∆kipB) (SPR55) 

formed more haploid sectors than the wild type. Interestingly this frequency 

decreased with increasing benomyl concentrations. A ∆kipB homozygous diploid 

(∆kipB/∆kipB) (SPR60) appeared to have an even lower frequency of haploidization 

than the wild type (Fig. IV.16, B). 
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Fig. IV.16: Haploidization of diploids of kipB/kipB (wild type, RMS012), ∆kipB/kipB 
(heterozygous, SPR55) and ∆kipB/∆kipB (homozygous, SPR60). (A) Colony growth on 
plates without benomyl (upper row) and with 0.5 µg benomyl/ml (lower row). The arrows 
point to haploid sectors. (B) The number of haploid sectors was counted for the three strains 
denoted in (A). For the homozygous ∆kipB situation were analyzed 10 diploid strains, for the 
heterozygous 6 and for the wild type 1 strain. The average numbers of sectors are shown.  
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In contrast to the effect on mitosis and chromosome segregation in the diploid, 

there is no evidence for a role of KipB in meiosis. Crosses between different strains 

did not show any abnormality and the number of ascospores per ascus as well as the 

viability of the spores was not altered. 

3.7. Genetic interaction of ∆kipB with other motor protein mutants 

Because ∆kipB mutant exhibited very subtle phenotypic differences in comparison 

with the wild type strain, the question that rose was about the existence of partially 

redundant pathways for some of the phenomena presented above (nuclear 

migration, mitochondrial dynamics, polar growth, etc.). Thus, it was intriguing to know 

whether other motor protein mutations would show genetic interactions with ∆kipB. 

To carry out this analysis, crosses were performed with strains bearing deletions in 

some of the kinesin-related genes along with several other relevant genes required 

for nuclear positioning, microtubule integrity, and/or polar growth. These genes were: 

kinA (conventional kinesin) (Requena et al., 2001), kipA (A. nidulans kip2 

homologue) (Konzack et al., 2004), nudA1 (cytoplasmic dynein heavy chain 

temperature sensitive mutant) (Xiang et al., 1994), and bimC4 (temperature-sensitive 

mutant of a kinesin related protein, see also Chapter 3.6) (Enos & Morris, 1990). The 

viability and growth characteristics of the resulting double or triple mutant strains 

were then used as an indicator for possible genetic interactions. Table IV.1 

summarizes the results from the crosses, and Fig. IV.15 depicts a cross in which a 

synthetic growth defect was found. Another test performed with all the mutants 

described above was to grow them at two different temperatures (37°C and 30°C) in 

the presence of different benomyl concentrations, to compare the effect of double or 

triple mutations with the single ones on microtubule stability. The study of this 

phenotypic feature was chosen because it represented a striking phenotype for the 

∆kipB mutant. Fig. IV.17 illustrates the outcome of this experiment. The double 

mutants exhibited the dominant phenotype of one of the parents (see also Table 

IV.1).  
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Fig. IV.17: Effect of different benomyl concentrations on colony growth of various 
mutant combinations with the kipB disruptant (A). (B) Strain identity for the plates 
depicted in (A). Strains were inoculated on agar plates at 37°C and 30°C and supplemented 
with the indicated benomyl concentrations dissolved in DMSO (the strains SSK13, 28, 70, 73 
and SSK80 were constructed by S. Konzack, Marburg). 
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Table IV.1. Viability of double and triple mutants in combination with ∆kipB 

Mutant combinations Viability of double or 
triple mutants 

Dominant phenotype (growth 
characteristics) 

∆kipB/∆kinA (SPR36) viable ∆kinA (compact colony) 

(Requena et al., 2001) 

∆kipB/∆kipA (SSK28) viable ∆kipA (polar growth defect) 

(Konzack et al., 2004) 

∆kipB/nudA1 (SPR57) viable nudA1 (dynein t.s. mutant) 

(Xiang et al., 1994) 

∆kipB/bimC4 (SPR88) synthetically lethal at 

semi-permissive 

temperature 

- 

∆kipB/∆kipA/∆kinA (SSK73) viable ∆kipB/∆kinA and ∆kipB/∆kipA  

 

Here is important to specify that for ∆kipB, ∆kinA, ∆kipA the permissive 

temperature is 37°C, while bimC4 and nudA1 are temperature sensitive mutants, for 

which 30°C and 42°C are permissive and restrictive temperatures, respectively. In 

Fig. IV.18 the variation of colony diameter with increased concentrations of benomyl, 

after 3 days growth at 37°C is shown.  

 
 
Fig. IV.18: Effect of 
benomyl onto colony 
growth of different 
mutant combinations 
with ∆kipB. The colony 
diameter was measured 
after 3 days of growth at 
37°C at different benomyl 
concentrations (for 
genotype of the strains 
see Fig. IV.16, B).  
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First, the ∆kipB mutant was crossed to a mutant that also destabilizes 

microtubules, ∆kinA (SPR51). The double mutant (SPR36) was found viable, and 

expressing the ∆kinA mutant phenotype, with compact colonies at 37°C and 30°C, 

and increased resistance to benomyl like either of the parental strains. In contrast, 

the double mutant (SSK28) with ∆kipA (SSK13) displayed a compact colony growth 

at 30°C, suggesting cold temperature sensitivity and possible partially redundant 

functions. Also, the same double mutant showed enhanced resistance to high 

benomyl concentrations in comparison with the ∆kipA single mutant, indicating that 

the ∆kipB mutant phenotype was dominant, and rescued the high benomyl sensitivity 

of the kipA mutation. The double mutant (SPR57) of ∆kipB in combination with the 

dynein temperature sensitive mutant (XX3) was viable at permissive temperature 

(30°C) and exhibited no visible differences in growth compared with the single dynein 

conditional mutant. Furthermore, the triple mutant ∆kipB/∆kipA/∆kinA (SSK73) was 

indistinguishable in size from the ∆kipB/∆kinA colony at 37°C, and from ∆kipA/∆kipB 

double mutant at 30°C, and displayed no enhanced benomyl resistance as SPR36 

(∆kinA/∆kipB), but it was slightly more stable to benomyl as SSK28 (∆kipA/∆kipB) 

(double and triple mutants of ∆kipB with ∆kipA were constructed by S. Konzack, 

Marburg).  

3.8. KipB localizes to mitotic, astral and cytoplasmic microtubules 

To localize KipB in A. nidulans, a N-terminal fusion protein with GFP was 

constructed. Approximately 1.2 kb from the 5' region of the coding sequence was 

cloned downstream of GFP. The chimeric gene was expressed under the control of 

the inducible alcA promoter (pPR38) (Fig. IV.19, A). A. nidulans SRF200 was 

transformed with the circular plasmid pPR38 and transformants were screened for 

GFP fluorescence under inducing conditions (threonine as carbon source). These 

strains were analysed for the integration of the plasmid and a strain with a single 

ectopic integration as well as a strain with a single homologous integration was 

chosen for further analysis (glycerol and/or ethanol as carbon source) (Fig. IV.19, B). 

The ectopic copy results in an aberrant, non-functional fusion protein, whereas 

homologous integration results in a duplication of the region where the plasmid 

integrated. The full-length KipB protein is N-terminally tagged with GFP. 
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Fig. IV.19: Construction of the GFP-kipB strain. (A). Illustration of the pPR38 plasmid, the 
wild-type kipB locus and the kipB locus after homologous integration of the pPR38 plasmid 
(GFP-kipB). The green box represents GFP and the grey box its upstream alcA promoter. 
The open box represents the kipB gene. kipB5' indicates the 5' end 1.2 kb region of the kipB 
gene. A “cross'” sign indicates homologous recombination. (B). Southern blot analysis 
indicating that the pPR38 plasmid integrated into the wild-type kipB locus as expected, and 
another strain with an ectopic integration. Genomic DNA from a wild type (lane 1), the GFP-
kipB homologous integration strain (SPR96) (lane 2) and ectopic integration strain (SPR98) 
(lane 3) were digested with the restriction enzyme SalI and subjected to Southern blot 
analysis with the 1.2 kb DNA fragment from the 5' end of the kipB gene as a probe. (C) The 
growth phenotype of the GFP-kipB homologous integration strain SPR96 compared with its 
parental wild-type strain SRF200 on a MM + glycerol + pyridoxine + uridine + uracil + 
arginine plate. The plate was incubated at 37°C for 2 days. 

 

Both strains displayed normal growth on plates (Fig. IV.19, C). The KipB-GFP 

protein localizes to cytoplasmic microtubules in interphase cells and to spindle and 

astral microtubules during mitosis (Fig. IV.21) (see movies 12 (spindle) and 13 

(cytoplasmic)). However, the protein displayed a discontinuous pattern along the 

microtubules. The spots disappeared or stopped when benomyl was added (Fig. 

IV.20, B) (see also movies 14 (microtubule-GFP dynamics on benomyl) and 15 

(KipB-GFP spots behaviour on benomyl)). 
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Fig. IV.20: Comparison of the 
behaviour of both microtubule-GFP 
and GFP-KipB spots in hyphae 
treated with 0.35 µg/ml benomyl. (A) 
Images of GFP-microtubules (strain 
SPR30, see movie 14) and (B) of GFP-
KipB spots in low-concentration 
benomyl-treated cells (strain SPR96, see 
movie 15). Arrows point to (A) a 
nondynamic microtubule end and (B) 
nonmotile GFP-KipB spots. The “cross” 
sign marks the disappearance of one of 
the microtubules and one of the spots. 
Cells were grown overnight at 30°C 
before being treated with benomyl. All of 
these images were taken within 4.5–6 
min after the cells were treated with 0.35 
µg/ml benomyl. Scale bar equals 5µm. 

 

 

 

Speckles of GFP-KipB appeared to be aligned in the cell and time-lapse studies 

revealed that the spots were moving independently along microtubules. In the hyphal 

tip, where microtubules are oriented with their plus ends towards the cortex, the 

spots moved only towards the tip. In the middle and the rear of the hyphal tip 

compartment, where microtubule polarity is mixed (Konzack et al., 2004), GFP-KipB 

spots moved into both directions (see movie 16). To discriminate between the two 

possibilities that GFP-KipB spots are transported together with the growing plus end 

or that the spots move along microtubules independently of the plus ends, we studied 

the dynamics of plus ends and compared it to the behaviour of the GFP-KipB spots. 

Whereas the microtubule plus ends grew with a speed between 9 +/- 3 µm/min., the 

KipB spots showed a greater range of speeds and no pronounced peak. Also, 

colocalization by time-lapse analysis between full-length KipB protein tagged N-

terminally with GFP and the truncated version of mRFP1-KipB, which evenly stains 

the microtubules showed that the spots are situated onto the microtubules, but they 

move independently of microtubules plus ends (Fig IV.22, see also movie 17). These 

two results together suggest that KipB-GFP moves towards the microtubule plus end. 

In the case of the truncated GFP-KipB protein a stronger GFP signal was 

obtained. The colocalization of this truncated version with α-tubulin-GFP revealed 

that the GFP-KipB fusion protein uniformly stains cytoplasmic, mitotic and astral 
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microtubules (Fig. 21, c and d) (see movie 18 (mitotic) and 19 (cytoplasmic)). Any 

abnormality of the microtubules, which could be caused by a dominant negative 

effect of the truncated protein, was not observed. A similar result was obtained with a 

construct where GFP was fused to the C-terminus of KipB replacing about 300 amino 

acids (Fig. 21, e and f). 

A truncated KipB-HA fusion protein was also constructed (pPR12) and detected in 

Western blot (Fig. IV.2, B), but its subcellular detection by immunostain was not 

possible. That could be explained by the instability of the C-terminal HA fusion 

protein because it did not contain the Stop codon, or by the fact that the HA epitope 

was shielded in the C-terminus by protein folding, and so unaccessible for antibody 

binding.  
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Fig. IV.21: Localization of GFP-KipB fusion proteins. (A) Coiled-coil prediction (Lupas et 
al., 1992) for KipB (window size 14). Schematic draw of domains for the KipB protein: 
globular heads (in yellow), with the amino-terminal motif of 18 amino acids (in grey), the coils 
(curved lines), and the tail domain (in blue). The amino acid positions are represented on the 
line below. (B) Localization of different GFP-KipB fusion proteins. (a, b) Time-lapse analysis 
of full-length KipB protein tagged N-terminally with GFP (see above each series of photos the 
schematic drawings of the different constructs). Strain SPR96. (a) Localization of GFP-KipB 
onto spindle and astral microtubules, the arrows point to the plus end of the astral 
microtubules. (see movie 12) (b) spots of GFP-KipB moving onto cytoplasmic MTs (see 
movie 13). (c, d) Colocalization between a truncated version of mRFP1-KipB and mitotic 
spindles (see movie 18). Strain SPR99. left: mRFP1-KipB; middle: α-tubulin GFP; right: 
merged images of the first two photos. (d) localization to cytoplasmic MTs (see movie 19). 
Arrow points to the plus end of the MT in the hyphal tip. (e, f) C-terminal fusion of KipB with 
GFP. Strain SPR2. Localization onto mitotic, astral (arrow) (e) and cytoplasmic microtubules 
(arrows) (f). Scale bar equals 5 µm. 
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Fig. IV.22: Colocalization of GFP-KipB fusion protein with microtubules (A) The GFP-
KipB constructs used for colocalization (as in Fig. IV.21). (B) DIC image of the germling 
depicted in (C) (C) Colocalization by time-lapse analysis between the full-length KipB protein 
tagged N-terminally with GFP and a truncated version of mRFP1-KipB, which evenly stains 
the microtubules (see also movie 17). Strain SPR101. left: GFP-KipB, homologous 
integration; middle: truncated mRFP1-KipB, ectopic integration; right: merged images of the 
first two photos. Scale bar equals 5 µm. 



Discussion 

82 

V. Discussion 

Despite great progress in understanding the internal order established by 

eukaryotic cells using protein motors to transport molecules and organelles along 

cytoskeletal tracks, there remain many open questions about the roles of motor 

proteins and microtubule dynamics in processes like mitosis, intracellular organelle 

transport or membrane trafficking. How are the force-generating properties of 

dynamic microtubules and motor proteins coordinated? What are the precise roles of 

molecular motors in intracellular transport or in temporal and spatial morphogenesis 

of the mitotic spindle? How are they integrated and regulated? Inhibiting motors (via 

complete deletion or diverse mutations) and visualizing microtubule dynamics, along 

with genetic or biochemical manipulations and quantification of the mechanical and 

force-generating properties of both the tracks and the motors are some of the 

currently used approaches to gain important knowledge regarding this field (Schliwa, 

2003). 

The fungi, with relatively "simple" kinesin inventories, and ease of functional 

analysis, are premier model systems for investigating these questions (Schoch et al., 

2003). Filamentous fungi, in particular, have provided model studies of the cytology 

and genetics of motor proteins and cytoskeleton, including important advances in the 

study of mitotic forces, microtubule-associated motor proteins, and mitotic regulatory 

mechanisms (Aist & Morris, 1999). 

In the present study a new kinesin, KipB of A. nidulans was characterized. Several 

lines of evidence show that it is involved in the turnover of all populations of cellular 

microtubules, interphase cytoplasmic, mitotic and astral microtubules: (i) ∆kipB 

mutants are less sensitive to the microtubule-destabilizing drug benomyl, (ii) the 

microtubule cytoskeleton of interphase cells appears altered, (iii) spindle positioning 

is affected, (iv) mitotic progression is delayed, (v) an increased number of 

cytoplasmic microtubules remains intact during mitosis, (vi) spindle morphology is 

altered, and (vii) ∆kipB heterozygous strains show an increased instability of diploid 

nuclei. 
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1. KipB is a member of the Kip3 kinesin family  

Initially, Goodson et al. (1994) grouped kinesins into five clearly defined 

subfamilies and subsequent analyses with expanded data sets yielded up to ten 

subfamilies plus a number of ungrouped "orphans" (Goodson et al., 1994; Hirokawa, 

1998; Kim & Endow, 2000). More recent phylogenetic comparisons including a study 

of human kinesins, grouped them into 14 subfamilies by means of maximum 

parsimony (Miki et al., 2001) and a comparison by means of maximum likelihood 

delineated 11 subfamilies from a spectrum of eukaryotic kinesins, placing some, 

previously classified as orphans, into known subfamilies (Lawrence et al., 2002). A 

last study referring to filamentous fungal kinesins grouped them into nine from the 

total eleven kinesin families by comparison with well-characterized kinesins from 

other eukaryotes (Schoch et al., 2003). And, the latter re-evaluation of the kinesin 

microtubule motor protein family based on the recent completion of the genome 

sequences of humans and several model organisms, revealed the emergence of 

several new groups consisting only of Arabidopsis thaliana proteins, which suggests 

that the kinesin motors may have a broader range of functions in higher plants than in 

other organisms (Dagenbach & Endow, 2004). 

In this work we identified eleven kinesin motors in A. nidulans. This is in good 

agreement with the number of kinesins in other fungi ranging from six in S. 

cerevisiae, ten in N. crassa to twelve in Cochliobolus heterostrophus (Schoch et al., 

2003). Interestingly, two kinesins of A. nidulans and N. crassa were found in the 

Unc104 family, whose members are involved in vesicle transportation. This may 

reflect the importance of the requirement for fast tipward vesicle movement in fast 

growing filamentous fungi. Not surprisingly, S. cerevisiae does not have any related 

kinesin of this family. In addition, S. cerevisiae kinesins are lacking from the 

Chromokinesin/Kif4, the MKLP1 and the KID family, whereas A. nidulans and N. 

crassa do have representatives in these groups. Since these kinesins are involved in 

mitotic processes, this may reflect different mechanisms of nuclear division in S. 

cerevisiae and the two filamentous fungi (Schoch et al., 2003): The possibility of 

various mechanisms employed in mitosis by different organisms (e. g. yeasts and 

filamentous fungi) was also one of the reasons why we conducted our analysis onto 

KipB kinesin in A. nidulans. 
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The characterization of specific family members from a spectrum of eukaryotes 

has shown that phylogenetic analysis of large groups of kinesins based on motor 

domain alignments can successfully group kinesins of similar function. Additional 

areas of the primary amino acid sequence, such as the unique sequences of the 

neck region and binding sites in the tail have also provided clues to protein function 

(Schoch et al., 2003). We used the same main criteria for building our relatedness 

kinesin tree, and thus KipB kinesin grouped to Kip3 family, along with its other 

homologues, already reported to belong to this family. There are several shared 

characteristics that define members of this kinesin family. First and foremost, there is 

considerable sequence similarity in their motor domains and in their general domain 

structure and organization. Second, Kip3, Klp5, and Klp6 localize also all to 

cytoplasmic and spindle microtubules, as KipB kinesin (DeZwaan et al., 1997; West 

et al., 2001). Furthermore, Klp5, Klp6 and Kip3 share with KipB an activity that 

fosters microtubule disassembly, as evidenced by the unusually stable microtubules 

found in the ∆kipB mutant (Cottingham & Hoyt, 1997; DeZwaan et al., 1997; Miller et 

al., 1998; West et al., 2001). Microtubule-disassembling activity has also been 

described for the KinI kinesin subfamily (including MCAK, XKCM1), in which the 

motor core is located Internally within the polypeptide sequence (Desai et al., 1999; 

Maney et al., 1998; Miller et al., 1998; Walczak et al., 1997). Likewise, KinIs localize 

principally to the mitotic spindle of dividing cells and are essential during mitosis 

(Moores et al., 2002). A report including a study of Kip3 as a protein with opposing 

activities to Stu2 (a protein from Dis1 family of microtubule-associated proteins, 

which localize to the microtubule-organizing center and spindle during mitosis) 

recalculated a phylogenetic tree from a multiple sequence alignment of the kinesin 

superfamily using only the sequence of the kinesin motor domain, and showed that 

the Kip3 family did congregate with the MCAK/Kif2 (KinI) subfamily (Severin et al., 

2001). Also, another phylogenetic analysis of kinesin families based on maximum 

likelihood methods, grouped Kip3 and KinI families in the same clade, together with 

Chromokinesin, CENP-E, Unc104 and MKLP families, taking into consideration that 

they share a common function (accomplished through different mechanisms), namely 

mitosis and chromosome movements (Lawrence et al., 2002). Separate proteins 

from human and fly that group with both subfamilies have already been shown in 

other phylogenetic analyses (Iwabe & Miyata, 2002; Miki et al., 2001). There is, 

however, no obvious sequence similarity between members of the Kip3 subfamily and 
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the other kinesins with "exotubulase" activity (see KinI mechanism of microtubule 

depolymerization discussed below). It is possible that each kinesin subfamily uses a 

different mechanism to promote microtubule disassembly or that there is 

conservation in protein structure that is not apparent from the amino acid sequence 

(West et al., 2001).  

The present work reveals several functions of KipB in A. nidulans, as the effect on 

microtubule stability and its role in spindle positioning and morphology, that, besides 

the kinesin relatedness study, which used KipB sequence similarities to other motors 

in the databases, placed this protein into the group of the Kip3 family, thus supporting 

the distinction between the KinI family, consisting of higher eukaryotic kinesin 

depolymerases, and the fungal Kip3 family. 

2. Microtubule organization in the ∆kipB mutant 

In filamentous fungi, microtubules are essential for both nuclear division and 

nuclear migration, together with several motor proteins. Microtubules form spindles in 

the nucleus during mitosis and cytoplasmic tracks during interphase (Xiang & 

Fischer, 2004). During mitosis, microtubules assemble and are organized into a 

functional spindle within the nuclear envelope, which does not break down. At mitotic 

onset, tubulin moves rapidly into the nucleus reaching a level 3 times greater than in 

interphase and the spindle begins to assemble seconds later, coincident with early 

prophase. As mitosis proceeds, the spindle gradually increases in length, containing 

about 34-50 microtubules. About half of the microtubules terminate at each spindle 

pole body. In late stages of mitosis (anaphase A and B), mitotic asters composed of 

cytoplasmic and SPB-associated microtubules are being developed. In anaphase B 

the spindle elongates, becomes visibly thinner, and the mitotic asters reach their 

maximal length. The spindles are often so long that their astral microtubules end by 

overlapping each other, and sometimes are forced to bend as they reach the cell 

periphery. Tubulin is removed rapidly from the nucleus at the end of mitosis, after 

spindle disassembly (Aist & Morris, 1999; Jung et al., 1998). 

Microtubule's building blocks, the α- and β-tubulin heterodimers, are arranged in a 

head-to-tail fashion in a protofilament, which gives a microtubule its inherent polarity, 

with β-tubulins at its plus end and α-tubulins at its minus end (Nogales et al., 1999). 

The microtubule plus ends are highly dynamic, with alternate growing and shrinking 
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phases. In most interphase cells, the minus ends of microtubules are located at the 

microtubule organizing center (MTOC) near the nucleus whereas the plus ends face 

the cell periphery (Han et al., 2001). A parallel study in our lab found MTOCs in the 

cytoplasm close to nuclei but also at different places in the cytoplasm of A. nidulans. 

In addition, very active MTOCs were detected at the septa. These MTOCs give rise 

to a mixed polarity of microtubules in compartments of A. nidulans. Nevertheless, 

microtubule formation from the tip occurred only very rarely, indicating that there is 

no true MTOC in this region. Microtubule filaments merge in the hyphal tip and 

appear fixed at a central point until the occurrence of a next catastrophe event. A 

catastrophe event does not lead to complete disassembly of the entire microtubule 

but only of some filaments. New filaments can then grow along the still existing 

filament, so it can be speculated that microtubules are bundles of several filaments, 

with individual dynamics (Konzack et al., 2004). 

The changes in the dynamics of microtubules could have effects on various 

dynamic processes in the cell, so examination of the microtubule cytoskeleton can 

provide essential details about their dependence on the the KipB protein.  

Growth-tests done for both the wild type and ∆kipB mutant regarding sensitivity to 

the microtubule-destabilizing drug benomyl and microscopic investigation of 

microtubule cytoskeleton indicated that KipB kinesin could play an important role in 

stability of interphase and mitotic microtubules. Two experiments supported this 

hypothesis. First, disruption of the kipB gene rendered the kipB mutant strains less 

sensitive towards the microtubule-destabilizing drug benomyl. Second, observations 

done onto strains containing GFP-tagged tubulin revealed that microtubule 

organization in kinesin mutants was slightly impaired in interphase, when the 

microtubules appeared more curved, and significantly modified during mitosis, with 

several permanently present cytoplasmic microtubules and long and very stable 

astral filaments.  

These results indicate that KipB protein could promote microtubule disassembly in 

the cell and is necessary for proper microtubule organization in A. nidulans, 

otherwise a sheared feature among the Kip3 family members. Also, these data are 

consistent with those reported for MCAK (Maney et al., 1998) and support the notion 

that Kip3-like kinesins show strong connection with those belonging to KinI family, 

which act as microtubule-destabilizing factors, probably at the plus end of 

microtubules, as proposed in higher eukaryotes (Hunter et al., 2003). At this moment, 
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it is unclear whether the mechanism of microtubule destabilization by Kip3 kinesins is 

different from that of KinIs. KinI proteins are described as capable to bind to the 

sidewall of the microtubule and exhibit one-dimensional diffusion along the lattice; 

also they are able to target and depolymerize microtubules from both ends. When the 

protein reaches the end, binding to a high-affinity site would stimulate ATP-ase 

activity and it would result in a conformational change in the microtubule lattice. 

Consequently, KinI protein would processively remove approximately 20 dimers 

before dissociating from the end of the microtubule (Fig. V.1). However, it is still 

uncertain why a KinI enzyme needs to be processive, given intrinsic tubulin 

dynamics, being acknowledged that a key feature of dynamic instability is that 

microtubules catastrophically depolymerize (Walczak, 2003). Of course, in this light it 

is still possible that with dynamic microtubules KinI would release one tubulin dimer 

and then dissociate from it, as it was originally proposed (Desai et al., 1999). 

 

Fig. V.1. Models for KinI 
depolymerization of microtubules. For 
simplicity, in both models only one end of 
the MT is shown, although the 
depolymerization by KinI occurs at both 
ends. (A) During polymerization, KinI 
targets to the MT end. Upon binding, it 
induces a conformational change in the 
MT that is sufficient to cause a 
catastrophe that results in 
depolymerization of the MT. KinI is 
released from the MT in a complex with a 
tubulin dimer, and hydrolysis of ATP is 
involved in dissociating the tubulin dimer 
from KinI so that it can be recycled. (B) 
During polymerization, KinI targets to the 
MT lattice and reaches the MT end by 
one-dimensional diffusion. Upon reaching 
the end of the MT, ATP hydrolysis is 
coupled to processive depolymerization of 
the MT. After removal of approximately 20 
tubulin dimers, KinI dissociates from the 
MT end and is recycled (Taken from 
Walzack, (2003)). 
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Detailed analysis of the microtubule destabilizing activities of Kip3 kinesins in vitro 

could bring new insights in elucidation of the molecular mechanism of Kip3-mediated 

microtubule depolymerization and in finding a boundary and/or connection between 

Kip3 and KinI functions in this mechanism. 

3. KipB is involved in spindle architecture, positioning and mitosis 

Another process that implicates the activity of KipB kinesin is nuclear division and 

mitosis. In A. nidulans this process has been extensively dissected at the genetic 

level, with some novel insights into its regulation in eukaryotes in general. However, 

there remains a lot of useful information to be gleaned from the knowledge about the 

genes identified in previous screens or from the existing, but incompletely 

characterized, mutants (Martinelli & Kinghorn, 1997). 

The nuclear division cycle occurs in a set order and takes about 75-120 minutes, 

depending on growth conditions. At 37°C mitosis (M) is estimated to last about 5 

minutes; G2, 30 minutes; S-phase (DNA synthesis), 25 minutes and G1, 15 minutes. 

The morphological events of nuclear replication have been described at both light 

and electron microscope levels (Martinelli & Kinghorn, 1997). Among the most 

important reported features of mitosis in filamentous fungi are: mitosis is intranuclear 

(therefore the term of “closed mitosis”), bipolar spindles are formed from half-

spindles, spindles are composed of fine-to-coarse filaments, metaphase 

chromosomes are usually scattered over the middle one-third to one-half of the 

spindle rather than arranged in a metaphase plate, and the strung-out arrangement 

of anaphase A chromatids along the entire length of the spindle derives from 

asynchronous disjunction of chromosomes that were scattered on the metaphase 

spindle (Aist & Morris, 1999). Thus, one of the most intriguing aspects of mitosis is 

the formation and behaviour of the highly ordered segregation structure represented 

by the mitotic spindle. Assembly and organization of the spindle requires 

counteracting motors, which function to build up tension within the spindle rather than 

moving a cargo (Steinberg, 2000). 

Based on spindle length, the mitotic phase can be divided into three distinct 

stages, phase 1 (equivalent to prophase, during which the spindle elongates until the 

two spindle pole bodies (SPBs) are separated to the opposite sides of the nucleus, 

forming the intranuclear, bipolar spindle, phase 2 (metaphase/anaphase A; when 
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spindle length remains constant between the two poles and mitotic asters are being 

developed), and phase 3 (anaphase B, during which the spindle is elongated rapidly 

between the two SPBs and doubles or triples in length, as the asters reach their 

maximal size) (Aist & Morris, 1999; Garcia et al., 2002). 

In order to visualize mitotic spindle behaviour in germlings of A. nidulans, GFP 

tagged tubulin strains were used for wild type and ∆kipB mutants. Time-lapse studies 

of mitosis in ∆kipB mutant strains revealed that individual mitotic spindles moved 

within the cytoplasm although most of the spindles were positioned like in wild type 

(Fig. V.2, A-1, (wild type)). In wild type cells spindles are likely to interact through 

astral microtubules with the cortex. Cortical proteins such as ApsA are probably 

required for the contact (Farkasovsky & Kuntzel, 2001; Fischer & Timberlake, 1995; 

Xiang & Fischer, 2004). In the ∆kipB mutant astral microtubules are stabilized and 

are likely to reach the cortex and subsequently extend further along it. They could 

then make contact to cortical proteins at a distance from their "own" attachment site 

and pulling forces could then cause the movement (Fig. V.2, A-3, 4). The spindle 

movement phenotype was striking and raises the question why we did not observe 

an effect on nuclear distribution in interphase cells. This finding suggests that 

besides nuclear separation through mitosis, other mechanisms exist which further 

distribute nuclei (discussed below) (Xiang & Fischer, 2004). 

The longer and more stable astral microtubules are perhaps also the reason why 

we saw perturbed spindle architecture in late stages of mitosis of ∆kipB mutants, 

represented by sharply bent spindles. This phenotype might be caused by a 

mispositioning of one or both of the SPBs, because time-lapse studies of a ∆kipB 

mutant strain where SPBs were visualized through ApsB-GFP tagged protein, 

confirmed that sometimes the very long astral filaments were able to extend from one 

pole of the spindle and to migrate backward of the junction point of the asters from 

the opposite pole, thus pulling the entire spindle structure and bringing the opposite 

poles in the same plane (Fig. V.2, A-2, see also movie 9)  

Furthermore, sometimes the twisted spindle structure could be detected during 

early stages of mitosis (prophase to metaphase, when the spindle elongates slowly), 

and that may be due to the inaccurate or incomplete SPB’s separation. Changes in 

dynamics and disproportionate microtubule growth could induce an improper 

behaviour of the plus ends of astral microtubules, preventing the microtubule-cortex 
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interactions and/or accurate cross-linking of anti-parallel spindle microtubules, at the 

beginning of bipolar spindle formation from the half spindles, both having as result 

abnormal SPB migration to the opposite poles of the nuclear envelope. That aspect 

was described for another Kip3 homologue, Klp67A from Drosophila, which plays a 

distinct role in centrosome separation, Klp67A322b24 mutant displaying so-called 

“banana-shaped” spindles explained by the reduction of astral pulling forces and 

consequently incomplete centrosome separation (Gandhi et al., 2004). However, 

monopolar spindles were not observed in ∆kipB mutants, so if an impaired 

disjunction of SPBs is the reason of the bending of the spindles, they eventually 

became bipolar and could successfully complete mitosis. A further argument 

supporting this hypothesis is the additive growth defect observed for the kipB deletion 

with the temperature-sensitive kinesin motor mutation, bimC4 at the semi-permissive 

temperature 37°C (see discussions at Chapter V.4).  

Nevertheless, spindle bending was shown to be a natural, albeit infrequent and 

momentary, occurrence in living fungal cells. It was thus proposed that spindle 

actually elongated while bending, demonstrating that there is an elongation force 

intrinsic to the spindle that can push the ends of the spindle against the SPBs during 

anaphase B. But, it has to be specified that only during very brief moments this 

spindle pushing force is actually manifested (as smooth spindle bending), so during 

anaphase B spindle is almost always under tension from the astral pulling force, 

rather than being primarily under compression from the spindle pushing force, and 

this tension consequently contributes substantially to the rate of spindle elongation 

(Aist & Morris, 1999). Hence this resumes again the initial hypothesis, which 

stipulates the influence of KipB protein onto the stability of astral and spindle 

microtubules as a cause of severe spindle bending in ∆kipB mutant. 

Besides the effect of the ∆kipB mutation on spindle positioning and morphology, 

we found a defect in mitosis, represented by a delay in mitotic progression. 

Separation of chromosomes requires the coordinated action of motor proteins and 

microtubule dynamics. Normally, mitotic microtubules are known to be much shorter 

and less stable then interphase microtubules. Studies with Xenopus egg extracts 

have indicated that the mechanism for this change in microtubule stability is an 

increase in the frequency of transitions from microtubule polymerization to 

depolymerization at the microtubule plus ends (Desai & Mitchison, 1997). Thus, the 
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mitotic progression delay observed in ∆kipB mutant strains may be explained by 

either a direct or indirect effect of the motor deletion on the dynamics of microtubules 

and thus a disruption of the balance of forces exerted on the kinetochores (Garcia et 

al., 2002; Garcia et al., 2002; West et al., 2002). The absence of microtubule-

destabilizing KipB could lead to spindle and astral microtubules stabilization and, as a 

result, to the loss of the poleward force and tension at the kinetochores (Fig. V.2, B-1 

and 2). Forces both away from and towards the pole are vital for chromosome 

congression. The defect in the poleward force would lead to imbalance at the 

centromeres, which results in a tension-less state at these kinetochores (Garcia et 

al., 2002). Together, these observations may suggest that dynamic instability allows 

the microtubule plus ends to search and capture appropriate anchorage sites such as 

the kinetochores or specialized sites at the cell cortex, and KipB could be one of the 

proteins implicated in regulation of this dynamic instability. 

The delay in mitotic progression observed in ∆kipB mutant could be also seen as a 

consequence of the activation of spindle checkpoint components, which can block 

sister chromatid separation and mitotic exit. When the timing of mitotic events is 

perturbed, or the mitotic spindle is damaged, the spindle assembly checkpoint inhibits 

the normal succession of mitotic events. This situation was in fact proven for the two 

KipB homologues in fission yeast, Klp5 and Klp6, as mutations in either Klp5/Klp6 

activated the common Mad2-dependent checkpoint (Garcia et al., 2002). Therefore, 

the two genes were proposed to play a crucial role in mitotic progression by 

contributing to bipolar spindle formation at dual steps, first being the attachment and 

second the generation of tension upon capture (Fig. V.3, B) (Garcia et al., 2002). 

Further analysis is required to clarify this important point, but from the present results 

it appears that KipB and Klp5/6 play an analogous role in mitosis, suggesting that 

their mitotic functions are conserved within the Kip3 family. 
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Fig. V.2. Two possible models of mitotic defects in ∆kipB mutants. (A) Defects in 
spindle morphology and positioning. (1) Wild type situation, where spindles are evenly 
distributed along the hypha. (2)-(4) ∆kipB mutant. (2) Spindle modified architecture, with 
bending and SPB reversing orientation (red dot-left SPB changing position with the right 
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SPB-green dot) due to the longer astral microtubules (depicted as lines, in schematic 
drawing), which can make possibly contact with ApsA (blue patches) at the cortex (arrows 
show direction of astral microtubules orientation, and astral microtubules emanating from the 
left spindle are illustrated by lines, while astral microtubules emerging from the right spindle 
are depicted with interrupted lines). (3) Defects in spindle positioning due to the longer astral 
microtubules ability to connect other ApsA paches at the hyphal cortex than their “own” 
attachment site. Consequently, spindles can become highly mobile, overpass each other and 
move long distances through the cytoplasm. (B) KipB possible role in preserving spindle 
shape and in establishing proper capture of chromosomes (depicted in blue). (1) KipB is 
probably required for efficient trapping of sister kinetochores by spindle microtubules (shown 
by filaments consisting of tubulin dimers - grey and white circles -) and could be implicated in 
generation of poleward forces during later stages of mitosis. (2) In the absence of KipB, the 
tension required for astral microtubules (delineated by wavy filaments) to connect and 
conserve the positioning of the spindle is missing (green arrows indicate the microtubule 
depolymerization and eliberation of free tubulin dimers from their plus ends, due to the KipB 
function as a microtubule destabilizer).  

 

The effect of the kipB mutation on the integrity of the mitotic apparatus is also 

reflected by the results of the experiment using diploid strains. Heterozygous mutants 

displayed an increase of chromosome-loss. Interestingly, homozygous ∆kipB diploids 

showed a reduced frequency of chromosome-loss in comparison to kipB wild type 

diploids. This points to a gene dosage effect and could mean that haploidization after 

initial loss of one chromosome would require a certain amount of the KipB protein to 

reduce the chromosome number to a haploid set. In the heterozygous situation initial 

chromosome loss might be very frequent and then further reduction of the 

chromosome number would occur rapidly. Interestingly, destabilization of 

microtubules through increasing amounts of benomyl suppressed this effect. This 

suggests that disassembly of microtubules in the mitotic spindle and thus 

chromosome distribution are affected at different concentrations of KipB. 

All the arguments presented above about KipB roles in mitosis entitle to a raising 

question about the reasons why we did not observe an effect on nuclear distribution 

in interphase cells. In S. cerevisiae Kip3 was shown to be involved in nuclear 

migration to the bud site in preparation for mitosis. Loss of Kip3 function disrupted 

the unidirectional movement of the nucleus toward the bud and mitotic spindle 

orientation, causing large oscillations in nuclear position (Fig. V.3, A). As a 

consequence the frequency of binucleate mother cells was increased (DeZwaan et 

al., 1997). The reports about Kip3 in S. cerevisiae provided us justification to believe 

in possible functions of KipB in nuclear migration in A. nidulans, especially because 

in filamentous fungi nuclei migrate long distances to follow the growing hyphal tip and 

the molecular motor machinery could contribute significantly to this distribution 
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process (Suelmann & Fischer, 2000). Thus, defects in asexual or sexual fruiting body 

(conidiophores or cleistothecia) formation and organization, together with reduced 

viability of conidiospores or ascospores were suspected in a ∆kipB mutant.  

But, compared with wild type, kipB deletion strains did not exhibit alterations with 

regards to vegetative growth, viability of conidiospores and ascospores, content of 

ascospores per ascus, or sexual and asexual fruiting body formation. Also, the 

analysis of nuclear distribution in germlings of an A. nidulans ∆kipB mutant revealed 

no striking difference in the distribution pattern. All these findings suggest that 

besides nuclear separation through mitosis other mechanisms exist which further 

distribute nuclei. Indeed, that seems to be the case. First separation of the two 

daughter nuclei from each other occurs in mitosis. As it was presented in this study, 

during mitosis astral microtubules emanate from the two SPBs and are likely to make 

contact to the cortex. In this phase the process may resemble the situation in S. 

cerevisiae. The question is whether there are cortical proteins along the hyphae, 

which determine the attachment sites for astral microtubules. One candidate is the 

Num1 homologue ApsA in A. nidulans. ApsA is also a cortical protein, which is 

involved in nuclear positioning during conidiation, and also, to some extent, during 

hyphal growth (Fischer & Timberlake, 1995; Suelmann et al., 1997; Suelmann et al., 

1998). Another protein, ApsB could also play a role in nuclear positioning, since 

deletion of the apsB gene results in the same phenotype as deletion of apsA, namely 

a clustering of nuclei (Clutterbuck, 1994; Suelmann et al., 1998). More interestingly, 

loss of apsB function causes nuclei to move much more rapidly, possibly by 

weakening the machinery required for nuclear anchorage in the hyphae (Xiang & 

Fischer, 2004). ApsB has recently been detected both at the SPB and at septa, it 

was observed to tightly bind to the lattice of the microtubule, mediating its connection 

with the nuclei, and thus implicated in nuclear movement by leading the nuclei along 

the microtubules through the hyphae (Veith et al., 2004). Exactly how ApsB affects 

nuclear positioning is still an open question, which has to be addressed in the future. 

What it could be speculated at the present is the hypothesis that in A. nidulans 

nuclear migration consists of two phases. First one might be similar with the situation 

in S. cerevisiae (therefore called yeast phase of nuclear migration), starting with 

nuclear separation at the exit from mitosis, where KipB could play a major role in 

maintaining the tension of astral microtubules, and through that in positioning of 

spindles at the correct sites along the hyphae, together with other cortex- and 
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microtubule-associated proteins (MAPs) (Fig. V.3, C-1). The second phase is likely to 

involve the mechanism through which SPB's guides the migration of interphase 

nuclei along the cytoplasmic microtubules, with help of other important proteins as 

dynein or MAPs (Fig. V.3, C-2). This latter phase may be specific for filamentous 

fungi, where nuclei have to move along the extremely long hyphae. 

A B

1 2 

C 

 

Fig. V.3. Scheme of possible roles for KipB and other Kip3 homologues in mitosis and 
subsequent nuclear migration in yeast (A and B) and A. nidulans (C). (A) Different 
kinesins and dynein have overlapping or counteracting functions in S. cerevisiae. Kip3 and 
Kar3 together with Dyn1 are involved in the migration of the nucleus (dark grey) toward and 
through the bud, Num1 (depicted as light grey patches) being at bud cortex when dynein 

slides microtubules along to it, whereas Kip2 antagonizes the forces of the other three 
motors. The oscillations observed at the budding neck are dependent on dynein (Modified 
after Suelmann et al., (2000)). (B) Klp5 and Klp6 in S. pombe are required for efficient 
capturing of sister kinetochores during prometaphase and for the generation of poleward 
forces during metaphase. As spindles that capture one kinetochore of sister chromatids 
continue to polymerize, spindles emanating from the opposite pole have difficulty capturing 
sister kinetochores. In the absence of Klp5/6, although both sister kinetochores are captured 
by spindles, tension, which should be produced between Klp5/6 and cohesin, is absent. 
Arrows indicate the direction of microtubule polymerisation (Taken from Garcia et al., 
(2002)). (C) Nuclear migration in A. nidulans. (1) Yeast-like phase of nuclear migration, 
where KipB could have a role in maintaining spindle (yellow) positioning and morphology, 
and separation of nuclei together with corresponding SPBs (red dots) by astral microtubule 
tension at exit from mitosis (in blue, ApsA protein at the cortex). (2) Interphase nuclear 
migration characteristic for filamentous fungi, with SPB-led movement of nuclei (black circles) 
along cytoplasmic microtubules (Adapted after Veith et al., (2004)). 
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4. Interactions of kipB with other genes 

Complex interactions among kinesin subfamily members have been already 

described in several systems (Goldstein & Philp, 1999). In this study, the ∆kipB 

mutation was tested in combination with mutations in some kinesins, but also dynein, 

all of them being genes known to affect nuclear migration (kinA, nudA1), microtubule 

stability (kinA, kipA, nudA1) and/or spindle function (bimC) in A. nidulans. Of 

particular interest for this study was the fact that ∆kipB mutation showed a distinct 

genetic interaction with bimC4 temperature-sensitive mutant, as the double mutant 

strains exhibited a stronger growth defect at intermediate temperature than the 

bimC4 single mutant. Temperature-sensitive bimC mutants are known to exhibit 

failure to separate their duplicated SPBs during early stages of mitosis, which results 

in mitotic defects such as abnormal spindle morphology and impairment of nuclear 

division (Kashina et al., 1997). It could be that the combined effect of bimC and kipB 

mutations influenced greater the process of SPBs splitting and thus the double 

mutant strain displayed the additive phenotype at semi-permissive temperature. 

Another function reported recently for BimC bipolar kinesin is the crosslinking and 

sliding apart of antiparallel spindle microtubules. As fundamentally accepted, the 

mitotic spindle consists of two populations of microtubules, one that confers its 

stability and shape (interpolar microtubules), and the other, which are involved in 

attachment of chromosomes to the spindle and then in further chromosome 

segregation (kinetochore microtubules) (Mountain & Compton, 2000; Prigozhina et 

al., 2001). Since we had clear evidence that KipB acts as a microtubule-

depolymerizing factor, perhaps KipB has also a contribution in maintaining the 

tension and elasticity of spindle microtubules, thus preserving spindle architecture, in 

concert with the other microtubule cross-linking kinesins, one of them being BimC. It 

might be thus likely that the cross-linking activities of BimC kinesin require the 

function of KipB to ensure correct microtubule plus-end dynamics and morphology 

during spindle assembly. This suggests that some aspects of KipB and BimC 

kinesins mitotic roles in spindle assembly and maintenance may be similar. 

Another kinesin characterized in a parallel study in our lab, and analysed in 

interaction with KipB is the Kip2 homolog KipA. The KipA protein was described as 

required for microtubule plus-ends anchorage and maintenance of directionality of 
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polar growth in A. nidulans (Konzack et al., 2004). The ∆kipB/ ∆kipA double mutants 

were as viable as the parental single strains, but exhibited an obvious growth 

reduction at 30°C, which implicate the possibility of partially redundant functions 

between the two genes. However, the curved growth phenotype asserted to ∆kipA 

mutant was neither enhanced nor rescued in a ∆kipB background. The double 

mutant phenotype on benomyl displayed enhanced resistance comparable with that 

of a ∆kipB strain alone, suggesting a suppresion of the ∆kipA mutant sensitivity to 

benomyl, so a stronger function of KipB in regulation of microtubule stability then 

KipA. Taking into account that KipA is supposed to mediate temporal capture of 

microtubules at the growing tip (Konzack et al., 2004), it might be that in the double 

mutant the much more stable, and probable less dynamic microtubules caused by 

the kipB mutation have more difficulties in being captured at the hyphal tip than in a 

∆kipA single mutant, therefore perhaps their cortex connection is established at sites 

far beyond compared with wild type conditions. This suggests that kipA and kipB may 

act in different pathways but still could have overlapping functions.  

In contrast, the phenotype of ∆kipB/ ∆kinA double mutant did show the same 

benomyl resistance as the two mutans alone, suggesting the action of the two motors 

in independent pathways and a lack of significant functional interaction regarding the 

studied phenotypes among these kinesins in A. nidulans. The ∆kipB/nudA1 double 

mutant exhibited the growth and benomyl sensitivity phenotype of dynein conditional 

mutant alone, showing a dominant phenotype of nudA1 mutation onto ∆kipB, but no 

synthetic lethality. Hence, the genetic interactions between kipB and kipA and kipB 

and nudA1 are in part, different from those described in yeast, where Kip2 and Kip3 

were found to have opposite roles in nuclear migration, functioning in two different 

pathways, and furthermore, kip3 was reported synthetically lethal with dyn1, a 

phenotype suspected to be caused by the cumulative effect of partial defects in 

sequential movements (DeZwaan et al., 1997). 

5. How to get to the end? 

In this study three different GFP constructs were studied, an N-terminal fusion with 

the full-length KipB protein, an N-terminal fusion with a truncated version of KipB, 

which only consisted of the first 408 amino acids from the N-terminus and a C-

terminal GFP fusion, which deleted about 300 amino acids from KipB. Whereas the 
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truncated versions stained the entire length of the filaments, the full-length protein 

predominantly displayed a discontinuous distribution along microtubules and the GFP 

spots moved along the filaments. This could suggest that the C-terminal part is 

required for KipB movement, as long as the truncated version does not display the 

same localization pattern. But the question that rises is how KipB moves along 

microtubules.  

Since Klp5 and Klp6 in S. cerevisiae were described as fission yeast KinI 

homologues in two recent studies (Garcia et al., 2002; Garcia et al., 2002), we 

considered that KipB could reach the plus ends by one-dimensional diffusion, as it 

was proposed for KinI kinesins (Hunter et al., 2003; Moores et al., 2003), and once 

there might be activated to depolymerize the microtubules. Addition of benomyl to the 

GFP-KipB tagged strain stopped or caused the complete disappearance of the spots, 

supporting partially the diffusion model, but loss of intrinsic dynamics or 

depolymerization of the microtubules due to the benomyl action could only be the 

proof of GFP-KipB association with microtubule’s lattice and not implying 

simultaneously protein diffusion. Also, at the hyphal tip, where microtubules extend 

just their plus ends (Konzack et al., 2004; Zhang et al., 2003), GFP-KipB signals were 

accumulating in the same fashion, all directed exclusively toward the hyphal apex, 

which could stand for a plus-end biased movement of the protein. In the middle and 

the rear of the hyphal tip area, where microtubule polarity is mixed (Konzack et al., 

2004), GFP-KipB spots moved into both directions (see also movie 16). Moreover, 

we have eliminated the possibility that GFP-KipB spots are transported passively with 

the plus-ends of the microtubules, since comparison between the speeds of 

microtubule growth and GFP-KipB movement showed no pronounced peak and a 

greater range of speeds for GFP-KipB spots than microtubule plus end dynamics. 

But those arguments would contradict the premise of GFP-KipB movement in a KinI-

like pattern, because this should involve diffusion of the protein to the both ends of 

microtubules, as diffusion is not a directional motion in comparison with conventional 

motility (Walczak, 2003), and we have highlighted the dynamic localization of KipB in 

particular to the plus ends of microtubules, so a directed movement. Of course one 

cannot exclude the possibility that KipB could display processivity and intrinsic 

motility along the microtubules.  

One accepted model for conventional kinesin movement is the hand-over-hand 

model, which requires dimerization of the protein. In KipB, as in Klp5, Klp6 and Kip3, 
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only short regions for a potential coiled-coil formation were found. Nevertheless, they 

might be sufficient for the mediation of an interaction. Indeed for Klp5 and Klp6 

heterodimerization has been shown (Garcia et al., 2002). Therefore, KipB may form 

homodimers (since we only found one kinesin of this family in the A. nidulans 

genome) and move along microtubules in the conventional sense rather than by 

diffusion. However, we observed GFP-KipB forming a discontinuous distribution 

pattern along microtubules. Since the fluorescence signal from single GFP-KipB 

molecules would be below the detection level, it is likely that we observed aggregates 

of GFP-KipB or vesicles, which contain or which were decorated with GFP-KipB. 

Those vesicle-like structures could be the unit with which KipB could be transported 

towards the microtubule plus ends where it would act as depolymerase. This 

mechanism would be different from the one described for the transportation of dynein 

towards the plus end of microtubules in A. nidulans. In this case, conventional kinesin 

appears to be the main driving force, but spots along the microtubules were not 

visible. Thus it is more likely that individual dynein motor proteins are the cargo for 

kinesin (Zhang et al., 2003). It might be so that one of the other kinesins in A. 

nidulans genome is able to transport or target the KipB protein to the microtubule 

plus-ends, good candidates for this function being conventional kinesin or the two 

Unc-104 representatives, all of them kinesin motors which are known as involved in 

transport of organelles such as nuclei (Requena et al., 2001), mitochondria (Nangaku 

et al., 1994) or Golgi intermediates (Dorner et al., 1998), and also shown to be 

involved in binding endosomes, moving them in concert with dynein (Wedlich-

Soldner et al., 2002).  

For the Kip3 family of kinesins the idea was already advanced that they are 

capable of both motile and depolymerizing activities, as is for example another 

kinesin, Kar3. However, the weak structural and sequence correspondence between 

KinI and Kip3 kinesin families suggests that the mechanism of microtubule 

destabilization by Kip3 kinesins may be different from that of KinIs (Ovechkina & 

Wordeman, 2003). The challenge for future experiments will be to identify motor 

proteins, which may be involved in the transportation of KipB or to prove if fungal 

Kip3 kinesins itself can processively move along microtubule filaments. 
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6. Conclusions and future directions 

Fifteen years ago, only a few molecular motors were known. In contrast, complete 

inventories of molecular motors are now available in a number of diverse organisms. 

While these remarkable accomplishments have answered many questions, the 

genomic inventories also have exposed many areas of ignorance. The unusual 

collections of motors in Arabidopsis, Giardia, and Malaria certainly highlight how little 

we know about intracellular transport in plants and parasites compared with animal 

cells. Understanding motors in such organisms is likely to provide general insights 

into how transport processes are used in biology (Vale, 2003). 

Some of the most important processes in the cell, which require molecular motors 

as kinesins, are mitosis and microtubule dynamics. Kinesins participate in various 

aspects of spindle assembly and function including spindle bipolarity, spindle pole 

architecture, chromosome attachment and movement, regulation of microtubule 

dynamics, and cytokinesis.  

The present work has highlighted some new but also partially conserved cellular 

functions of KipB, a Kip3-like kinesin in A. nidulans. KipB localizes to interphase 

cytoplasmic microtubules and mitotic astral and spindle microtubules. This 

localization pattern, in particular to the plus ends, suggests that KipB regulates 

microtubule dynamics in general during both interphase and mitosis, as KinI 

homologues. It plays an important role for proper mitotic progression, because in the 

absence of this molecule cells spend a longer time in anaphase, and is involved in 

establishment of spindle architecture and positioning.  

Revealing of KipB function in spindle and probably chromosome motility 

represents an important step forward in understanding the basis of cell division in A. 

nidulans. Still to be identified are the cellular roles of many other mitotic spindle 

proteins and their mechanism of function, the interactions of the proteins with one 

another and with components of the mitotic apparatus, also the regulation of the 

motors in the cell cycle. Nowadays, with the completion of the A. nidulans genome 

sequencing project this work should be much easier and surely much faster. 

Elucidating the precise role that each motor plays in spindle assembly will shed 

light not only on the basic process of chromosome segregation in mitosis and 

meiosis, but may lead to insights into clinically relevant conditions that arise from 

errors in chromosome segregation. For example, chromosome non-disjunction in 
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meiosis causes Down, Klinefelter, and Turner syndromes, severe developmental 

disorders resulting from conceptuses with aneuploidy (improper chromosome 

number). In somatic tissues, chromosome non-disjunction during mitosis is an 

important factor contributing to aneuploidy, which is critical for tumor cell progression. 

In addition to the consequences on chromosome segregation if the spindle does not 

function properly, an understanding of motor function could unveil new avenues of 

intervention into cancer cell growth. Thus, the study of microtubule motor function 

during mitosis and meiosis is an important area of research with potential impacts in 

understanding some common birth defects, as well as the etiology and treatment of 

cancer (Mountain & Compton, 2000).  

How Kip3 kinesins influence dynamics of the microtubules and whether they have 

intrinsic properties of processive movement is also an interesting challenge for future 

study. In vitro and/or gliding assays regarding Kip3 kinesins movement onto 

microtubules could unravel new mechanisms for their motility. It seems reasonable to 

propose that the association of kinesin-related proteins with the depolymerizing ends 

of microtubules would have significant effects on the stability of microtubules, with 

variable and distinct effects depending on the properties of the specific protein. This is 

why deciphering the similar and opposite mechanisms throught which Kip3 and KinI-

like kinesins influence microtubule dynamics may bring new answers for 

understanding motor-cytoskeleton interactions within the cell. 
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The Kip3-like kinesin KipB Moves along Microtubules 

and Determines Spindle Position during Synchronized Mitoses in 

Hyphae of Aspergillus nidulans 
 

Patricia E. Rischitor, Sven Konzack and Reinhard Fischer 

 

Kinesins are motor proteins, which are classified into eleven different families. We 
identified eleven kinesin-like proteins in the genome of the filamentous fungus 
Aspergillus nidulans. Relatedness analyses based on the motor domains grouped 
them into nine families. In this paper we characterized KipB as a member of the 
Kip3 family of microtubule depolymerases. The closest homologues of KipB are 
Saccharomyces cerevisiae Kip3 and Schizosacchromyces pombe Klp5 and Klp6 but 
sequence similarities outside the motor domain are very low. Disruption of kipB 
demonstrated that it is not essential for vegetative growth. ∆kipB mutant strains 
were resistant to high concentrations of the microtubule-destabilizing drug benomyl 
suggesting that KipB destabilizes microtubules. kipB mutation caused a failure of 
spindle positioning in the cell, a delay in mitotic progression, an increased number 
of bent mitotic spindles, and a decrease of depolymerization of cytoplasmic 
microtubules during interphase and mitosis. Meiosis and ascospore formation were 
not affected. Disruption of the kipB gene was synthetically lethal with the 
temperature-sensitive mitotic kinesin motor mutation bimC4 suggesting an 
important but redundant role of KipB in mitosis. KipB localized to cytoplasmic, 
astral and mitotic microtubules in a discontinuous pattern and spots of GFP moved 
along microtubules towards the plus ends. 
 
 
in press. 
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The Kinesin Motor KipA is Required for Microtubule Anchorage 

and  

Maintenance of Directionality of Polar Growth in Aspergillus 

nidulans 

 
Sven Konzack, Patricia E. Rischitor and Reinhard Fischer 

 

Polarized growth in filamentous fungi requires the integrity of the microtubule 
cytoskeleton. We found that growing microtubules in Aspergillus nidulans 
merge at the center of fast growing tips and discovered that a kinesin motor 
protein, KipA, related to Tea2 of Schizosaccharomyces pombe, is required for 
their temporal anchorage. In a ∆kipA strain microtubule plus ends reach the tip 
but fail to anchor and show continuous lateral movement. Hyphae loose 
directionality and grow in curves due to mislocalization of a vesicle supply 
center in the tip. GFP-KipA localizes to microtubule plus ends and jams behind 
them, suggesting that KipA is a moving motor. Using KipA as a microtubule 
plus end marker we found bi-directional organization of microtubules and 
determined the location of MTOCs at nuclei, in the cytoplasm and at septa. We 
also analyzed a Kelch-protein, TeaA, as a putative cargo of KipA. teaA deletion 
causes a different polarized growth defect than ∆kipA mutation, suggesting 
additional functions for KipA. 
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Establishment of mRFP1 as fluorescent marker in Aspergillus 
nidulans and construction of expression vectors for high-throughput 

protein tagging using recombination in vitro (GATEWAY) 
 

W. M. Toews, J. Warmbold, S. Konzack, P. E. Rischitor, D. Veith, K. Vienken, C. 
Vinuesa, H. Wei and R. Fischer 

 
Abstract. The advent of fluorescent proteins as vital dyes had a major impact in 
many research fields. Different GFP variants have been established in pro- and 
eukaryotic organisms within the past ten years as well as other fluorescent 
proteins discovered and applied. We expressed the red fluorescent protein, 
DsRed (T4), the improved version mRFP1 (monomeric red fluorescent protein) 
and the blue fluorescent protein, BFP, in the filamentous fungus Aspergillus 
nidulans. Whereas DsRed requires tetramer formation for fluorescence, mRFP1 
functions as monomer. We have used sGFP, DsRed (T4), mRFP1 and BFP for 
nuclear and/or mitochondrial labelling. To facilitate gene tagging, we 
established a number of cloning vectors for efficient, simultaneous fusion of any 
protein with mRFP1, BFP (blue fluorescent protein) and sGFP (green 
fluorescent protein) or the hemagglutinin epitope 3xHA. A PCR-amplified gene 
of interest can be inserted into the expression vectors without cloning but using 
homologous recombination in vitro (GATEWAY). The vectors contain the argB 
gene as selection marker for A. nidulans, and the inducible alcA promoter for 
control of expression. The system allows labelling of a protein with several tags 
in one recombination reaction. The nutritional marker gene as well as the 
promoter, are frequently used in other fungi, suggesting that this set of 
expression vectors will be very useful tools for gene analyses in a genome-wide 
scale. 
 
 
in press. 
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