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Zusammenfassung

Die Hypothese der Objektbindung durch Synchronisation wurde im visuellen Kortex

durch neuere Experimente am wachen Affen unterstützt. Diese zeigten das Auftreten

kohärenter γ-Aktivität (30–90Hz) in lokalen Neuronengruppen und deren Modulati-

on in Abhängigkeit von Regeln der Figur-Hintergrund Trennung. Wechselwirkungen

innerhalb und zwischen diesen neuronalen Gruppen basieren auf axonaler Fortleitung

von Aktionspotentialen mit endlicher Geschwindigkeit. Physiologische Untersuchungen

haben gezeigt, dass die zeitliche Verzögerung dieser Fortleitung vergleichbar mit dem

Zeitraum ist, der durch die γ-Aktivität (11–33 ms) definiert wird. Wie beeinflussen diese

endlichen Geschwindigkeiten die Entwicklung von synaptischen Verbindungen in und

zwischen visuellen Arealen? Welche Beziehung besteht zwischen der Reichweite der

γ-Kohärenz und der Geschwindigkeit der Signalübertragung? Sind die großen zeitlichen

Verzögerungen kompatibel mit dem kürzlich entdeckten Phänomen der laufenden γ-

Wellen, die sich über größere Teile des primären visuellen Kortex erstrecken?

Die Anpassung von Verbindungen im sich entwickelnden visuellen Kortex basiert auf

zeitlichem Hebb’schen Lernen zur Änderung der synaptischen Effizienz. Die Auswirkung

konstanter, endlicher axonaler Geschwindigkeiten auf diesen Prozess wurde mit einer

Reihe topographischer Netzwerkmodelle untersucht. Zufällige Aktionspotentiale mit

einer begrenzten zeitlichen Korrelationsbreite bildeten die kortikale Aktivität ohne

visuelle Erfahrung nach. Nach dem Lernvorgang waren die lateralen Verbindungen inner-

halb einer Netzwerkschicht räumlich begrenzt, wobei die Breite der Verbindungsprofile

direkt proportional zur lateralen Leitungsgeschwindigkeit war. Weiterhin entwickelte

sich eine begrenzte Vorwärtsdivergenz zwischen den Neuronen zweier aufeinanderfol-

gender Schichten. Die Größe dieser Verbindungsprofile entsprach dabei den lateralen

Verbindungsprofilen der Neuronen der unteren Schicht. Der Mechanismus in diesem



Netzwerkmodell ist geeignet, die Entstehung größerer rezeptiver Felder in höheren

visuellen Arealen unter Aufrechterhaltung einer retinotopen Abbildung zu beschreiben.

Der Einfluss abstandsabhängiger Verzögerungen auf die lokale Erzeugung von γ-Aktivität

und deren räumliche Synchronisation wurde in einem Modell eines entwickelten visuellen

Areals untersucht. Anhaltende Stimulation und lokale inhibitorische Rückkopplung wa-

ren ausreichend für das Auftreten kohärenter γ-Aktivität, die sich über wenige Millimeter

ausdehnte. Die Leitungsgeschwindigkeit hatte einen direkten Einfluss auf die Frequenz

der γ-Oszillationen, aber sie beeinflusste weder die γ-Leistung noch die räumliche Aus-

dehnung der γ-Kohärenz. Das Hinzufügen langreichweitiger Horizontalverbindungen

zwischen exzitatorischen Neuronen, ähnlich denen in Schicht 2/3 im primären visuellen

Kortex, vergrößerte die räumliche Ausdehnung der γ-Kohärenz. Diese Reichweite war

maximal für instantane Fortleitung von Aktionspotentialen und schwächte sich für alle

Entfernungen mit endlichen, reduzierten Leitungsgeschwindigkeiten ab. Für Geschwin-

digkeiten unter 0.5 m/s waren die γ-Leistung und die γ-Kohärenz sogar kleiner als ohne

die Existenz dieser Verbindungen, d.h. langsame Horizontalverbindungen desynchro-

nisierten die neuronalen Populationen. Zusammenfassend kann gesagt werden, dass

die mögliche Steigerung der γ-Kohärenz durch exzitatorische Horizontalverbindungen

kritisch von deren hoher Fortleitungsgeschwindigkeit abhängt.

Kohärente γ-Aktivität im primären visuellen Kortex und in den begleitenden Netz-

werkmodellen bedecken nur kleine Regionen des visuellen Feldes. Dies stellt die Rolle

der γ-Synchronisation zur Lösung des Bindungsproblems für größere Objektrepräsen-

tationen in Frage. Eine genauere Analyse des bereits beschriebenen Netzwerkmodells

zeigte, dass Bereiche mit kohärenter γ-Aktivität (1.8 mm Halbwertsbreite) in eher

global auftretende γ-Wellen eingebettet waren, welche über viel größere Entfernungen

koppelten (6.3 mm Halbwertsbreite). Die im Modell beobachteten γ-Wellen sind den

γ-Wellen im primären visuellen Kortex von wachen Affen sehr ähnlich, was darauf

hindeutet, dass lokale rückgekoppelte Inhibition und begrenzte Horizontalverbindungen

mit endlichen axonalen Leitungsgeschwindigkeiten für deren Auftreten hinreichend sind.

Da das Modell mit der Verbindungsstruktur und den γ-Prozessen im primären visuellen

Kortex übereinstimmt, unterstützen die Ergebnisse die Hypothese, dass γ-Wellen ein

generalisiertes Konzept zur Objektbindung im visuellen Kortex darstellen.



Abstract

The hypothesis of object binding-by-synchronization in the visual cortex has been

supported by recent experiments in awake monkeys. They demonstrated coherence

among γ-activities (30–90Hz) of local neural groups and its perceptual modulation

according to the rules of figure-ground segregation. Interactions within and between

these neural groups are based on axonal spike conduction with finite velocities. Physio-

logical studies confirmed that the majority of transmission delays is comparable to the

temporal scale defined by γ-activity (11–33 ms). How do these finite velocities influence

the development of synaptic connections within and between visual areas? What is the

relationship between the range of γ-coherence and the velocity of signal transmission?

Are these large temporal delays compatible with recently discovered phenomenon of

γ-waves traveling across larger parts of the primary visual cortex?

The refinement of connections in the immature visual cortex depends on temporal

Hebbian learning to adjust synaptic efficacies between spiking neurons. The impact

of constant, finite, axonal spike conduction velocities on this process was investigated

using a set of topographic network models. Random spike trains with a confined

temporal correlation width mimicked cortical activity before visual experience. After

learning, the lateral connectivity within one network layer became spatially restricted,

the width of the connection profile being directly proportional to the lateral conduction

velocity. Furthermore, restricted feedforward divergence developed between neurons of

two successive layers. The size of this connection profile matched the lateral connection

profile of the lower layer neuron. The mechanism in this network model is suitable to

explain the emergence of larger receptive fields at higher visual areas while preserving a

retinotopic mapping.



The influence of finite conduction velocities on the local generation of γ-activities and

their spatial synchronization was investigated in a model of a mature visual area. Sus-

tained input and local inhibitory feedback was sufficient for the emergence of coherent

γ-activity that extended across few millimeters. Conduction velocities had a direct

impact on the frequency of γ-oscillations, but did neither affect γ-power nor the spatial

extent of γ-coherence. Adding long-range horizontal connections between excitatory

neurons, as found in layer 2/3 of the primary visual cortex, increased the spatial range of

γ-coherence. The range was maximal for zero transmission delays, and for all distances

attenuated with finite, decreasing lateral conduction velocities. Below a velocity of

0.5 m/s, γ-power and γ-coherence were even smaller than without these connections

at all, i.e., slow horizontal connections actively desynchronized neural populations.

In conclusion, the enhancement of γ-coherence by horizontal excitatory connections

critically depends on fast conduction velocities.

Coherent γ-activity in the primary visual cortex and the accompanying models was

found to only cover small regions of the visual field. This challenges the role of γ-

synchronization to solve the binding problem for larger object representations. Further

analysis of the previous model revealed that the patches of coherent γ-activity (1.8 mm

half-height decline) were part of more globally occurring γ-waves, which coupled over

much larger distances (6.3 mm half-height decline). The model γ-waves observed here

are very similar to those found in the primary visual cortex of awake monkeys, indicating

that local recurrent inhibition and restricted horizontal connections with finite axonal

velocities are sufficient requirements for their emergence. In conclusion, since the model

is in accordance with the connectivity and γ-processes in the primary visual cortex, the

results support the hypothesis that γ-waves provide a generalized concept for object

binding in the visual cortex.
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1 Introduction

Human perception of the outside world is primarily based on vision. Looking around

and recognizing a person or a tree in a natural environment is an accomplishment that

no computer can perform at present. The reason for this inability to find adequate

algorithms is the extreme complexity of transforming physical stimuli into perceived

objects. Light is reflected from a physical object and falls onto the retinae of the

left and the right eye. These two-dimensional images can change drastically with an

object’s position, view and illumination. Nevertheless, the visual system provides a

stable object recognition under most conditions. An approaching person will not grow

larger, although the retinal image does. A tree remains the same, even when a breeze

considerably changes its shape. This stability is remarkable and illustrates, that the

brain does not passively record images. Instead, it actively transforms a sequence of

two-dimensional retinal images into a stable, reliable, three-dimensional mental world.

1.1 Feature extraction and scene segmentation

The world we perceive around us is composed of whole objects, like chairs, tables, trees

or faces. When focusing on one specific object, we also have access to its subordinate,

local features like the color, texture, shape or motion. The sequence of this subjective

perception could lead to the assumption that local features are not relevant for the

coherent perception of objects in the first place. There is, however, considerable evidence

from anatomy, neurophysiology and psychology that these local features are essential

for defining visual objects. Different local aspects of the visual input are simultaneously

processed by specialized maps of local detectors in several visual areas (e.g., Felleman

and van Essen, 1991). There is a ventral pathway, mainly processing and representing

shape and color, that is separated from the dorsal pathway, representing space and
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motion (Ungerleider and Mishkin, 1982; Ungerleider and Haxby, 1994). The distributed

computation is further supported by lesion studies, showing e.g., that the ability to

perceive motion can be lost independently of other features, resulting in the perception

of frozen stills (Zeki, 1991).

So why are we able to perceive the world around us as consisting of whole objects

instead of disembodied shapes, colors or motions? If we would only look at scenes

containing a single object at one time there would not be a problem at all, because all

features would simply belong to that object. Yet, the world around us usually contains

numerous objects. The visual system must therefore provide a mechanism to structure

and combine distributed, local features into objects. This process of grouping is called

feature binding. The separation of features belonging to one object from other features

is called segmentation, in vision: scene segmentation.

But what makes up a visual object? While we have a profound implicit knowledge

of what visual objects are, a precise and complete definition is hard to formulate, if

not impossible at the current state of knowledge. A visual object is a limited region

in visual space that exhibits some kind of contrast to its surround, like a change in

intensity, color, texture or motion. The spatial arrangement of the object’s local features

is not arbitrary but has to meet certain correlational requirements. Systematic rules

for perceptual grouping were first formulated by Gestalt psychologists (e.g. Koffka,

1935). Some of their elementary and intuitive laws are illustrated in Fig. 1.1. For a

more complete view of object definition, they have to be complemented by other factors

including previous knowledge, attention and expectation.

A neurophysiological correlate for the extraction of local, basic visual features was

found in the primary visual cortex using microelectrode recordings (Hubel and Wiesel,

1962; Hubel, 1982). External stimuli induce specific responses in single cortical neurons.

The averaged, linear part of the response function can be captured by the concept

of the classical receptive field (cRF), that characterizes how local features of a small

visual stimulus affect the average output spike rate of a single neuron. A simulated

response of simplified, orientation specific, local feature detectors can be seen in Fig. 1.2.

These feature detectors extract local orientations that are in accordance with the

observers perception for most parts of the image. An interesting exception, however, is

an intersection of two line segments where orientation detection breaks down. These

X-junctions as well as the closely related T-junctions often occur in natural vision and

usually indicate that one object is partly occluded by another object. At this point,
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Figure 1.1: Gestalt laws define basic rules for visual object binding. A. Good continuation expresses
the viewer’s innate tendency to perceive a line as continuing its established orientation. Line segment 1
is continued to line segment 4; the same holds for line segments 2 and 3. B. This law implies that visual
input is organized in a predictable way. The unknown form is perceived as a combination of a square
and a circle, because we are used to see circles and squares. Perception is influenced by knowledge and
expectation. C-F. If other cues are missing, objects are perceptually grouped due to their proximity
(C), similarity (D), common motion (E) and symmetries (F). G. Although all neighboring arcs are
separated by equal distances, they are most likely grouped to convex objects. This rule accounts for
the fact, that most natural objects have a closed form.

our visual system is confronted with the task to bind local features into a coherent

percept. For the example at hand, a neurophysiological counterpart for the Gestalt law

of good continuation (Fig. 1.1A) is required. In the following sections, I will present

two concepts how distributed features can be bound into a visual object. They should

be seen as complementing rather than contradicting each other.

1.2 Convergent feedforward projections and “cardinal cells”

One possible mechanism for feature binding is based on the idea, that the concept of a

neuron’s cRF can be generalized to more complex representations (Barlow, 1972). Using

a layered feedforward scheme, the immense amount of local information is thought to

be consecutively compressed and coded by a smaller number of active neurons with
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Figure 1.2: Local orientation properties of a visual stimulus. A black and white photography of hair
ferns (Blossfeldt, 1994) is analyzed by a set of 8 orientation selective filters. The averaged response for
each input pixel is shown in the orientation map. The edges of the map are clipped due to boundary
effects of the filter functions. Color indicates the dominant orientation and saturation represents its
strength. The intersection of two ferns is magnified and indicates the ambiguity of orientation at this
point.

increasingly complex features (Fig. 1.3A). At the topmost level, the activity of one or a

group of so-called cardinal cells (Barlow, 1972) is directly related to the occurrence of

specific, complex objects in the visual scene. Since any visual scene would only activate

a limited number of cardinal cells, these cells form a sparse representation. Indeed, the

cortex heavily uses the principle of convergent connections at various levels of processing,

e.g., for the transformation of concentric cRFs in the LGN (lateral geniculate nucleus)

to elongated cRFs in the primary visual cortex of cats (e.g., Hubel and Wiesel, 1962;

Reid and Alonso, 1995; Ferster et al., 1996).

The concept of cardinal cells also encounters several serious problems. Hard-wired

coding of complex objects requires an enormous amount of neurons and connections,

because every object has to be coded for every position and various feature combinations

to compensate varying stimulus conditions, like view, illumination, size, colors or

occlusions. The costs of hard-wired coding can be diminished by using partly invariant

representations. The most prominent example is probably the complex cell (Hubel and

Wiesel, 1962). The cRF of a simple cell (Hubel and Wiesel, 1959, 1962) consists of

subregions that exert an excitatory or inhibitory influence on the cell’s response. A

stimulus that drives the cell optimally, must have the right position, the right orientation

and the right size. Like simple cells, complex cells respond only to correspondingly
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Figure 1.3: Illustration of two complementary mechanisms for perceptual feature binding. A. Re-
sponses of local feature detectors (ellipses in left box) are convergently connected to higher level
neurons, illustrated by a summation and a following threshold operation. Higher level neurons will
only be activated, if a sufficient number of active feature detectors matches their connection scheme.
The upper (lower) neuron binds all red (blue) detectors into the common percept of a long, continuous
line. Using only these two neurons, the binding into two vertices consisting of detectors below and
above the intersection would not be possible. B. Time course of averaged neural activity for the four
segments of the X-shaped activation is shown at the right side. Synchronization hypothesis states that
neural populations showing synchronized activity belong to the same assembly or object representation.
Here, the two red (blue) segments would be bound into the common percept of a long, continuous line.
Red and blue time traces are not correlated. The underlying neural distributions therefore belong to
different assemblies according to the synchronization hypothesis.

oriented stimuli, but unlike simple cells, the exact position of the stimulus does not

matter, as long as it falls inside the receptive field (Hubel and Wiesel, 1962). The cell’s

response is therefore partly invariant of the stimulus position. Another example are

object and face selective cells in the inferotemporal cortex. Their responses are often

relatively invariant to the position in the visual field, size and even view of the object

(Booth and Rolls, 1998; Tovee et al., 1994).

While invariant representations mitigate the costs for hard-wired object properties,

they introduce a binding problem on their own. High-level cells do not account for

the information that was disregarded during invariance processing. However, this

information can still be important and is typically not lost in perception. To acquire

full unambiguous information about an object, it is necessary to combine one or several

invariant high-level cells with a fair number of lower-level cells. Mechanisms to bind

these cells remain unsettled.
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1.3 Synchronized neural assemblies

The large number of neurons representing a single object is the starting point for

a competing view on feature binding. In the assembly concept (Hebb, 1949), the

representation of a visual object is formed by the activation of the same distributed

neurons, that represent the object’s local features. Since a single neuron can participate

in the representation of numerous objects, this coding strategy uses available neurons

very efficiently.

However, the flexible binding of neurons to assemblies has a drawback: a visual

scene usually contains several objects at once, each represented by an assembly of

neurons. The assignment of individual neurons to a specific assembly is ambiguous.

This equivocality may be solved by structuring neural activity in the temporal domain

(Milner, 1974; Reitboeck, 1983; von der Malsburg and Schneider, 1986). Synchronized

neural activity in this view indicates that the participating neurons contribute to the

same assembly, while neurons from different assemblies are not synchronized (Fig. 1.3B).

Thereby, temporal binding can maintain the average response of a neuron, that will still

be determined by its receptive field properties, and so still can represent local stimulus

features.

Synchronized signal components have been found in the γ-frequency range (30–90 Hz)

of microelectrode recordings in cats and monkeys (Eckhorn et al., 1988; Gray et al.,

1989; Engel et al., 1991a,b; Kreiter and Singer, 1996; Frien and Eckhorn, 2000b). Their

occurrence is stimulus specific and depends on global stimulus properties, in accordance

with simple Gestalt laws. The interdependence of γ-oscillations and their synchronization

is not clear: on the one hand, synchronized oscillations are also found in other frequency

bands (e.g. von Stein and Sarnthein, 2000; Bruns and Eckhorn, 2004), and on the other

hand, synchronization is also found in non-oscillatory signal components (Eckhorn, 1994;

König et al., 1995). The relevance of synchronized oscillations for perceptual grouping is

hotly debated. The state of the discussion can be obtained from several recent reviews:

Gray (1999); von der Malsburg (1999); Shadlen and Movshon (1999); Singer (1999);

Eckhorn et al. (2001a, 2004a,b).

Closely related to synchrony is the phenomenon of traveling waves, which are

observed in many cortical areas in several species (review: Ermentrout and Kleinfeld,

2001). Although theoretical studies predict that traveling waves are an emergent

property of cortical networks with spatially restricted connectivity (Kuramato, 1984),
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they were surprisingly not reported in studies investigating synchrony in the visual

cortex of cats and monkeys. By re-evaluating part of these data, Gabriel and Eckhorn

(2003) recently demonstrated not only the existence of traveling γ-waves in monkey, but

also their dependence on the rules of figure-ground segregation (Eckhorn et al., 2001a,

2004a).

1.4 Plasticity induced by synchronous activity

In his famous work, Donald Hebb did not only develop a simple concept of cell assemblies,

but also proposed a mechanism how they might be established (Hebb, 1949):

When an axon of cell A is near enough to excite cell B or repeatedly or

consistently takes part in firing it, some growth or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased.

The central feature of this postulate is, that neural activity, especially its temporal

structure, is decisive for changes in cortical wiring. In the past decades, this postulate

has been verified down to the cellular level and provides the basis for all biologically

plausible learning mechanisms.

1.4.1 Role of activity for cortical development

The early formation of cortical circuitry involves a phase of initial axon path finding,

which can occur over substantial distances and is largely directed by molecular cues.

A second developmental phase includes the selection of targets and the formation of

appropriate synaptic connections. Today it is generally accepted that neuronal activity

is essential for this refinement of developing cortical circuits (reviews: Katz and Shatz,

1996; Zhang and Poo, 2001).

Early experiments on monocular deprivation (Wiesel and Hubel, 1963) and artificial

strabism (Hubel and Wiesel, 1965) show that missing or conflicting visual information

can substantially disturb the refinement process of ocular dominance. Similarly, the

development of orientation selectivity can be deteriorated by artificial, synchronous

stimulation of optic nerves (Weliky and Katz, 1997). In another series of experiments,

projections from the retina were directed to the immature auditory pathway. After some
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weeks, the auditory cortex exhibited orientation maps and characteristic horizontal

connectivity. This shows that prominent properties of the primary visual cortex can be

transferred to other modalities by activity-dependent mechanisms alone (review: Sur

and Leamey, 2001).

The experiments above show that neural activity, induced by the visual input can be

very important for the refinement of developing circuits. However, visual input cannot

account for the initial development, because several neural properties and cortical

maps are already present before eye opening (Wiesel and Hubel, 1974; Godeke and

Bonhoeffer, 1996; Horton and Hocking, 1996; Crair et al., 1998). These findings suggest

that endogenous neural activity, generated by the nervous system without sensory

stimulation, is responsible for development before sensory input is available. One

source of this activity are spontaneously generated waves of action potentials, which are

present in the retina before photoreceptors are developed (Meister et al., 1991; Wong

et al., 1995; Weliky and Katz, 1999). Another source for endogenous activity may be

giant depolarizing potentials that are found in the immature hippocampus (review:

Spitzner, 2004). Blocking this endogenous activity results in a severe disruption of the

developmental process (review: Penn and Shatz, 1999).

In conclusion, the initial development of cortical circuits seems to be driven by

endogenous, correlated activity before eye opening, while these circuits are refined by

visually driven correlated activity after eye opening. The cellular mechanisms underlying

this development will be described in the following section.

1.4.2 Temporal Hebbian learning

The information transfer between two neurons occurs most frequently at one or several

chemical synapses. Presynaptic action potentials evoke synaptic potentials at the

dendrite of the postsynaptic cell (postsynaptic potential, PSP). The form and amplitude

of these PSPs are determined by the properties of the synapse. Under certain conditions,

these properties can be due to changes. The amplitude of the postsynaptic potential

(PSP) can be potentiated by a brief but intense activation of the presynaptic axon (Bliss

and Lømo, 1973). This synaptic change lasts for hours, days or weeks and is therefore

called long-term potentiation (LTP). In the past 30 years, the occurrence of LTP was

demonstrated in many areas and species (review: Bi and Poo, 2001), using a stimulation

protocol with low-frequency presynaptic spikes and a simultaneous depolarization of the
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postsynaptic neuron. The exact temporal specificity of LTP effects was not addressed,

since pre- and postsynaptic stimulations were applied for several seconds or minutes.

The finding, that action potentials do not only propagate along the axon, but also

back-propagate into the neuron’s dendrite (Stuart and Sakmann, 1994), was a first sign

for the importance of action potentials in synaptic plasticity. Final evidence came from

experiments, where a back-propagating action potential, that was triggered 10 ms after

onset of the postsynaptic potential, induced LTP (Markram et al., 1997; Magee and

Johnston, 1997). Reversing the order of PSP and action potential weakened the synapse,

called long-term depression (LTD). The action potential or the PSP in isolation were

not sufficient to evoke any synaptic changes. The critical time window for LTP and

LTD is about 40 ms in width (Bi and Poo, 1998; Zhang et al., 1998).

In conclusion, synaptic changes rely critically on the temporal order of pre- and

postsynaptic action potentials at a millisecond scale.

1.5 Transmission delays

Synchronization, γ-oscillations and plasticity are phenomena that depend critically on

the precise timing of neural activity. The interactions between neurons are mediated by

action potentials that travel along axons with finite velocity. The resulting transmission

delays critically affect the dynamics that can emerge in neural networks. Model

investigations (Mirollo and Strogatz, 1990; Kuramato, 1991; Ernst et al., 1995; Nischwitz

and Glünder, 1995) have shown, that two mutually connected neurons synchronize with

zero-phase difference, if the action potentials are transmitted instantaneously and evoke

excitatory postsynaptic potentials. For inhibitory interactions, the synchronous solution

is unstable and both neurons show a counterphasic activation. Delayed interactions

completely change these dynamics: neurons with mutually inhibitory connections

can now synchronize with zero phase difference, while excitatory connections act

desynchronizing (Mirollo and Strogatz, 1990; Kuramato, 1991; Ernst et al., 1995;

Nischwitz and Glünder, 1995). For an understanding of cortical dynamics, it is therefore

important to quantify cortical conduction delays.

Cortico-cortical axons make up 99% of the white matter underlying the cortex

(Abeles, 1991). In order to limit the brain volume, it is therefore reasonable to conserve

the axonal volume. This is possibly the reason why most cortico-cortical axons have

diameters smaller than 1 µm (review: Nowak and Bullier, 1997). The axonal diameter
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has important consequences for the conduction velocity of action potentials: There is

a linear relationship between conduction velocity and fiber diameter for myelinated

axons (Waxman and Bennett, 1972), while conduction velocity varies as a square root

of fiber diameter for nonmyelinated axons (Rushton, 1951). The axonal diameter can

vary largely between the main axon trunk and its cortical ramifications, which are often

nonmyelinated (Houzel et al., 1994). This implies that even myelinated (fast) axonal

connections exhibit non-vanishing delays.

While there are numerous velocity measurements between cortical areas, little is

known about conduction velocities within a cortical area (Nowak and Bullier, 1997). The

typical speed of action potential propagation along horizontal excitatory connections

is in the order of a few tenth of m/s (Komatsu et al., 1988: 0.3 m/s; Murakoshi et al.,

1993: 0.15–0.55 m/s; Hirsch and Gilbert, 1991: 0.3–0.6 m/s; Nowak and Bullier, 1998:

0.4 m/s). Inhibitory connections seem to be slightly slower (Salin and Prince, 1996:

0.06–0.2 m/s, mean: 0.1 m/s).

Axonal delay is not the only factor that limits the speed of information transfer.

The second parameter is the neural integration time, that is the duration it takes a

depolarizing event to drive the membrane potential of the target neuron to the firing

threshold. It strongly depends on the state of the target neuron. For a neuron at rest

it is at least 5 ms and can range up to several tens of milliseconds. If the neuron is

already near the firing threshold, the neural integration time can be shorter than one

millisecond and is mainly determined by the rise time of the PSP (review: Nowak and

Bullier, 1997).

The measured velocities of intra-area information processing are consistent with the

slow spread of synaptic activity in monkey revealed by optical imaging (Grinvald et al.,

1994: 0.1–0.25 m/s). Slow conducting axons may also be the source of slow activity

waves in cat, triggered by visual stimulation in peripheral parts of the receptive field

(Bringuier et al., 1999, mean: 0.1 m/s).

In conclusion, there are significant transmission delays between cortical neurons that

may support or perturb the emergence and stability of synchronized γ-oscillations.

1.6 Aim of the study

In the preceding part of this introduction, several aspects of temporal information

processing in the visual cortex and the emergence of related neural circuitry have been
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addressed. First, the development of the immature visual system depends crucially

on correlated activity, that is either evoked by visual experience or generated by the

cortical periphery. On the cellular level, synaptic changes depend on the relative timing

of pre- and postsynaptic action potentials in a critical time window of 40 ms. Second,

synchronous γ-oscillations (oscillation period ≈10–30 ms) as well as stochastic synchrony

are found in the mature visual cortex. They extend several millimeters across the cortical

surface and show properties that are consistent with perceptual feature binding and

segregation. Third, the vast majority of axons remaining in V1 show transmission

velocities in the order of 0.1–0.6 m/s. When taking into account that intra-area axonal

ramifications in V1 can reach several millimeters (e.g., cat: Gilbert and Wiesel, 1979;

Martin and Whitteridge, 1984; Gilbert and Wiesel, 1989; tree shrew: Rockland and

Lund, 1982, Bosking et al., 1997, 2002; monkey: Sincich and Blasdel, 2001; Stettler

et al., 2002), transmission delays are in the order of at least 5–30 ms.

The synchronization hypothesis states that local features belonging to the same object

are synchronized. Delays are likely to have a substantial influence on γ-synchronization

and the underlying γ-oscillations, since their time scales are comparable. This work

tries to uncover, if groups of neurons can synchronize despite the constraint of slow

interactions. Are there critical velocities or distances that limit the emergence of γ-

oscillations or γ-synchronization? Do delayed interactions act differently on inhibitory

and excitatory, short- and long-range connections?

Synchronization hypothesis additionally demands that features belonging to different

objects are not synchronized. Several models (Dicke, 1992; Stoecker et al., 1996; Ursino

et al., 2003) realize this by separating objects in phase, i.e. the oscillation period is

subdivided and all feature detectors of one object are exclusively active within one time

slice. While this mechanism is stable for instantaneous interactions, it is unclear if this

is also valid using delayed connections.

In addition to γ-synchronization, the primary visual cortex also exhibits traveling

γ-waves (Gabriel and Eckhorn, 2003). What network properties are responsible for

this property? Is the spatially restricted connectivity sufficient or are axonal delays

required? What is the necessary network design to produce traveling waves, that are

consistent with findings from the visual cortex? How is learning influenced by delayed

interactions? Can delays assist the development of structures in the cortex?

To investigate the effects of finite axonal velocities, I have performed simplified,

numerical simulations of a small area of the primary visual cortex. The basic processing
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unit is a spiking neuron, in order to account for the importance of action potentials

and their exact timing. Several mesoscopic measures are derived from the network’s

activity and analyzed with identical methods used for experimental data. This allows

easy quantitative comparisons of modeling and experimental results. I will focus on

two recent studies from our group dealing with the decoupling of γ-signals across the

contour representation of an object in V1 (Gail et al., 2000), and with the emergence of

traveling γ-waves within the surface representation of an object (Gabriel et al., 2004).

1.7 Thesis outline

The thesis consists of 3 chapters, each containing a separate introduction and discussion.

Chapter 2 deals with the refinement of delayed connections in a simple model of the

immature cortex using spiking neurons. Since most of the generic connectivity evolves

before eye opening, globally correlated spontaneous activity will be used as input. I

will show, that structured intra- and inter-area connections evolve under the influence

of temporal Hebbian learning. Chapter 3 presents a simplified model of the mature

primary visual cortex. The effects of distance-dependent delays on γ-oscillations and

synchronization are investigated in numerical simulations of spiking neurons. The

network properties will be discussed using elementary visual configurations for object

binding and separation. In Chapter 4, the same network will be used to demonstrate

the emergence of traveling γ-waves and their interdependence to γ-synchronization.



2 Plasticity

Lateral spike conduction velocity in the visual cortex affects spatial range of

synchronization and receptive field size without visual experience: a learn-

ing model with spiking neurons

Classical receptive fields (cRF) increase in size from the retina to higher visual

centers. The present work shows how temporal properties, in particular lateral spike

velocity and spike input correlation, can affect cRF size and position without visual

experience. We demonstrate how these properties are related to the spatial range of

cortical synchronization if Hebbian learning dominates early development. For this, a

largely reduced model of two successive levels of the visual cortex is developed (e.g.,

areas V1 and V2). It consists of retinotopic networks of spiking neurons with constant

spike velocity in lateral connections. Feedforward connections between level 1 and

2 are additive and determine cRF size and shape, while lateral connections within

level 1 are modulatory and affect the cortical range of synchronization. Input during

development is mimicked by spike trains with spatially homogeneous properties and a

confined temporal correlation width. During learning, the homogeneous lateral coupling

shrinks to limited coupling structures defining synchronization and related association

fields (AF). The size of level-1 synchronization fields determines the lateral coupling

range of developing level-1-to-2 connections and, thus, the size of level-2 cRFs, even if

the feedforward connections have distance-independent delays. AFs and cRFs increase

with spike velocity in the lateral network and temporal correlation width of the input.

Our results suggest that AF size of V1 and cRF size of V2 neurons are confined during

learning by the temporal width of input correlations and the spike velocity in lateral

connections without the need of visual experience. During learning from visual expe-
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rience, a similar influence of AF size on the cRF size may be operative at successive

levels of processing, including other parts of the visual system.

The content of this chapter has been published in Saam and Eckhorn (2000). The

results are also summarized in Eckhorn et al. (2001a, 2004a,b). Preliminary versions

had been published as conference proceedings (Saam and Eckhorn, 1998a,b, 1999; Saam

et al., 1999).

2.1 Introduction

2.1.1 Receptive and association fields

The best explored and most accepted concept of visual processing is that of the classical

receptive field (cRF; Hubel and Wiesel, 1962) which characterizes the spatiotemporal

coupling between small visual stimuli and the spike response of single visual neurons.

Less intensely investigated is the influence of visual context outside the cRF. Context

can modulate the cRF properties strongly over a broad range in visual space (Allman

et al., 1985). In recent years synchronization fields were found in the lower areas of the

visual cortex. Their size has been defined by the cortical extent of coherence among fast

cortical oscillations (35–90 Hz; Frien et al., 1994; Frien and Eckhorn, 2000b). According

to the cRFs of single neurons, the projections of synchronization fields to visual space

have been termed the association fields (AF; Eckhorn et al., 1990) or context fields

(Phillips and Singer, 1997) of local groups of neurons. One intensely discussed hypothesis

for the AFs’ function is that feature grouping is supported in their field by synchronizing

those neurons currently representing the same visual object (reviews in Eckhorn, 1999;

Gray, 1999).

Grouping of features into whole objects may also be coded by the convergence

of their relevant feature detectors (Barlow, 1972; Riesenhuber and Poggio, 1999). If

convergence is present over all levels of visual processing, it would produce a systematic

increase in cRF size from retina to higher centers. This principle may become operative

during early visual experience if objects to be learned appear transiently and alone in a

scene. The component feature detectors of an object would be coactivated, and Hebbian

learning could establish stable convergent connections. However, real visual objects

are parts of complex scenes and their segregation from other objects is a formidable
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problem. One potential solution for scene segmentation is provided by the concept of

transient synchronization within the representational range of an object. In such a

scheme, Hebbian learning would only stabilize feedforward connections of synchronized

inputs. In this way, the synchronization and related association field at a lower level

would determine the cRF type and size at the next level of processing and hence, cRFs

would increase within the hierarchy of visual cortical areas.

2.1.2 Input to visual cortex during development

Evidence of cortical plasticity by visual experience is rarely disputed (e.g., Hubel and

Wiesel, 1970; Crair et al., 1998). However, many functional units of the visual cortex

emerge before eye opening, demonstrating that visual experience is not required for

initial development (Crair et al., 1998; Chapman et al., 1999). Spike activities, already

present in the retina before eye opening, probably provide instructive cues for guiding

the development within the striate cortex (Weliky and Katz, 1999). This activity

consists of stochastic spike trains, simultaneously modulated in their rates over large

retinal regions (Meister et al., 1991; Wong and Oakley, 1996). For the present model

we assume (as a working hypothesis) precise correlations (2–10 ms) among inputs

to the V1 level over ranges of several hypercolumns. This seems reasonable because

activities in the developing retina are dominated by tight junctions among neighboring

neurons (Penn et al., 1994), which are known to mediate fast electrical coupling in the

millisecond scale. Precise temporal structuring of cortical input may also be introduced

by rhythmic cortico-thalamic feedback (5–10 Hz) and via fast intracortical inhibition

(20–30 Hz). Thus, precise correlations in maintained activities at thalamic and primary

cortical levels are probably present before visual experience and may guide the early

development of connectivity patterns.

2.1.3 Hebbian learning supports the emergence of functional cortical units

during development

Several correlational properties of afferent spike trains to the striate cortex are consistent

with predictions of activity-dependent models of cortical map and cRF development in

V1 before eye opening. One model proposes that the observed differences in correlated

firing between ON- and OFF-thalamic afferents can drive the segregation of a simple

cell’s cRF subregions (Miller, 1994). Other models show that the competing requirements
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of joint ocular dominance and orientation map development in V1 can be resolved if

within-eye activity is more strongly correlated than between-eye activity (Miyashita

et al., 1997; Stetter et al., 1997), a fact that has recently been confirmed experimentally

(Weliky and Katz, 1999).

Most models of striate cortical development based on Hebbian learning use partially

synchronized input activities, while few assume differences in delays. For instance,

Gerstner et al. (1996a) explain the temporal precision in auditory direction discrimination

by sorting out axons of differing delays by correlation learning, resulting in coincident

spikes. Other recent work assumes correlation-dependent learning of synaptic delays by

a rule decreasing the correlation delays in synaptic signals and generating coincident

inputs (Hüning et al., 1998; Eurich et al., 1999). Finally, Ritz et al. (1994) demonstrate

that the average activation delay among reciprocally connected excitatory neurons

restricts the size of cortical synchronization fields in which zero-delay phase-locking is

possible for a given oscillation frequency.

In our present model of visual areas V1 and V2, the main properties are lateral

spike conduction delays increasing systematically with distance, in addition to partial

correlations of the external signals. Their relevance is tested for the emergence of

functional cortical units without visual experience (an abstract was published in Saam

et al., 1999).

2.2 Methods

2.2.1 Model neuron

We use pulse coding model neurons with spike inputs, realistic post synaptic potentials,

and an adaptive spike encoder with dynamic threshold (Eckhorn et al., 1990). The

input part of a neuron ni consists of synapses Sij, which have an impulse response h(t)

and a synaptic efficacy wij.

Sij(t) = wS
ij Ij(t−∆ij) ∗ h(t, τS1, τS2), (2.1)

where ∗ denotes the convolution operator, i is the index of the postsynaptic neuron

ni, Ij the spike output of a presynaptic neuron nj and ∆ij the conduction delay for
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spikes between ni and nj. The synaptic response h(t) is modeled by a second-order

leaky integrator:

h(t, τ1, τ2) = H(t)(exp(−t/τ2)− exp(−t/τ1)). (2.2)

H( · ) denotes the Heaviside function. Time constants are chosen such that the excitatory

postsynaptic potential (EPSP) reaches its maximum value at t=1. Two types of inputs

are processed separately: external feeding input Fij and lateral linking input Lij

(Eckhorn et al., 1990).

Si(t) =
∑
j

Sij(t), (2.3)

where S may be F or L. While the feeding inputs Fi have conventional synapses

(non-NMDA), the linking inputs Li exert multiplicative influence on the feeding inputs.

The resulting membrane potential, driving the spike encoder, is therefore calculated as:

Ui(t) = Fi(t) · (1 + Li(t)), (2.4)

which enables the feeding input to drive the spike encoder even with zero linking input,

while the reverse is not possible. Multiplicative interactions have been chosen for the

following reasons: Lateral interactions in developing visual cortex area V1 are mainly

located in the upper layers where synapses are dominated by NMDA channels (Fox

et al., 1989). In V1, NMDA channels have been reported to mediate gain control, due

to their voltage dependences and the differences in the Hill coefficients for binding

glutamate at the NMDA receptors. Both properties affect the response to afferent visual

input in a graded multiplicative fashion (Fox and Daw, 1992). Thus, a multiplicative

interaction among forward and lateral connections seems biologically plausible. In our

model, this modulatory action of the linking on the feeding inputs ensures that the

local coding of single neurons (here the cRF) is not deteriorated by lateral connections

(Eckhorn et al., 1990).

In the spike encoder, the membrane potential Ui(t) is compared to a threshold θi(t).

If Ui(t) exceeds θi(t), a spike is generated:

Oi(t) = H(Ui(t)− θi(t)). (2.5)

The threshold θi(t) has a static offset value θ0 and a dynamic part, which is an impulse

response of two leaky integrators to the spike output Oi(t):

θi(t) = θ0 + Oi(t) ∗ [(Vθr exp(−t/τθr) + Vθs exp(−t/τθs))H(t)]. (2.6)
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Figure 2.1: One-dimensional sketch of the connectivity scheme for a single level-1 neuron in the three
different scenarios A, B, and C. Open arrow heads: linking synapses; filled: feeding synapses

One leaky integrator has an amplitude Vθr and a short time constant τθr modeling

fast refractory components, while the other (Vθs, τθs) is slower, mimicking spike rate

adaptation. Additionally, an absolute refractory period of 1 ms is introduced. The

above equations are solved for different temporal resolutions (∆t = 0.2, 0.5, 1.0). The

higher resolutions are important for realizing precise distance-dependent delays in the

network. A physiologically realistic time scale is 1 ms for ∆t = 1.

2.2.2 Network topology and signal properties

Level 1 and 2 each consist of 441 neurons arranged on a two-dimensional Cartesian

grid. To avoid artifacts from boundaries, toroidal boundary conditions are used. All

neurons have the same time constants and threshold properties (Table 2.1). We expected

complex intermingled effects on the learning process in lateral and feedforward synapses

by the different types of temporal spike dispersion, including the partial correlation

of the stochastic external inputs and the systematic delay dispersion in lateral and

feedforward axons. In order to keep these effects separate we built and analyzed the

model in three consecutive steps (Fig. 2.1: scenario A, B and C).

Scenario A: Learning the level-1 linking synapses of lateral connections with distance-

dependent delays

Lateral axons project to neighbors up to a distance of 10 neurons. The initial strengths

wc of these linking synapses are low and chosen randomly. The axons transmit spikes at

constant velocity vax (Table 2.1) so that delays increase proportional to lateral distance

(for the choice of realistic velocities see the Discussion). Other delays, including synaptic

and dendritic ones, are assumed to be constant in their average values so that their sum

∆0 is also constant and can be compensated in the present simulations by a temporal
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offset ∆0 in the learning function (arguments for these simplifications are given in

Discussion).

The external input to level-1 neurons has no spatial structure in its correlation

properties because here we are interested in the effects of lateral transmission delays

on the formation of spatially confined coupling structures during learning. Therefore,

we composed the input of the following components: (1) Independent Gaussian white

noise (GWN) is directly superimposed on the feeding potential with the same mean

mGWN and standard deviation σGWN for all neurons. These continuous signals resemble

the postsynaptic potentials evoked by a large number of statistically independent spike

trains (Fig. 2.2a). (2) Correlated spike trains with a Poissonian interval distribution

(mean rate fp) are applied to a fraction (pp) of all neurons (randomly selected for each

correlated burst of activation). These spike trains are temporally correlated (Fig. 2.2b)

according to a common modulation by a Gaussian impulse probability (SD: σp). Thus,

the input has weak paired spike correlations with a peak at zero time shift and a

correlation width of 2 σp. Despite the presence of the independent GWN, the input spike

trains reproduce their mutual correlations approximately among the neurons’ outputs

(Fig. 2.2c,d). These are the spike trains that affect learning in the linking synapses

after being delayed in the lateral axons.

Scenario B: Learning of level-1-to-2 feeding projections with distance-dependent delays while

lateral connections at level 1 are absent

Here, the effect of delays in feedforward connections is studied in isolation (without the

influence of level-1 delays). Level-1 neurons project completely onto level-2 neurons.

The initial strengths of the feeding synapses are randomly distributed around a common

mean (Fig. 2.7a) sufficient for initiating spikes in level-2 neurons. Level-1-to-2 axons have

the same increase in delays with lateral distance as in scenario A (i.e., constant axonal

velocity). The interareal delay between all retinotopically corresponding positions is

assumed to be equal. A constant delay does not change the relative timing of incoming

spikes at level-2 neurons, and since there is no feedback in our simplified model, this

additional delay will have no influence on the learning results. Hence, the effective

input spike trains for learning the level-2 synapses have the same statistical properties

as those for learning the lateral linking connections at level 1 in scenario A (because

they are collaterals of the same layer-1 neurons). This means, that their correlations

(Fig. 2.2d) are spatially homogeneous.
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Figure 2.2: Scenario A, B: Statistical properties of the spike trains at the output of level 1 that are
effective during learning. A. Lower panel : spike patterns of level-1 neurons (each dot denotes the
occurrence of a spike) and temporal spike count of all neurons (upper panel), driven exclusively by the
independent Gaussian white noise (GWN) at the inputs. B. Correlated spike patterns and temporal
spike count at the output of level-1 neurons; two events of modulation in spike rate are shown. C.
Spike patterns and temporal spike count at the output of level-1 neurons if GWN (A) and the spike
patterns (B) drive their inputs. Such spike patterns are effective during learning of the lateral linking
connections at level 1 and the level-1-to-2 feeding connections. Note that the statistical properties of
these signals are spatially homogeneous. D. Cross-coincidence histogram among pairs of output spike
trains, averaged over all combinations of level-1 neurons

Scenario C: Learning level-1-to-2 feeding connections with constant axonal delay and input

from the learned version of level 1

Here we test the temporal effects emerging in a learned version of level 1 (scenario A)

on feedforward convergent projections to the next level. To obtain separable effects, we

kept all delays from level 1 to 2 identical. Level-1 neurons project retinotopically to

level-2 neurons, initially with a broad Gaussian weight function (A12, SD: σ12), modeling

the large diverging axonal trees present during development. To exclude the possibility

that learning results arise from initialization, we trained the network with independent

noise inputs as a control. In these simulations all weights decreased below 10−5, which

is three decades below the effects obtained with temporally correlated input.
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Figure 2.3: Synaptic weight change ∆w/γ as a function of the relative timing ∆t (in milliseconds)
between presynaptic tpre and postsynaptic firing tpost.

If the learned version of level 1 (scenario A) is excited by a localized activity blob at

random positions, damped traveling waves of laterally propagated activity are evoked,

conducted by the constant velocity connections. To obtain a more precise control over

this wave-like input to level 2 we replaced the lateral level-1 connectivity and its input

spike trains by a simulated version of the level-1 outputs with a well defined firing

probability:

p(r, t) = exp(−r2/(2σ2
b )) δ(vbt− r). (2.7)

Here, r denotes the distance of the neuron from the center of the input blob, vb is the

velocity of a wave front and t the time relative to the occurrence of the blob. During

learning, the centers of these wave-like activations are uniformly distributed over the

neural grid, chosen in a random sequence with Poissonian interval distribution at a rate

fb.

2.2.3 Learning

We use a temporal Hebbian learning rule similar to that of a recent work (Gerstner

et al., 1996a). The weight changes exclusively depend on the relative timing of pre- and

postsynaptic spikes in the following way. Each presynaptic spike initiates a synaptic

learning potential

Lij(t) = Oj(t−∆ij) ∗ h(−t, τp1, τp2)− α. (2.8)
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The time course of Lij in response to a single presynaptic spike is shown in Fig. 2.3. If

the postsynaptic neuron generates a spike, the synaptic efficacies are changed according

to the present values of the learning potentials:

∆wij(t) = max{γ Lij(t)Oi(t),−wij(t)}, (2.9)

wij(t + ∆t) = wij(t) + ∆wij(t), (2.10)

where γ denotes the learning rate. With this rule, weights cannot change their sign and

it ensures that causality plays a prominent role. With the parameters given in Table 2.1

the effective duration of the facilitatory (positive) part of the learning window is about

10 ms. The overall learning process lasted 100 000 ms.

To measure the signal correlations introduced by the learned lateral connections

of level-1, their neurons are activated by the same input as during learning. Cycling

artifacts are avoided by open boundary conditions and the restriction in calculating

the cross-coincidence histograms (CCH) to the spike trains of the central neurons. The

spatial strength profile of signal coupling is quantified by a single correlation index

from CCHs among neurons of different distances (Juergens and Eckhorn, 1997). This

index measures the coupling-related area of the central peak and yields values from 0

(uncorrelated) to 1 (completely correlated).

2.3 Results

2.3.1 Learning of lateral linking connections (scenario A)

Emergence of lateral coupling kernels

Learning of the lateral linking connections is achieved with temporally correlated input,

lacking any spatial structure (Fig. 2.2c, and see Sect. 2.2.2). The cross-coincidence

histogram among outputs of level-1 neurons (Fig. 2.2d) shows an average coupling width

similar to that of the inputs (not shown). With these outputs affecting learning of the

lateral connections, several new spatial network properties emerge. Most important

is the laterally restricted coupling kernel with strong weights to direct neighbors and

a monotonous decline with increasing distance (Fig. 2.4a). The confined coupling

structures cause a related spatial restriction in the correlations of the spike trains

(Fig. 2.4b). More precisely, the half height width of the spatial distribution of the

correlation index varies proportionally with the width D of the lateral coupling kernel.
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Figure 2.4: Scenario A: Average spatial coupling profile between level-1 neurons after learning. A.
Synaptic strength to neighboring neurons is maximal and decays with increasing distance. The inset
shows an intensity plot of the same data (grey scale coding; black : highest coupling strength). B.
Correlation index of spike output depends on spatial distance. The average correlation strength
introduced by the input is indicated by the dashed line.

This confined coupling emerges due to combined interactions of the distance-

dependent spike delays and the temporal jitter of the input correlations in conjunction

with the learning window. To understand this, consider the probabilities of relative

spike timings at the learned synapses. Assume for the noiseless case that each neuron

has a temporal Gaussian probability distribution u(∆t) to fire with other neurons during

the events of simultaneous input modulations according to Fig. 2.2b:

u(∆t) = 1/(
√

2πσp) exp[−∆t2/(2σ2
p)]. (2.11)

In addition, let us consider the projection from a presynaptic neuron nj to a postsynaptic

one ni. The spikes of nj need a time interval ∆ij to reach the synapse; therefore, ni

receives a temporally shifted distribution of spikes u(∆t−∆ij) from nj. Hence, their

relative spike timings (pre- and postsynaptic) are a convolution of the distributions:

p̃ij(∆t) = u(∆t) ∗ u(∆t−∆ij) (2.12)

= 1/(2
√

πσp) exp[−(∆t−∆ij)
2/(4σ2

p)], (2.13)

which is also a Gaussian with shifted mean and increased standard deviation. This

holds only approximately here because it requires statistical independence, whereas in

our model pre- and postsynaptic activities are weakly correlated. However, (2.13) is
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Figure 2.5: Probability density functions p̃ of the relative spike timings ∆t in the idealized, noiseless
case. A. Connections with a short delay ∆ns have a high probability pns to be strengthened, while
long delay connections have a low probability pnl. B. p is increased by a broader temporal input jitter
(pσ) or a faster axonal velocity (pv)

not used for simulations, but is introduced for a better understanding of the simulation

results. Weight increase only occurs for negative ∆t (Fig. 2.3). Thus, the integral

pij =
∫ 0

−∞
p̃ij(∆t) d∆t (2.14)

gives the probability for increasing the synaptic strength between nj and ni. The

emergence of the lateral coupling kernel can now be understood if we look at two

neurons nn and ns with a short axonal delay ∆ns in their connection (Fig. 2.5a). In this

case, pns is large so that the synapse is strengthened quite often. In contrast, a distant

neuron nl has a long delay, so that pnl is low (Fig. 2.5a). Since weight increasing events

are seldom, the resulting strength will be small after learning has converged. Hence, the

spatial coupling kernel depends both on the temporal correlation width among spikes

at the (inputs and thus at the) outputs of level-1 neurons and the temporal dispersion

introduced along the lateral connections.

Variation in the temporal correlation width of the external input σp

This variation results in a proportional change of the spatial width D of the lateral

coupling profile. Broader input correlations cause broader coupling profiles (Fig. 2.6a).

If we look at a broadened distribution of relative spike timings (Fig. 2.5b, dashed curve),

more events comply with the timing condition set by the learning rule. Even for distant
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Figure 2.6: Scenario A: The width of the synaptic weight profile of the lateral linking connections
depends on the temporal width of the input correlations. (A) and the lateral conduction velocity (B),
while the decay of the learning window plays only a minor role (C). Grey dots indicate simulations
with identical parameters

neurons the synaptic weights grow and therefore the spatial weight distribution becomes

broader.

Variation of lateral conduction velocity

A narrow coupling width D emerges with a low lateral conduction velocity, and D

increases with velocity (Fig. 2.6b). To explain this effect, let the distance between two

neurons nn and nl be lnl. As axonal transmission velocity is vax, the delay between

them is ∆nl = lnl/vax. Increasing the velocity vax shifts the distribution of relative

spike timings pnl in (2.13) nonlinearly towards zero (Fig. 2.5b, dotted curve). Thus, the

probability of negative time differences, and therefore the number of positive learning

events, increases. In the idealized case of infinite conduction velocity, the resulting

coupling structure would exhibit no decay at all.

To summarize, the action of increasing lateral propagation velocity and increasing

temporal correlation width at the inputs both enlarge the spatial size of the coupling

kernel in the lateral network.

Influence of the learning function

The convergence speed of the learning process and the maximal weights depend on the

effective duration of the learning window’s strengthening epoch (positive part, Fig. 2.3).

If this epoch is elongated beyond the width of the relative spike timings (2.13), the

contribution of random spike correlations to the synaptic weight change increases and,

therefore, specific learning is slowed down. If the epoch is shortened, the number of
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Figure 2.7: Scenario B: Synaptic weight distribution at level-2 synapses of feedforward projections
from a single level-1 neuron. A. Example of randomly initialized weights before learning. B. Example
of weight distribution after 105 learning steps. C. Average weight distribution of all level-2 neurons.
The dip in the center is due to the decay of the learning window. D. Spatial distribution of the centers
of synaptic weight profiles of level-1-to-2 connections, characterized by the line crossings. In real visual
representations these positions would define the centers of cRFs. Note that the retinotopic organization
evolves from complete randomness without spatially structured visual input. Only temporal structure
was introduced by distance-dependent spike delays

positive learning events decreases (the signal-to-noise ratio for learning effects), so

that stable and fast convergence is difficult to obtain. However, in a broad range the

duration of the strengthening epoch has no effect on the size of the spatial coupling

kernel (Fig. 2.6c).

2.3.2 Learning of level-1-to-2 feeding connections (scenarios B, C)

In scenario B (Fig. 2.1) the distance-dependent connections between level 1 and 2

are learned with the same input as in scenario A, while lateral connectivity among

level-1 neurons is absent. After learning, the following structures emerge from the
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Figure 2.8: Scenario C: Size of level-1-to-2 connection profile is correlated with lateral synaptic weight
profile of level-1 neurons. (simulations with constant level-1-to-2 delays and damped spreading wave
activation at level 1, mimicking a learned version of scenario A). Similar relations are obtained with
distance-dependent delays between level 1 and 2 in scenario B (not shown).

randomly chosen weights (Fig. 2.7a). The coupling strength of collaterals from the

same level-1 neuron decays with distance (Fig. 2.7b,c). This effect is comparable to

the development of the lateral weights at level 1 in scenario A. If neurons at level 1

generate a correlated spike packet, action potentials, transmitted with short delays,

arrive first at retinotopically corresponding level-2 neurons. The evoked EPSPs lead to

an increase in the membrane potential and finally, the neuron fires. Since delays are

distance-dependent on an evenly spaced grid, few connections with short delays exist.

The first EPSPs at a given target neuron are only small in number and are generally

not sufficient to evoke a postsynaptic spike. However, additional spikes arriving from

more distant neurons eventually cause the neuron to fire. The connections leading to

threshold transition are strengthened most, while connections with shorter delays have

already fired and therefore have a negative ∆t (Fig. 2.3). Thus, the weights of proximal

connections are less strengthened compared to distal ones, which is reflected in the

central dip of the weight distribution (Fig. 2.7c). This dip resembles the decay in the

learning function (Fig. 2.3).

After learning, the centers of the coupling kernels in the neural lattice (corresponding

to cRF centers in real systems) are retinotopically well organized (Fig. 2.7d). This

retinotopic sorting is due to the systematic distance-dependent delays in level-1-to-2
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connections which define a temporal neighborhood detected by the Hebbian learning

function. We would like to note that this retinotopic sorting does not require spatially

structured input signals at level 1.

In scenario C (Fig. 2.1) identical delays in all level-1-to-2 connections are used,

and learning started with a broad coupling distribution in the feedforward connections.

External inputs are spatially localized blobs of spreading (wave-like) spike activity

presented sequentially at random positions (2.7). After learning, the centers of the

feedforward coupling kernels have maintained their initialized topography and have

increased their spatial resolution by reducing their size and, thus, reducing the size of

level-2 cRFs. The cRF size is monotonically related to the size of the synchronization

field and the corresponding AF size at level 1 (Fig. 2.8).

2.4 Discussion

We demonstrate how lateral spike propagation velocity can influence the emergence

of spatially confined synaptic weight distributions during Hebbian learning without

visual experience. Essential for mimicking the developmental phase in visual cortex are

also short (< 20 ms) common spike rate fluctuations at its external inputs from the

thalamus. As these inputs have no spatially structured correlations in our model, the

emerging weight distributions are exclusively due to the temporal dispersion of network

spike delays and the temporal width of input correlations. If we relate our model

structures to visual cortical areas V1 and V2, the weight distributions of the level-1-to-2

feeding connections determine the cRF size in V2, while the weight distributions of

level-1 linking connections (V1) define the potential cortical range of synchronization

(its projection to visual space is called the association field or AF).

Our learning function is particularly sensitive to precise spike correlations according

to the steep gradient between the negative (unlearning) and the positive (learning) epoch

and its asymmetric shape (Fig. 2.3). Recent experimental results support its biological

plausibility (Markram et al., 1997). Fast and stable convergence is obtained when

the random temporal dispersion of the external input correlations and the systematic

dispersion introduced by lateral spike conduction are matched to the positive epoch of

the learning function.

Other models applied learning to continuous mean firing rates (e.g., Kohonen, 1984;

Phillips and Singer, 1997; Stetter et al., 1997; Wiemer et al., 2000) instead of using
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discrete spike patterns. The former is appropriate if the correlated signals vary slowly.

This assumption does not hold for the temporally precise input correlation in our model,

which hardly influences the mean firing rate of single neurons (Kempter et al., 1999).

However, models based on mean firing rates can, in principle, also transform temporal

dispersion into spatially confined coupling structures by learning. Yet, this is restricted

to the slow time scale of rate modulations (Wiemer et al., 2000) and does not work on

a millisecond time scale as in our model.

Temporal dispersion and variability due to synaptic and dendritic delays are neglected

in our model. Introducing biologically plausible values for them will broaden the size of

the coupling kernels at level 1 in scenario A (Fig. 2.4) and level 2 in Scenario B (Fig. 2.7),

accordingly. However, such a broadening effect is already present in our model and is

reflected in its results: maintained stochastic input (GWN) to level-1 neurons introduces

large variability in activation delays because the membrane potential fluctuates and

the threshold can be in any state at any moment. This activation variability is large

(> 10 ms, Fig. 2.2) compared to what is expected in cortical neurons from synaptic and

dendritic delays (< 5 ms) under the conditions of rather constant spike rates as in our

simulations (Agmon-Snir and Segev, 1993).

Lateral conduction delays in the visual cortex (related to scenarios A and B) have

been measured only indirectly. If we fit the lateral profile of signal correlations (Fig. 2.4)

to the cortically measured coupling profiles in V1 and V2 (Eckhorn, 1994; Frien and

Eckhorn, 2000b) by changing the lateral conduction velocity and keeping the temporal

jitter of correlated input spikes small (σin = 2.5 ms), the model proposes a velocity of

about 0.7 m/s. This value is difficult to compare with real velocities, e.g., in the monkey

visual cortex, for several reasons. First, there is a broad distribution of velocities,

according to the different fiber diameters of lateral connections. Second, no direct

measurements of intra- and interareal conduction delays are available from monkeys.

Third, the fitted velocity from the model depends on the temporal correlation width of

its input spikes.

As no direct measurements of lateral intraareal conduction velocities (scenario A)

have been made in the monkey striate cortex, they have to be estimated by indi-

rect methods, yielding 0.1 to 0.5 m/s for the dominating velocity in V1 in different

preparations (review in Nowak and Bullier, 1997).

Interareal delays (scenario B) are also relevant for our present work. We concentrate

here on V1-V2 delays. They have been measured in monkey revealing delays of a few
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milliseconds, mostly due to synaptic delay and integration times (Nowak and Bullier,

1997). Their shortness is probably related to the myelination between retinotopically

corresponding positions of V1 and V2. However, each V1-V2 axon sends collaterals to

V2 targets that are generally not myelinated, so that they conduct as slowly as other

lateral intraareal connections (on average at 0.3 m/s).

Summarizing, we have to realize that the measured average velocities are too slow

by a factor of about two for directly explaining the above mentioned fit to the lateral

coupling kernels in V1 and V2. We have to note, however, that the experimental data

were collected from visually experienced animals. Therefore, a variety of arguments

can explain the differences. (1) The effective fibers determining AF and cRF sizes are

indeed as slow as 0.3 m/s. Then we have to assume that the correlation width (jitter)

of the input spike trains is broader by a factor of about two, because larger temporal

jitter also causes wider coupling profiles (Fig. 2.6a). (2) There are few fast conducting

fibers determining AF and cRF size while the slower conducting axons play no role in

determining size. (3) Visual experience, in particular the spatial correlation of visual

object features, reshapes the widths of AFs and cRFs on the basis of stimulus-locked

synchronization of the input over the range of average object sizes. (4) Other static

and dynamic network properties dominate the emergence of spatial structures of visual

function, including dynamics at synapses and dendrites and their potential adaptability

(e.g., Markram and Tsodyks, 1996). These possibilities are not mutually exclusive and

the presently available data are not sufficient for giving realistic weights to any of them.
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Neuron parameters

τf1 0.2789 ms τf2 9.0 ms

τl1 0.3866 ms τl2 4.0 ms

θ0 0.3 vax 1.0 grid/ms

Vθr 5.0 τθr 5.0 ms

Vθs 1.0 τθs 80.0 ms

mGWN 1.0 σGWN 0.3

Learning level-1 connections (Scenario A)

pp 0.25 fp 10.0 Hz

σp 2.5 ms wc 0.005

τp1 0.3866 ms τp2 4.0 ms

α 0.15 γ 0.005

Learning level-1 to level-2 connections (Scenarios B, C)

A12 0.03 σ12 6.0 grid units

fb 10.0 Hz vb 1.0 grid/ms

τp1 0.2789 ms τp2 9.0 ms

α 0.25 γ 0.005

Table 2.1: Network parameters
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3 Finite Transmission Delays

Finite Transmission Delays Affect Emergence and Spatial Range
of γ-Coherence in a Model of the Primary Visual Cortex

The emergence of coherent γ-oscillations (30–90 Hz) has been investigated in numer-

ous neural network models. Most models do not incorporate realistic neural transmission

delays, although physiological studies confirmed that the majority of axonal conduction

in the cortex is slow and should have a significant impact on the synchronization of

neural populations. We investigated the influence of distance-dependent delays on γ-

synchronization, using a strongly reduced model of a visual area with spiking excitatory

and inhibitory neurons that are topographically organized. Delays in the local inhibitory

feedback loop have a direct impact on the frequency of γ-oscillations, but do not affect

the spatial extent of γ-coherence. On the other hand, fast long-range horizontal connec-

tions can enhance γ-coherence even between distant sites. γ-coherence is maximal for

zero transmission delays and attenuates with decreasing lateral conduction velocities.

Below a velocity of 0.5 m/s, γ-power and γ-coherence were even smaller than without

these connections at all, i.e., slow horizontal connections actively desynchronized neural

populations. In conclusion, the enhancement of γ-coherence by horizontal excitatory

connections critically depends on fast conduction velocities.
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3.1 Introduction

3.1.1 Coherent γ-activity in the visual cortex

Local populations of neurons in visual cortical areas often show increased power in the

γ-range (30–90Hz) when they are visually activated with a static optimally oriented

grating or a slowly moving bar (Eckhorn et al., 1988; Gray et al., 1989; Engel et al.,

1991a; Kreiter and Singer, 1996; Frien and Eckhorn, 2000a; reviews: Singer, 1999;

Eckhorn et al., 2004a). γ-activities that are simultaneously recorded from two different

cortical populations reveal a considerable amount of coherence, if the contributing

neurons are involved in co-processing of the same object (Gail et al., 2000; reviews:

Eckhorn, 1999; Gray, 1999). In a common experimental paradigm the responses of two

groups of neurons are measured while using either a pair of spatially separate optimally

oriented stimuli or a single stimulus with an orientation intermediate between the

preferred orientations of both groups. Several studies found that the cross-correlations

between both groups are stronger for the single stimulus condition than for the pair

of stimuli, e.g., in cat (A17: Gray et al., 1989; Engel et al., 1991a; Engel et al., 1991b;

Brosch et al., 1997; A18: Brosch et al., 1997, Castelo-Branco et al., 2000) and alert

monkey (V1: Livingstone, 1996; MT: Kreiter and Singer, 1996; Palanca and DeAngelis,

2005). Although increased γ-correlations have been found between areas and even

between hemispheres (Eckhorn et al., 1988; Engel et al., 1991a; König et al., 1995),

the recorded neurons seem to require either overlapping receptive fields (Engel et al.,

1991a,b; Kreiter and Singer, 1996; Castelo-Branco et al., 2000) or non-overlapping

receptive fields with similar preferred orientations (cat: Gray et al., 1989; Brosch et al.,

1997). Comparable studies using both, non-overlapping and non-iso-oriented classical

receptive field (cRF) arrangements, did not find significant differences in γ-correlation

for the two stimulation paradigms (cat: Golledge et al., 2003; monkey, V1: Roelfsema

et al., 2004; monkey, MT: Palanca and DeAngelis, 2005).

3.1.2 Neural basis for mediating long-range γ-correlations

There are probably three potential sources for correlated γ-activity in the primary visual

cortex (V1): common input from the lateral geniculate nucleus (LGN), common input
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via feedback connections from higher cortical areas and active synchronization mediated

by the intra-areal ’lateral’ connectivity.

Neurons that are separated by more than 2 mm have non-overlapping cRFs (cat: Reid

and Alonso, 1995; Ferster et al., 1996; monkey: Hubel and Wiesel, 1974), implicating

that they share no common input from the same thalamic circuits. Since γ-correlations

in the primary visual cortex are found between groups of neurons separated by a cortical

distance of more than 3 mm (e.g., Eckhorn et al., 1988; Gray et al., 1989; Engel et al.,

1991a; Kreiter and Singer, 1996; Frien and Eckhorn, 2000b), they can not entirely be

due to common input originating from visual thalamic input.

Feedback connections from V2 or MT have large projection areas (Angelucci et al.,

2002) and can considerably modulate the responses of V1 neurons as shown by inactiva-

tion of higher areas (cat: Mignard and Malpeli, 1991; monkey: Hupé et al., 1998; Hupé

et al., 2001b). While the contribution of feedback connections to response properties in

V1 is unquestionable, it is a matter of dispute, if they preferably connect to neurons

with similar orientation preferences (orientation specific feedback: Angelucci et al., 2002;

Angelucci and Bullier, 2003; orientation unspecific feedback: Stettler et al., 2002; all

data from monkey but different labeling techniques). It is therefore unclear, if feedback

connections can mediate orientation specific correlations between neurons in V1.

The third potential source for γ-correlations are intra-areal horizontal connections

that primarily emanate from pyramidal cells, extend up to a few millimeters (e.g., 3.5 mm

in Stettler et al., 2002) parallel to the cortical surface (Rockland and Lund, 1982; Gilbert

and Wiesel, 1983; Martin and Whitteridge, 1984) and terminate in two distinct areas

with probably distinct functions: for distances below approx. 0.5 mm, connections

are diffuse and unspecific, wiring neurons with a wide range of orientation preferences

(Malach et al., 1993; Roerig and Chen, 2002) and axial alignments of their cRFs (Bosking

et al., 1997). Outside a radius of approx. 0.5 mm, the projection topography is patchy,

preferably connecting distinct cell clusters that share similar orientation preferences (cat,

monkey: Gilbert and Wiesel, 1989; Ts’o et al., 1986; Kisvàrday et al., 1997; Schmidt

et al., 1997; Stettler et al., 2002) and are placed along an axis in visual space (cat,

tree shrew: Nelson and Frost, 1985; Bosking et al., 1997; Chisum et al., 2003). These

long-range connections make 80% of their synapses onto excitatory neurons (Kisvàrday

et al., 1986; McGuire et al., 1991). Activating the horizontal network at a distant patch

results in monosynaptic and polysynaptic excitatory postsynaptic potentials followed by

disynaptic inhibitory postsynaptic potentials (Hirsch and Gilbert, 1991; Weliky et al.,
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1995; Tucker and Katz, 2003). The summation of postsynaptic potentials (PSP) on the

basal dendrites is non-linear under certain conditions: PSPs arriving simultaneously

from the apical dendrite and the horizontal circuitry are summed supralinearly when

the postsynaptic membrane was depolarized to a certain level (Yoshimura et al., 2000).

The summation of nearby input on the same dendritic branch is supralinear when PSPs

arrive within an interval of 40ms (Margulis and Tang, 1998; Polsky et al., 2004).

The different anatomical connections are likely to account for coherence on different

spatial scales. First, correlated γ-activity of neurons with overlapping cRFs would

originate from LGN common input in combination with dense direct connections that

have been found between neurons with overlapping cRFs (Gilbert and Wiesel, 1979;

Rockland and Lund, 1982; Gilbert and Wiesel, 1983; Kisvàrday et al., 1993, 1997).

Second, the properties of horizontal connections are compatible with γ-correlations found

in the primary visual cortex when assuming that correlations require monosynaptic

connections between cells of both populations. γ-correlations between neurons with

iso-oriented cRFs may be mediated by the widespread network of long-range horizontal

connections in layer 2/3 (Gilbert and Wiesel, 1983, 1989), which preferentially connect

neurons with similar orientation preference (tree shrew: Bosking et al., 1997; Chisum

et al., 2003; cat: Ts’o et al., 1986; monkey: Angelucci et al., 2002). In the tree

shrew, correlations and anatomic connections are strongest for iso-oriented neurons

with collinearly aligned cRFs (Bosking et al., 1997; Chisum et al., 2003).

In conclusion, the spatial range, the specific wiring scheme and the facilitatory

action of horizontal connections strongly suggests, that they play an important role in

mediating correlations between neurons with non-overlapping cRFs.

3.1.3 Transmission delays of horizontal connections within area V1

Temporal properties of neural responses including the emergence of γ-correlations

are crucially affected by delayed transmission of action potentials from one neuron

to another. While there are numerous velocity measurements between cortical areas,

little is known about conduction velocities within a cortical area (review: Nowak and

Bullier, 1997). Indirect measurements from cat and rat primary visual cortex reveal a

broad distribution of conduction velocities. The speed of action potential propagation

along horizontal excitatory connections is in the order of a few tenth of m/s (Komatsu

et al., 1988: 0.3 m/s; Murakoshi et al., 1993: 0.15–0.55 m/s; Hirsch and Gilbert, 1991:
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0.3–0.6 m/s; Nowak and Bullier, 1998: 0.4 m/s). Inhibitory connections seem to be

slightly slower (Salin and Prince, 1996: 0.06–0.2 m/s, mean: 0.1 m/s). These measured

velocities of intra-areal signal transmission are consistent with the spread of synaptic

activity in the primary visual cortex revealed by optical imaging (Grinvald et al., 1994:

0.1–0.25 m/s, monkey; Tucker and Katz, 2003: 0.25 ± 0.2 m/s, ferret). Slow conducting

axons may also be the source of slow activity waves in cat V1, triggered by visual

stimulation in peripheral parts of the receptive field (Bringuier et al., 1999, mean:

0.1 m/s).

3.1.4 Correlated γ-activities and transmission delays

The slow transmission of action potentials within area V1 raises several questions

concerning the temporal aspects of intra-areal information processing. Correlated γ-

activity has been found between groups of neurons that are separated by a cortical

distance of 3–6 mm (e.g., Eckhorn et al., 1988; Gray et al., 1989; Engel et al., 1991a;

Kreiter and Singer, 1996; Frien and Eckhorn, 2000b). These γ-correlations occur at

zero time-lag in the majority of cases; the same holds for non-oscillatory signals (cat:

Michalski et al., 1983; monkey: Krüger and Aiple, 1988). Monosynaptic interactions

spanning these distances therefore take 5–30 ms, when assuming an axonal velocity of

0.1–0.6 m/s. This is long compared to the cycle length (11–33 ms) of γ-range oscillations

(30–90Hz). Delays in signal transmission are therefore likely to have a substantial

influence on γ-correlations and the underlying γ-activities.

3.1.5 Goal of the model

In this paper, we show how delays influence the emergence of correlated γ-activity in

a structured network of spiking neurons. Each synaptic connection exhibits a delay

that is proportional to the distance of the respective neurons, i.e., constant axonal

velocity. Velocities were independently varied for two subcircuits: the local inhibitory

feedback loop and the long-range excitatory horizontal connections. We derived realistic

signals and used a signal analysis that alleviates a direct comparison with experimental

data. We asked if the slow transmission velocities are compatible with the spatial and

temporal aspects of observed γ-correlations and if other interactions like fast feedback

from higher areas have to be taken into account (Hupé et al., 2001a; Angelucci et al.,

2002).
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Figure 3.1: Sketch of the network connectivity. The network consists of two topographically organized
subpopulations. Locally corresponding excitatory and inhibitory neurons are reciprocally connected,
forming local feedback loops. Adjacent excitatory neurons were additionally connected via mutual
linking synapses in the vertical neighborhood. The connection schemes are exemplary shown for one
neuron per connection type. All synaptic efficacies decay like a Gaussian with increasing distance. The
spatial separation of both populations is for visualization purposes only. They are supposed to be in
the same functional layer. The stimulus amplitudes are directly applied to excitatory and inhibitory
neurons at the corresponding positions.

3.2 Methods

3.2.1 Network

The network (Fig. 3.1) contained 961 excitatory and 225 inhibitory model neurons

(Section 2.2.1). Both cell types were regularly placed on a two-dimensional Cartesian

grid that was supposed to span 4 · 15 mm2 in the primary visual cortex (V1). The

minimal distance between two adjacent excitatory (inhibitory) neurons was accordingly

set to 0.25 mm (0.5 mm). Each excitatory neuron projected topologically to a group

of inhibitory neurons (E→I), and each inhibitory neuron projected back to a group of

excitatory neurons (I→E). Therefore both cell types form local recurrent inhibitory

loops (E↔I). The axonal field of laterally projecting large basket (inhibitory) cells in cat

covers a maximal diameter from 1.6 mm (Martin et al., 1983) up to 3 mm (Kisvarday
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and Eysel, 1993). The synaptic connection strengths (I→E) of a single inhibitory cell

were set to decay Gaussian with increasing distance σ̂=1.0 mm, where σ̂ denotes the full-

width at half-height (FWHH). Using these settings, the maximal projection diameter

of approx. 2 mm is in accordance with the previously cited experimental data. The

same connection profile was used for the excitatory (E→I) neurons, because connections

between neurons are often reciprocal (Braitenberg and Schüz, 1991). In some simulations,

excitatory neurons were mutually connected (E↔E) via modulatory linking synapses

using a vertically elongated Gaussian coupling kernel (σ̂x = 0.5 mm, σ̂y = 3.0 mm).

They are supposed to imitate long-range horizontal connections that were found between

pyramidal cells with similar orientation preference in the superficial layers of the primary

visual cortex (Gilbert and Wiesel, 1979). Initial synaptic strengths were jittered by

±0.05 of their assigned value (temporally constant). Open boundary conditions were

A. Neuron parameters C. Input parameters

τf1 0.2789 ms τf2 9.0 ms wS→E 0.2

τl1 0.2789 ms τl2 5.0 ms wS→I 0.075

τi1 0.45 ms τi2 3.0 ms σUE
0.4

θ0 1.0 σUI
0.1

Vθr 1.0 τθr 5.0 ms σI 0.5

Vθs 0.5 (0.2) τθs 80.0 ms

B. Connections

wE→I 0.15 σ̂EI 1.0 mm

wI→E 0.35 σ̂IE 1.0 mm

wE→E 0.02 σ̂EE 3.0, 0.5 mm

vE→I 0.25 m/s vI→E 0.125 m/s

vE→E 1.0 m/s

Table 3.1: Network parameters. A. Parameters for excitatory and inhibitory neurons are identical
except for the lower spike rate adaptation Vθs of inhibitory neurons. B. w denotes the connection
strength for neurons at corresponding positions, σ̂ the full-width at half-height (FWHH) of the Gaussian
weight distribution. C. Parameters denote input strength and noise. See text for details.
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used, to prevent artifacts due to cycling activity. By restricting all quantitative analyses

to the central area of the network, we found that boundary effects can be ignored.

All connections exhibited a constant signal transmission velocity. This simplifying

assumption is motivated by the observation that the latency of a depolarization is

linearly related to the eccentricity of the receptive field center relative to the position of

the stimulation (cat, V1, intracellular recordings: Bringuier et al., 1999). The axonal

velocity was set to 0.25 m/s for E→I, 0.125 m/s for I→E and 1 m/s for E→E connections,

increased by a uniformly distributed random delay of up to 2 ms. Parameters are

summarized in Tab. 3.1.

3.2.2 External stimulation

For simplicity, the visual periphery such as the retina and the LGN were excluded from

the model. We applied amplitude-continuous input directly to each of the modeled

neurons, disregarding all cRF properties (e.g. orientation, color, motion) except cRF

position.

During the entire simulation period, independent Gaussian white noise (GWN)

ξ(t) was directly added to the membrane potential U(t) of all excitatory (amplitude:

σUE
) and inhibitory neurons (σUI

). This approach neglects input correlations that are

due to overlapping receptive fields (Reid and Alonso, 1995; Ferster et al., 1996) or

feedback from higher visual cortical areas (review: Salin and Bullier, 1995). Although

these processes are likely to be of importance for processing in V1, their exclusion was

necessary to separate internal correlations generated by the modeled network from

external correlations. Since external correlations always enlarge the coupling profiles,

uncorrelated input gives a lower bound for strength and extent of coupling profiles.

A simulation run started with a pre-stimulus period lasting 512 ms, during which only

the noise input was present. After that, the stimulus was linearly faded in, taking 20 ms

to reach its maximum amplitude. The stimulus S used here was either a continuous

or a disrupted bar (Fig. 3.2A), which should mimic the single- and the two-stimulus

condition of the experiments described in the introduction:

SX(x, y) = wS→X · cos((x− x̄)/σx) · (1−D · exp(−(y − ȳ)2/(2σ2
y))) , (3.1)

where X may be E for the excitatory and I for the inhibitory sublayer, x̄ = 7, σx = 14/π,

ȳ = 30, σy = 1/
√

2 ln 2, D = 0 for continuous and D = 0.75 for a disrupted bar. All
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Figure 3.2: Network input. A1. Spatial distribution of temporally averaged membrane potentials
for a stimulation period of 1024 ms (vertically cropped). A2. Averaged membrane potentials for an
alternative stimulus used for investigating decoupling effects. B. Single membrane potentials for a
maximally (a), a medium (b) and a weakly (c) activated neuron. Stimulus is switched on at t = 0.
The neurons’ resting thresholds θ0 are denoted by dotted horizontal lines.

neurons received independent GWN input with each mean and standard deviation

modulated according to the spatial structure of a stimulus S.

I(x, y, t) = SX(x, y)(1 + 0.05 ζ(x, y, t)) , (3.2)

where ζ is a normally distributed random variable with zero mean and a standard

deviation of 1. The strength of the input noise therefore increased with the mean input

to the neuron. I(x, y, t) was applied to the feeding inputs of the model neurons and

therefore low pass filtered. The spatial distribution of the mean membrane potentials and

a sample of time-resolved membrane potentials are shown in Fig. 3.2. For a convenient

comparison with electro-physiological results, the stimulus may be interpreted as a

vertical bar composed of a vertically oriented sinusoidal grating (Fig. 4.1B1).

3.2.3 Signals

The stationary phase used for all spectral and coherence analyses started 200 ms after

the stimulus onset. Despite directly available membrane potentials Ui(t) and single unit

activity Oi(t), we extracted two mesoscopic measures from these data: multiple unit

activity (MUA) is a measure for the collective spiking activity of a small local neural

group in real experiments (≈ 0.05 mm half-height decline; tetrodes, cat: Gray et al.,

1995; theoretical: Rall, 1962). The local field potential (LFP) in real recordings is a local
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superposition of somato-dendritic potentials, so it gives some indication of average local

activity (≈ 0.5 mm half-height decline; Mitzdorf, 1985). Both measures are generated

from the model by weighting raw signals with a spatial exponential distribution. For

LFP, the full-width at half-height was set to 0.5 mm in accordance with experimental

data. The low spatial density of neurons in the model enforces a diameter of 0.12 mm

for MUA (compared to the proposed value of 0.05 mm), to ensure that the signal

captures a local population of neurons. The result of the spatial convolution for LFP

was band-pass filtered (5–140 Hz) similar to experiments (Gail et al., 2000: 1–120 Hz).

Power spectra were obtained using a sliding Hamming window (duration: 256 ms, shift:

64 ms, sampling interval: 1 ms). We used coherence to quantify coupling strengths

between pairs of signals. It was calculated across the number of trials with identical

stimulation (Bartlett-smoothing, N=50 for all results) and corrected after Benignus for

small N (Glaser and Ruchkin, 1976). Coherence, as used here, is sensitive to phase

and amplitude covariations. All normalized values were averaged using the Fisher

Z-transformation. Normalized coherence as used in Section 3.3.5 is defined as:

CN =
Cdis − Cpre

Ccont − Cpre

, (3.3)

where Cpre is the γ-coherence without, Ccont with a continuous and Cdis with a discon-

tinuous stimulus.

3.3 Results

3.3.1 Stimulus-induced γ-activity

To get an impression of the network dynamics, we first looked at the single unit activity of

the excitatory cells (Fig. 3.3) in response to a vertical bar stimulus (Fig. 3.2A1). Without

stimulation all neurons were spontaneously active with an average rate of 3.4 impulses/s.

Shortly after stimulus onset, the stimulated neurons fired with an increased rate, which

can be seen by an increased dot density in the spike raster (Fig. 3.3A) and, more

clearly, in the temporally averaged individual firing rates (Fig. 3.3B). The summed

activity across all neurons (Fig. 3.3C) showed damped oscillations for 128 ms that were

phase-locked to the stimulus onset.

Similar temporal properties can be found in the time-courses of MUA and LFP at

strongly activated network positions (Fig. 3.4). Both show γ-oscillations in single trials.
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Figure 3.3: Single unit spike activity of excitatory neurons. A. Single trial spike activity of excitatory
neurons for a bar-like stimulus. All neurons of the two-dimensional excitatory sub-population are
displayed on the vertical axis. Each dot denotes the occurrence of an action potential. B. Distribution
of temporally averaged single neuron firing rates for the tonic phase (t > 200 ms). The step-like
structure of the graph reflects the input with 15 columns, each containing neurons with a similar
average firing rate (Fig. 3.2). C. Spike density across all neurons shown in A, divided by the total
number of neurons. D. Histogram of mean firing rates shown in B (N=50).

These are locked to the stimulus-onset for 150 ms and occur randomly at later times:

phase-locked components can be seen in the peri-stimulus time histogram (PSTH),

while events occurring at arbitrary times cancel out (Fig. 3.4). The fine-structure of

the phase-locked component looks different in monkey MUA and LFP but the duration

is comparable (Frien and Eckhorn, 2000a, their Fig. 2).

During stimulus presentation, membrane potentials in strongly activated regions

of the network exhibited oscillations in the γ-range (here: 40Hz). The time-resolved

power-spectrum for a single membrane potential exhibits a large temporal variability for

a single trial (Fig. 3.5A). Averaging across trials (N=50) discloses a prominent γ-peak

(Fig. 3.5B), that is absent without stimulation (Fig. 3.5C).

3.3.2 Dependency of peak γ-frequency on the feedback loop

The following section will clarify, how the observed γ-activity depends on the E↔I

connection parameters. The synaptic strengths of the E→I and the I→E connections

are simultaneously scaled by adjusting wE→I and wI→E accordingly. Changing each

parameter in isolation does not qualitatively change the following results.
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Figure 3.4: Multi unit (A) and local field potential (B) traces. The upper traces show 9 single
responses to identical stimulus repetitions recorded at the same position. Lower most traces show the
peri-stimulus time histogram (PSTH) of 50 traces as shown above at the same amplitude scale. The
dotted vertical line indicates stimulus onset. Note the occurrence of fast oscillations during stimulation
in the single traces. Only the first oscillations are locked to the stimulus onset and survive averaging
in the PSTH. The valleys in B shortly before stimulus onset and after the stimulus transient are due
to the filtering kernel (5–140 Hz).

Increasing connection strengths reduce the spike rates for excitatory neurons (Fig. 3.6A).

This is due to the following mechanism: strengthened E→I connections increase the

excitatory input to inhibitory neurons, resulting in increased spike rates of these

inhibitory neurons. This increases the inhibitory input to excitatory neurons, which is

in addition amplified by stronger I→E connections. The increased inhibition results in

reduced firing rates of the excitatory neurons. These changes in the network dynamics

do not have an impact on the peak γ-frequency in LFP signals (Fig. 3.6B), which

remains constant in the investigated parameter range. The power of this frequency,

however, is not constant, but increases drastically with increasing E↔I connection

strengths (Fig. 3.6C). This is due to the increasing inhibition that acts synchronizing on

membrane potentials (models: Mirollo and Strogatz, 1990; Ernst et al., 1995; Nischwitz

and Glünder, 1995).

The oscillation frequency of LFPs is independent of the E↔I connection strength,

but it depends on the transmission velocities of these connections. Fig. 3.6D shows,
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Figure 3.5: Gamma-activity in membrane potential. A. Time-resolved power spectrum of a single
membrane potential in the center of the layer for a single trial (window length: 256 ms). The stimulus
onset (t = 0) induced large contributions in the low-frequency as well as in the γ-range (here: 30–50
Hz). For t > 200 ms, the power is mainly present below 50 Hz without temporally stable peaks. B.
Time-resolved power spectrum (N=50) for a single membrane potential shows a strong γ-peak (38 Hz)
beginning with the stimulation. The stimulus-locked contributions have been removed by subtracting
the power-spectrum of the PSTH. C. Time-averaged power-spectrum (N=50) for the pre-stimulus
period (t < 0, dotted line) and the stimulus period (t > 200 ms, solid line). Despite the prominent
γ-peak, the power in all frequencies bands is enhanced, dropping with increasing frequency.

that the oscillation frequency with instantaneous E↔I connections is about 60 Hz. This

is faster than the highest average firing rate of a neuron in the whole network (all

cells on average below 50 impulses/s) and illustrates that the observed γ-oscillations

are a population phenomenon. With decreasing velocity of all E↔I connections, the

oscillation frequency gets smaller (Fig. 3.6D), while the firing rates of the contributing

neurons remained about the same (not shown). The shift in the oscillation frequency

can be fully explained by the increasing mean delay of the feedback loop.

3.3.3 Dependency of γ-activity on horizontal connections

The previous results are obtained with mutual connections between excitatory and

inhibitory neurons alone. Here, we introduce additional linking connections with a

velocity of 1 m/s between vertically aligned excitatory neurons as shown in Fig. 3.1 (look

for linking). Increasing the coupling strength of these modulatory E↔E connections

among excitatory neurons generally increases the mean firing rates (Fig. 3.7A), while

the peak frequency of corresponding LFPs decreases (Fig. 3.7B). A similar relationship
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Figure 3.6: Simulations using different E→I and I→E connection properties. A. Abscissa denotes
the connection strength for the E→I connections at corresponding network positions. All other E→I as
well as all I→E connections are scaled proportionally. Spike rate of an excitatory neuron placed at the
network center decreases with increasing E↔I connection strengths. B. The frequency of the maximal
spectral LFP power remains constant, while the power at this frequency (C) increases drastically
with E↔I connection strengths. D. In this series of simulations, the connection strengths remained
constant, while the transmission delays of the E↔I connections are scaled proportionally. Oscillation
frequency scales linearly with the reciprocal velocities of the E→I and the I→E connections. Filled
symbols indicate the standard value for this parameter.

has been found by Juergens and Eckhorn (1997) in a homogeneous model with purely

excitatory neurons. Engaged linking synapses provide an additional excitatory drive

to stimulated excitatory neurons. The firing times of neighboring neurons are already

correlated due to their common inhibition. Hence, linking input from spiking neurons

reaches their neighbors shortly after or before they have or would have fired themselves,

due to external input and their internal dynamics. Activated excitatory neurons in

the network therefore tend to burst. For strong E↔E connections, the burst frequency

is mainly determined by the time constant of the slow threshold component (τθs =
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Figure 3.7: Simulations using differently scaled E↔E connections. A. Spike rate of an excitatory
neuron placed at the network center increases with increasing E↔E connection strengths. B. The
dominating frequency in the LFP at the same position as in A is reduced by the increasing recurrent
excitation, due to the occurrence of bursts. C. The power of the dominating frequency increases
drastically with the E↔E weights. D. Relative γ-power decreases with decreasing transmission velocity
of the E↔E connections. Dotted line indicates γ-power with disabled E↔E connections. Filled symbols
indicate the standard values for the parameters.

80 ms). The power of the peak frequency increases strongly due to the facilitating and

synchronizing effect of the mutual E↔E connections (Fig. 3.7C).

The transmission velocity of the E↔E connections has a strong impact on the γ-

power of LFP signals (Fig. 3.7D). For instantaneous interactions (i.e., infinite velocity),

the relative γ-power is set to 1. Power decreases considerably with decreasing velocity

of E↔E connections. For E↔E with a velocity of 0.25 m/s, the power is slightly above

0.36, which is the value obtained with completely disabled E↔E connections. For a

velocity of 0.125 m/s, γ-power is even below this value.
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Figure 3.8: Spatial distribution of γ-coherence of membrane potentials. Color palette indicates
temporally averaged γ-coherence (N=50, 25–60Hz) with the reference neuron. The white dashed
crosses mark the position of the reference neuron. Right insets show the power spectrum of the
reference neuron and are equally scaled. A. With disabled E↔E linking connections, γ-coherence
monotonically decays with distance. The shape of the profile is approximately circular. B. With
engaged linking connections, the γ-coherence profile extends elliptically in the direction of the E↔E
connections. C, D. γ-coherence of neurons placed along the vertical dashed line is compared for A
and B. Engaged E↔E connections enhance γ-coherence preferably for short distances.

3.3.4 Horizontal linking connections enhance γ-coherence

In this section we investigate, how recurrent E↔E connections can change γ-coherence

of different signal types in the network.

Input signals fed to neurons in the network are completely uncorrelated (not shown).

Recurrent inhibition provided by E↔I connections, induces linear correlations between

neighboring neurons. These can be seen, e.g., in the γ-coherence of membrane potentials

(Fig. 3.8A). The stimulus evokes a radial symmetric coupling profile that decays with

the distance of the observed neuron pair. Membrane potentials separated by 0.25 mm

show an average γ-coherence of 0.14; for 0.75 mm, the value is only 0.07 (Fig. 3.8C).

The strength and spatial extent of γ-coherence does not depend on the peak frequency.

Adding E↔E connections (Fig. 3.8B), clearly enhanced the coherence for all distances

in the direction of the asymmetric coupling kernel. This can be seen in Fig. 3.8D, where
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Figure 3.9: Spatial coherence of MUA and LFP (30-50Hz). A. Gamma-coherence of MUA mono-
tonically decays with distance. Engaged E↔E linking connections induce generally higher coherence
values (squares) than E↔I connections in isolation (triangle). Differences between both conditions are
visible even for lowest distances (solid line). B. The spatial extent and the absolute γ-coherence values
are much larger for LFP than for MUA. Differences between engaged and disabled E↔E connections
are most prominent for a distance of 1.75 mm, and differ significantly up to 3.75 mm for LFP and
3.5 mm for MUA (Mann-Whitney-U-Test, p < 0.001).

γ-coherences with enabled and disabled E↔E connectivity are compared. The linking

connections enhance γ-coherence of membrane potentials preferably for short distances

(up to 50%); slight increases can be seen up to distances of 3.5 mm.

Using local field (LFP) instead of membrane potentials (Fig. 3.9B) revealed generally

higher coherence values. Differences in γ-coherence between engaged and disabled

E↔E connections are small for low distances, increase to a maximum for a distance

of 1.75 mm and decrease again for larger distances. This is in contrast to the findings

for the membrane potential, where differences in γ-coherence decay monotonously with

distance (Fig. 3.8C,D). γ-coherences for MUA signals were generally much lower than

for LFP signals (Fig. 3.9A). γ-coherence enhancements by engaged E↔E connections

are therefore less pronounced. However, differences were visible even for lowest distances,

in contrast to LFP.

The width of the γ-coherence profile does not only depend on the E↔E connection

strengths as shown before, but also on the transmission velocity of these connections.

Using instantaneous E↔E interactions, the spatial width and strength of the γ-coherence

profile is enhanced compared to disabled E↔E connections (Fig. 3.10). With decreasing

conduction velocities the width and strength of this coupling is gradually reduced. For
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Figure 3.10: Spatial γ-coherence profiles depend on E↔E velocities. A. The solid line indicates the
coupling profile that is induced in the presence of recurrent inhibition (E↔I) and in the absence of
the linking connections (E↔E). Instantaneous lateral transmissions (dashed) revealed the broadest
coupling profile, while transmission velocities up to 0.5 m/s exhibited intermediate coupling ranges
(dotted, dash dotted). Velocities below 0.5 m/s reduced the width of the γ-coherence profile coupling
even below the values obtained without any E↔E connections. B. Differences between γ-coherence
profiles for different E↔E connections and disabled E↔E connections (solid line in A) are shown.

lateral velocities below 0.5 m/s, γ-coherence for all distances is smaller than without any

E↔E connections at all. The decrease in coupling strength and range is accompanied

by a reduction of the γ-power (Fig. 3.7D).

3.3.5 Decoupling of γ-coherence across stimulus gaps

In the previous sections, we analyzed γ-coherence in a network region that was homo-

geneously stimulated. Here, the properties of γ-coherence will be investigated near a

spatial disruption in input stimulation (Fig. 3.2A2). The attenuation of input stimula-

tion is accompanied by a reduction of γ-power at the positions of the gap (Fig. 3.11),

because the reduced spike rates of excitatory neurons are not sufficient to drive the

inhibitory feedback loop.

For a reference membrane potential located 2.5 mm away from the stimulation gap

(Fig. 3.11B), the γ-coherence profile is not visibly disturbed compared to a homogeneous

stimulation (Fig. 3.8B). With decreasing distance to the gap, membrane potentials
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Figure 3.11: Coherence is reduced in the vicinity of an activity gap. White dashed crosses mark
the positions of the reference neurons. Horizontal dotted line indicates the center of the gap. Right
insets show the power spectrum of the reference neuron (same scaling). A. Reduced stimulation in the
center of the array (Fig. 3.2A2) results in reduced γ-activity at these positions. B. Reference neuron is
located 10 grid units (2.5 mm) below the gap center. The elongated γ-coherence profile is not affected
by the presence of the gap. C. The γ-coherence profile with the reference neuron placed 1 mm above
the gap center is deformed in the direction of the gap. Neurons on opposite sides of the gap are not
coupled. D. γ-coherence profile (distance: 0.5 mm from gap center) is generally reduced in strength
compared to B and C.

show a generally reduced γ-coherence with their neighbors (Fig. 3.8). Additionally the

coupling profile is deformed in the direction of the gap. The membrane potential of

neurons near the gap is neither coupled with neurons on the other side of the gap, nor

with neurons at the position of the gap (Fig. 3.11).

This qualitative description is confirmed, by comparing the γ-coherence for pairs of

LFP signals on the same side and on either side of the gap, using both, continuous

bar and two-bar stimulation. Fig. 3.12A shows that γ-coherence of signal pairs on

the same side of the stimulus discontinuity is not affected by the presence of the gap

(144 combinations, paired t-test, p > 0.5). In contrast, γ-coherence is significantly

reduced across the gap (144 combinations, paired t-test, p < 0.0001). The dependence of

γ-coherence reduction on the distance of the recorded signals can be seen in Fig. 3.12C.

Averaging across all signal pairs reveals, that gap stimulation reduces γ-coherence on

average to 0.37 of the value obtained with continuous stimulation (Fig. 3.12B).
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Figure 3.12: Reduction of LFP γ-coherence across stimulus discontinuity. A. Comparison of γ-
coherence for continuous and discontinuous stimulation. γ-coherence for signal pairs derived on the
same side of the gap is unaffected by the gap (same segment, squares, paired t-test, p > 0.5), while
γ-coherence is reduced for pairs on either side of the gap (different segments, triangles, p < 0.0001). B.
Averaged reduction of γ-coherence by discontinuous stimulation. Modulation of γ-coherence within
the same segment (squares in A) is minimal, while a strong reduction can be observed for different
segments (triangles in A). C. Distance-dependence of γ-coherence for continuous (solid), discontinuous
(dashed) and without stimulation (dotted). γ-coherence for continuous and discontinuous stimulation
is significantly larger than without stimulation (paired t-test, p < 0.001 for all distances). Reduction
of γ-coherence is maximal for short distances, and decreases slowly with increasing distance (paired
t-test, p < 0.001 for all distances <= 5 mm). D. γ-coherence for LFP signals on either side of the gap
increases linearly with the stimulation amplitude at the position of the gap. Filled symbol indicates the
standard value for the gap amplitude. E. Decoupling of γ-LFP signals on either side of the stimulus
gap increases with gap width. A prominent γ-coherence reduction is already present for small gap
widths of 0.1 mm. The spatial decay of γ-coherence is comparable to the spatial decline of the E↔I
connection profile (shaded area). F. γ-coherence reduction by the presence of the stimulus gap for
different E↔E strengths.

γ-coherence across the stimulus gap is linearly reduced with the stimulus amplitude

used for neurons at the position of the gap (Fig. 3.12D). The magnitude of γ-coherence

reduction also depends strongly on the width of the stimulus gap (Fig. 3.12E). If the gap

width matches the projection area of the I→E (or E→I) connections, there is virtually

no coupling for LFP signals on either side of the gap.

Note however, that a prominent γ-coherence reduction is already present for small

gap widths. E↔E connections enlarge the spatial range of γ-coherence for a continuous

stimulation (Fig. 3.9). For distances below 1.5 mm, a stimulus gap reduces γ-coherence

most effectively for disabled E↔E connections (Fig. 3.12F). For larger distances, the

effect is reversed: the reduction in γ-coherence increases with the strength of the E↔E

connections.

The temporal properties of the γ-coherence reduction can be seen in Fig. 3.13. First

differences in γ-coherence for gap and continuous stimulation can be seen after 100 ms.

The reduction is maximal for t = 200 ms and remains constant on average for larger

times.
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3.4 Discussion

3.4.1 Main results

We addressed the basic question of whether and how finite velocities in the transmission

of action potentials affect the emergence of γ-activity, its temporal frequency and

γ-correlations in a model of spiking neurons. We found that transmission delays act

differently on signal properties in the γ-range depending on the sub-circuit they are

part of. First, delays in the inhibitory feedback loop, i.e., axonal projections from

and to inhibitory neurons, directly influence the peak γ-frequency, but affect neither

the emergence and power of γ-activity nor the spatial extent of γ-coherence. Second,

transmission delays between excitatory neurons have a critical impact on both, the power

and the coherence of γ-activity. Horizontal connections having infinite transmission

velocities between excitatory neurons enhance γ-coherence for all distances ≤ 4 mm.

This enhancement is gradually diminished for decreasing velocities. Below 0.5 m/s, γ-

power and γ-coherence for all distances are even smaller than without these connections

at all, i.e., slow horizontal connections actively desynchronize neural populations. We

conclude, that cortical horizontal connections between excitatory neurons have to be

fast (v ≥ 0.5 m/s, maximal delay ≤ 5 ms), to play a role for γ-synchronization.

3.4.2 Spatial decay of γ-coherence

γ-coherence of model MUA and LFP signals gradually decays with increasing distance

of the two recording positions (Fig. 3.9; LFP full-width at half-height: 2–2.4 mm).

The decay essentially matches the monosynaptic connection scheme of recurrent in-

hibition in our model (E→I, I→E: 1.0 mm each), which is based on the finding that

most connections in the primary visual cortex terminate within a diameter of 1.0 mm,

connecting neurons unspecifically with arbitrary orientation preferences (cat: Kisvarday

and Eysel, 1993; ferret: Roerig and Chen, 2002; monkey: Malach et al., 1993; Stettler

et al., 2002; tree shrew: Bosking et al., 1997; Chisum et al., 2003). The range of LFP

γ-coherence observed in cat and monkey primary visual cortex is somewhat larger than

the values we obtain in the model (3–6 mm, cat: Brosch et al., 1995; Steriade et al.,

1996; monkey: Frien and Eckhorn; Gabriel and Eckhorn, 2000b; 2003). The model

coupling profiles are a result of the model circuitry alone, since input to the network
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Figure 3.13: Time-courses of averaged LFP coherence. Average time- and frequency-resolved LFP
coherence is calculated between 2 recording positions (distance: 0.25 mm) on one side and 2 positions
on the other side of the gap (gap distance: 1 mm, window size: 128 ms, N=50). A. Coherence for
continuous stimulation starting at t = 0 ms (Fig. 3.2A1). White dashed lines mark the lower and upper
limit of the investigated frequency range (20–50Hz) in C. The right edge of the averaging window is
aligned with the time scale. B. Coherence across the gap (stimulus onset: t = 0 ms, input: Fig. 3.2A2)
is strongly reduced for t > 200 ms in comparison to the continous stimulation in A. C. Average
coherence (20–50 Hz) for continuous and gap stimulation increases with the onset of the stimulus. First
differences in coherence can be observed for t > 100 ms.
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is uncorrelated and feedback from other cortical areas was not modelled. Intracellular

recordings from cat V1 yet revealed, that membrane potentials of neighboring cortical

neurons are correlated due to common input from LGN neurons (Llampl et al., 1999,

investigated below 0.5 mm). The spatial range of correlated activity due to overlapping

receptive fields depends on eccentricity and is at least in the order of 1 mm (cat: Hubel

and Wiesel, 1974; Usrey et al., 2000). Incorporating similar input correlations into the

model, would allow a better match of experimental with model γ-coherence ranges.

3.4.3 Fast horizontal connections enhance γ-coherence

For all distances, MUA and LFP γ-coherence with engaged fast horizontal connections

(v ≥ 0.5 m/s) is stronger than without these connections (Fig. 3.9). Horizontal connec-

tions preferably connect neurons that share similar orientation preferences (cat, monkey:

Gilbert and Wiesel, 1989; Ts’o et al., 1986; Kisvàrday et al., 1997; Schmidt et al., 1997;

Stettler et al., 2002). We did not explicitly include orientation selective receptive fields

in our model. However, we can assume that two neurons with reciprocal long-range

horizontal connections have iso-oriented cRFs, while neurons without these connections

are cross-oriented. In this sense, the results are in good accordance with data from

monkey visual cortex showing that γ-coherence of MUA signals significantly increases

with similarity in preferred orientations (Frien and Eckhorn, 2000b, their Fig. 6).

A similar, but weaker dependency of γ-coherence on orientation difference is also

visible in their LFP data. However this effect is not significant, which may be due

to the large cortical range over which postsynaptic potentials contribute to LFP via

extracellular volume conduction (FWHH≈ 1.0 mm; Mitzdorf, 1985). Our model LFPs

are in fact weighted across the same spatial area, but the network topology does not

account for ocular dominance, spatial frequency, color, motion and feedback from higher

areas and is in that way not comparable to real cortical influences.

3.4.4 Transmission delays vs. synchronized γ-activity

The transmission delays incorporated in our network introduce two opposing effects

on synchronized γ-activity. On the one hand, decreasing spike conduction velocities in

the E↔I connectivity linearly reduce the peak frequency in LFPs (Fig. 3.6D). Their

influence on the power and spatial range of γ-activity is weak, however. Increasing E↔I

connection strengths result in increased γ-power, while γ-frequency remains constant.
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On the other hand, decreasing velocity in the E↔E connectivity drastically reduces

γ-power (Fig. 3.7D) and γ-coherence of LFPs (Fig. 3.10). This reduction is effective for

all distances, even where delays are small compared to the oscillation period.

The different action of delays is due to the way, how these connections affect the

membrane potentials of excitatory neurons. Let us assume a local group of excitatory

neurons that is driven by an external input. If they fire synchronously at a certain time,

this activity excites connected inhibitory neurons (E→I), that reach their firing threshold

and in turn inhibit the connected excitatory cells via single or bursts of inhibitory

postsynaptic potentials (I→E). Synchronized excitatory cells therefore receive a delayed

inhibition by the E↔I sub-network.

Analytical (Mirollo and Strogatz, 1990; Kuramato, 1991; van Vreeswijk et al., 1994;

Ernst et al., 1995) and simulation studies (Ernst et al., 1995; Nischwitz and Glünder,

1995), using pulse-coupled oscillators, have shown that two mutually connected neurons

synchronize stably at zero-phase difference, if the action potentials are transmitted

with arbitrary but equal delays and evoke inhibitory postsynaptic potentials. This can

be mapped to our network by considering two neighboring excitatory neurons that

mutually inhibit each other via common inhibitory neurons. Therefore, finite conduction

velocities in the E↔I network delay the inhibitory force of the interneurons, thereby

reducing the frequency of the γ-peak, but the power of γ-activity remains unaffected.

The situation is different for the E↔E connections, where mutually connected

excitatory cells receive delayed excitation. For this case, van Vreeswijk et al. (1994)

could show, that synchronous firing of integrate-and-fire as well as Hodgkin-Huxley

neurons is only stable, if the rise time of the synapse is shorter than the duration

of an action potential (≈ 1 ms). For larger delays, the synchronous state is repellent

and two neurons show a phase shift in firing time that equals the transmission delay

(Mirollo and Strogatz, 1990; Kuramato, 1991; Ernst et al., 1995; Nischwitz and Glünder,

1995). In our model, a single neuron receives excitatory postsynaptic potentials from

several proximal and distant neurons with a variety of delays (≥1 ms), which results in

a desynchronizing effect, increasing with the variance of delays (i.e. decreasing velocity)

in the E↔E connections.

The network’s behavior can also be deduced from the “locking theorem” (Gerstner

et al., 1996b), that is valid for spatially homogeneous networks with a large number

of excitatory or inhibitory interacting neighbors. It states, that coherent oscillations

are stable if and only if the postsynaptic potential is increasing in time as the neurons



58 Chapter 3. Finite Transmission Delays

fire. In our model, coherent γ-oscillations are stable for the E↔I network, because the

membrane potentials of the excitatory neurons increase due to the decaying action of

the IPSPs, when they touch the slowly decaying firing threshold, resulting in new action

potentials. γ-oscillations are also stable for small delays in the additional E↔E network,

because linking pulses from neighboring neurons depolarize the membrane potential

shortly before it reaches threshold. Linking signals reaching the neuron directly after

it has fired have no effect, because the neuron is refractory. The situation is changed

for larger delays, where linking signals reach the neuron with high delays compared to

the spiking time of the local group. This results in a summed linking signal that shows

only weak temporal variations, and reduces the probability that the neuron will fire

when the membrane potential is increasing. For decreasing velocities, the synchronizing

action of linking signals as seen in γ-power and γ-coherence is therefore successively

reduced (v ≈ 0.5 m/s, Fig. 3.7D, 3.10).

The desynchronizing effect of slow, long-range excitatory connections was also

observed in a compartment model with Hodgkin-Huxley dynamics (Wilson and Bower,

1991). They found synchronized γ-oscillations for an average velocity of 0.86 m/s, while

synchrony was superseded by traveling waves when the velocity was reduced to 0.43 m/s.

Schillen and König (1991) used similar delayed (∆ = 4 ms), next nearest-neighbors

excitation to actively desynchronize two separate neuronal populations within a single

layer. Their simulation model consisted of nonlinear oscillators (period: T = 20 ms)

based on the statistical approach of Wilson and Cowan (1972). Ritz et al. (1994) were

able to demonstrate that two hemispheres show synchronized γ-oscillation provided

that the average delay of interhemispheric all-to-all connections does not exceed 5 ms

(oscillation period: T=25 ms). In our model, E↔E connections only act synchronizing

if the conduction velocity is 0.5 m/s or larger, corresponding to a maximal (average)

delay of 5 ms (2 ms).

Summarizing, γ-synchrony is only stable when maximal delays of E↔E connections

are lower than 5 ms (0.2 of the oscillation period). Interestingly, the same value is

found, if the connections between two groups of neurons (e.g. cortical columns) are

mediated by delayed inhibition (Traub et al., 1996; Bush and Sejnowski, 1996). This

finding therefore seems to be independent of the specific mechanism used to establish

synchronized γ-oscillations.
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3.4.5 Decoupling of γ-activity across stimulus discontinuity

The γ-synchronization hypothesis states, that γ-activities of neural groups, representing

the same object are coupled, while γ-activities representing different objects are decou-

pled. Our model results are compatible with this hypothesis, when interpreting the

two stimulated regions (Fig. 3.2A2) as object and background or two different objects,

respectively. First, stimulus-specific coupling of γ-activity (measure: γ-coherence)

recorded from the same object is significantly stronger than without stimulation. Sec-

ond, stimulus-specific γ-coherence is strongly reduced across the region separating both

objects compared to a homogeneous stimulation, while γ-coherence within the respective

object representation is not reduced. The decoupling of γ-activity is not visible in early,

stimulus-locked responses, but emerges only for later times (>100–200 ms post stimulus

onset).

Discontinuous stimulation caused a decoupling of γ-activity because of two effects:

First, neurons representing the stimulus gap are weakly activated and therefore do

not participate in the E↔I dynamics on either side of the gap. Second, excitatory

neurons in the vicinity of the stimulus gap do not receive modulatory E↔E input from

the weakly activated neurons at the position of the gap. The remaining long-distance

monosynaptic linking connections between neurons on either side of the gap are too

low in number and too weak in action to produce strong γ-coupling. Therefore, the

synchronizing effect of lateral linking connections is effectively disabled at the position

of the gap. The width of the gap can be much smaller (≤ 0.25) than the width of the

E→I, I→E and E→E connections to achieve prominent γ-decoupling. The influence of

E↔E connection strength on the magnitude of γ-decoupling depends on the distance.

For low distances (≤ 1.5 mm), the stimulus gap reduces γ-coherence by 0.16 − 0.19.

The influence of E↔E connection strengths on this effect is low (< 20%). For larger

distances, γ-coherence reduction strongly increases (> 100%) with E↔E connection

strength. The influence of the stimulus gap can therefore be detected over much larger

distances, when E↔E connections are strong.

The model results are in line with a study investigating γ-decoupling across texture

representations in monkey primary visual cortex (Gail et al., 2000). They used a whole

field sinusoidal grating (background) as stimulus and defined a square object, by shifting

the spatial phase within a square region of the grating. γ-decoupling between positions
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of object and background representation solely occurred when the square object was

visible.

Two stimulus properties may be responsible for the observed reduction in γ-coherence:

on the one hand, object and background are separated by a polarity changing contour,

that was introduced by the specific stimulus setup. We have recently shown that the

strong activation, that is evoked by such a contour, is capable of disabling the effects of

long-range horizontal connections in a model investigation using slow shunting inhibition

(Al-Shaikhli, 2001; Eckhorn et al., 2004a,b). On the other hand, the border of object

and background is characterized by a discontinuity in the spatial phase of the sinusoidal

texture. Neurons that are optimally stimulated by either the object or the background

stimulation both exhibit a suboptimal response if their receptive field is at the position

of the object’s border. In other words, the spatially inhomogeneous visual information

at the border of the object results in a reduced activity of neurons representing these

positions.

The current model shows, that this reduced activity directly impairs γ-coherence

between object and background representations (Fig. 3.12D). In a more elaborate model

we could additionally show, that γ-decoupling can be maintained in the presence of a

strong contour activation (Saam et al., 2000; Eckhorn et al., 2001a). This mechanism is

not restricted to the specific experimental setup, but can be applied generally, since

each object border exhibits a discontinuity in at least one visual feature domain (e.g.

color, motion, texture).

The available experimental data can not clarify, if decoupling is evoked by either

the contour activation or the stimulus discontinuity. We suggest new experiments with

modified stimuli to distinguish between both mechanisms: a comparable γ-decoupling

using a rectangular frame placed above a continuous grating would support decoupling-

by-contour, while γ-decoupling using a phase shifted object where the object borders are

smoothed would support decoupling-by-discontinuity. Possibly, both stimulus properties

contribute to the observed effects.



4 Traveling γ-waves

Recent studies showed, that coherence in the γ-band (30–90 Hz) is restricted to patches

of few millimeters in the primary visual cortex of cats and monkeys. This challenges the

role of γ-synchronization to solve the binding problem for larger object representations.

To investigate the phenomenon of restricted synchrony, we used a biologically plausible

model network with spiking neurons and distance-dependent delays. Local recurrent

inhibition generated regions of neurons that were synchronized in the γ-range, when

they were driven above threshold by a static input stimulus. These synchronized patches

were part of more globally occurring γ-waves, which coupled over much larger distances

and extended well beyond the maximal monosynaptic connection distance. Long-range

horizontal connections were added to account for the physiology of the primary visual

cortex in which contextual modulations outside the classical receptive fields are assumed

to be primarily due to these connections. While modulations obtained with conventional

linear coupling measures were weak and restricted to low distances (γ-coherence, 1.8 mm

half-height decline), modulations of γ-waves were strong and cover larger distances

(6.3 mm half-height decline). The model γ-waves observed here are qualitatively similar

to those found in the primary visual cortex of awake monkeys (Gabriel and Eckhorn,

2003). The model quantitatively captured experimental properties, e.g., the spatial

decay of γ-coherence and γ-waves, except for a fixed scaling factor. In conclusion, we

therefore propose that γ-waves may support the coding of object continuity beyond the

limits of γ-synchronization.

Some results presented in this chapter have already been published in Eckhorn et al.

(2001a, 2004a,b). Preliminary versions had been published as conference proceedings

(Saam et al., 2000; Eckhorn et al., 2001b).
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4.1 Introduction

4.1.1 Coherent γ-activity is locally restricted

Stimulus-induced oscillations are an emergent phenomenon in many cortical areas and

across various species (Freeman, 1978; Eckhorn et al., 1988; Kreiter and Singer, 1992;

Traub et al., 1993; Frien et al., 1994; Golomb and Amitai, 1997; Prechtl et al., 1997).

Their magnitude and frequency is modulated by the properties of the external stimulus

(Eckhorn et al., 1988). In the visual system, oscillations are commonly found in the

γ-range (30–90Hz) of local field potentials (LFPs). Simultaneously recorded LFPs are

found to be synchronized, if the contributing neurons are involved in the co-processing

of the visual input (reviews: Eckhorn, 1999; Gray, 1999). Synchronization may therefore

be one neural mechanism (Reitboeck, 1983; von der Malsburg and Schneider, 1986) to

unify locally detected features into perceived objects. While there are many supportive

studies for this binding-by-synchronization hypothesis (reviews: Eckhorn, 1999; Gray,

1999), it was also observed, that synchronization of γ-signals is usually limited to a

few millimeters in the primary visual cortex (Brosch et al., 1995; Frien and Eckhorn,

2000b). This seems to restrict feature binding-by-synchronization to objects covering

only small parts of the visual field.

4.1.2 Coherence fails to detect long-range coupling

In order to understand why γ-synchrony is locally restricted, Gabriel and Eckhorn (2003)

analyzed multi-channel LFP recordings obtained from the primary visual cortex of

awake monkeys. It turned out, that local γ-synchrony is part of more globally occurring

traveling γ-waves. The spatial extent, velocity and direction of these γ-waves changes

quickly (within tens of milliseconds) with respect to the time interval used by standard

correlation techniques (usually hundreds of milliseconds). For small distances between

the electrodes, the variance of phase differences is small, but increases linearly with

increasing electrode distance (Eckhorn et al., 2001a). Standard correlation methods,

like cross-correlation and coherence, are sensitive to variances in the phase difference

and require them to be small across identical stimulus repetitions (trials), to obtain

strong coupling values. Hence, pair-wise cross-correlation and coherence are well suited

to detect constant phase relations between two recording sites, but they cannot capture
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γ-waves over their entire spatial extent, because this phenomenon is concealed by phase

averaging across trials. Furthermore these pair-wise methods cannot account for the

spatial continuity and extent, which is a key property of γ-waves.

4.1.3 γ-waves cover larger cortical distances than γ-coherence

To overcome these shortcomings, Gabriel and Eckhorn (2003) developed a multi-channel

correlation method to detect and quantify the occurrence and velocity of a single

wave front in single trial recordings. Applying this method to recordings from awake

monkeys revealed, that γ-waves can cover large portions of the primary visual cortex

(half-height decline >7.5 mm; Gabriel and Eckhorn, 2003), while coherence as a measure

for γ-synchrony decays within 2.5 mm (half-height decline, same data). This indicates,

that distant neural populations are coupled for short periods of time by a spatially

continuous activation. However, this coupling mode does not rely on stable phase

relations between two distant cortical sites and is therefore not captured by coherence.

4.1.4 Existing models do not properly capture properties of γ-waves

Traveling waves are observed in many cortical areas and species (e.g. Freeman, 1978;

Traub et al., 1993; Golomb and Amitai, 1997; Prechtl et al., 1997). There has also

been much effort in uncovering the underlying neural mechanisms by mathematical

investigations using a self-consistency approach (Kuramato, 1984; Crook et al., 1997;

Ermentrout, 1998; Bressloff, 1999; Kistler, 2000; Ermentrout and Kleinfeld, 2001). In

general, excitable media with spatially restricted connectivity can generate solitary

pulses and periodic waves with constant phase relations, that run across the entire one-

or two-dimensional network (Kuramato, 1984). The propagation velocity and stability

of waves in these models depends on the spike transmission velocities as well as the

axonal projection ranges of lateral connections (Crook et al., 1997; Ermentrout, 1998).

Although such investigations can provide valuable insights into traveling wave

phenomena, a direct comparison with experimental data is difficult: on the one hand,

this is due to necessary simplifications in network architecture, e.g., continuous instead of

spiking neurons, one-to-all instead of local connections, absence of inhibitory neurons, no

or constant spike transmission delays. Besides, these studies prefer to characterize stable

network states, i.e., temporally and spatially periodic, linear waves of constant phase

that move over the whole network. For a fixed set of network and input parameters,



64 Chapter 4. Traveling γ-waves

there is only one stable solution with one constant propagation velocity (Crook et al.,

1997; Bressloff, 1999; Kistler, 2000). γ-waves as described by Gabriel and Eckhorn

(2003) differ from these predictions: First, γ-waves with a small spatial extent occur

more often than those covering large cortical regions (Eckhorn et al., 2004a). Second,

γ-waves are temporally not periodic, but occur at random times. Finally, γ-waves show

a wide distribution of velocities and directions even within a single stimulus presentation

(Eckhorn et al., 2004a).

4.1.5 Goal of the model

In the previous chapter, we have developed a network that successfully reproduced

various experimentally observed coupling phenomena. Here, we want to find out, if the

model is additionally capable of producing traveling γ-waves and if the observed effects

are similar to the experimental results.

For this, we used a two-dimensional network of topographically ordered integrate-

and-fire neurons. Excitatory and inhibitory neurons were reciprocally connected, and

modulatory connections between excitatory neurons should account for long-range

interactions (e.g., Gilbert, 1983; Allman et al., 1985; Eckhorn et al., 1988).

We found that the model is able to produce traveling γ-waves that extend well beyond

the monosynaptic connection range. Their occurrence was sensitive to both, stimulus

as well as network properties, and surpassed standard coupling measurements, like the

coherence. Results were in accordance with experimental data, specific differences are

discussed.

4.2 Methods

4.2.1 Network and input

The model neuron, the network, and the network input are based on previous simulations

(for details see Chapter 3). In short, the topographically arranged network consists of

excitatory and inhibitory spiking neurons (Eckhorn et al., 1990), reciprocally connected

to a distance of up to 1 mm in model space. To network consists of 15 · 61 excitatory

and 7 · 31 inhibitory neurons, corresponding to 3.5 mm · 15 mm in model space.
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Figure 4.1: Network and stimulus configurations. Each figure shows a vertically cropped arrangement
of a different stimulus-network configuration. The vertical bar stimulus evokes membrane potential
depolarisations in neurons (blue color scheme). Signal sampling positions (‘virtual electrodes’, black
dots) are always aligned with the vertical stimulus. A. A sample projection scheme for excitatory-to-
inhibitory as well as inhibitory-to-excitatory connections is shown in green (gray circle: half-height
decline). The dotted dark line illustrates a sample LFP catchment area for the second lowest sampling
position. There were no direct connections between excitatory cells in this case. This scenario serves as
reference condition for the effects of horizontal connections. B. Lateral connections between excitatory
cells are vertically oriented and match the stimulus configuration. The connectivity pattern for the
center neuron is shown in red (gray lines: 50% and 10% of the maximum). C. Lateral connections
between excitatory cells are horizontally oriented and do not match the stimulus configuration. B1,
C1, C2. Possible visual stimuli for the combinations of input activation, (hypothetical) receptive field
configuration and lateral connectivity in B and C.

All simulations used a vertically elongated stimulus (Eq. 3.1, 3.2), with signal

sampling positions placed along the stimulus-activated neurons (Fig. 4.1A). The analog

stimulus was strong enough, to evoke moderate firing rates at the stimulated neurons

(Fig. 3.3). Receptive fields were not explicitely modelled. The input therefore represents

a convolution of the local visual stimulus with the corresponding (hypothetical) receptive

field for that neuron. To provide a concrete example, the stimulus can be interpreted
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as a vertical bar composed of a vertically oriented sinusoidal grating (Fig. 4.1B1).

Hypothetic receptive fields may also be vertically oriented, the corresponding neurons

are therefore activated (Fig. 4.1A). Cortical neurons with similar orientation preference

and a collinear arrangement in visual space are known to be reciprocally interconnected

(tree shrew: Bosking et al., 1997; Chisum et al., 2003). This scenario is simulated

in scenario B (Fig. 4.1B). The third scenario (Fig. 4.1C) mimics a visual stimulus

configuration, where either the collinear configuration (Fig. 4.1C1) or the iso-orientation

arrangement (Fig. 4.1C2) of the visual stimulus is not present. In this case, little or no

effects are expected by the long-range lateral connections.

4.2.2 Signal acquisition

We used 21 linearly arranged signal sampling positions (‘virtual recording electrodes’)

unless noted otherwise. The distance between adjacent positions was 0.5 mm, so

that the complete arrangement covered 10 mm of the network. For each position, we

computed the LFP by averaging membrane potentials with a spatially exponential

weight distribution. The half-height decline is termed the catchment radius and was set

to 0.5 mm. With these settings, the neuron placed directly at the sampling position

contributed 5% to the total signal. Every LFP signal was band-pass filtered in the

γ-range. The filter characteristics were broadly tuned (25–60 Hz) and enclose the

maximal γ-power (here: from 35 up to 45 Hz).

We restricted our model analyses to the stationary part of stimulus response and

therefore excluded from quantitative analyses all time windows less than 50 ms before

(for the pre-stimulus reference) and 200 ms after the stimulus onset.

4.2.3 Wave detection method

To detect and quantify plane traveling waves in the model LFPs, we used a recently

developed spatio-temporal correlation method (Gabriel and Eckhorn, 2003). Recorded

potentials are analyzed by a short sliding window of 30 ms duration, consecutively

shifted by 15 ms (Fig. 4.2 A,B). For each window, a two-dimensional autocorrelation

is calculated (Fig. 4.2 C). One dimension is the sampling position, while the second

dimension is the time. The resulting correlations range from −1 to 1. If the input

signals are statistically independent, the correlation values for all spatial and temporal

shifts will be close to zero. If all input signals represent synchronous activity or traveling
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Figure 4.2: Spatio-temporal correlation method. A. Single trial time course of 11 simultaneously
recorded LFP potentials (25–60 Hz) is analyzed with a sliding window technique (window size: 30 ms).
Three sample windows are shown (dashed lines). B. Enlarged versions of 3 windows shown in A.
A two-dimensional auto-correlation is computed for each window (C) and fit to a two-dimensional
cos-function. Amplitude (A) and the reciprocal velocity (s) of these fits are shown. For the second
window, an amplitude of zero indicates a spatio-temporal independent event, while the other two
windows exhibited high amplitudes and therefore show a good spatio-temporal correlation (termed:
γ-wave). In the first window, all electrode are stimulated nearly synchronously (v=4.2 m/s), while the
propagation velocity of the γ-wave in the third window is quite slow (v=0.3 m/s).

waves, the two-dimensional correlation function will show a linear ridge where the

maximal values are close to +1 (Fig. 4.2 C1, C3). To quantify the correlation map with

few parameters, the map was fit to the autocorrelation of an ideal planar wave:

CV (∆x, ∆t) = A · cos (2πν(∆t−∆x/v)) , (4.1)
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where A, v and ν were free parameters. The fitted amplitude factor A is termed the

γ-wave strength (0 ≤ A ≤ 1), v is the velocity of the fitted planar wave. The details

and the application to artificial as well as monkey data can be found in Gabriel and

Eckhorn (2003).

Fig. 4.2 demonstrates 3 typical patterns. The second time window (B2) shows a

Y-like activation of the 11 sampling positions. The spatio-temporal correlation (C2)

has a blob-like structure. The fitting algorithm therefore failed to fit Eq. 4.1 (γ-wave

strength A = 0). The time window did therefore neither exhibit a traveling wave nor

synchronous activity. The third window (B3) shows an LFP negativity that begins

with the first sampling position and spreads slowly to sampling position 10. The fit of

the correlation pattern reveals a prominent traveling γ-wave (A = 0.79) with a slow

propagation velocity (v = 0.3 m/s). The propagation velocity of the γ-wave in the first

window is high (v = 4.2 m/s): for a short period all sampling positions show nearly

synchronous activity. Since synchronous activity means an infinite velocity, we used the

reciprocal velocity for most plots.

The results of this method were compared with the linear pair-wise coherence method,

averaged across the number of trials with identical stimulation (Bartlett-smoothing,

N = 50 trials) and corrected after Benignus for small N (Glaser and Ruchkin, 1976).

To be directly comparable to the wave detection method, the square-root is taken for

all coherence values.

4.3 Results

4.3.1 γ-coherence decays with distance

Model γ-coherence is high for distances below 2 mm (Fig. 4.3A). The corresponding

phase variances (Fig. 4.3B) are small, showing that local groups of neurons are tightly

coupled even across trials. For distances beyond 2 mm, phase variances increase quickly.

Although distant neurons may be synchronized for short time intervals, these phase

relations are neither stable in time nor across trials.
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Figure 4.3: γ-coherence decays with increasing distance due to increasing phase variances. A. Mean
γ-coherence drops steeply with increasing distance between pairs of sampling positions (0.5: 1.2 mm,
0.1: 2.3 mm). Local field potentials (25–60 Hz) are derived at 41 linearly arranged sampling positions
covering 10 mm in model space. Coherence was calculated for each pair of sampling positions using
data from 50 simulation runs with identical stimulus configuration and independent noise. Error
bars indicate the mean standard deviation, which is determined, first, by averaging time windows
and frequency bins, and second, by averaging electrode combinations showing equal distances. The
number of contributing coherence values decreases with increasing distance. B. Mean s.d. of phases for
pair-wise signals increases with distance up to ≈ 3.5 mm and saturates beyond. Phases are extracted
from the spectra and range from −π to π. Absolute phase values are transformed to temporal scale
using the period of the dominating frequency (here: 38.8Hz or 25.8 ms for corresponding oscillation
period). Shaded area: coherence values from the left figure. Dotted line: s.d. for uniformly distributed
phases (18 ms). Coherence drops down to 0.5 (0.1) for a mean s.d. of 1.6 ms (6.4 ms), corresponding
to 6% (36%) of a distribution with uniformly, random phases.

4.3.2 Stimulus-dependent waves

Without stimulation the membrane potentials of all neurons are mostly affected by the

dynamic uncorrelated noise fed independently to each neuron. Since this pre-stimulus

noise was too weak to evoke high discharge rates, all neurons are near their resting

potentials and respond simultaneously to the stimulus (Fig. 4.4). This evokes broad-

band activity decaying approximately 200 ms after stimulus onset, introducing a new

network state where all membrane potentials exhibit γ-oscillations (Fig. 4.4, top inset).

Groups of neighboring neurons form patches of correlated activity with variable spatial

extent and duration.
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Figure 4.4: Sample membrane potentials. Single-trial membrane potentials are obtained from 11
linearly arranged neurons and filtered in the γ-range (25–60Hz). The stimulus is turned on at t = 0
(dashed line). Stimulus locked activity decays approximately after 200 ms (dotted line), followed by
spatio-temporal patches of correlated γ-activity. Top right inset: average power spectrum of a single
unit membrane potential (abscissa: 0–100 Hz). Bottom right inset: shape and temporal extent of the
filter.

γ-oscillations and their patchy spatio-temporal appearance are much clearer in the

corresponding local field potentials (Fig. 4.5A). There are some time intervals, where

the maxima of all signals can be aligned to a straight line representing synchrony (e.g.,

directly after stimulus onset). This event can also be interpreted as a two-dimensional

wave of γ-activity traveling perpendicular across the one-dimensional sampling array.

It will therefore be termed a γ-wave. Velocity and direction of the wave are two-

dimensional, but are only measured in direction of the one-dimensional recording array.

A sample analysis with the spatio-temporal correlation method (Section 4.2.3) is shown

in Fig. 4.5B. We observed extended time intervals, where each time window contained

a γ-wave (here: t=450–650 ms). Since the time intervals are much longer than the filter

response (t=80 ms covering 0.94 of filter extend) and the duration of the time window

(t=30 ms), these periods are no artifact of the evaluation, but a real network effect.

For quantitative analyses, simulations were repeated with identical parameters

(N = 50) by changing the noise values, but not the underlying noise distribution. It

turned out, that γ-waves occur more often with than without stimulation (average

γ-wave strength of Ā = 0.53 with stimulation compared to Ā = 0.16 in the pre-stimulus

period, N = 50).
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Figure 4.5: Sample LFPs and γ-wave occurrence in the model. A. Single-trial LFP signals (25–60
Hz) of 11 linearly arranged sampling positions spanning an overall distance of 5 mm in model space.
Top right inset: average power spectrum of a single local field potential (abscissa: 0–100 Hz). Bottom
right inset: band-pass filter applied to each LFP. B. Occurrence and reciprocal velocity of γ-waves for
the signals in A. A linear phase relation for all electrodes was required to detect a γ-wave (triangles).
Symbol size and gray value indicate the correlation strength of the wave detection method. Average
γ-wave strength in the pre-stimulus phase was much lower than during stimulation (shown trial:
Ā = 0.21 compared to Ā = 0.60). The γ-wave directly before stimulus onset was due to the band pass
filtering of the LFP signal. The dotted region was always excluded from quantitative analyses.

4.3.3 Occurrence and velocity distribution of γ-waves

Before stimulation, model γ-waves occurred rarely (Ā = 0.16, Fig. 4.6) and at random

times. The wave velocities range from infinity (i.e., synchrony) down to 0.11 m/s

(Fig. 4.7). The average reciprocal velocity is approximately zero with a large standard

deviation of 1.44 s/m (Fig. 4.7A). When the stimulus was turned on, synchronous (zero

phase) γ-waves could be found in nearly every time window (Ā = 0.81, t = −50 . . . 200,

Fig. 4.6D, 4.7C). This behavior starts even before stimulation (Fig. 4.6), but this is

solely due to the temporal extent of the symmetric frequency filter (t=128 ms, Fig. 4.5A,

bottom right inset). The variance in the observed velocities (s.d.: 0.80 s/m, Fig. 4.7C) is

much lower than in the pre-stimulus phase (s.d.: 1.44 s/m, Fig. 4.7B). After 200 ms, the

system’s transient response to the stimulus onset has vanished. γ-waves then occurred
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Figure 4.6: Time-resolved occurrences of γ-waves. A. Average γ-wave occurrence as a function of
time (11 electrodes, 5 mm, N = 50, s.d.: dash dotted). Before stimulation, γ-waves occurred seldom
(Ā = 0.16) inside the investigated time interval. Beginning with the stimulation at t = 0, γ-waves show
up in nearly every time window (Ā = 0.81), consistently over each trial. Approximately 200 ms after
stimulus onset, their occurrence drops down to Ā = 0.53 in average, while having a large variance in
probability. B. Same signals as in A, but mixed between trials (surrogate data), were used to estimate
the random occurrence of γ-waves. It shows a strong peak directly after stimulus onset, due to high
input correlations. In the tonic phase, random γ-waves are extremely seldom (Ā < 0.02). For the three
observed time intervals in A, histograms of γ-wave strengths are shown in C-E. The left-most bar
indicates the relative occurrence for time windows, where no γ-waves were found. Most other events
show high correlation values (> 0.5) and are concentrated near the right border of the histogram.
This indicates that if a γ-wave was found, it matched an ideal planar wave quite well. The bipartite
distributions explain the large s.d. in A.

with an average strength of Ā = 0.53 and a constant average reciprocal velocity of zero.

In contrast to the stimulus-locked phase, slow traveling waves occur more often (s.d.:
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Figure 4.7: Time-resolved velocities of γ-waves. A. Average γ-wave reciprocal velocities as a function
of time (11 electrodes, 5 mm, N = 50, s.d.: dash dotted). Before stimulation, γ-waves occurred with
random velocities. Beginning with the stimulation at t = 0, γ-waves showed up nearly synchronously,
consistently over each trial. After approximately 200 ms, the variance of the detected reciprocal
velocities has nearly reached the pre-stimulus level. The reciprocal velocity distribution is shown for
the pre-stimulus (B), the stimulus locked (C) and the stimulus-induced phase (D). Average reciprocal
velocity (m) for all three time intervals was nearly zero. Waves with lower velocities occurred with
lower probability. The minimal observed velocity was 0.11 m/s. The distributions are nearly symmetric,
showing that γ-waves did not prefer any direction.

1.66 s/m, Fig. 4.7D). The lowest observed velocity is 0.11 m/s, which is very similar to

the conduction velocity of inhibitory-to-excitatory connections (0.125 m/s).

4.3.4 Spatial properties of γ-waves

All previous analyses were done with a fixed number of LFP sampling positions covering

a fixed area of the network. In order to investigate the spatial characteristics of γ-waves,

we changed the number of sampling locations, while keeping the distance between

adjacent locations constant.

For low distances, the occurrence of γ-waves is maximal (Fig. 4.8A), both for the

stimulus and the pre-stimulus period. The γ-wave strength decreases slowly and nearly

linear with increasing distance. γ-waves clearly extend as far as 10 mm, the half-height
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Figure 4.8: Occurrence of γ-waves dropped slowly with distance. A. γ-waves strength was maximal
(≈ 0.9) for low distances and decayed almost linearly with increasing distance (decay: 0.073/mm).
The pre-stimulus γ-wave strength (dotted line) for small distances is clearly lower (≈ 0.4), but decays
with a smaller slope (decay: 0.038/mm). B. The difference between stimulus and pre-stimulus γ-wave
strength decays almost linearly (0.035/mm). C. Mean standard deviation of γ-wave reciprocal velocity
decreases with distance. D. Absolute standard deviation of phase variances increases with distance.
Diamonds indicate the value that was chosen for all other simulations.

decline with stimulation is 6.3 mm. The spatial decay is 0.073/mm for the stimulus

condition and 0.035/mm when subtracting the pre-stimulus occurrence (Fig. 4.8B).

For a fixed distance, the observed reciprocal velocities were distributed around zero

with a certain standard deviation (Fig. 4.7). This s.d. decreases with increasing distance

(Fig. 4.8C), indicating that more extensive waves showed higher average velocities. The

detection of slow waves is limited to velocities that are faster than vmin = ∆x/∆t, where

∆x indicates the extend of the sampling array, and ∆t the duration of the time window.

With increasing distance, the minimal detectable velocity also increases. Therefore
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slow waves that are well detected using short array lengths, may be missed, when

investigating larger distances. However, this does not seem to be relevant here, because

the minimal velocity for the largest distance is about 0.33 m/s (∆t = 30 ms, ∆x =

10 mm), while the respective s.d. of velocities (0.74 m/s, Fig. 4.8C) is clearly above this

value.

The average phase differences between both ends of the recording array increases

with the size of the array (Fig. 4.8D). They are, however, much smaller than the results

obtained for pair-wise signals (Fig. 4.3B).

4.3.5 LFP catchment area

The model LFP is a linear superposition of membrane potentials from neighboring

neurons weighted with an exponential spatial decline. The size of this catchment area

determined the fraction of overlap between adjacent LFP sampling locations.

An increased radius r leads to a higher number of γ-waves, both for the stimulus

and the pre-stimulus period (Fig. 4.9). The difference between both conditions increases

strongly for small r and saturates for r > 0.25 mm. For r ≤ 0.25 mm, the LFP is mainly

determined by few membrane potentials showing a considerable amount of noise that

was externally applied to each neuron (Section 3.2.2). Increasing the radius improves the

extraction of the local group’s common γ-activity in favor of the uncorrelated external

noise. LFPs with a very large catchment area integrate membrane potentials all over

the network and are therefore less specific to local stimulus properties (not shown).

However, they are still selective to global dynamic changes, like the stimulus onset.

4.3.6 Long-range horizontal connections

All previous results were obtained without long-range horizontal modulatory connections.

With engaged horizontal connections and using a stimulus that is orthogonal to the

preferred orientation of these connections (Fig. 4.1C) reveals nearly the same results

as without horizontal connections. This holds for distance and catchment radius

dependence for both detection methods, γ-coherence and γ-waves (diamonds compared

to triangles in Fig. 4.10 and 4.11, significance levels: Tab. 4.1B).

The optimal stimulus (Fig. 4.1B) enhanced coherence values slightly (<0.1) showing

a weak maximum for a distance of 3.5 mm (Fig. 4.10, left, squares). Although barely

visible, enhancements are significant for all distances up to 4.5 mm (Tab. 4.1).
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Figure 4.9: Occurrence of γ-waves depended on LFP catchment radius. A. γ-wave strength increased
with increasing catchment radius r for the stimulus and the pre-stimulus condition. Stimulus-related
γ-waves increased stronger than the pre-stimulus waves (dotted). B. Difference of γ-wave strength
with and without stimulation increases for larger r. However, the value saturates for r > 0.25 mm.
The dotted line is associated with the right axis and shows the integration area (weighted with the
exponential electrode characteristic) of the LFP relative to the area covered by the complete network.
Diamonds indicate the standard value for this parameter (11 electrodes, 5 mm).

In contrast, γ-waves evoked by the optimal stimulus revealed clearly enhanced

occurrences for all distances (Fig. 4.10, right, squares). The improvement is most

prominent for distances larger than 4 mm, and is significant for all investigated distances

(Tab. 4.1B). The half-height decline for the stimulus condition is 15.8 mm compared to

6.3 mm without lateral connections.

The results do not depend on the catchment area of the LFP signals (Fig. 4.11) be-

cause the engaged lateral connections improve γ-wave detection equally for all catchment

radii r > 0.1 mm.

4.4 Discussion

We have presented a neural network model that is capable of producing γ-waves very

similar to those found in primary visual cortex of awake monkeys (Gabriel and Eckhorn,

2003; Eckhorn et al., 2004a,b). Their occurrence was sensitive to both, stimulus

and network properties as is the case in real recordings. The spatial coupling range

indicated by γ-waves surpassed those captured by conventional linear measures (i.e.

pairwise coherence, cross-correlation), and extended well beyond the range of horizontal

connections.
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Table 4.1: Mann-Whitney-U-Test on differences between γ-wave strengths. SA,SB,SC: results from
scenarios A-C. A. The correlation values (γ-coherence, γ-waves) for a specific distance and input-
network scenario (SA, SB, SC) are compared to their surrogate counterparts. While coherence breaks
down for distances beyond 4 mm, γ-waves occur at higher than chance level up to distances of 10 mm.
B. Correlation values at a specific distance are compared for different input-network scenarios. For
γ-coherence as well as γ-waves, the iso-oriented scenario (SB) reveals higher values than the other
two scenarios. There is no clear difference between SA and SC. Similar to A, differences in coherence
are significant up to 4 mm, while γ-waves in the iso-oriented case (SB) are significantly elevated for
all investigated distances. Results were nearly identical when using a T-test with unequal standard
deviations (not shown).
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Figure 4.10: Distance-dependent lateral coupling for γ-coherence and γ-waves. A. γ-coherence
quickly decays with increasing distance (half-height decline ≈ 2 mm). Orthogonal lateral connections
(triangles) did not significantly change the coupling profile, while iso-oriented connections (squares)
slightly increased coherence up to distances of 4.5 mm. B. γ-waves decay slowly with distance (half-
height decline > 6 mm). Orthogonal connections enhance occurrences slightly, while iso-oriented
connections exhibit most prominent enhancement for each investigated distance (N = 50). Surrogate
signals, generated by mixing signals of identical recording positions between trials, differed significantly
for γ-coherence (C, r ≤ 4 mm) and γ-waves (D, see Tab. 4.1 for details).

4.4.1 Binding hypothesis

γ-synchronization was proposed as a possible candidate to solve the binding problem

(Reitboeck, 1983; von der Malsburg and Schneider, 1986), i.e., neural groups that

represent features of the same object, are supposed to be synchronized, while groups

that represent separate objects are desynchronized (Gail et al., 2000). However, recent

experiments show that γ-synchronization is restricted to few millimeters in monkey

primary visual cortex, even if the representation of the stimulus is much larger (Brosch

et al., 1995; Frien and Eckhorn, 2000b). Our previous model investigations revealed

that this is due to spatially restricted connectivity and finite conduction velocities

(Chapter 3). Accepting the original formulation of the synchronization hypothesis would

therefore imply that widely distributed features couldn’t be integrated into a single



4.4. Discussion 79

Figure 4.11: γ-coherence and γ-wave strength depended on LFP catchment radius. A. γ-coherence
increases nearly linear with growing catchment radius r. For small r, iso-oriented coupling is larger
than orthogonal or no coupling (N = 50, 7 electrodes, 3 mm). B. γ-wave occurrences quickly increase
for low catchment radii and saturate for r > 0.25 mm. Filled symbols indicate the standard value for
this parameter (N = 50, 11 electrodes, 5 mm). Please note, that there is no significant coherence at
the standard distance used for γ-wave analyses (5 mm, see Fig. 4.10). The investigated distance for
coherence is therefore set smaller, to provide comparable results.

object. This prediction is obviously in conflict with perception. Therefore, we searched

for alternative mechanisms and found that γ-waves are well suited to mediate coupling

across larger distances.

4.4.2 Stimulus-locked and stimulus-induced γ-waves

Occurrence of γ-waves was markedly increased by the model input and preferentially

occurred in the area representing this stimulus. The stimulus transient introduced a

correlation between all input signals. This resulted in many, nearly synchronous γ-waves

for the restricted time of 100 ms directly after stimulus onset. Before and after this

time, input signals were pair-wise uncorrelated. We therefore conclude that γ-waves are

emergent properties of the network itself. Most important is the recurrent inhibition, but

lateral connections between excitatory neurons also play a role by selectively enlarging

the strength of γ-waves.
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4.4.3 Spatial properties of γ-waves

In terms of a generalized synchronization hypothesis, the maximal spatial extent of γ-

waves limits grouping of features into a unique perception of a visual object. Coherence

of LFP signals revealed that coupling dropped quickly with increasing distance (half-

height decline: 1.8 mm), comparable to LFP signals from monkey V1 (Gabriel and

Eckhorn, 2003: half-height decline 2.5 mm; Frien and Eckhorn, 2000b: decrease to

noise level at ≈ 6 mm). The extent of model γ-coherence essentially matched the

monosynaptic connectivity scheme of the recurrent inhibition in the model (half-height

decline: 2 mm1). The axonal field of laterally projecting large basket (inhibitory) cells in

cat covers a maximal diameter from 1.6 mm (Martin et al., 1983) up to 3 mm (Kisvarday

and Eysel, 1993). Assuming reciprocal connectivity between pyramidal and basket

cells (Braitenberg and Schüz, 1991) reveals a half-height decline of 1.6 mm up to 3 mm,

which is comparable to model assumptions. γ-waves, on the other hand, extend well

beyond this limit and cover large distances comparable to the size of the model network

(15 mm; Eckhorn et al., 2004a: estimated half-height decline of 9.5 mm in monkey V1).

The differences between the spatial extent of γ-coherence and γ-waves become even

larger, when taking into account that low coherence values, as obtained for larger

distances, are not reliable because they can easily be obscured by other processes

that are not incorporated in our simplified model. On the other hand, the detected

model γ-waves are reliable for large distances because the analysis involves signals

from multiple channels simultaneously that all have to be linearly correlated. However,

the assumption of a linear spatio-temporal correlation is also a strong restriction for

the detection of traveling waves. Fig. 4.8C shows, that the propagation velocities of

γ-waves increase with their spatial extent. This phenomenon is probably caused by the

restrictions of the detection method. It is likely, that the shape of slow large-distance

γ-waves is disturbed from the linear structure by noise and therefore not (or seldomly)

captured by the γ-wave analysis used here.

Summarizing the observed effects, the spatial extent of γ-coherence is mainly re-

stricted to the area of monosynaptic connections, where phase variances are sufficiently

small. It seems to reflect mainly the connection structure of the investigated network.

1Both, the excitatory-to-inhibitory and the inhibitory-to-excitatory connections exhibit a half-height
decline of 1 mm. The resulting half-height decline is the sum of both, because the distributions are
Gaussian.
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γ-waves rely on network properties as well, but they are also influenced by the dynamics

occurring within the network and can therefore overcome limitations set by restricted

network connectivity.

4.4.4 Orientation specificity of lateral coupling

Though our model does not explicitly incorporate orientation selective neurons, we can

nevertheless set our results in relation to experimental findings in the primary visual

cortex. Long-range horizontal connections link patches of neurons that have similar

orientation preferences (Ts’o et al., 1986; Bosking et al., 1997; Angelucci et al., 2002;

Chisum et al., 2003). In the model, neural groups with similar orientation preference are

simulated in scenario B (Fig. 4.1B1), while dissimilar orientations conform to scenario

C (Fig. 4.1C2). In the tree shrew, a collinear arrangement of iso-oriented texture

segments (Fig. 4.1B1) evoked higher discharge rates than other stimulus arrangements

(Fig. 4.1C1, Chisum et al., 2003). This property is not found in the monkey, where

the coupling profiles are nearly symmetric (Angelucci et al., 2002; Stettler et al., 2002)

and γ-coupling does not depend on the relative spatial position as long as the distance

between recording electrodes and the preferred stimulation at these positions are kept

constant (Frien and Eckhorn, 2000b). Hence, stimuli like Fig. 4.1B1 and C1 produce

similar coupling profiles in the monkey V1, while they are different in the tree shrew.

Analogous to monkey data, γ-coherence in the model is very similar for scenarios

B and C (Fig. 4.10). For short distances, γ-coherence is dominated by the strong

inhibitory feedback that acts synchronizing on the excitatory neurons. For intermediate

distances (3–5mm), enabled horizontal connections can enhance γ-coherence slightly.

With increasing distance, the enhancement of γ-coherence by horizontal connections is

covered by the general decay of coherence that is due to increasing phase variations.

Therefore, γ-coherence seems to be an inadequate measure to detect the effects of

horizontal connections.

Contrasting this, γ-waves are highly sensitive to horizontal connections for all

investigated distances (Fig. 4.11, Tab. 4.1). This is confirmed by Gabriel et al. (2004),

showing that LFPs of similar orientation tuning at separate sites are highly correlated

by traveling waves.
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4.4.5 Model scaling

We have already shown, that the model describes qualitatively several experimental

findings. In this section, we will try to map model to cortical dimensions.

The γ-power in the model signals peaks at 39 Hz, while in typical experiments

(Frien and Eckhorn, 2000b; Gail et al., 2000) the maxima are usually around 55 Hz,

depending on the stimulation. This introduces a temporal scaling factor of 0.71 between

both. Comparing the spatial half-height decline of γ-coherence for both introduces a

spatial factor of 0.72 (model: 1.8 mm, experiment: 2.5 mm, obtained from Gabriel and

Eckhorn, 2003, Fig. 6A), that is very similar to the temporal scaling factor. The decline

of γ-wave strength for monkey data (0.05/mm) was obtained from Gabriel and Eckhorn

(2003), Fig. 6 and is 0.71 times smaller than in our model data (0.07/mm). Note that

the spatial dimension is in the denominator (model decay is larger than experimental

decay). The scaling of γ-wave and γ-coherence decline is therefore consistent. As the

last quantity, we compare the mean phase variance between model and experiment.

From Gabriel and Eckhorn (2003), Fig. 6B, we could determine a value of 0.27 s/m for

the mean s.d. of phases (valid between 3 and 7 mm). The model data reveals 0.57 s/m

for the adequate spatial scale (valid between 2.2 mm and 5 mm, because of the spatial

scaling factor). Both values are related by a factor of 0.692. The square respects the

different scaling in the temporal and the spatial dimension.

All results are summarized in Tab. 4.2. The model’s spatial scale was defined by

the range of excitatory and inhibitory connections. Both covered 4 neurons and were

set to 1 mm. This mapping could be changed either, by defining, that 4 neurons cover

0.7−1mm or by extending the coupling range to approximately 6 neurons (factor 0.7−1).

The model’s temporal scale (e.g., oscillation frequency) is mainly determined by the

axonal velocity and the inhibitory postsynaptic potential time constant. Adjusting one

of theses parameters would allow the model to match experimental data.

In other words, the model quantitatively captures all investigated experimental

properties except for a scaling factor. Even this could be reduced to 1, by adjusting

some common model parameters within the range of anatomically and physiologically

plausible values.
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model experiment factor

γ-frequency (main peak) 39 Hz 55 Hz 0.71

γ-coherence (half-height decline) 1.8 mm 2.5 mm 0.72

γ-waves decay 0.07/mm 0.05/mm (0.71)−1

mean s.d. of phase 0.57 s/m 0.27 s/m (0.69)−2

Table 4.2: Comparison of model and experimental properties. The factor indicates the ratio between
the respective values. All experimental data are directly taken from Gabriel and Eckhorn (2003) or
derived from their Figure 6.

4.4.6 Other models

There are numerous studies dealing with wave-like phenomena in biological models.

In one type of investigations (Golomb and Amitai, 1997; Ermentrout, 1998; Bressloff,

1999; Kistler, 2000), the mean membrane potential of contributing neurons is below

threshold, i.e. the network is silent if not driven from external sources. Neurons are

placed in a one-dimensional chain and are connected by excitatory synapses, exclusively.

If a current is applied to neurons at one edge of the network, a slow solitary pulse is

traveling across the whole network. The average velocity is in the order of 0.2 m/s

(Golomb and Amitai, 1997, Hodgkin-Huxley type models with direct comparisons to

data from neocortical slices) and is mainly determined by the synaptic rise time and

the number of excitatory postsynaptic potentials required to reach the firing threshold

(Ermentrout, 1998; Bressloff, 1999; Kistler, 2000). Adding inhibitory neurons (Kistler,

2000) or extending the network with a second dimension (Bressloff, 1999; Kistler, 2000)

does not significantly change the models’ properties.

In another type of investigations (e.g., Kistler et al., 1997; Bressloff and Coombes,

1998; Ermentrout and Kleinfeld, 2001), the mean membrane potential of contributing

neurons is above threshold, i.e. neurons tend to spike regularly. There are two

mechanisms for stable waves. For the first, neurons are weakly coupled and show a

slight gradient in their intrinsic oscillation frequencies from one side of the array to

the other. Waves are then traveling from the high frequency to the low frequency

region. The second mechanism requires neurons to have identical intrinsic oscillation

frequencies and an interaction function that is non-zero for neurons that are in phase.

The (perfectly) synchronous state is therefore unstable: the slightest noise can push
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synchronized neurons out of phase. This last mechanism seems to underly the generation

of γ-waves in our model and probably the associated experiments. With finite synaptic

rise times as well as axonal and dendritic delays, traveling waves evolve naturally for

the underlying architecture.

Although analogies between oscillator and integrate-and-fire neurons are obvious,

there are also serious structural differences. Our neurons are no oscillators but fire

irregular due to external noise and are therefore more comparable to cortical neurons

(Softky and Koch, 1993). Cortical oscillations are a network phenomenon involving

many neurons. With the underlying network topology it is not clear, what parts of

the network should be defined as oscillators without violating constraints required for

the analytical treatments (e.g., weak interaction). A recent study (Cremers and Herz,

2002) shows that, at least for simple networks, both approaches can be mapped by a

non-trivial transformation of the synaptic connectivities.

4.4.7 Origin of waves

In contrast to the experiment, the origin of γ-waves is clearer in the model. With

disabled lateral connections, neighboring excitatory cells are not directly connected at

all. Instead, they share connections from and to a common group of interneurons that

indirectly induces coupling between them. This synchronizing effect of inhibition has

been described earlier (Ermentrout and Kopell, 1998; Ermentrout et al., 2001; Kopell

et al., 2000; Nischwitz and Glünder, 1995; Whittington et al., 1995). However, the range

of these inhibitory monosynaptic connections is restricted (model: 1 mm full-width at

half-height; maximal diameter 1.6–3 mm, cat, Martin et al., 1983; Kisvarday and Eysel,

1993) and their conduction velocity is slow (model: 0.25 m/s; rat and cat: 0.15–0.6 m/s,

Komatsu et al., 1988; Murakoshi et al., 1993; Hirsch and Gilbert, 1991; Nowak and

Bullier, 1998). The activation of a single inhibitory neuron seems not sufficient to

evoke a wave that propagates widely (>10 mm) and fast (average: 1.25 m/s) across

the network. It seems more plausible, that neighboring oscillating local groups, which

share a similar driving input are transiently synchronized by their overlap and mutual

connectivity. The interaction is locally tight and attenuates with increasing distance,

similar to a rubber band. Additional direct connections between the excitatory cells

support the coupling due to their larger projection range.
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In the current paper, waves of activity were only detected when they showed a linear

phase-relation. These are found in several species (review: Ermentrout and Kleinfeld,

2001). Other patterns like rotating waves have also been found in experiments (Prechtl

et al., 1997) and models (Kistler et al., 1997). Visual inspection of our two-dimensional

model LFP signals does not show other than linear waves. This is most likely due to

the bar-like stimulus extending preferentially in one direction. Using two-dimensional

stimulation and more complex lateral connections would possibly allow other types of

waves. This has to be tested by future investigations.
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5 Concluding Remarks

All models presented in the previous chapters deal with the interplay of synchronization

and finite spike conduction velocities. In Chapter 2, the refinement of feedforward and

lateral connectivity in a model of the developing visual cortex is analyzed. Chapter 3

systematically investigates how delays influence the emergence of γ-oscillations and

γ-coherence in a simplified model of a mature visual area. Chapter 4 puts these findings

into a broader concept of neural coupling by a quantitative analysis of traveling γ-waves.

Detailed discussions can be found in the respective chapters, while this chapter will

focus on more comprehensive aspects of this work.

5.1 Development of the visual cortex

Neural activity is essential for the development of synaptic connections in the visual

cortex (reviews: Katz and Shatz, 1996; Zhang and Poo, 2001). The change of synaptic

strength depends on the relative timing of pre- and postsynaptic potentials in the

millisecond range (Markram and Tsodyks, 1996; Bi and Poo, 1998).

In Chapter 2 we could show, that constant axonal conduction velocities can support

the development of topographic connections within and between visual processing levels

(e.g., V1 and V2). The formation of a single processing stage, i.e. a level of retinotopic

representation, occurs in two consecutive steps:

1. Excitatory feedforward connections, that originate from a lower, mature level

and terminate in the considered layer, have random efficacies (all-to-all) and one

constant axonal velocity. After Hebbian learning using partially synchronized but

spatially unstructured input, these connections become topographically organized

and spatially restricted.
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2. Lateral modulatory connections (all-to-all) within the considered level are modified

using the same input and learning rule. The resulting connections have a similar

structure as the previously learned feedforward connections. Lateral connections

are responsible for increased γ-coherence during normal network operations. Their

spatial width determines the width of developing connections that terminate at

the next processing level (step 1).

The succession of these two steps is consistent with the experimental finding, that apical

(feedforward) dendrites develop before basal (lateral) dendrites (Tyzio et al., 1999;

Khazipov et al., 2001). The model additionally proposes a hierarchical development

of the visual cortex, since higher processing levels depend on structured input from

lower levels. There is experimental evidence for a sequential development of the visual

cortex starting in V1, continuing in V2, up to the higher-order regions of the inferior

temporal cortex TE (e.g., Condé et al., 1996; review: Guillery, 2005), although there is

also evidence for parallel development in other regions of the brain (review: Guillery,

2005).

5.2 Development of inhibitory connections

For the sake of simplicity, inhibitory neurons were completely omitted in the learning

model. However, recurrent inhibition as used in Chapters 3 and 4 would not invalidate

the results, because its dynamics rarely overlaps with the learning process: inhibitory

postsynaptic potentials are solely transmitted by E↔I feedback loops which are slow

(E→I: 0.5 m/s, I→E: 0.25 m/s) compared to E↔E (1 m/s) connections. Within an

oscillation period, Hebbian learning of E↔E connections would therefore have been

completed before inhibition reaches the affected neurons.

A more realistic model would have to incorporate the refinement of connections

forming the inhibitory feedback loop (E→I→E). Perez et al. (2001) have shown, that

excitatory neurons can induce long-term potentiation (LTP) in mature hippocampal

inhibitory interneurons (E→I). In our model, the plasticity of these connection could

be implemented with the same learning rule as in Chapter 2, since the underlying

neurotransmitters and receptors are identical. The learning process would then be

similar to the development of level-1-to-2 connections (Section 2.3.2), resulting in

topographically organized receptive fields having a Gaussian weight profile (similar to
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Fig. 2.7). Both, long-term depression (LTD) and potentiation of inhibitory transmission

in mature pyramidal neurons (I→E) have been reported for several brain regions

(Holmgren and Zilberter, 2001, and references therein), including the visual cortex

(Komatsu and Iwakiri, 1993). The activation pattern of pre- and postsynaptic neurons

seems to be important for these synaptic changes. However, the limited number of

reports, different stimulation protocols and the diversity of inhibitory neurons impede

the formulation of a general learning rule at present.

The initial development of inhibitory synapses seems to follow a different mecha-

nism: the neurotransmitter GABA that mediates inhibition in mature cortical neurons,

is excitatory in the early development as a result of a higher intracellular chloride

concentration (review: Ben-Ari, 2002). Furthermore, the release of GABA can induce

action potentials and an influx of calcium ions, that is required for long-term learning,

i.e., LTP and LTD. The development of these synapses occurs before glutamatergic

(excitatory) synapses are functional (e.g., Khazipov et al., 2001; review: Ben-Ari, 2002).

Summarizing, the initial development of I→E connections seems to follow common

Hebbian laws and takes place before E→I and E↔E connections are functional. A

lot of modeling and experimental work remains to be done, before the details of this

complex interplay are clarified.

5.3 Delays and γ-coherence

Neural groups that are separated by few millimeters and interact only with excitatory

forces, can synchronize in the γ-range with zero delay even in the presence of non-

vanishing delays (Ritz et al., 1994; Chapter 3). A closer investigation of cortical (Gabriel

and Eckhorn, 2003) and model network dynamics (Chapter 4) shows however, that

this finding can be due to temporal averaging. γ-waves are subsequently traveling

across the recording positions in random directions, so that phase differences average

out. The interplay of γ-coherence and constant transmission velocities influences both,

the formation of a topographically organized area and the neural dynamics within

it: the size of developing lateral connection profiles (E↔E) increases with the spike

transmission velocity. This implicates, that the range of these connections determines

the maximal spatial range of γ-coherence in the learned network. To achieve γ-coherence

ranges similar to those found in the primary visual cortex, the model predicts that

action potentials between excitatory neurons must be conducted with at least 0.5 m/s.
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While a fraction of transmission velocities within an area is above this critical value,

many connections are slower (Section 1.5). However, studies (review: Nowak and Bullier,

1997) do not reveal the velocity distribution for different types of connections (E→E,

E→I, I→E). It is therefore possible that most slow connections are part of the E↔I

network, which generates stable γ-oscillations for a wide range of conduction velocities

(Chapter 3). The remaining slow connections in the E↔E network would still actively

desynchronize the underlying neural populations. This may be a desired property in

terms of the binding-by-synchronization hypothesis, e.g., to impede that two conflicting

features are bound into the same object representation. Besides, it could be beneficial

to impede the early binding of certain neural populations by the use of slow connections,

because inadvertently coupled neurons can barely be separated later.

5.4 Interareal connections

While the majority of connections within a visual area is slow (≈ 0.5 m/s, see Section

1.5 for details), feedforward connections between areas have rapid conduction velocities

(≈ 3 m/s, review: Nowak and Bullier, 1997). Synchronized γ-activity in lower areas may

therefore be transmitted and maintained in higher areas. Several studies are consistent

with this view: γ-synchronization between areas was found for neuronal groups in V1

and V2 with overlapping receptive fields (cat: Eckhorn et al., 1988; monkey: Eckhorn,

1994; Frien et al., 1994). In an optical imaging experiment, synchronized γ-activity was

observed between three visual areas simultaneously (V1, V2 and V4; Liu et al., 2003).

However, the hierarchical organization of areas (Felleman and van Essen, 1991) does

not impose the temporal order in which information is processed (Nowak and Bullier,

1997; Schmolesky et al., 1998). A higher area like MT (V5) can modulate even the

earliest responses in lower areas like V1, V2 and V3 (Hupé et al., 2001b). Synchronized

γ-activity could therefore as well be transmitted from higher to lower areas.

This idea is supported by the fact that feedback connections share several properties

with feedforward connections: first, there is a strong reciprocal connectivity between

neural groups of both areas, if their receptive fields are overlapping (review: Salin

and Bullier, 1995). Second, transmission velocities of both connection types can have

comparable fast transmission velocities (e.g., ≈ 3 m/s between V1 and V2: Nowak and

Bullier, 1997; Girard et al., 2001). Correlated activity may therefore not only travel

from lower to higher areas but also vice versa. It is therefore likely that synchronized
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γ-activity and the more generalized γ-waves do not only occur within one area, but also

between several areas. Synchronized γ-activity that occurs with zero phase between

V1 and V2 (Frien et al., 1994) may then be due to temporal averaging, similar to the

findings within V1 (Gabriel and Eckhorn, 2003).

The significant difference between fast feedforward/feedback connections and slow

lateral interactions poses questions on the functional implication. One possible advantage

may be to allow neurons in lower areas to integrate information that has already been

processed by higher areas. The feedback could be used to modulate the local processing

of input signals (models: e.g., Stoecker et al., 1997; Grossberg and Raizada, 2000; Siegel

et al., 2000). Since the density of feedforward/feedback connections is at least an order

of magnitude smaller than the intraareal connectivity (money, V1 and V2: Stettler et al.,

2002), the feedback information cannot be as comprehensive as intraareal information.

Yet, the specificity of this feedback is a controversial issue (Angelucci et al., 2002;

Stettler et al., 2002; Angelucci and Bullier, 2003) and requires further investigations.
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Glossary

Action potential A large electrical signal (≈ 100 mV, ≈ 1 ms) that is initiated at the

initial segment or axon hillock of the neuron and propagated without failure, in

an all-or-none fashion, along an axon to its presynaptic terminal.

Axon A cable-like structure which conducts electrical impulses away from the neuron’s

soma. Neurons have only one axon, but this will usually undergo extensive

branching, enabling communication with many target cells.

Coherence Linear, spectral selective coupling measure for pairwise signals, here ex-

clusively used for time series. At each frequency coherence is independently

normalized, and is sensitive to covariation of amplitude densities and constancy

of relative phase at this frequency.

Depolarization A decrease in the membrane potential of a neuron that increases the

likelihood of this neuron to generate an action potential and is therefore excitatory.

Dendrite A short, branching arbour of cellular extensions that conducts the electrical

stimulation received from other cells to the soma. Each neuron has numerous

dendrites with profuse dendritic branches. These structures form the main

information receiving network for the neuron.

Excitation The depolarization of a postsynaptic neuron, increasing the likelihood that

an action potential will be generated.

Figure-ground segregation Segregation of a visual pattern into an object (figure)

seen in front of a background. The background is assumed to extend behind the

object.
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Hyperpolarization An increase in the membrane potential of a neuron that decreases

the likelihood of this neuron to generate an action potential and is therefore

inhibitory.

Inhibition, postsynaptic The hyperpolarization of a postsynaptic neuron, reducing

the likelihood of or preventing an action potential in the postsynaptic neuron.

Local field potential, LFP Local superposition of postsynaptic potentials of a group

of neurons. Captured by extracellular micro-electrode recordings after low-pass

filtering (1–140Hz; 18 dB/oct). Estimated radius of support: ≈ 0.5mm (half-

height decline, Mitzdorf, 1985).

Long-term depression, LTD weakening of a synapse that last from hours up to

years. LTD and long-term potentiation (LTP) are regarded as the cellular basis

for learning.

Long-term potentiation, LTP A long-lasting strengthening (from hours up to years)

of the connection between two nerve cells. This form of synaptic plasticity is

regarded as the cellular basis for learning.

Membrane potential the electrical potential difference (voltage) across a neuron’s

membrane.

Multiple unit activity, MUA Local action potential density of a group of neurons.

Captured by extracellular micro-electrode recordings after band-pass filtering

(1–10 kHz, 18 dB/oct), full-wave rectification, and subsequent low-pass filtering

(140 Hz, 18 dB/oct). Estimated radius of support: ≈ 0.05 mm (half-height decline,

Mitzdorf, 1985).

Neuron The fundamental signaling unit of the nervous system. The human brain

contains about 1011 neurons, each forming about 1000 synapses. A typical neuron

constists of dendrites, a soma and an axon.

Peri-stimulus time histogram, PSTH Neuronal response time signals averaged

over repetitions of identical stimulus presentations and triggered with respect to

the time of the stimulus onsets.
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Postsynaptic potential, PSP a graded change in the membrane potential of a neuron

produced by a synaptic input. A postsynaptic potential can either be excitatory

(EPSP) or inhibitory (IPSP).

Primary visual cortex, V1 First cortical area to receive input via the main visual

sensory pathway.

Receptive field, RF Concept that refers to the spatial area of photoreceptors acti-

vating a certain neuron when elicited. The term is synonymously used for the

corresponding area of the visual field, and is mostly defined as a minimum response

field determined with a small test stimulus. The concept can also be extended by

its dynamic properties, or by the definition of additional regions of modulatory

influence.

Soma The cell-body of the neuron. The relatively large central part of the cell between

the dendrites and the axon.

Spike cf. action potential

Single unit activity, SUA Action potential output of a single neuron.

Synapse, chemical A specialized junction through which two neurons signal to one

another. The two neurons are separated by the synaptic cleft. The presynatic

neuron releases a neurotransmitter that binds receptors on the postsynaptic

neuron and in this way influences the excitability in the postsynaptic neuron.

Synapses can mediate either excitatory or inhibitory actions.

Threshold critical level of depolarization of the neuron’s membrane at which the

neuron can actively generate an action potential.
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