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Abstract

Goal. Macula degeneration and retinitis pigmentosa are the most frequently
diagnosed ailments in blind people. The former is the leading cause of blind-
ness in the western world. To restore some vision to blind patients suffer-
ing from these conditions, several research groups jointly aim at developing a
micro-electronic prosthesis. The goal is to electrically stimulate neurons in the
retina, evoking activity in corresponding cortical neurons and hence pseudo-
visual sensations in blind patients. This concept is based on the finding that
patterns of simple visual sensations can be elicited in response to epi-retinal
pattern electrical stimulation (Humayun et al., 1999). In order for a poten-
tial visual prosthesis to be of use to blind people, retinotopic activation of
the cortex must be ensured. Moreover, a sufficient spatio-temporal resolution
of electrical stimulation is required to provide for a satisfactory perception
of a visual scene. As part of the effort in developing the visual prosthesis,
prototype implants were tested and detailed studies were performed on the
spatio-temporal resolution achievable with electrical retina stimulations.

Methods. At the present state of research, direct testing in human vol-
unteers is ethically not acceptable. Therefore, we studied the spatio-temporal
resolution of electrical retina stimulation in the anesthetized cat. We recorded
neuronal activity in response to focal visual or electrical stimulation of the
retina from visual cortical areas 17 and 18. Visual receptive fields (vRF's)
were analyzed for retinal and cortical recording sites using a multi-focal visual
stimulation approach. Electrical stimulations were carried out with epi-retinal
fiber electrodes and prototype epi- and sub-retinal implants. In analogy to
the receptive field concept in the visual domain, we derived electrical recep-
tive fields (eRFs) as well. We compared electrical with corresponding visual
RFs in order to assess the retinotopy of electrically evoked cortical activation.
The spatial resolution of retinal stimulation was estimated from the location
and width of cortical activity distributions (electrical point spread functions,
ePSFs). Additionally, the overlap of ePSFs for adjacent retinal stimulation
sites was assessed to investigate the retinal separation that may be cortically
resolved ("minimum separabile”). Temporal resolution was assessed by the
rise times of fastest response components of local field potentials as well as
by the dependence between stimulation efficacy and mean rate of electrical
stimuli.
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Results. Retinal vRFs based on local field potentials match the corre-
sponding retinal electrode locations very well. However, retinal vRF's based
on spike activity are shifted distally with respect to the representation of the
optic disk (N=7). Retinotopy: Cortical eRF-positions are similar to cortical
vRF-positions. In particular, the retinotopic arrangement of cortical RFs is
preserved for electrical stimulation. Location and width of ePSF's are distinct
for retinal stimulation electrodes. Spatial resolution: We calculated the average
full width at half height of ePSFs for local field potentials to 1.28 mm4-0.33 mm
cortex corresponding to 1.4°+0.4° visual angle (N=298, four cats). The width
as well as the amount of overlap between ePSFs is smallest (i.e. spatial reso-
lution highest) for near threshold stimulation currents. Minimum separabiles
were 0.8° — 2.0° for near threshold stimulation and 1.6° — 4.3° for about ten-
fold threshold stimulation. Temporal resolution: Fastest signal components of
local field potentials had rise times of 8 — 12 ms, depending on the stimula-
tion current amplitude. Inter-stimulus delays of 16 — 24 ms, corresponding to
a 40 — 60 imp/s mean stimulation rate, should therefore be resolved by the
cortex. Mean inter-stimulus times of as short as 12.5 ms evoked significant
modulations of cortical activity. Thus, even a stimulation rate of 80 imp/s
might be resolved cortically. Spike latencies increased with the mean electrical
stimulation rate but hardly depended on the stimulation amplitude. This can
be explained by a model of spike initiation that takes into account the relative
refractory period of activated neurons. Prototype testing: Experiments with
epi- and sub-retinal foil electrode arrays proved to be successful in demonstrat-
ing efficient and localized cortical activation. However, there is some evidence
that epi-retinal electrical stimulation with flat electrodes tends to stimulate
axons prior to somata.

Conclusion. The analyses of the width of ePSFs and of minimum sep-
arabiles lead to similar estimates for the spatial resolution. Based on these
conservative estimates, the best spatial resolution is in the range of 0.8° visual
angle. This would give the blind patient a visus of 1/48. Temporal resolution
of 40 — 60 imp/s is achievable. We therefore expect a visual prosthesis based
on electrical stimulation of the retina to fulfill the basic requirements of retino-
topic activation of the visual cortex at a reasonable spatio-temporal resolution.
Clinical experience with other neuro-prostheses (e.g. cochlear implant) indi-
cates that the adjustment of the stimulation parameters in post implantation
training can further improve the benefits to a blind patient.



iii

Zusammenfassung

Einfiihrung. Makula Degeneration und Retinitis pigmentosa gehoren zu den
haufigsten Ursachen fiir Blindheit. Aus diesem Grunde fordert die deutsche
Bundesregierung die Entwicklung einer mikroelektronischen Sehprothese zur
Wiederherstellung eines begrenzten Sehvermogens. Angestrebt wird die elek-
trische Reizung von retinalen Zellen. Dadurch sollen kortikale Neuronen iiber
ihren normalen afferenten Eingangspfad aktiviert und Seheindriicke hervor-
gerufen werden. Dieses Konzept stiitzt sich auf die Beobachtung, dass einfache
gemusterte Seheindriicke durch gleichzeitige elektrische Reizung an mehreren
retinalen Orten ausgelost werden kénnen (Humayun et al., 1999). Damit die
potentielle Sehprothese blinden Menschen einen Nutzen bringen kann, muss
eine retinotope Aktivierung kortikaler Neurone gewéhrleistet werden. Aufler-
dem muss eine ausreichende raum-zeitliche Auflésung von elektrischen Reizen
moglich sein, damit der Patient einen befriedigenden Seheindruck hat. Im
Rahmen der Entwicklung einer epi-retinalen Sehprothese wurden Implantat-
Prototypen getestet und detailierte Studien zur raum-zeitlichen Auflosung
elektrischer Reizungen der Retina durchgefiihrt.

Methoden. Im augenblicklichen Stadium der Forschung sind Funktions-
priiffungen an freiwilligen Probanden ethisch nicht vertretbar. Darum wur-
den die Untersuchungen zur Retinotopie und raum-zeitlichen Auflosung elek-
trischer Reizungen der Retina an narkotisierten Katzen durchgefiihrt. Kor-
tikale neuronale Aktivitat nach visueller oder elektrischer Reizung der Retina
wurde mit Mehrfachelektroden in den Arealen 17 und 18 des Sehkortex abgelei-
tet. Visuelle rezeptive Felder (VRF) wurden mit Hilfe von multi-fokalen vi-
suellen Reizen fiir retinale und kortikale Ableitungsorte bestimmt. Elektrische
Reize wurden mit epi-retinalen Faserelektroden sowie epi- und sub-retinalen
Implantat-Prototypen appliziert. In Analogie zum visuellen rezeptiven Feld
Konzept wurden elektrische rezeptive Felder (eRF) ermittelt. Elektrische und
visuelle rezeptive Felder wurden verglichen, um die Retinotopie elektrisch evo-
zierter Kortexaktivierung einzuschatzen. Anhand des Ortes und der Breite
von kortikalen Aktivitétsverteilungen (ePSF) wurde die rdumliche Auflésung
bestimmt. Zusétzlich wurde der Uberlappungsgrad von kortikalen Aktivitéts-
verteilungen in Beziehung zum Abstand der retinalen Reizorte gesetzt. Dies
erlaubte die Bestimmung des retinalen Abstandes, der kortikal aufgelost wer-
den kann (”Minimum separabile”). Die zeitliche Auflésung wurde tiber die
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Anstiegsdauer der schnellsten Antwortkomponenten lokaler Feldpotentiale be-
stimmt. Ausserdem wurde die Abhéngigkeit zwischen der mittleren Reizrate
und der Reizeffizienz untersucht.

Ergebnisse. Retinale vRFs, die auf lokalen Feldpotentialen basieren, stim-
men sehr gut mit den korrespondierenden Elektrodenpositionen auf der Retina
iiberein. Dagegen sind die aus Aktionspotentialen abgeleiteten vRFs oft dis-
tal von der Reprasentation des Sehnervkopfes versetzt. Retinotopie: Kortikale
eRF-Positionen dhneln den kortikalen vRF-Positionen. Uberdies ist die retino-
tope Verteilung kortikaler RFs fiir elektrische Reizung erhalten. Die Position
und Breite von ePSFs sind unterscheidbar fiir retinale Reizorte. Rdumliche
Auflésung: Die mittlere Breite von ePSFs (volle Breite bei halber Hohe, lokale
Feldpotentiale) war 1,28 mm =+ 0,33 mm Kortex bzw. 1,4° 4+ 0,4° Sehwinkel
(N=298, vier Katzen). Sowohl die Breite als auch die Uberlappung von ePSFs
sind am kleinsten — die raumliche Auflosung am hochsten — fiir schwellennahe
Reizstrome. Minimum separabiles waren 0.8° — 2.0° nahe der Reizschwelle
und 1,6° — 4, 3° fiir etwa zehnfachen Schwellstrom. Zeitliche Auflosung: Ab-
hangig von der Reizstromstarke hatten die schnellsten Antwortkomponenten
lokaler Feldpotentiale Anstiegszeiten zwischen 8 — 12 ms. Reizabstinde von
16 — 24 ms entsprechend einer Reizrate von 40 — 60 imp/s sollten deshalb auf-
grund der Anstiegssteilheit kortikaler Signale aufgelost werden konnen. Mit-
tlere Reizabstdnde von 12,5 ms vermochten noch signifikante Modulationen
kortikaler Aktivitat auszulosen. Dies deutet auf kortikal auflosbare Reizraten
bis zu 80 imp/s hin. Die Latenzzeit kortikaler Aktionspotentiale steigt mit
der Reizrate, ist aber nahezu unabhangig von der Reizamplitude. Dieser Ef-
fekt kann mit einem Modell der Aktionspotentialerzeugung erklirt werden,
das die relative Refraktarzeit aktivierter Neurone berticksichtigt. Testung von
Implantat-Prototypen: Mit epi- und sub-retinalen Folienelektroden konnten
lokalisierte kortikale Aktivierungen erzeugt werden. FEinige Indizien deuten
darauf hin, dass flache epi-retinale Elektroden bevorzugt Ganglionzellaxone
und nicht Somata erregen.

Schlussfolgerung. Die Analysen von ePSF-Breiten und Minimum separa-
biles fiir lokale Feldpotentiale ergeben vergleichbare konservative Einschatzung-
en fiir das raumliche Auflosungsvermogen. Es liegt im besten Fall bei etwa 0.8°
Sehwinkel. Dieses Auflosungsvermogen wiirde dem blinden Patienten einen Vi-
sus von 1/48 erméglichen. Eine zeitliche Auflésung von 40— 60 imp/s erscheint
moglich. Es ist daher zu erwarten, dass eine auf elektrischer Retinareizung
basierende Sehprothese die Grundanforderungen fiir eine retinotope Kortex-
aktivierung bei einer akzeptablen raum-zeitlichen Auflosung erfiillt. Klini-
sche Erfahrungen mit anderen Neuroprothesen (z.B. dem Cochlear Implantat)
deuten darauf hin, dass die patientenspezifische Einstellung von Reizpara-
metern nach der Implantation den Nutzen fiir den Patienten weiter erhoht.
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1 Introduction

1.1 Normal vision

In normal vision, transparent optic structures, such as cornea and lens, focus
visual objects sharply onto the retina of each eye. Light quanta traverse the
entire transparent, multi-layered retina (0.4 mm thick; Boycott and Dowling,
1969) and are absorbed by rhodopsin molecules in the outer segments of the
photoreceptors. In response to the absorption of single light quanta, rhodopsin
molecules change their configuration (photo-isomerization) and trigger a cas-
cade of intra-cellular reactions (Wald, 1968). In vertebrates, these ultimately
lead to a graded membrane hyper-polarization. Successive retinal neurons,
including horizontal, bipolar, and amacrine cells, further process the photore-
ceptor signal.

At the retinal output stage, ganglion cells generate action potentials
("spikes”) from their pre-synaptic inputs. Ganglion cell axons form a layer
of their own on top of the ganglion cell soma layer, directly beneath the inner
retinal surface. These axons convey spikes towards the optic disk, which in
cats is located about 15° nasal and 5° inferior from the area centralis. The
area centralis is embedded in the macula region and provides for the highest
spatial resolution. The optic disk is the output site of the eye. At this level,
axons are equipped with a myelin sheath so that spike conduction velocity is
increased (Rodieck, 1973). Myelinized axons form the optic nerves of either
eye.

The optic nerves of both eyes terminate in the thalamic dorsal lateral genic-
ulate nucleus ("dLGN”). Here, individual or small groups of optic nerve spikes
can trigger the generation of dLGN spikes (Cleland et al., 1971). The dLGN re-
lays incoming information via the optic radiation to the primary visual cortex.
Subsequent anatomically or functionally segregated areas of the visual cortex
process different stimulus aspects, such as stimulus form, color or movement
direction. Besides an extensive divergence and convergence of neuronal con-
nections, a complex network of feedback connections from the primary visual
cortex to the dLGN exists as well as feedback from higher visual and non-visual
areas (for details see Nicholls et al., 1992).
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1.2 Impaired vision

The cortical areas mentioned above are essential for "normal” vision. Thus,
impairment of one cortical area can deprive the cortex of a certain stimulus
aspect (e.g. "motion”). In fact, studies of visual deficiencies after eye or brain
injuries led to a better understanding of the neurophysiological correlates of
vision (Zeki, 1993). Severe visual impairment or blindness results from an ir-
reversible damage along the visual pathway. For example, damage may occur
at the eye’s optics level (e.g. cataract), at the retinal level (e.g. retinal dys-
trophia), or more centrally at the optic nerve level or in the visual cortex (e.g.
brain tumor).

Outer retinal diseases are much more frequently diagnosed than central
damage to the visual pathway. Macula degeneration and retinitis pigmentosa
are among the diseases most often encountered. The former is the leading
cause of blindness in the western world.

Macula degeneration typically leads to a progressive loss of the photore-
ceptors in the macula region. Central visual acuity is severely diminished as a
secondary effect. This often results in legal blindness with only limited residual
vision (Beers and Berkow, 2001). Apart from a variety of subtypes, the age-
related macula degeneration (AMD) is most significant among the elderly. As
the proportion of the elderly will increase significantly in the Western world,
an increased incidence of age-related macula degeneration must be expected
as well.

Retinitis pigmentosa is less common than age-related macula degeneration
but it is the most frequently observed hereditary type of blindness (Zrenner
et al., 1992). Apart from impaired night vision, a typical symptom is a mid-
peripheral ring scotoma that gradually widens, affecting even central vision
up to total blindness in later states of the disease (Beers and Berkow, 2001).
Both macula degeneration and retinitis pigmentosa share the common feature
of photoreceptor degeneration, leaving parts of the retina insensitive to light.
However, despite a substantial loss of cells in all retinal layers, a large percent-
age of inner retinal neurons remain histologically intact (Santos et al., 1997).
In particular, retinal ganglion cells that transmit pre-processed retinal activity
to the brain are mostly left intact. The site of the damage restricts the possible
methodology of treating the blindness.

1.3 Concepts for substituting visual function

Most concepts for substituting deteriorated visual function are based on the
electrical stimulation of the remaining intact visual pathway. Electrical stimuli
are meant to mimic normal neuronal inputs to subsequent visual processing.
These approaches therefore intend to evoke ”pseudo-visual” sensations. The
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following paragraphs briefly introduce several of these concepts.

Concepts for substituting visual function after damage to the optic
nerve or the Thalamus

If the optic nerve or thalamic level is injured, treatment is restricted to the
intact cortical level. One approach is to electrically stimulate neurons in the
visual cortex (reviews by Normann et al., 1996, 1999). Pioneering work in
this field was done by Brindley and Lewin (1968) and Dobelle et al. (1974).
They implanted arrays of 80 and 64 platinum disk electrodes into the sub-dural
space over the occipital cortex of blind volunteers. The volunteers perceived
small spots of light (”phosphenes”), as individual electrodes were driven by an
external current supply. Inspired by their work, Schmidt et al. (1996) utilized
penetrating electrodes in order to refine spatial resolution and reduce threshold
currents for eliciting phosphene percepts. They found that intra-cortically
applied stimuli resulted in a spatial resolution that was five times more accurate
than with surface stimulation. Recently, Dobelle (2000) presented a portable
artificial vision system based on cortical electrical stimulation with 64 sub-
dural electrodes. One volunteer perceived localized phosphenes even though
he had been blind for more than 20 years. After familiarizing himself with
the implant, he was able to "scan” visual objects and could even count on the
fingers of one hand. These results are amazing and encouraging. However,
for this cortical stimulation approach, intra-cortical surgery is necessary. This
not only increases considerably the risks of infection, but also poses ethical
questions of manipulations in the cortex.

Concepts for substituting visual function after damage to the retina

In recent years several approaches were tested to assist blind patients with
outer retinal degeneration diseases.

Some research groups focussed on the substitution of retinal function by
replacing deteriorated outer retinal cells with intact sub-retinal transplants.
Seiler et al. (1999) found that several weeks after the transplantation in rats
normal photo-transduction processes were established. This is evidence that it
might be feasible to transplant donated human retinal tissue into human eyes,
replacing the function of degenerated neuronal cells.

Veraart et al. (1998) electrically stimulated the optic nerve of a blind pa-
tient suffering from retinitis pigmentosa. The volunteer perceived colored
phosphenes when stimulated electrically, which were similar to those reported
in studies with electrical stimulation in the visual cortex. The attributes of
the phosphenes usually remained consistent throughout trials repeated over a
short period of time.
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Early experiments with epi-retinal electrical stimulation in cats were per-
formed by Dawson and Radtke (1977). They were able to assess stimulation
thresholds for evoked cortical activity to be in the range of 30-100 pA. Hu-
mayun et al. (1994) electrically stimulated the retina of rabbits and evoked
localized retinal responses. They found the electrical charge densities at thresh-
old stimulation to be within the safe limits for long-term electrical stimulation
(100 uC/em?; cited in Humayun et al., 1994). Blind human volunteers reported
moving and shaped phosphenes when stimulated epi-retinally with moving or
elongated electrodes (Humayun et al., 1996). Moreover, perceptions of sim-
ple phosphene patterns could be achieved in response to epi-retinal pattern
electrical stimulation (Humayun et al., 1999).

Inspired by these successes, the German government began funding a Ger-
man Retina-Implant Project (BMFT, grant 01 IN 501 F). Joining their efforts,
the research groups participating in the project aim at developing a micro-
electronic retinal prosthesis based on electrical stimulation of retinal neurons.
Reviews were given for epi-retinal (Wyatt and Rizzo, 1996; Eckmiller, 1997)
and sub-retinal (Zrenner et al., 1997) implant concepts.

The epi-retinal prosthesis

According to the epi-retinal approach, visual objects located in front of a pa-
tient will be ”seen” by a small camera built into special glasses. An encoder
performs simulated retinal operations on the video frames in real time and
transforms the extracted stimulus information into a digital code (Eckmiller,
1997; Becker et al., 1997). A sender will transmit this data stream telemet-
rically into the eye via optical or inductive coupling. A receiver unit, either
implanted into an artificial lens for inductive coupling or onto the peripheral
retina for optical coupling, will decode image information and integrate stim-
ulation energy from the signal. A decoder chip will be implanted into the lens
capsule. It is supposed to generate spatio-temporal electrical stimuli from the
received signal, and distribute them to epi-retinal electrode contacts embed-
ded into a flat and flexible stimulation unit. Each retinal electrode contact is
supposed to focally stimulate ganglion cells, and thereby transmit visual stim-
ulus information from a well-defined field in visual space to the corresponding
retinal representation of the visual field. The proposed retinal implant there-
fore replaces major optical and intra-retinal functions of the eye while directly
generating meaningful retinal output to the cortex.

The sub-retinal prosthesis

In the sub-retinal approach electrical stimulation is applied from the sub-
retinal space (Chow and Chow, 1997; Stett et al., 2000). A micro-photodiode
array is implanted at the site of the deteriorated outer retina. When light
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falls onto the array’s photodiodes, nearby electrodes stimulate preserved inner
retinal structures rather than ganglion cells (Santos et al., 1997). The ele-
gance of this concept lies in its simplicity, since a retina encoder, as well as
camera, sender, and receiver are obsolete. The pros and cons for the epi- and
sub-retinal concept are discussed in more detail in chapter 4.7.

1.4 On this study

The study presented here was carried out as part of the BMBF-funded develop-
ment of an epi-retinal prosthesis. Therefore, most data stems from epi-retinal
electrical stimulation experiments. In some cases, sub-retinal electrical stimu-
lations were performed in cooperation with other groups.

The work was motivated by the challenge to assess the potential benefits for
a blind patient equipped with an epi-retinal prosthesis. In order for a potential
visual implant to be of use to the blind patient, spatial relationships between
stimulation sites must be preserved in their cortical representation (retinotopic
stimulation). Additionally, cortical activations must be distinguishable for reti-
nal stimulation sites (specific stimulation). Lastly, a sufficient spatio-temporal
resolution of the evoked pseudo-visual perception is required. Knowledge of
the stimulation parameters which govern the performance of the retinal pros-
thesis is influential on its design. Particularly, the spacing (spatial resolution)
as well as the stimulus time course for individual electrode contacts (temporal
resolution) must be carefully set to save stimulation energy, protect the patient
from discomfort, and let the patient actually benefit from the prosthesis.

We studied the cortical representations of focal electrical epi- and sub-
retinal stimuli in the cat, namely the spatio-temporal cortical activity distri-
butions in areas 17 and 18 of the visual cortex. From the location, width, and
overlap of activity distributions, we estimated the spatio-temporal resolution
of electrical retina stimulation. Retinotopy and specificity of electrical stim-
ulation were assessed by comparison of electrically evoked responses to those
visually evoked.

Frequently used abbreviations as well as a glossary of important terms can
be found at the end of this document.



2 Methods

2.1 General remarks

The cat experiments were conducted in accordance with the German animal
welfare law, the guidelines of the European Community Council Directives
(86/609/EEC) and the NIH Principles of Laboratory Animal Care (Publi-
cation 86-23, revised 1985). Preparatory and anesthetic procedures were as
described in detail in Schanze et al. (2001). In the experiments, it was nec-
essary to estimate distributions of cortical activity at high spatio-temporal
resolution. Therefore, cortical activity was measured intra-cortically rather
that with scalp electrodes. Electrical stimuli were applied with three types of
retinal electrodes. For the in-depth analysis of cortical activity distributions
and spatio-temporal resolution, we used an array of seven hexagonally arranged
fiber electrodes with cone-shaped tips (Reitbock, 1983). In the framework of
the Retina Implant project we tested cortical spread for implant prototypes as
well. These were flat and flexible polyimide electrode arrays with either 30 pla-
nar electrodes implanted into sub-retinal space or 24 planar electrodes fixated
onto the membrana limitans interna. Details on the stimulation electrodes are
given in 2.5.1.

2.2 Anesthetic procedures, surgery, and
animal care

Fiber electrode stimulation: A craniotomy over areas 17 or 18 of the visual
cortex close to the vertical meridian was performed leaving the dura mater
intact. Seven or sixteen recording micro-electrodes (Eckhorn and Thomas,
1993) were inserted about 1 mm into (layers 2—4 of) area 17 or 18 of the
visual cortex. The electrode pitch was 0.5 mm for 7-electrode arrays and
0.305 mm for 16-electrode arrays. Epi-retinal electrical stimulation with fiber
electrodes was performed by inserting a 7—electrode array through a scleral
opening approximately 3 mm behind the temporal limbus. The electrodes
were hexagonally arranged to provide for a two-dimensional stimulation and
to minimize the scleral opening by a dense packing of electrodes (0.9 mm
diameter of electrode array). Electrodes could be individually moved forward
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and backward in the pm-range. This allowed the precise epi-retinal electrode
positioning under visual inspection with an ophthalmoscope.

Epi-retinal implant stimulation: Experiments with epi-retinal poly-
imide foil electrode arrays (N=2) were performed in cooperation with Dr. med.
Lutz Hesse (University Marburg, Eye Department). Eyes underwent a lentec-
tomy and vitrectomy preceding the implantation. Implantation details were
reported in more detail in Hesse et al. (2000). After positioning of the elec-
trode structure at the suitable retinal position, the implant’s fine wires to
external current sources were fixated with tape near the eye lid. The im-
planted cats then were transferred from the dorsal position for eye surgery to
their normal (ventral) position, which is more convenient for the preparation
of the intra-cortical recordings. The cats’ anesthetics were then maintained
with isofluorane (0.5-1.5%, Forene by Abbot). Following a craniotomy (7 mm
diameter) over the corresponding cortical area, a linear seven micro-electrode
array was inserted into area 17. Spacing between recording electrodes was
0.75 mm. Cats recovered after about 1 day post experimentum. The stability
of implant function was tested in consecutive experiments.

Sub-retinal implant stimulation: Experiments with sub-retinal poly-
imide foil electrode arrays (N=2) were performed in cooperation with Dr. med.
Helmut Sachs (University Regensburg, Eye Department). Implantation was
performed ab interno through a scleral incision approximately 6.5 mm behind
the limbus. After a pars plana vitrectomy, the retina was locally elevated by
injection of a bubble of BSS (a balanced salt solution by Alcon) distally from
the target area near the area centralis. The retina then was incised at the
distal end of the bubble. Through an additional scleral opening, the implant
was advanced forward through the retinal incision towards the required sub-
retinal position (Sachs et al., 1998; Kobuch et al., 1998). The cables of the
implant were fixated with histoacryl at the scleral insertion site. To facilitate
the preparation of the intra-cortical recording, the implanted cats were then
moved from the dorsal position for eye surgery to their normal (ventral) po-
sition. Anesthesia was maintained with isofluorane. Following a craniotomy
(7 mm diameter) over the corresponding cortical area, a linear 7—electrode
array was inserted into area 17. Spacing between recording electrodes was
0.75 mm.

After experiments with sub-retinal polyimide foil electrode arrays and a
few experiments with fiber electrodes (N=4), animals were sacrificed with an
intra-venous injection of a curare derivative (761 by Hoechst Roussel Vet).
Eyes were enucleated for histological analyses of the effects of electrical stimu-
lation to the retinal tissue (e.g. for RCS-rats: Kohler et al., 2001). The acute
experiments with fiber electrodes lasted for 47-84 hours. When animals were
allowed to recover, experiments lasted for 10-20 hours.
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Figure 2.1: Setup for epi-retinal visual and electrical stimulation and intra-cortical
recording in cat visual cortex (modified from Schanze et al., 2001).

2.3 Data recording and pre-processing

The experimental setup (Fig. 2.1) is described in Schanze et al. (2001). During
the experiments, vital functions of the cat such as ECG, body temperature,
and expiratory COy content were monitored. Only if vital functions were
normal and stable, data were recorded and considered for analysis.

Fiber Pt-W electrodes with 2-3 M2 impedance at 1 kHz (Reitbock, 1983)
were used for the recording of intra-cortical activity. Seven or sixteen electrodes
were linearly arranged in a matrix which allowed electrodes to be moved in-
dividually back and forth (Eckhorn and Thomas, 1993). Recording electrodes
were positioned over the cat’s visual cortex area 17 or 18, typically at Horseley-
Clarke positions A2-P5 and L0.5-L3 (area 17) or A3-P5 and L1-L5 (area 18).
Recording electrodes were inserted into the cortex leaving the dura mater un-
damaged in all but one case. The insertion of each electrode was controlled by
an audio signal from the electrode.

Generally, pre-amplified signals from the cortical recording electrodes were
amplified and filtered to obtain local field potentials (LFP, low-pass filtered to
1-140 Hz, -3 dB at 12 dB/oct), multi-unit activity (MUA, 0.5-10 kHz band
passed, full wave rectified and then low-pass filtered to 1-140 Hz, -3 dB at
12 dB/oct), and single unit activity (SUA, 0.5-10 kHz band passed, -3 dB at
12 dB/oct and subsequent window discrimination with 2 ms hold-off). These
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signals were recorded at 500 Hz sampling rate using an AD-converter (CED
1401 Cambridge Electronic Design, maximum sampling rate 100 kHz) and
stored on a personal computer hard disk for further off-line data analysis.
The pitch of the cortical recording electrodes was chosen

e to be less than half that of the typical width of cortical activity distri-
butions in order to detect them (spatial sampling theorem) and

e wide enough to sample a certain cortical space with a limited number of
electrodes.

When the 7—electrode cortical recording matrix was used, electrode pitch was
chosen to be 0.5 mm, thus sampling 3 mm of cortex. With the 16—electrode
cortical recording matrix, electrode pitch was lowered to 0.305 mm, thus sam-
pling 4.575 mm of cortex at higher spatial resolution.

2.3.1 Suppression of stimulation artifacts

The electrical stimulation inevitably induces strong electrical artifacts that are
volume conducted to the cortical recording sites. The impulse response of the
recording filters then occludes neuronal activity of short latencies depending
on the stimulation current amplitude, duration and the filter characteristics.
In order to assess neuronal activity with latencies below 10 ms (primarily
early SUA and MUA), we recorded broad-band signals (1-4000 Hz) at 20 kHz
sampling rate. In the broad-band signal, the recorded stimulation artifacts
were temporally more constrained because of the higher cutoff frequency. Due
to the AD-converter bandwidth of 100 kHz, five channels could be recorded at
a time. After the experiment, stimulation artifacts were camouflaged in the
broad-band data by substituting artifact data samples by 1-2 ms samples of
adjacent time windows.

In some experiments, we used the 16—electrode cortical recording matrix
and did not sample broad-band signals. We intentionally sacrificed the detec-
tion of early cortical responses for a higher spatial resolution available with 16
densely spaced recording electrodes.

2.3.2 Pre-processing of broad-band recording data

Local field potentials (LFP) and multi unit activity (MUA) were generated
off-line by convolution of the artifact suppressed broad-band signal with the
impulse responses of the laboratory hardware filters (Eger, 2001).

Extraction of single unit activity (SUA) from neuronal recordings is an
intricate task. One electrode usually records the superposition of spike ac-
tivities from several neurons. However, while recorded spikes are uniformly
sized and /or shaped for individual neurons, the recorded spike form differs for
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different neurons due to the variable distance to the recording electrode. This
can be used to differentiate between the contributions of individual neurons
by analyzing the form of spikes. The quality of this kind of ”spike sorting”
depends on the signal-to-noise ratio of the recording as well as on the amount
of temporal overlap of spikes (Abeles and Goldstein, 1977). We extracted SUA
from high-pass filtered (500-1000 Hz) artifact suppressed broad-band data us-
ing an amplitude thresholding approach: First, local data peaks of a certain
width were detected by the analysis of the first and second derivatives of the
signal time series. In a second step, the peaks were sorted into ranges of am-
plitudes and stored into event data files. However, it cannot be ruled out that
one sorted spike population comprised more than one spiking neuron. Within
this limitation, these neuronal units were regarded as "SUA”.

To illustrate how delicate the task of spike sorting can be, Fig. 2.2 shows
a 40 ms sequence of a high pass filtered cortical responses to multi-focal vi-
sual stimulation. The diagram depicts signal deflections (”spikes”) of different
shape and amplitude. However, these spikes code different stimulus attributes,
as revealed by a cross-correlation analysis between separated spike trains and
the stimulus (for explanations refer to section 2.4).

Fig. 2.3 illustrates the results of artifact elimination, off-line LFP gen-
eration, high pass filtering, off-line MUA generation as well as spike detec-
tion. Shown are averaged cortical responses (PSTHs) to electrical stimuli with
Gamma distributed inter-stimulus intervals. Note the strong stimulation ar-
tifact in the first two milliseconds of the recorded broad-band signal after the
stimulus onset. The first cortical response can already be observed as a pos-
itive signal deflection (”spike”) after 3.4 ms time to peak (i. e. time between
stimulus onset and maximum response signal deflection). A second response is
seen at 5.0 ms time to peak and probably a third one at 6.3 ms time to peak.
The peaks at latencies of 9.4 ms and later are averaged stimulation artifacts of
consecutive stimuli. The cortical response in the artifact suppressed signal is
unchanged. Note that the stimulation artifacts at latencies of 9.4 ms and later
disappeared. Spikes are highlighted in dark yellow, and low frequency signal
components in light blue. Low-pass filtering of the artifact suppressed signal
yields the LFP signal. LFPs were inverted so that neuronal excitation can
be observed as downward signal deflections. High-pass filtering of the artifact
suppressed signal (HP signal) is the basis for the generation of the MUA signal
as well as for spike detecting and sorting. Black arrows in the LFP and MUA
signal point at the maximum of first excitatory response components. The
LFP and MUA signal is shifted with respect to the broad-band signal due to
the causal filter operations. The spikes detected in each trial are marked in
piled rows in the spike raster plot. Note the cluster of spikes at the position
of the second response (5.0 ms time to peak). The first response (3.4 ms time
to peak) was harder to detect in the broad-band data. Spike frequency does
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Figure 2.2: Spike sorting separates ”one” cortical broad-band signal into three SUA
components. A) 40 ms sequence of high-pass filtered cortical responses to multi-
focal visual stimulation exhibits spiking activity of different recording amplitudes.
The spikes are sorted into three single units by amplitude thresholding to multiples
of the signal standard deviation (sdev). B) A subsequent cross correlation analysis
between the separated spike trains and the visual stimulus reveals distinct visual
receptive field properties (switched polarities and different orientations) for two of
the separated spike populations.

not change within the entire duration of the measurement indicative of nearly
stationary recording conditions. Therefore, the spike frequency histogram does
not obscure time-variant cortical SUA.

2.4 Visual receptive field measurement

Visual receptive fields (vRFs) of retinal and cortical neurons can be assessed
by probing the neuron’s responsiveness to short flashes of single small light
spots at densely spaced positions in visual space. This concept corresponds to
a linear system identification task. In noiseless technical systems, the system’s
response to a single stimulation impulse fully describes the transfer function
of the system. Even though the retina and cortex are non-linear systems
(e.g. due to neuronal threshold mechanisms) recorded population responses
behave in a more linear way since they comprise a linear superposition of
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Figure 2.3: Demonstration of the different steps of data processing by averaged cor-
tical responses. Electrical stimuli with Gamma distributed inter-stimulus intervals
were applied at 39.7 imp/s mean stimulation rate (N=5100, 40 pA single biphasic
stimuli, 0.4 ms duration). From bottom to top: Recorded broad-band signal. The
cortical response is unchanged in the artifact suppressed signal. Averaged spikes are
highlighted in dark yellow and low frequency signal components in light blue. LFP
signal, the HP signal, and MUA signal are generated by off-line filtering of the arti-
fact suppressed broad-band signal. Black arrows in the LFP and MUA signal point
at the first excitatory response components. The spikes detected in every trial are
marked in consecutive rows in the spike raster plot. Frequencies of detected spikes
can be estimated by the spike frequency histograms.
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many neuronal processes. Therefore a linear approximation is valid for the
estimation of receptive fields of population responses. Moreover, recordings
from neurons show an extensive background activity which is not related to
the visual stimulus. Therefore, averaging of impulse responses is necessary to
yield the deterministic stimulus-response relation. In practice, the estimation
of vRFs is performed reversely since one is interested in the stimulation history
preceding a neurons’ response (Bialek et al., 1991). On the contrary, forward
approaches focus on the response following the stimulus.

In our experiments, a set binary pseudo random sequences drives the lu-
minance at certain coordinates on a computer monitor in front of the animal
(Eckhorn et al., 1993). For the study presented here, two standard procedures
were developed: "sparse noise” and ”dense noise” stimuli based approaches.

2.4.1 The ”sparse noise” approach

In the ”sparse noise” approach, two-dimensional visual stimuli (”frames”) con-
sisted of single ("sparse”) rectangular light spots on a dark background. The
position of the light spot changed randomly every 40 ms. Thus, after some
time, every position on the monitor had been active in one stimulation cycle
time. Repetitions of this cycle were used to enhance the signal-to-noise ratio of
the cross correlation maps between stimulus and response. The advantage of
this approach is that the stimulus energy is high, due to the strong luminance
contrast of the light spot against the dark background. However, if the spatial
resolution of the stimuli is increased, i.e. more spot positions per length are al-
lowed, the cycle time increases quadratically with the resolution enhancement.
Moreover, if the spot size is reduced, the stimulus energy decreases, requiring
more repetitions of the stimulation cycle. In addition, with just one active
light spot at a time, spatial interactions between multiple stimulus positions,
i.e. higher order cross correlations cannot be studied.

2.4.2 The ”dense noise” approach

In the ”"dense noise” approach, multi-focal ("dense”) visual stimulation was
used (see inset in Fig. 2.6). Stimulation was at up to 101 Hz and maximum
contrast of a 21 inch computer monitor positioned at a distance of 130 cm in
front of the animal. Multi-focal pseudo random stimuli were based on binary
m-sequences (Sutter, 1987, 1992; Reid et al., 1997; Reich et al., 2000; Sutter,
2001) and were generated using a feedback shift register algorithm (Williams
and Sloane, 1976; Borish and Angell, 1983). Each square light spot (about
1° side length) on an imaginary 28x28 grid was driven by a cyclically shifted
version of the same pseudo-random m-sequence of 4095 steps. For that reason,
approximately one half of all grid positions were active in each stimulus frame.
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The grid dimension was set to 28x28 in order to allow a cyclical shifting step
width of five (28%28=784 starting positions equally distributed on the 4095
stimulus frames of one m—sequence). Thus, starting positions for m—sequences
at any two grid positions were separated by multiples of five time steps, i.e. by
multiples of about 50 ms when the stimulation was at 101 Hz. Since response
durations are generally longer than 50 ms, starting positions for m—sequences
were randomly addressed to grid positions. Due to the randomized address-
ing and the fact that autocorrelations of m—sequences are zero at all non-zero
shifts (Williams and Sloane, 1976), spatio-temporal contiguousness of stimuli
was very low. Each multi-focal m—sequence was presented up to 45 times (to-
tal duration 30 min) to improve averaged cross correlations between stimulus
and response. However, in cases of good recording signal-to-noise ratio (e.g.
S/N > 4), a single presentation was sufficient to assess RF-centers and -sizes,
reducing the measurement time to 41 s. Cross correlations between stimulus
(m-sequence) and response yielded vRFs for each recording channel. The use
of cyclically shifted sequences at all grid positions considerably reduced the
expense for calculating the cross correlations between all pairs of recording
and stimulation channels (Reid et al., 1997).

One advantage of the ”dense noise” approach is that in principle, a nearly
complete characterization of the vRF's is possible since the temporal stimulus
statistics are ”white” for every spot location. Cross correlations between stim-
ulus sequences have peaks at temporal delays that are beyond the systems’
memory for most pairs of stimulation sites. Moreover, the cycle time does not
depend on the spatial resolution of the stimulus grid, making it more appro-
priate for high spatial resolution tasks. However, ”dense noise” stimuli are
much less effective in driving cortical neurons (Orban, 1984). The enormous
amount of stimulus presentations at each spot position compensates for the
much lower stimulus effectivity. E.g., for the 28x28 stimulus grid and a given
stimulation duration, in the m—sequence based ”dense noise” approach each
spot position is stimulated 392 times more often than in the "sparse noise”
approach.

2.4.3 Visualization of visual receptive fields

In the experiments, monocular vRFs were coarsely estimated with a hand
held lamp projected onto a tangent screen. For the detailed and standardized
estimation of basic vRF-properties such as position, size, and subfield struc-
ture, the ”dense noise” approach was used more often than the ”sparse noise”
approach. The ”dense noise” approach was preferred mainly because of the
higher spatial resolution. Apart from the spatial resolution, however, both
approaches gave similar results, when directly compared in the experiments.
Fig. 2.4 illustrates the procedure of calculating vRFs. In this example,
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Figure 2.4: Visualization of a visual receptive field. Cortical MUA was recorded
in response to a multi-focal visual stimulus. The correlation strength between the
stimulus and cortical MUA exhibits localized excitatory "ON” (positive peak and
bright colors) and inhibitory "OFF” (negative peak and dark colors) subfields.

cortical MUA was recorded in response to a multi-focal visual stimulus given
at 25 Hz. One stimulation cycle of 4095 stimuli was presented in 164 seconds.
The mean cross correlation strength (temporal lag 30-40 ms) between a visual
stimulus sequence and the cortical response was plotted for each stimulation
site (horizontal and vertical stimulation site). The initial spatial sampling of
28x28 visual stimulation sites was eightfold interpolated by zero-padding in
the frequency domain (Elliott and Rao, 1982) in order to yield a smoothed
vRF structure at a 224x224 resolution. Negative correlation values indicate
that the cortical response was anti-correlated to the respective visual stimulus
sequence. In other words, at negative peak positions, the cortical response
was correlated with the complement of the binary sequence, i.e. the "OFF”-
stimulus. On the contrary, high positive correlation values indicate that the
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Figure 2.5: Visual receptive fields (vRFs) of four cortical multi unit responses
(MUA, a—d)) after visual stimulation (centered about 7.5° below area centralis,
N=92160 at each grid position, T=30 min) with a multi-focal visual pseudo-random
stimulus. Stimuli were based on binary m—sequences given at 101 Hz frame rate on a
computer monitor. Correlation strength between stimulus site and response is color-
coded for each map separately. A) Cross correlation maps for the two-dimensional
stimulus sequence and four cortical responses. The maps were interpolated and
low pass filtered to pronounce the receptive field structures. Note the bimodal
topography most prominent in MUA 5. B) Rectified vRF-maps. C) Fitting two-
dimensional Gaussian envelopes into the rectified vRF-maps allows the estimation
of vRF-center and -size of bimodal vRFs.
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recorded cells primarily respond to ” ON”-stimuli.

Correlation strengths are color-coded in the bottom plane of the plot. This
type of plot visualizes the spatial structure of vRF's, in particular the exis-
tence of bipolar ON/OFF-profiles (”subfields”). Visual receptive subfields are
indicative of simple cells which prefer a localized and oriented edge of light. To
obtain the position and -size of vRFs with subfields, vRF-maps were rectified
and then fitted with two-dimensional Gaussian envelopes (Fig. 2.5).

On top of Fig. 2.4, contours of selected cross correlation levels appear as
closed lines. This vRF-representation was used to compare vRF-locations for
multiple recording electrodes. For this purpose, contours at a 90% level of
the vRF-amplitude were superimposed for all available recording electrodes.
Fig. 2.6 demonstrates this technique for an experiment where 15 recording
electrodes were available. Visual RFs could be calculated for 11 electrodes in
this example.

By recording retinal activity with the stimulation electrodes, vRFs were
estimated for the retinal stimulation sites as well. A comparison of the relative
locations of retinal and cortical vRF's indicated whether cortical activation was
expected to be close to or distant from cortical recording sites. In addition to
the vRF-center and vRF-size, orientation and direction of movement tuning
was estimated using computer controlled bright bar stimuli.

2.5 Electrical stimulation

2.5.1 Stimulation electrodes

Retinal electrical stimuli were applied extracellularly in close proximity to the
neuronal target cells. When during a stimulus pulse an electrical charge is
passed, the working potential across the metal/electrolyte interface changes.
This brings into play electrochemical reactions at the interface which are de-
termined by the voltage, the electrolyte composition, as well as the metal
type and surface structure of the stimulation electrode (Loeb, 1989; Kossler,
1998). Tissue-destroying reactions (e.g. forming of gaseous Hy or Oy) have to
be excluded so that stationary stimulation conditions and a long-term stable
electrical stimulation can be guaranteed (McCreery et al., 1995, 1997). In or-
der to control the actual electrical charge injected by the electrode, we used
biphasic, charge-balanced current pulses.

Three types of electrical stimulation electrodes were used (Fig. 2.7). For the
in-depth analysis of cortical activity distributions and spatio-temporal resolu-
tion of electrical retina stimulation, we used quartz-isolated platinum-tungsten
fiber electrodes (Fig. 2.7 A). Fiber electrodes had cone-shaped tips of 20-25 pym
diameter and 200-500 k2 impedance at 1 kHz (Reitbock, 1983). Seven fiber
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Figure 2.6: Visual receptive fields (vRFs) generated from multiple cortical pop-
ulation responses (LFP, C1-C15) to visual stimulation with a multi-focal pseudo-
random stimulus (centered about 7.5° below area centralis, N=92160 at each grid
position, T=30 min). The coordinate system demarcates the region in visual space
covered by the visual stimuli. One of the 4095 different stimuli is plotted to the
lower left. Area centralis was approximately at 6.5° horizontal and 14° vertical with
respect to the coordinate system. Circles indicate positions of vRFs for the corti-
cal recording sites. Visual RFs are drawn as contours on a 90% level of respective
Gaussians fitted to the cross correlation maps between stimulus and response.
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electrodes were hexagonally arranged in a matrix similar to the recording elec-
trode matrix. Each retinal electrode could be individually moved back and
forth. Additionally, the whole matrix could be moved spherically around the
electrodes’ point of insertion into the eye (Schanze et al., 1998). The electrodes
were advanced towards the retina under visual inspection with an ophthalmo-
scope. In addition, an audio control of the electrode signal was available during
electrode positioning. When the electrode touched the retinal surface, vigor-
ous spike activity was regularly observed in response to the fundus light of
the ophthalmoscope. Retinal stimulation electrodes had to be carefully posi-
tioned in close proximity to the retinal receptive fields of the cortical recording
electrodes (area 17/18 vRFs of para-central eccentricities have a diameter of
approximately 1° — 3° corresponding to 0.2-0.6 mm on the retina). Addition-
ally, tight electrode contact to the retina was crucial for effective stimulation.
Elevating the electrode tip by 50 pm from the retinal surface reduced the re-
sponse strength to 50% (Schanze et al., 2001). In each experiment with fiber
electrodes, at least two different retinal stimulation areas were tested by shift-
ing the electrode array.

In the framework of the Retina Implant project we estimated cortical ac-
tivity distributions for two different implant prototypes as well. One prototype
was a flat polyimide electrode array with 24 planar electrodes designed for epi-
retinal implantation onto the membrana limitans interna (Fig. 2.7 B, IBMT
Stjngbert). Each electrode array comprised concentric bipolar Pt-Ir-electrodes
with 0.75 mm spacing on a rectangular array (Stieglitz et al., 2000). Electrode
contacts had 110-140 k(2 impedance at 1 kHz.

The other implant prototype used was a flat polyimide electrode array
with 30 planar electrodes designed for implantation into the sub-retinal space
(Fig. 2.7 C, NMI Reutlingen). Each electrode array consisted of six rows of
50 pm square TiN electrode contacts with 100 um spacing. Rows of electrodes
were separated by 100 pm, 200 pm, 400 pm, 800 pum, and 1600 pm, respec-
tively. Electrode contacts had 8-10 k€2 impedance at 1 kHz (Nisch, 2001).

2.5.2 Generation of electrical stimuli

Up to four electrical stimulation channels could be supplied simultaneously by
our digital-to-analog converter. In order to distribute these stimuli to up to
seven retinal stimulation electrodes available with the hexagonally arranged
fiber electrode array, a fast multiplexer was developed, built, and tested ac-
cording to a concept by Thomas Schanze (Fig. 5.1 and Fig. 5.2). The combined
setup for electrical stimulation consisted of:

e a personal computer generating and sending spatio-temporal waveforms
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Figure 2.7: In situ photographs of the three different types of stimulation electrodes
used in this study. A) Hexagonally arranged Pt-W fiber electrodes with cone-
shaped tips (Neurophysics Marburg, three out of seven are shown). B) 24 concentric
bipolar Pt-Ir-electrodes for epi-retinal stimulation (IBMT St. Ingbert). C) 30 TiN-
electrodes for sub-retinal stimulation (NMI Reutlingen).
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a digital-to-analog converter producing four-channel spatio-temporal volt-
age patterns

a multiplexer distributing the four-channel input to eight-channel spatio-
temporal voltage patterns

a voltage-to-current converter
e epi-retinal stimulation electrodes (Fig. 2.7 A and B).

Electrical stimuli for sub-retinal stimulation (Fig. 2.7 C) were delivered by
means of a commercial current source.

For each measurement the electrical stimulation consisted of a set of dif-
ferent randomly presented stimuli. By testing different stimuli randomly in-
terleaved rather than sequentially, instationarities of the recording affected
all stimulus conditions equally, thus easing the interpretation of stimulation
effects. For a given waveform, typically, different stimulation electrodes, am-
plitudes or rates were chosen. Waveforms were single or bursts of biphasic
charge-balanced impulses of variable duration and amplitude. Temporal sepa-
ration between stimuli jittered between 150-500 ms to avoid input rhythmicity.
Stimulus conditions were repeated one hundred or more times. This facilitated
the averaging of cortical responses for individual stimulus conditions.

In order to mimic normal retinal activity, in some measurements, stimu-
lus statistics were adapted to those naturally found. The Poisson model is
the simplest model for neuronal spike statistics. It states that the probability
function for spike occurrence only depends on the mean spike rate. In partic-
ular, spikes are independent of each other. According to the model, intervals
between directly following spikes are exponentially distributed and the num-
ber of spikes in a time interval is Poisson distributed. However, the validity
of this model is limited, since spikes are not exactly independent from each
other (Berry II and Meister, 1998). This is due to the refractory character-
istics of spiking neurons: Shortly after the neuron spiked, the probability of
a subsequent spike is strongly reduced but recovers thereafter. To provide
for natural stimulus statistics, we therefore generated electrical stimuli with
Gamma distributed inter-stimulus intervals that account for the refractory pe-
riod of spiking retinal cells. Stimuli with Gamma distributed inter-stimulus
intervals were applied at various mean stimulation rates for the analysis of rate
dependent cortical activation (Rieke et al., 1997).

Effectivity of stimulation and threshold stimulation current was assessed
by the cortical responses to pseudo-random uni-focal activation with vary-
ing stimulus amplitudes typically ranging from 5-100 pA. Details on stimulus
features as well as time stamps for stimulations were logged for off-line data
analysis.
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2.6 Data analysis

2.6.1 Averaged cortical responses

For this study, cortical responses to electrical stimuli were averaged over iden-
tical stimulus conditions (Peri Stimulus Time Histograms or "PSTH”, see
Fig. 2.3) to increase the signal-to-noise ratio of our data. Data were tested
for instationarities by moving window analyses (LFP, MUA) or spike raster
plots (SUA).

Major response characteristics investigated in this study were the response
latency and the amplitude of the first excitatory signal deflection after the
stimulus. Latencies for LFP and MUA responses were defined as the temporal
delay between stimulus onset and excitatory response maximum. When mul-
tiple excitatory peaks were encountered, the first peak was taken. For SUA,
latency was defined as the temporal delay between stimulus onset and mean
arrival time of the first spike. When multiple spikes were elicited, the latency
of the first spike was considered.

The amplitude of a cortical signal depends on the spatial distance between
the neuronal current sources and the recording electrode tip. In addition,
the impedance of the recording electrode influences the signal gain as well:
Higher impedances yield greater signal amplitudes. This gain factor affects the
recording of all neuronal signals, independent of the electrode tip’s distance
to specific neuronal current sources. In order to separate these independent
effects in the PSTH, the cortical signals were normalized to the signals’ stan-
dard deviation in a corresponding time window before stimulus onset. This
procedure facilitated the comparison of (normalized) signal amplitudes from
different recording channels. A reduced normalized signal amplitude thus is
indicative of an increased distance between the neuronal current source and
electrode tip.

2.6.2 Cortical activity distributions

The amplitudes of normalized averaged cortical responses to electrical stimuli
were plotted against the cortical recording electrode separations. This yielded
cortical activity distributions or "electrical cortical point spread functions”
(ePSF). It often was possible to fit ePSFs by Gaussians weighted with the
standard deviations of the underlying PSTH amplitudes to obtain a quanti-
tative measure of the ePSF width and position relative to the recording sites.
Only those Gaussians that obviously fitted the ePSFs (p<0.05, Chi-square-
test) were included. When ePSFs were multi-peaked, Gaussians were fit to
the envelope of the activity distribution. The widths of ePSF's were defined as
the full width at half height (FWHH) of the Gaussian fits.
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Since cortical activity was sampled with a linear array of recording elec-
trodes, two-dimensional ePSFs were cut along the recording array’s plane.
Therefore, the width of ePSFs were estimated from projections onto the record-
ing array’s plane. However, the profile of an approximately Gaussian ePSF is
radial-symmetric. Without loss of generality, the Gaussian can be centered at
the coordinate origin, and be written as

1 r?

fr)= o eXP(—ﬁ)- (2.1)

Any linear section through this Gaussian is well defined by its distance d to
the center of the Gaussian. Thus, the section’s profile may be obtained by
means of the coordinate transformation

r? = p? 4+ d?, (2.2)

where p is measured along the section. p = 0 denotes the center of the section’s
profile. The coordinate transformation yields

1(0) = —— exp(- 50 23)
_ ! P
flp) = o A(d, o) eXP(—@% (2.4)
with P
A(d,0) = exp(—=—). (2.5)

202
Thus, the section’s profile is a Gaussian with a reduced amplitude that depends
on the distance d and has the same FWHH as in the radial-symmetric distri-
bution (equation 2.1). Consequently, the FWHH of an ePSF can be assessed
from its section provided by the linear recording electrode configuration.

The temporal evolution of ePSFs was studied as well. For this purpose,
ePSF's were calculated for consecutive time windows, color-coded, and plotted
on a two-dimensional plane. Similarly, cortical visual point spread functions
(VPSF) were determined from the data recorded for the generation of the vRF
maps.

2.6.3 Cortical activation overlap

To address the question, which retinal distance between two electrical stimu-
lation sites might be separable in the cortex, the overlap of ePSF's for pairs of
stimulation electrodes was analyzed. After fitting the ePSFs with Gaussians,
spatial separability was assumed if 50% of their respective amplitudes were
above their mutual point of intersection. One of the Gaussians was shifted
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to the position which fulfilled the given constraint. The cortical separation of
the shifted Gaussians was called "minimum separabile” in cortical coordinates
(Fig. 2.8 A-C). This procedure takes into account the width as well as the
amplitude of ePSFs.

Since the vRFs of retinal stimulation sites were known, cortical separations
of ePSFs could be related to corresponding separations in visual space.

By this procedure, a "local cortical magnification factor” could be esti-
mated as the separation of two ePSF's in cortical coordinates divided by the
separation of vRFs of the corresponding retinal electrodes (Tusa et al., 1979).
The ratio of the minimum separabile and the local cortical magnification factor
for the respective pair of retina electrodes allowed to estimate the minimum
separabile or angular resolution in degrees visual angle (Fig. 2.8 D).

2.6.4 Electrical receptive fields

In correspondence to the receptive field concept in the visual domain, we de-
fined the retinal area which is capable of modulating cortical neuronal activity
when stimulated electrically as ”electrical receptive field” (eRF). Based on the
same data as for calculating ePSF's, eRFs were constructed from the early re-
sponse components of cortical LF'P signals. For each cortical recording channel
we estimated the stimulation efficiency from the normalized response ampli-
tudes elicited by each retinal stimulation electrode. The eRF positions and
sizes were determined using two-dimensional Gauss fits of the response am-
plitudes at the retinal sampling points of each eRF-map. This procedure is
exemplified in the Results chapter (Fig. 3.4).

2.6.5 Temporal resolution of electrical retina
stimulation

A series of measurements was performed to address the question of the achiev-
able temporal resolution with electrical retina stimulation. Three approaches
were tested. The first assesses the fastest response components of cortical LEP
to electrical stimuli. Since the initial response component is characterized by
a steep rise, rise times were evaluated for different stimulation conditions. For
this purpose, LFP-PSTHs (normally sampled at 2 ms temporal resolution)
were interpolated by splines in order to obtain a 0.1 ms temporal resolution.
Rise times were defined as the time between the end of the residual stimulation
artifact and the peak position of the first response component. Peak positions
were automatically identified by a peak detection algorithm. The estimated
temporal resolution was defined as twice the rise time.

In a second approach, analyses were done on SUA, since the assessment
of temporal resolution involves mainly temporal aspects of the cortical signal.
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Figure 2.8: A) Cortical ePSFs for two stimulation electrodes (R2 & R3) and
four different stimulation currents. Electrical PSFs are based on the early LFP
response component. Stimulation electrodes were separated by 0.45 mm on the
retina, corresponding to 2.2° in visual space. The data was fitted with weighted
Gaussians. B) For each stimulation current, ePSFs for R2 and R3 are superimposed
to illustrate the amount of overlap of cortical spread. C) For each pair of stimuli
the separation d of the Gaussians that would yield their mutual point of intersection
below their respective half heights was estimated. D) Since the vRFs of the retinal
stimulation sites are known, the separation d for each two ePSFs can be related to the
corresponding separation in visual space and in the retina (”minimum separabile”,
”"MS”). The minimum separabile mostly increases with higher stimulation currents.
Lowest minimum separabiles were found for stimulation just above threshold.

SUA gives temporally more precise evidence. Therefore, in some experiments,
cortical SUA was studied in dependence of the mean rate of electrical stimuli
with Gamma distributed inter-stimulus intervals. Mean temporal intervals
between electrical stimuli could be resolved if a significant number of spikes
could be evoked.

A third approach for the assessment of temporal resolution is based on
the duration of the excitatory phase of cortical responses to electrical retina
stimulation.
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3 Results

3.1 General remarks

This study is based on data from experiments on nine cats. Five experiments
were performed with fiber electrodes and four experiments with flat electrode
arrays (prototypes of a visual implant). Five to sixteen recording channels
were available in each experiment. We tested at least two stimulation elec-
trode array positions in each experiment with fiber electrodes. On average,
five of seven stimulation electrodes were effective in activating cortical cells
within reach of the recording electrodes (N=>50 effective stimulation sites). In
experiments with flat electrode arrays, about 20% of stimulation electrodes
were effective in driving neurons at the recording sites (N=20 effective stimu-
lation sites). The apparently lower effectivity can be attributed to the larger
dimensions of the foil implants which, according to the retino-cortical magnifi-
cation factor, covered a relatively large cortical area. However, given a limited
number of cortical recording electrodes, we restricted the recording sites to a
narrow cortical area in order to properly sample individual cortical activity
distributions.

3.2 Properties of evoked cortical responses

In the best cases thresholds for cortical activation with single electrodes were
as low as 2.5 pA for epi-retinal stimulation with fiber electrodes and below
6.25 pA for (epi-retinal) stimulation with flat polyimide electrode arrays (sin-
gle biphasic impulses of 0.4 ms total duration, leading cathodic phase). In
most cases, a stimulation current of 40 pA is sufficient for eliciting cortical
responses, when retinal stimulation sites are within the receptive fields of cor-
tical recording electrodes. Moreover, the threshold current can be reduced by
rapid sequences of charge-balanced biphasic stimuli (Schanze et al., 2001).
Cortical LFP and MUA responses often consist of multiple excitatory peaks
between 15 and 80 ms with a slow inhibitory component thereafter (Fig. 3.1).
However, in other recordings cortical LFP and MUA response time courses are
single-peaked and temporally constrained to about 30 ms, when stimulation is
just above threshold. When burst-like responses occur, the first inhibitory com-
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Figure 3.1: Temporal multi-peaked cortical responses to electrical retina stimula-
tion. A) Shown are PSTHs for LFP and MUA responses to electrical stimuli with
different stimulation currents as indicated on top of the plots. The stimulation ar-
tifact is most prominent in the MUA between 0-10 ms. Note that at just above
threshold level (11 pA) stimulation evokes only the early response component. At
higher stimulation currents, consecutive response components appear. The strong
stimulus artifact often occludes the early MUA response component. B) Time-
to-maximum histograms for LFP and MUA responses to strong electrical stimuli

(100 pA).

ponent often is absent or camouflaged by excitatory signal deflections. Typi-
cally, burst-like activities form with increased strength of electrical stimulation.
Low stimulation currents elicit only early response components, whereas the
second and third component appears consecutively at higher stimulation cur-
rents (Fig. 3.1). Peak latency distributions are therefore often multi-peaked
with up to three peaks. The first excitatory LFP component peaks after 10—
20 ms, the second after about 32 ms, and the third after about 60 ms. MUA
response components peak at shifted latencies with respect to LFP compo-
nents. At the point when retino-cortical signal transduction forms the early
response components, intra-cortical processing has not yet shaped spatial ac-
tivity distributions. For this reason, early response components are further
analyzed for the estimation of cortical spread after retinal stimulation. Since
the early MUA response was often occluded by the stimulus artifact (in experi-
ments were no broad-band recording was performed), the early LEP response
component was studied in more detail.
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Figure 3.2: PSTHs (N=201) of cortical population responses (LFP) and single unit
activity (SUA) after para-central epi-retinal electrical stimulation with an implanted
polyimide foil electrode array (IBMT, St. Ingbert). 100 pA stimulation impulses
were delivered with a leading cathodic phase and 400-500 ms inter-stimulus delay
(dark column). PSTHs are shown for one cortical recording site and two different
stimulation electrodes (R 9 & R 18) that were separated by 1.7 mm on the retina
along the axon fibers. Spike latency distributions are plotted at higher temporal
resolution in the bottom row. The probability of eliciting a spike was 42 % for
stimulation with electrode R 9 and 16 % for stimulation with electrode R 18. Note
that the average latency for evoked spikes differs for the two retinal stimulation
electrodes.

Individual cortical neurons are activated with about 3.4-9.0 ms latency.
Fig. 3.2 shows latency distributions for the spike activity of one cortical neuron.
Interestingly, this neuron can be driven by two retinal stimulation electrodes
separated by 1.7 mm along the retinal axon fibers. However, the latency
distributions exhibit distinct mean latencies that differ by 1.14 ms. As the
stimulation electrode closest to the optic disk yields a smaller latency than the
electrode stimulating more distally along the axon, the latency shift can be
attributed to the additional intra-retinal conduction time.
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If the stimulation electrodes are placed between the vRF's of cortical record-
ing sites and the optic disk (”proximal stimulation”), effectivity of stimulation
often is higher than for positioning of stimulation electrodes beyond the vRF's
("distal stimulation”).

3.3 Visual receptive fields

In contrast to cortical vRFs, vRF positions of retinal electrodes are distinct
for LFP and MUA signals. LFP-based vRFs of retinal electrodes are located
at positions very close to the electrode positions that were manually back-
projected onto a tangent screen. However, MUA-vRF's are always distal from
LFP-vRFs (N=5) or approximately at the same site (N=2) but never proximal
with respect to the optic disk. This is demonstrated in Fig. 3.3. Superimposed
on the cortical vRFs (C1-C15, Fig. 2.6), retinal LFP-vRFs are plotted as
filled red circles (RO-R6). The positions of the LFP-vRFs clearly resemble
the hexagonal stimulation array geometry, which is slightly stretched due to
the angle under which the electrodes approach the retina. MUA-vRFs could
be calculated for five retinal stimulation electrodes. They are plotted as dark
yellow filled circles (annotation in brackets). MUA-vRFs are located to the
left side of LFP-vRFs, i.e. distal with respect to the optic disk. In one case
LFP- and MUA-vRFs are at the same location (R2). After 23 hours, a second
measurement of retinal vRFs produced vRF's that were shifted with respect to
the earlier measurement (LFP-vRF's plotted as filled pink circles; MUA-vRFs
as filled yellow circles). However, the separations of LEP- and MUA-vRFs are
similar compared to those in the first measurement.

3.4 Electrical receptive fields

The estimation of cortical eRFs was possible, when a sufficient number of
closely spaced retinal stimulation sites was capable of evoking cortical re-
sponses . This was the case for experiments with epi-retinal fiber electrodes,
in which stimulation electrodes could be iteratively placed in close proximity
to the retina at sites corresponding to those of cortical recordings. The centers
of the LFP-vRFs of retinal electrodes closely resembled the actual electrode
position (section 3.3) and were taken as the retinal ”electrical sampling points”
of cortical eRFs.

Fig. 3.4 shows linearly interpolated eRF-maps for 15 cortical recording elec-
trodes after color-coding the cortical response strength (early response ampli-
tude of LFP) to each of the retinal electrical sampling points. The upper
right plot illustrates this procedure on a magnified scale. Note that with each
consecutive recording electrode number (C1-C15) the eRF-center (yellow and
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Figure 3.3: Visual receptive fields (vRFs) of retinal and cortical population re-
sponses (LFP) (stimulation details as in Fig. 2.6). Filled red and pink circles denote
LFP-vRFs, filled dark and light yellow circles denote MUA-vRF's of retinal elec-
trodes. Open greater circles indicate positions of vRFs for cortical recording sites.
Sizes of vRFs are drawn as contours on a 90% level of vRF peak amplitudes. Note
that retinal MUA-vRF's are always located distally with respect to the optic disk or
at the same location as LFP-vRFs. Black arrows indicate the assumed trajectories
of ganglion cell axons.
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Figure 3.4: Electrical RFs for cortical recording electrodes. A) Amplitudes of
the early LFP response component (red circles in the signal insets) were taken to
construct electrical receptive fields. Linear interpolation was performed between the
seven spatial sampling points of the hexagonal stimulation matrix (R1-R6). The
black background corresponds to the coordinate system in Fig. 3.3. B) Note the
downward shift of eRF's in visual space for consecutive recording electrodes from the
upper left (C1) to the lower right (C15) plot. Recording electrodes C1-C15 were
inserted in a posterior-anterior direction along the vertical meridian in area 18.
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Figure 3.5: Superimposed electrical RFs for cortical recording electrodes. Am-
plitudes of the early LFP response component were taken to construct interpo-
lated electrical receptive fields for each recording electrode (C1-C14, cf. Fig. 3.4).
Two-dimensional Gaussians were fit through seven spatial electrical sampling points
(taken from the LFP-vRFs of retinal stimulation sites, e.g. R0). The Gaussians
were constrained to be symmetric in order to save one degree of freedom in the
fitting algorithm. Shown are the contours at a 90% level of the fit maximum (fitting
for recording electrode C12 and C15 did not converge). Note the downward shift
of eRF's for consecutive recording electrodes from the upper left (C1) to the lower
right (C15) plot. A similar shift is observable for the corresponding vRFs of the
same recording electrodes (Fig. 3.3). Recording electrodes C1-C15 were inserted in
a posterior-anterior direction along the vertical meridian in area 18. The coordinate
system shows the entire field mapped visually. The area centralis was approximately
located at 6.5° horizontal and 14° vertical.
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Figure 3.6: Visual PSF's for cortical population responses (LFP) after para-central
visual stimulation with a multi-focal random visual stimulus sequence (N=92160
stimuli given at each grid position and at maximum contrast of the monitor, pitch
of stimulus grid was 1°, T=30 min duration of presentation). Stimuli were based on
binary m—sequences given at a 101 Hz frame rate.

white colors) shifts downward in visual space. Recording electrodes C1-C15
were inserted in a posterior-anterior direction along the vertical meridian in
area 18. Thus, the vRFs of the recording electrodes shift downwards, too, as
can be verified in (Fig. 2.6).

The estimation of eRF-positions and -sizes was possible after two-dimen-
sional Gaussian fitting over the seven retinal sampling points of each eRF-map
(not the interpolated map). Cortical eRFs are retinotopically arranged and
show similar topographic relations as their visual equivalents (Fig. 3.5). The
average absolute misalignment of eRFs with respect to their vRF counterparts
in the RF plot shown in Fig. 3.3 is 1.07° £ 0.45° (n=10 pairs of v/eRFs).

3.5 Cortical visual point spread functions

For reference, cortical visual point spread functions (vPSF) were calculated
from the data recorded for generation of the vRF maps. Fig. 3.6 shows three
vPSFs for visual stimuli at the center of three cortical vRFs. Visual PSFs
often are broader than the corresponding ePSFs (section 3.6.1).

3.6 Spatial resolution of electrical retina
stimulation

3.6.1 Cortical ePSF's

We estimated cortical ePSFs for LEP, MUA, and SUA data. The method is
exemplified in Fig. 3.7. Shown are PSTHs of five simultaneously recorded LFP,
MUA, and SUA responses to focal electrical stimulation of the retina (C1, C3,
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Figure 3.7: Cortical electrical point spread to focal electrical retina stimulation de-
tected with different spatio-temporal resolution (para-central stimulation, N=102).
A) PSTHs for LFP, MUA, and SUA data (off-line filtered broad-band signals). Red
circles mark early cortical excitatory activation. Note the inhibitory response com-
ponent most prominent in the LFP. The recordings were done with a linear array
(C1, C3, C5, C6, C7). B) From the PSTHs, ePSFs are estimated by the averaged
first response amplitudes (LFP, MUA) and spike counts (SUA), respectively.
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C5, C6, C7). From the average amplitudes of the first response components,
ePSFs are calculated (shown to the right). Generally, LFP-based e¢PSFs are
wider than MUA- or SUA-based due to the size of the spatial integration field
(Schanze, 1995). In addition, MUA-ePSFs and SUA-ePSFs are mostly less
smooth than LFP-ePSFs. This can be attributed to the better signal-to-noise
ratio for LFP data, because LFP averages over more cortical units.

Fig. 3.8 depicts cortical ePSF's in area 18 measured simultaneously for seven
retinal stimulation electrodes and five different stimulation current amplitudes.
Plots are schematically positioned according to the hexagonal geometry of the
stimulation electrodes. In the experiment, ganglion cell axons were directed
approximately from the left to the right side of the plot. Positions of vRF's
for retinal and cortical electrodes are as in Fig. 3.3. Note that the stimulation
electrodes evoke distinct ePSFs that differ in shape, cortical position, width,
and amplitude. In particular ePSFs are retinotopically arranged. Stimulation
of the lower retina (upper field of view (R2 and R4)) results in activation of
more posterior and the stimulation of the upper retina (lower field of view (R1
and Rb)) in activation of more anterior cortical neurons in area 18.

Cortical ePSFs are single-peaked at threshold level. However, with in-
creased stimulation current, ePSFs sometimes become multi-peaked with one
or two additional side lobes (Fig. 3.9). For a single retinal stimulation site,
peaks in ePSF's are fixed to cortical positions. Shifting the retinal stimulation
sites results in either slight shifting of ePSF-peaks or formation of adjacent
peaks. Hence, high activation peaks are also fixed with respect to the cortical
recording array.

The width of ePSFs is taken from the full width at half height (FWHH) of
Gaussian fits to ePSFs (section 2.6.2). The average width of ePSFs is (1.28
+ 0.33) mm cortex (N=298 ePSFs, 4 cats) (Fig. 3.10). The width of ePSFs
depends on the stimulation current with higher currents affecting more cortical
space, thus yielding broader ePSFs.

Retinal stimulation was performed at 4° — 9° eccentricity in most experi-
ments. Within this range and number of experiments (N=9), there was no
systematic influence of stimulation eccentricity on the width of ePSFs.

3.6.2 Dynamics of cortical ePSF's

Plotting color-coded ePSFs for consecutive time windows (section 2.6.2) ex-
hibits the dynamics of ePSFs. Fig. 3.11 shows time resolved ePSF's for the
same data as in Fig. 3.8. The initial cortical response is spatially well local-
ized at the entry site of cortical afferents (t = 10-20ms). On the other side,
later response components exhibit broad and non-localized ePSFs (t = 30—
70 ms). Electrical PSFs therefore tend to overlap strongly for later response
components. The transition from localized to non-localized ePSFs occurs in a
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Figure 3.8: Electrical PSFs for cortical population responses (LFP) after para-
central electrical stimulation with seven electrodes (N=101). Plots are schematically
positioned according to the hexagonal stimulation electrode geometry. Each ePSF
is plotted against the cortical recording electrode positions (C1-C15 in Fig. 3.3).
Error bars indicate standard deviations of the amplitudes in the underlying PSTHs.
Leftmost peaks correspond to upper, rightmost peaks to lower positions in visual
space.
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Figure 3.9: Electrical PSFs for cortical population responses (LFP) after para-
central electrical stimulation (N=101) with five different current amplitudes at two
retinal positions (R3 & R6). Cortical ePSFs are single-peaked at threshold level.
However, with increased stimulation current, ePSFs become multi-peaked with one
or two additional side lobes as indicated by the arrows.

step-like fashion between 20-30 ms after the stimulus. With increasing stim-
ulation current, the transition from localized to non-localized ePSF's becomes
more evident. Fig. 3.12 shows that for just above threshold stimulation (11A)
the ePSF is rather localized. At higher stimulation currents, the point spread
for the initial response component becomes slightly broader (see Fig. 3.10) and
non-localized ePSFs occur at 20 ms temporal offset to the initial response.

3.6.3 Minimum separabiles

To address the question of separability of electrical retina stimulations, min-
imum separabiles were estimated from the overlap of ePSFs for pairs of epi-
retinal stimulation electrodes (section 2.6.3). Minimum separabiles depend on
the stimulation current, with a strong increase between 11 pA (threshold level)
and 24 pA and a weaker increase for amplitudes of 24 pA to 100 pA (Fig. 3.13).
The data suggests that with epi-retinal stimulation an angular resolution of 2°
is possible. In best cases angular resolution drops to about 1.6° for stimulation
well above threshold (tenfold threshold level) and to 0.8° — 2.0° for stimula-
tion at threshold level. 76% of all ePSFs analyzed had minimum separabiles
between 1.6° — 4.3° (N=137).
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Figure 3.10: A) Histograms for the width of ePSF's calculated from cortical popu-
lation responses (LFP) to para-central electrical stimulation with fiber electrodes in
298 stimulation sessions (n=101 stimulations each) in 4 cats. The width of ePSFs
were taken from the full width at half height of Gaussian fits to ePSFs. Histograms
are shown for 5 pA (blue), 11 pA (yellow), 24 pA (green), 49 pA (orange), and
100 pA (red). B) The mean width of ePSFs increases with increasing stimulation
current (0.2 ms dual polarity, cathodic phase first). Error bars indicate the standard
deviation of means (standard error).

3.7 Temporal resolution of electrical retina
stimulation

3.7.1 Analysis of response rise times

The duration of the steep rising phase of the initial LF'P response component
was analyzed. In a total of 6825 PSTHs from N=13 measurements (5 stim-
ulation currents, 7 stimulation electrodes, and 15 cortical recording electrode
signals), 17% (N=1164) had a significant (S/N > 4) early response component
and were included in the analysis. Fig. 3.14 A shows the distributions of rise
times for the five stimulation currents tested. The rise time distributions are
broadly tuned and do strongly overlap. However, the mean rise time depends
on the stimulation current (Fig. 3.14 C). The mean rise time for the 100 pA
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Figure 3.11: Spatio-temporal evolution of cortical ePSFs for cortical population
responses (LFP) after epi-retinal para-central electrical stimulation (N=101) with
a hexagonal 7—electrode array. Normalized response amplitudes were calculated
and color-coded for consecutive time windows and plotted on a two-dimensional
plane. Each plot shows the evolution of cortical point spread in response to electrical
stimulation with one retina electrode as indicated on top of each plot. Stimulation
and recording electrode numbers correspond to those in figure 3.3. Note that early
response components arrive after 10-20 ms and are often more localized compared
to the consecutive response components.
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Figure 3.12: Spatio-temporal evolution of cortical ePSF's for cortical LFP responses
after epi-retinal para-central electrical stimulation (6° from area centralis, N=101
stimuli). Stimulation current was decreased from well above threshold (I=100 pA,
left) to sub-threshold level (I=5 pA, right). Note the occurrence of activity side
bands 20 ms after the initial response to strong stimulation.

stimulation is significantly shorter than for 49 pA (t-test, p < 0.1) as well as
for 24 pA, 11 pA, and 5 pA, respectively (t-test, p < 0.0005). Fig. 3.14 B
demonstrates examples of the data analyzed. Of LFP-PSTHs the first 30 ms
after the stimulus are plotted for 100 pA, 49 pA, 24 pA, and 11 pA stimuli,
respectively. Responses are plotted on a normalized scale for an easier com-
parison of the temporal aspects. The first negative signal deflection reflects
the residual stimulation artifact. The artifact is seen at the same latency for
all stimulation currents. Without scaling, artifacts would differ in amplitude
according to the stimulation strength. Depending on the stimulation current
amplitude, first cortical responses peak after about 14-18 ms. Note that for
the higher stimulation currents (100 pA and 49 pA), a subsequent response
component appears. Rise times are in the range of 8-12 ms, depending on the
stimulation current (Fig. 3.14 C).

3.7.2 Dependency between stimulation rate and efficacy

In correspondence to the visual ”critical flicker frequency” (CFF), the maxi-
mum frequency of electrical stimulation capable of modulating neuronal activ-
ity was estimated.

In a series of measurements, the mean stimulation rate of electrical stimuli
with Gamma distributed inter-stimulus intervals (N=5100) was varied system-
atically between 5-73 impulses/s (section 2.5.2). Cortical spikes can be ob-
served in a narrow time window after the stimulus that differs for the different
experimental conditions (see Discussion). The average number of evoked spikes
in this time window decreases with increasing mean stimulus rate. Fig. 3.15
shows this relationship for data from five measurements in three cats. The
absolute spike counts in a narrow time window (highlighted in Fig. 3.15 B)
are corrected for an estimated number of ”spontaneous spikes” that would
have occurred without stimulation. The latter is taken from a corresponding
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Figure 3.13: Minimum separabile depending on the stimulation current (data
based on N=154 ePSFs, calculation of minimum separabiles described in Methods).
Graphs are plotted for all pairs out of five efficient retinal stimulation electrodes.
The electrode pair R2 and R4 yields minimum separabiles of up to 18° (N=26, not
shown)).

time window before the stimulus and accounts for the background activity
that is superimposed on the evoked spike activity. In order to compare spike
counts from different recording conditions (i.e. different experiments and cats),
corrected spike counts were normalized to the respective background activity.
Thus an ordinate value of one indicates that in the specified time window
twice as many spikes are found than in the background activity (S/N = 2).
As can be seen in Fig. 3.15 A, this is true at mean stimulation rates above
60 imp/s for most recordings. The blue curve is based on SUA from a record-
ing site that does not optimally match the stimulation electrode position. The
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Figure 3.14: Rise times of significant (S/N > 4) early response components of
LFP-PSTHs (N=1164) were analyzed. A) Shown are rise time-histograms for five
stimulation currents (see inset). B) Example for the estimation of rise times for
different stimulation amplitudes (colors as in A). Note that the cortical response
peaks earlier for high stimulation currents (14-18 ms). C) Summary tuning curve
for the mean rise time from the distributions shown in A. The rise time declines for
increasing stimulation current. Error bars indicate the standard deviation of means
(standard error).
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Figure 3.15: A) Dependence of the spike count on the mean stimulation rate of
electrical stimuli with Gamma distributed inter-stimulus intervals (N=5100). The
spike counts observed in a narrow time window after the stimulus are corrected for
an estimated number of ”spontaneous spikes” that would have occurred without
stimulation. The horizontal red line marks the level at which twice as many spikes
are found as in a window before the stimulus (S/N=2). B) Example raster plots for
three different mean stimulation rates. The number of spikes found in the analysis
window (highlighted in dark yellow) is given on top of each raster plot. Dots between
0 — 4ms after the stimulus result from residual stimulation artifacts and do not
reflect neuronal activity. Note the slightly delayed occurrence of spikes in the high
stimulation rate case.

SUA upon which the brown curve is based was simultaneously recorded and
matched the stimulation site better, yielding a higher stimulation effectivity.
In two measurements (magenta and black curves) even the highest stimulation
rate tested (73 imp/s) yields spike counts that are well above the background
level. Linear fits of these curves traverse the threshold level above 80 imp/s
stimulation rate.

3.7.3 Precision of electrically evoked cortical responses

Let us take a closer look at the timing and precision of evoked spikes. In
Fig. 3.15 B we can observe that the spikes are slightly delayed in the high
stimulation rate condition (lower raster plot). In Fig. 3.16 A mean spike la-
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Figure 3.16: A) Dependence of the spike latency on the mean stimulation rate of
electrical stimuli with Gamma distributed inter-stimulus intervals (N=5100). The
upper (colored) graphs represent data from electrical stimulation at one retinal stim-
ulation site. Latencies are slightly shifted with respect to each other for different
recording sites and amplitudes. The lower (black) line represents data from a stim-
ulation 3.2° (approximately 0.64 mm retinal distance) closer to the optic disk. The
latency therefore is reduced due to the spared intra-retinal travel time. B) Only
weak dependence of the spike latency on the stimulation amplitude can be observed.

tencies are plotted against the mean stimulation rate for three neurons. Error
bars indicate the standard deviation of the latency distributions. The upper
four graphs represent data from two SUAs that were recorded in two measure-
ments with 20 A and 60 pA stimuli, respectively. The lower (black) curve
represents data from a stimulation site 3.2° (approximately 0.64 mm retinal
distance) closer to the optic disk. The latency therefore is reduced due to
the spared intra-retinal travel time. Given that the conduction velocity is ap-
proximately 1-2 m/s for the unmyelinated axon fibers in the retina (Stanford,
1987), this accounts for a 0.32-0.64 ms short cut. Obviously, the mean spike la-
tency correlates with the mean stimulation rate in a linear fashion with higher
stimulation rates yielding higher latencies. Additionally, the width of latency
distributions slightly increases with the stimulation rate as can be seen from
the amplitude of the error bars. However, mean spike latencies are similar for
20 pA and 60 pA stimulation amplitudes (upper four graphs).

Interestingly, the amplitude of electrical stimuli has only little or no effect
on the spike latencies. Fig. 3.16 B shows the mean latency of spikes for different
stimulation amplitudes. The mean stimulation rate was kept at 39.7 imp/s for
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all measurements. The blue and the black curves in Fig. 3.16 B correspond to
the blue and black curves in Fig. 3.16 A. Little or no effect can be observed
on the mean spike latency.

Fig. 3.17 demonstrates the findings for the narrowly distributed latencies
of one recording site. Again, electrical stimuli with Gamma distributed inter-
stimulus intervals were applied (N=5100). In Fig. 3.17 A the mean stimulus
rate is increased from 5.2 imp/s in the upper plot to 72.7 imp/s in the bot-
tom plot. The current amplitude for single biphasic stimuli is kept constant
at 60 uA. As expected from the previous results, the narrowly distributed
spike latencies systematically shift towards higher values for increasing mean
stimulus rates. The maximum shift is 0.55 ms in this rather typical example.
In Fig. 3.17 B, the stimulus amplitude is varied from 80 pA in the upper plot
down to 20 pA in the bottom plot. 10 pA stimuli did not evoke any spikes. The
mean stimulation rate is kept constant at 39.7 imp/s. No shift is observable
in the latency. The plots marked with an asterisk are based on measurements
with identical stimulation conditions and exhibit mean latencies that match
very well.

3.8 Testing of epi-retinal prototype implants

Epi-retinal stimulations with flat polyimide foil electrode arrays (Fig. 2.7 B,
IBMT St. Ingbert) were successfully performed on two cats. Mapping of visual
cortical receptive fields was not possible directly after the surgical implantation
procedure.

In one experiment, electrical stimulation with single biphasic anodic stimuli
of 25 pA amplitude and 400 us total length was sufficient to evoke cortical
potentials that could be registered at the cortical recording sites. In the other
experiment, 6.25 pA stimulation was clearly above threshold.

Single cortical spikes could be driven with two stimulation electrodes (Fig.
3.2, R9 and R18). Latencies for these spikes depend on the stimulus channel.
Spikes that were elicited by retina electrode R9 have latencies of about 7.50 ms,
whereas those elicited by retina electrode R18 are seen after only 6.25 ms. The
temporal delay of spikes elicited by R9 can be explained by an additional intra-
retinal travel time.

Earliest evoked LFP responses peak between 10-20 ms after stimulation
onset. This latency is similar to latencies for epi-retinal electrical stimulation
with fiber electrodes (Fig. 3.18).

Activation is achieved exclusively by a spatially constrained set of stimula-
tion electrodes. Efficient retinal stimulation sites demarcate an elongated eRF
(highlighted yellow) slightly differing for cortical recording sites. The elon-
gated axis is oriented approximately along the axon fibers. Cortical ePSFs are
relatively broad for some of the efficient stimulation electrodes with occasional
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Figure 3.17: A) Example for the dependence of the spike latency on the mean
stimulation rate of electrical stimuli. Stimuli had Gamma distributed inter-stimulus
intervals (N=>5100). Spike PSTHs for one cortical recording site are shown. The
current amplitude for single biphasic stimuli was 60 pA. The mean stimulus rate is
increased from 5.2 imp/s in the upper plot to 72.7 imp/s in the bottom plot. The
narrowly distributed spike latencies shift systematically towards higher values for
increasing mean stimulus rates. B) Spike PSTHs for the same cortical recording
site as in A are shown. Here the mean stimulus rate is 39.7 imp/s and the stimulus
amplitude is varied from 80 pA in the upper plot down to 20 pA in the bottom
plot. 10 pA stimuli are sub-threshold (not shown). No dependence on the stimula-
tion amplitude can be observed. The plots marked with an asterisk have identical
stimulation conditions.
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sharp peaks (Fig. 3.20 B). In the two experiments with epi-retinal prototype
implants, ePSF-widths were within the range of those found with epi-retinal
fiber electrode stimulation.

3.9 Testing of sub-retinal prototype implants

Sub-retinal stimulations with flat polyimide foil electrode arrays (Fig. 2.7 C,
NMI Reutlingen) were successfully performed on two cats. Mapping of visual
cortical receptive fields, though, was not possible in these experiments. How-
ever, one cortical recording site showed visually evoked potentials when the
eyes were stimulated with a full field visual stimulus. Electrical stimulation
with single biphasic anodic stimuli of 50 A amplitude and 1 ms total dura-
tion evoked cortical potentials that could be registered at a subset of recording
sites. Fig. 3.19 summarizes the stimulation success for one experiment. Three
rows of five boxes are depicted schematically indicating the positions of the
corresponding stimulation electrodes on the retina. The horizontal electrode
separation is 0.1 mm, while the vertical electrode separation is 0.1 mm be-
tween the top and middle row, and 0.2 mm between the middle and bottom
row. The top row is at the distal end of the implant. Three more proximal rows
of electrodes did not activate cortical units at the recording sites (not shown).
The upper left electrode was damaged during the implantation surgery and
did therefore not work during the experiment. Electrode contacts were 7° — 8°
nasal and 2° — 3° superior of the area centralis. Each box contains PSTHs of
six cortical recording electrodes (C1, C3-7). Downward deflections indicate
cortical activations. As can be observed in the plot, cortical activation can
only be achieved by a certain subset of "efficient” electrodes that are grouped
closely together at top left forming an elongated eRF approximately along the
axon fiber orientation (highlighted yellow). The initial stimulation artifact is
present at all recording positions. At some recording positions, early cortical
activations occur as downward deflections shortly after the artifact (10-20 ms).
This latency corresponds to similar delays after epi-retinal electrical stimula-
tion with fiber electrodes. Later response components (20-60 ms) can be seen
at more recording positions than early response components, which is indica-
tive of a broadened cortical spread of activity.

Cortical ePSFs can be estimated from the LFP responses as shown in
Fig. 3.20 C. In the two experiments, ePSFs had a similar width as for epi-
retinal stimulation width fiber electrodes.
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Figure 3.18: PSTHs of cortical population responses (LFP) after para-central epi-
retinal electrical stimulation (N=202) with an implanted polyimide foil electrode
array (IBMT St. Ingbert). The electrode array extended from the optic disk to
the area centralis. Electrode contacts had a 750 pum spacing on a rectangular grid.
Box positions schematically indicate the positions of the stimulation electrodes. The
electrode contacts on top touched the area centralis, those at the bottom were placed
at the edge of the optic disk. Thus, ganglion cell axons extended from top to bottom
of the plot. Each box contains PSTHs of seven cortical recording electrodes (C1-CT7).
After an initial stimulation artifact which is present at all recording positions, earliest
cortical activation can be seen as downward deflections shortly after the artifact.
Note that cortical activation can only be achieved by a certain sub-set of ”efficient”
electrodes that are grouped together forming an elongated eRF (highlighted yellow).
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Figure 3.19: PSTHs of cortical population responses (LFP) after para-central sub-
retinal electrical stimulation (N=201) with an implanted polyimide foil electrode
array (NMI Tiibingen). Three rows of five boxes are depicted schematically indicat-
ing the positions of the corresponding stimulation electrodes on the retina. Electrode
contacts were 7° — 8° nasal and 2° — 3° superior of the area centralis. Each box con-
tains PSTHs of six cortical recording electrodes (C1, C3—-C7). Downward deflections
indicate cortical activations.
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Figure 3.20: Examples of ePSFs of cortical population responses (LFP) after
para-central epi-retinal electrical stimulation with A) fiber stimulation electrodes
(Marburg), B) an epi-retinally implanted polyimide foil electrode array (IBMT St.
Ingbert), and C) a sub-retinally implanted polyimide foil electrode array (NMI
Tiibingen). Distributions of cortical activity are shown for several stimulation cur-
rent amplitudes (A, B). Typical cortical responses are depicted to the right. Nor-
malized responses (red circles) for the generation of ePSFs were taken from the first
response component after the stimulation artifact.
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3.10 Stimulation with fiber electrodes and
implants

Fig. 3.20 compares ePSFs for epi-retinal fiber electrode stimulation (A), epi-
retinal foil electrode stimulation (B), and sub-retinal foil electrode stimulation
(C). Typical cortical LFP responses are depicted for each stimulation type.
The duration T of the excitatory phase of the cortical response is marked with
a horizontal bar. For just above threshold stimulation, T typically lies between
35-45 ms. However, the duration T can rise significantly for higher stimulation
amplitudes (Fig. 3.1).
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4 Discussion

4.1 General remarks

In order to assess the potential benefits for a blind patient equipped with a
retinal prosthesis, we studied the cortical representations of focal electrical epi-
and sub-retinal stimuli in the cat, namely the spatio-temporal cortical activity
distributions. We estimated the spatio-temporal resolution of electrical retina
stimulation from the location, width, and overlap of activity distributions.
Retinotopy and specificity of electrical stimulation were assessed by comparison
of electrically evoked responses to those visually evoked.

Retinal vRF's based on LFP match the corresponding retinal electrode lo-
cations very well. However, retinal vRFs based on spike activity are shifted
distally with respect to the representation of the optic disk (N=7). Cortical
eRF-positions are similar to cortical vRF-positions. In particular, the retino-
topic arrangement of cortical RF's is preserved for electrical stimulation. Lo-
cation and width of ePSF's are distinct for retinal stimulation electrodes. We
calculated the full width at half height of ePSFs for local field potentials to
0.92° £ 0.15° (N=7) near threshold stimulation and 1.58° 4 0.49° (N=121) at
about tenfold threshold stimulation. Average full width at half height was
1.28 mm £ 0.33 mm cortex corresponding to 1.4° + 0.4° visual angle (N=298,
four cats). Correspondingly, the amount of overlap between ePSFs of retinal
stimulation sites was smaller (i.e. spatial resolution higher) for low stimulation
currents (N=154 pairs of ePSFs tested): Minimum separabiles were 0.8° —2.0°
for near threshold stimulation and 1.6° —4.3° for about tenfold threshold stim-
ulation.

The fastest signal components of local field potentials had rise times of
8 — 12 ms depending on the stimulation current amplitude. Inter-stimulus
delays of 16 — 24 ms corresponding to a 40 — 60 imp/s mean stimulation
rate should therefore be resolved by the cortex. Mean inter-stimulus times of
as short as 12.5 ms evoked significant modulations of cortical activity. Thus,
even a stimulation rate of 80 imp/s might be resolved cortically. Spike latencies
increased with the mean electrical stimulation rate but did barely depend on
the stimulation amplitude. This can be explained by a model of spike initiation
that takes into account the relative refractory period of activated neurons.

Experiments with epi- and sub-retinal foil electrode arrays proved to be
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successful in demonstrating efficient and localized cortical activation. But
several lines of evidence indicate that epi-retinal electrical stimulation with
flat electrodes tends to stimulate axons prior to somata.

4.2 Electrical retina stimulation with fiber
electrodes and prototype implants

Experiments with epi- and sub-retinal prototype implants proved to be suc-
cessful in demonstrating efficient and localized cortical activation. Retinal and
cortical responses to visual stimuli vanished immediately after the implanta-
tion. Most probably the retina was traumatized during the eye surgery. When
cats were allowed to recover from the surgery, visually evoked responses could
be verified on subsequent days after the implantation. Based on our experience
with fiber electrode stimulations, it was still possible to position the record-
ing array over cortical sites that roughly corresponded to retinal stimulation
sites. Hence electrically evoked activity could be recorded and permitted the
estimation of ePSFs.

More detailed studies on the response characteristics and spatio-temporal
resolution of electrical retina stimulation were carried out with fiber electrodes.
The implantation surgery was atraumatic and fiber electrodes could easily be
repositioned during the experiment. Additionally, individual tight electrode
contacts onto the retina could be ensured and fine tuned under visual in-
spection. Because of this, fiber electrode experiments facilitated the detailed

analysis of ePSFs and eRFs.

4.3 Cortical evoked response characteristics

4.3.1 What is stimulated?

In our epi-retinal stimulations, we elicited none, one or more than one cortical
spike per stimulus when stimulation was sub-threshold, supra-threshold or
activating different populations of retinal cells, respectively. However, when
burst stimuli were applied (i.e. electrical biphasic stimuli in rapid succession
at about 2.5 kHz, N=1 observation), evoked cortical spike latency patterns
tended to be more complex than after single electrical stimuli. They revealed
up to six spike clusters within a 5 ms time interval (data not shown).

For the epi-retinal approach one expects that maximally one spike can be
evoked per stimulus and ganglion cell. This is due to the (relative) refractory
period of the ganglion cells (Nicholls et al., 1992) which is longer (ca. 10 ms)
than the typical duration of electrical stimulation impulses (0.4 ms). For elec-
trical burst stimuli, however, any of the N impulses within a burst can be
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supra-threshold. Additionally, consecutively evoked spikes can be temporally
integrated at subsequent synapses. Both mechanisms yield a differentiation of
spike latencies into the contributions of specific burst-impulses and hence yield
more complex spike latency patterns.

Principally, spikes can be elicited in rapid sequences as long as the inter-
stimulus delays exceed the refractory period of the stimulated cells. The
recorded data shows that efficient stimulation of cortical neurons is constrained
to inter-stimulus times larger than 12.5 ms. At this time scale it seems feasi-
ble to mimic the physiological statistics of retinal output by the generation of
complex ganglion cell activity patterns. If sub-retinal stimulation is applied,
the still intact retinal network is activated and can produce bursting activities
at the retinal output layer (Stett et al., 2000). Since the intensity of a visual
stimulus is rate-coded in normal vision, epi- and sub-retinal electrical stimuli
can code intensity or contrast information by means of the stimulation rate.

In some cases single cortical spikes could be driven with two stimulation
electrodes. The stimulation electrodes were positioned along the same retinal
axon fiber originating from a ganglion cell within the cortical neuron’s RF. This
indicates that epi-retinal stimulation was axonal for at least one of the stimu-
lation electrodes. From the difference between spike latencies and the known
electrode separation along the axon, we estimated the intra-retinal conduction
velocity. For example, Fig. 3.2 is based on an experiment in which stimulation
electrodes R9 and R18 of an epi-retinal implant were separated by 1.7 mm.
The evoked spike latencies differed by 1.14 ms. This leads to an intra-retinal
conduction velocity of 1.49 m/s which is in good agreement with data from
Stanford (1987) who reported conduction velocities between 1-2 m/s.

Nowak and Bullier (1997a) addressed the problem whether axons or cell
bodies are activated by electrical stimulation. They compared the chronaxies
for axonal and soma electrical stimulation in cortical gray matter by anti-
dromic activation and intra-cellular current injection, respectively. They re-
port that chronaxies for axonal stimulation were very similar to those for post-
synaptic potentials after extracellular electrical stimulation. On the contrary,
chronaxies for soma stimulation were 40 times higher. This indicates that
axons and not cell bodies are the neuronal elements activated after electrical
stimulation of gray matter. With epi-retinal stimulation, stimuli are applied
to a highly segregated, laminar structure with ganglion cell axons being closer
to the stimulation electrode tip than somata. This also supports the notion
that axons are more likely to be stimulated.

4.3.2 Precision of electrically evoked cortical responses

In our data, latencies for cortical spikes were between 3.4-9.0 ms and were
narrowly distributed with an absolute width of 0.5 ms or less (Fig. 3.17). Lee
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et al. (1977) demonstrated that the conduction time for a spike in a retinal
ganglion cell to its cortical target is between 4.5-7.5 ms for X or Y cells. Our
conduction times for axonally evoked spikes were even lower (e.g. see first spike
in Fig. 2.3), since a fraction of the intra-retinal travel time, which can easily
add up 1-3 ms depending on the stimulation eccentricity, is spared (Stanford,
1987). Latencies beyond the range given above by Lee et al. (1977) can be
attributed to the occasional recording from neurons at subsequent steps of
cortical signal processing. In this case, additional temporal delays comprise
post-synaptic spike initiation times (about 0.4 ms), mono-synaptic delays (0.6—
1.05 ms), and di-synaptic delays (1.05-2.4 ms) (Ferster and Lindstrém, 1983).
Moreover, Eger (2001) argued that epi-retinal electrical stimulation can simul-
taneously excite magno- and parvo-cells, which show distinct latencies in a
similar range. Due to the reliability and precision of the excitation (in some
cases one spike for every stimulus within 4+ 0.3 ms), activated neurons carry a
large amount of information about the stimuli (Eger, 2001).

In addition to the retinal position, spike latencies depend on the mean elec-
trical stimulation rate but not on the stimulation amplitude. For higher mean
stimulation rates, cortical spike latencies are delayed and have an increased
variability (Fig. 3.16 A and Fig. 3.17 A). This effect cannot be explained by
an apparent decrease of stimulation efficacy per se, since spike latencies are not
changed with different stimulation amplitudes (Fig. 3.16 B). A similar effect
has been reported by (Stone and Hoffmann, 1971). They electrically stimu-
lated in the optic chiasm of anesthetized cats and recorded evoked pre- and
post-synaptic activity in the dLGN. Compared to a stimulation at 1 imp/s, a
stimulation at 100 imp/s caused an increase in spike latency, and in the vari-
ability of the spike latency. The latency of the pre-synaptic signal, however,
was unchanged. This indicates that the rate-dependent change in the post-
synaptic spike latency may be attributed to the spike initiation mechanism.

These somewhat surprising latency-effects can be explained by the influence
of the refractory period of spiking neurons on the efficiency of stimuli. When
the mean electrical stimulation rate is elevated, i.e. the mean inter-stimulus
interval lowered, an increasing number of electrical stimuli falls into absolute
refractory periods of activated neurons and hence fails to be efficient. This re-
duces the total yield of evoked spikes. At intermediate inter-stimulus intervals
(10-50 ms), electrical stimuli tend to fall into the relative refractory periods of
activated neurons. Refractory neurons are excited if the extracellular stimula-
tion potential exceeds the slowly recovering threshold potential of the neuron.
However, due to the negative slope of the threshold potential, the probability
that a stimulus excites the neuron increases with the duration of the stimulus.
The threshold potential "approaches” and traverses the extra-cellular voltage
drop caused by the stimulation, thus favoring a delayed response. This effect
is barely visible at low stimulation rates, since most inter-stimulus intervals
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are longer than the refractory period.However at high stimulation rates the
excitation delay becomes evident.

When the stimulation amplitude is increased, more retinal ganglion cells
are simultaneously activated, because the electrical field depolarizes a wider
retinal area (Schanze et al., 1997). A contiguous population of ganglion cells
projects to a contiguous population of target cells in the dLGN and the cortex.
Thus, with higher stimulation amplitudes activating more neurons, lateral con-
nections among target cells can support the cooperative activation of dLGN
cells by means of spatial summation. This increases the probability of the
generation of post-synaptic dLGN spikes, which are detected as first spikes in
the input layer 4 of the primary visual cortex. However, the latency of the
first spike is only weakly affected. Temporal summation of pre-synaptic dLGN
inputs has no effect due to the simultaneity of the afferent input. The latency

of first cortical spikes is therefore not influenced by temporal summation at
the dLGN level.

The classical view of retinal stimulus encoding states that ganglion cells
encode their inputs by their output firing rate (Meister and Berry, 1999). Due
to the variability of the neuronal firing rate, this coding scheme requires a
considerable time for information processing (Mountcastle et al., 1962). How-
ever, stimulus specific cortical responses have been found as soon as 40 ms
after the stimulus (Celebrini et al., 1993). To overcome the limitation of a
short information processing time, temporal codes have been proposed that
take into account the timing of first cortical spikes. Rullen and Thorpe (2001)
showed that natural visual stimuli could be reliably extracted from a popu-
lation of ganglion cell spike trains by means of the rank order of first spike
arrival times. By appropriately arranging spatio-temporal electrical stimuli,
rank orders of evoked first spikes could be specifically set within a population
of cortical neurons. Given that the latency of cortical spikes can be influenced
by the stimulation rate, information may be encoded in the spike arrival times
by a modulation of the mean stimulation rate, too.

4.3.3 Multi-peaked averaged cortical responses

Multiple peaks were often observed in the PSTHs of cortical population re-
sponses (Fig. 3.1). This repetitive excitatory activity may be caused by intra-
cortical feedback loops in response to electrical stimuli. Moreover, the activa-
tion of segregated retino(-thalamo)-cortical pathways may account for burst-
like responses due to distinct latencies for magno-, parvo- and conio-pathways.
However, Nowak and Bullier (1997b) (and earlier work by Kirk et al., 1975)
found that retino-geniculate conduction times differed between retinal cell
types: On average, Y axons transfer information to the cortex 3.5 ms faster
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than X axons, and X axons 6 ms faster than W axons. Troy and Lennie
(1987) pointed out that the conduction advantage of the Y pathway is small
compared to the variability in latency of reliable detection of a visual stimulus
and therefore of minor importance for visual perception. Baseler and Sutter
(1997) and Klistorner et al. (1997) identified distinct magno- and parvo-cellular
contributions to the multi-focal VEP in human volunteers. The parvo-cellular
component was delayed by about 20 ms. Magno- and parvo-cellular cortical
input may account for the first and second excitatory peak in the observed
multi-peaked PSTHs. Conio-cell activities as well as the activation of intra-
cortical feedback loops may contribute to the later response components.

In some recordings, the polarity of cortical LFP responses was inverted
with respect to the other recording sites (Mitzdorf and Singer, 1978). In these
cases, electrodes had always been inserted into deeper cortical layers as noted
in the experiment protocols. However, excitatory and inhibitory responses
could be identified by the analysis of spike activity simultaneously recorded by
the same electrode (MUA and SUA).

4.3.4 Properties of visual receptive fields

Fig. 4.1 shows a schematic representation of the pattern of fiber bundles in the
central part of the right retina of a cat (modified from Stone and Holldnder,
1971). Each bundle consists of a number of axons, each arising in individual
ganglion cells and projecting to the optic disk. The visual stimulus used for
assessing VRF's was projected on a retinal area highlighted by the light blue
rectangle. Contours of cortical vRFs (as in Fig. 2.6) are projected onto cor-
responding retinal locations (small colored circles) and appear upside down
with respect to the representation in the visual space. Axons originating in
the vicinity of the cortical vRFs are highlighted in dark blue.

Visual RFs of cortical recording sites sometimes showed a non-conformal
visuotopic organization. Some adjacent cortical recording sites have vRFs
that strongly overlap, others are clearly separated. This has been observed by
others as well (Das and Gilbert, 1997; Normann et al., 2001) and may reflect
the patchy organization of the visual areas (e.g. bands of ocularity in cat area
18).

The vRFs of retinal electrodes were distinct for LFP and MUA signals
(Fig. 3.3). LFP-vRFs closely resembled the stimulation array’s geometry. In
comparison, MUA-vRF's were shifted to more distal locations with respect to
the optic disk. The connection lines between corresponding LFP- and MUA-
vRFs were oriented similar to the axons at this retinal location (compare high-
lighted axon bundles in Fig. 4.1 to those in Fig. 3.3). Since the LFP signal
is band-limited to 1-140 Hz, LFP-vRFs are not influenced by the vigorous
retinal spike activity. Most probably, retinal LFP reflects local intra-retinal
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Figure 4.1: A schematic representation of the pattern of fiber bundles in the central
part of the right retina of a cat. Each bundle consists of a number of axons, arising
in individual ganglion cells and projecting to the optic disk (white circle in the lower
right quadrant) (modified after Stone and Holldnder, 1971). The red hatched circle
marks the area centralis. The visual stimulus used for assessing vRFs fell on a retinal
area highlighted by the light blue rectangle. Contours of cortical vRF's are projected
onto corresponding retinal locations (small colored circles). Due to the geometry of
the projection, vRF's are plotted upside down with respect to the representation in
visual space (same vRF's as in Fig. 2.6). Note the orientation of axons originating
in the vicinity of the vRFs (highlighted dark blue).

activity generated by photoreceptors, horizontal cells, bipolar cells, or amacrine
cells. These neurons can produce slow graded potentials within the frequency
range of the LFP signal. Graded potentials, however, are rather localized.
This suggests that LEP-vRF's are located at the actual position of the retinal
electrode. But MUA reflects the density of spike activity. The shift of MUA-
vRF's to more distal locations is therefore indicative of the recording of spikes
from axons originating in more distal somata. This is illustrated in Fig. 4.2.
The figure shows interpolated cross correlation maps between a multi-focal
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Figure 4.2: Example of interpolated cross correlation maps between a multi-focal
visual stimulus and the simultaneously recorded MUA and LFP response of one
retinal electrode. Stimulation details as in Fig. 2.6. Arrows indicate the assumed
trajectories of ganglion cell axons to the optic disk (OD). Dashed circles indicate
positions of MUA-vRFs superimposed on the LEFP-vRF map.

visual stimulus and the simultaneously recorded MUA and LFP response of
one retinal electrode (R6 in Fig. 3.3). The direction to the optic disk (OD) is
indicated by the arrows. One MUA-vRF is located at the far left (dark patch)
and a second, less pronounced about 2.1° further proximal with respect to
the optic disk (white patch). The neurons responsible for the two MUA-vRFs
have opposing characteristics: one group of neurons prefers an "OFF-ON”
step in luminance (”ON”-cells), the other an ?ON-OFF” step ("OFF”-cells).
The LFP-vRF is shifted about 4.1° further proximally. Corresponding neu-
rons prefer the ”OFF-ON” luminance step. According to the explanations
aforementioned, the retinal electrode was located at the position reflected in
the LFP-vRF. The two MUA-vRFs indicate that ”OFF”- and ” ON”-ganglion
cells at the retinal MUA-vRF locations generated spikes in response to the vi-
sual stimulus. These in turn were detected when the spikes passed the retinal
recording site along their respective axon.

Despite a continuous intra-venous medication with a muscle relaxating
agent, residual eye movements were evident in shifted vRFs of retinal and
cortical recording sites. However, the relative positions of retinal LFP- and
MUA-vRFs were unchanged for small eye movements (up to 3°), indicating
that the locations of the retinal electrode tips were stable with respect to the
retina. Most probably, retinal electrode tips were passively moved along with
the eye movement due to their tight contact with the retina.
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4.3.5 Properties of electrical receptive fields

The LFP-vRFs of retinal stimulation electrodes were taken as the ”sampling
points” for cortical eRFs. The analysis of cortical eRF's is thus based on the as-
sumption that visual and electrical stimuli presented at the position of retinal
LFP-vRFs stimulate the same cortical cells. However, as mentioned before,
vRF's of retinal stimulation electrodes do not necessarily coincide with the ac-
tual sites of retinal activation. In particular, separations of stimulation sites
along the retinal axons are more prone of misjudgments than those perpen-
dicular to the axon orientation. Therefore, the estimation of eRF-locations is
more precise in perpendicular than in parallel direction relative to axons. In
most experiments, the cortical recording electrode array was oriented roughly
in parallel to the vertical meridian. Because of this, the corresponding vRF's
of the cortical electrodes were oriented perpendicularly to axons at the eccen-
tricities used. Thus, we chose an electrode configuration that minimized the
influence of the uncertainty of the exact stimulation site on the eRF estimation.

The estimation of eRFs was constrained by the limited number and the
geometry of retinal stimulation electrodes. Seven electrodes were available
with the fiber electrode array. However, estimated eRFs could be compared
to corresponding vRFs (Wilms et al., 2001a,b). Locations of eRFs were near
to vRF's, confirming the retinotopic distribution of electrically evoked cortical
activity. The estimation of eRFs can be improved with retinal stimulation
arrays with many densely spaced electrodes.

4.4 Estimate of spatial resolution with retinal
implants

Cortical cells can only contribute to the processing of stimulus information if
their activity is changed in response to the stimulus. Thus the spatial spread
of cortical responses to stimuli roughly represents the cortical region dedicated
to the processing of stimulus information. The analysis of LFP data yields a
conservative measure of cortical spread since it integrates pre-synaptic inputs
of a wider cortical area than compared to analyses based on data of single
cortical cells (Schanze, 1995). Therefore, the estimation of spatial resolution
of electrical retina stimulation was based on the analysis of the width of ePSF's
as well as the minimum separabiles for LFP.

Worgotter et al. (1998) and Worgotter and Eysel (2000) demonstrated
that anesthetized cats show spontaneous transitions from a synchronized EEG-
mode similar to the state of drowsiness and sleep to a non-synchronized mode
as during alertness. During phases of synchronized EEG, brief high-frequency
bursts of spikes in the dLGN resulted in more effective connectivity and lead to
a larger point spread of activity and wider RFs. In our case, spatial resolution
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was assessed in an anesthetized animal preparation, which often shows syn-
chronized EEG. This is further evidence that our analyses yield a conservative
estimate for the spatial resolution in wake animals or blind people.

With a linear recording electrode configuration, separations of ePSFs cen-
tered in a line perpendicular to the recording electrode array orientation could
only poorly be assessed. The reason is that merely the projection of the con-
nection line onto the recording electrode array orientation could be estimated.
However, the measurement of the FWHH was not affected by the recording
electrode orientation (equations 2.1-2.4).

The minimum detectable base width of ePSFs was twice the recording
electrode spacing. In this case, supra-threshold activity was detected by only
one recording electrode. For Gaussian fits to ePSFs this constraint lead to a
minimum detectable FWHH of about one recording electrode spacing (305 pm
or 500 pm). The upper bound for FWHHs was constrained by the size of
the recording array (up to 4.3 mm) and was about half the total extent of
electrodes (i.e. approximately 2.15 mm) in order to capture the base width of
the activity distribution.

4.4.1 Width of cortical ePSFs

We calculated the average FWHH of ePSFs for LFP to 1.28 mm + 0.33 mm
cortex (Fig. 3.10). This corresponds to 1.4° + 0.4° visual angle (mean cortical
magnification factor 0.9 mm cortex/deg at 5° eccentricity; Tusa et al., 1979).
The FWHH increased with the stimulation current amplitude. It was 0.92° 4+
0.15° (N=7) near threshold stimulation and 1.58° + 0.49° (N=121) at about
tenfold threshold stimulation.

The width of ePSFs was influenced by the stimulation current amplitude
and the frequency band analyzed (different integration fields for SUA, MUA,
and LFP). Additionally, the stimulation and recording electrode diameter,
electrode-to-tissue distance, and depth of anesthesia further affect the am-
plitude and width of ePSFs. The amplitude and width of ePSFs increased
with increasing stimulation current (Fig. 3.10) and differed between stimula-
tion electrodes. This was also reported for sub-retinal electrical stimulations in
in-vitro chicken preparations (voltage pulse stimulation with a micro-electrode
array, individual electrode diameters 10 pm; Stett et al., 2000). Here, the
width of retinal activity distributions was about 0.2 mm and was smallest for
low stimulation voltages. Based on LFP data from cat visual cortex we found
an average FWHH of 1.28 mm cortex corresponding to 1.4° visual angle and
to 0.28 mm retina (5°/1 mm retina). Given the extended spatial integration
window of LFP data compared to single unit recordings, the data from chicken
retina and cat cortex give comparable results.

In psychophysical experiments, blind volunteers perceived phosphenes of
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increasing size and brightness, when the amplitude and the duration of applied
electrical epi-retinal stimuli were increased (biphasic current stimuli of 1-4 ms
duration and 300-800 pA amplitude, electrodes were positioned 0.5 mm distant
from the retinal surface; Humayun et al., 1996). In the auditory domain,
cochlear implant stimulation in the cat yielded increasingly broader cortical
response areas, hence diminished spatial resolution if the stimulation current
amplitudes were increased (Dinse et al., 1997). The adjustment of the ePSF
width and hence, spatial resolution, may be achieved by means of fine tuning
of the stimulation currents for individual retinal electrodes.

The amount of overlap between ePSFs was analyzed for N=154 pairs of
ePSFs. It was smallest (i.e. spatial resolution highest) for low stimulation
currents that were just above stimulation threshold. Minimum separabiles
were 0.8° — 2.0° for near threshold stimulation and 1.6° — 4.3° for about ten-
fold threshold stimulation. The analyses of FWHHs and minimum separabiles
therefore give similar results for the spatial resolution. In particular, the best
spatial resolution based on LFP responses is in the range of 0.8° visual angle.

4.4.2 Dynamics of cortical ePSF's

The temporal evolution of ePSF's often shows two phases. With near-threshold
stimulation, localized activity appears in isolation within 10-20 ms latency.
This first volley of activity probably reflects mono-synaptic cortical responses
in layer 4 directly driven by the dLGN (Mitzdorf, 1985). When stimulated
with higher current amplitudes, cortico-cortical interactions become supra-
threshold for more distant sites at a temporal offset of about 20 ms after
the initial response (Fig. 3.12). The dynamic broadening of ePSFs results
either from two parallel inputs (a fast, locally projecting and a slow, broadly
projecting) or one local input to the cortex followed by a radial spread of
activity. Most probably, the broadening of ePSFs takes place at the cortical
level rather than in the retina or dLGN and is mediated by lateral interactions
like thalamo-cortical feedback, the intra-cortical feedback and the feedback
from higher areas (Dinse and Kriiger, 1994). For the estimation of cortical
spread evoked by retinal stimulation, the first response component was chosen.
At this moment of retino-cortical signal transduction, intra-cortical processing
has not shaped spatial activity distributions, yet. Later response components
reflect subsequent processing of activity.

4.4.3 Multi-peaked cortical ePSF's

Cortical ePSFs are single- or multi-peaked (Fig. 3.9). These peaks are fixed
to cortical positions. Shifting the retinal stimulation sites resulted only in
slight shifts or in formation of adjacent peaks. Therefore, multi-peakedness
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is probably of cortical origin and might reflect the structured organization of
the visual cortex, including its inhomogeneous input (Hubel and Wiesel, 1977;
Horton and Hubel, 1981; Cynader et al., 1987). Since electrical stimulation was
applied monocularly, multi-peaked ePSFs might result from ocular dominance
columns found in cat area 17 and 18. In cat area 18 Cynader et al. (1987) found
bands of cells with similar preferred eye input. The stripes roughly extended
perpendicular to the vertical meridian. The cortical distance between these
bands was 1.86 £ 0.75 mm. This roughly matches the separation of peaks in
the ePSF's in area 18.

4.4.4 Comparison of cortical vPSFs and ePSF's

The analysis of vPSF's suggests that spatio-temporal resolution may be under-
estimated by analyzing the width of ePSFs. Cortical vPSFs are often broader
(2 —3 mm FWHH,; Fig. 3.6) than ePSFs (1.28 mm £ 0.33 mm). Since visual
stimulation was multi-focal (with 1° visual stimuli) one should not compare
the vPSFs directly with ePSFs that were produced with uni-focal stimuli (ca.
0.25° stimulation electrode diameter).

The visual input activates retinal networks in a more natural way than an
(epi-retinal) electrical stimulus does. On parallel magno-, parvo-, and conio-
cellular pathways with distinct latency ranges, connectivity patterns and visual
tuning properties, different stimulus features ("ON”, ”OFF”) are encoded sep-
arately (Kuffler, 1953). With visual stimuli, the spatio-temporal input to the
cortex is more complex and ”"rich” and can specifically activate specialized
cortical units. In contrast, with electrical stimulation, intra-retinal processing
is partly or totally bypassed. Electrical stimuli synchronously activate retinal
cells or fibers regardless of their visual function. However, magno-cellular neu-
rons might be stimulated more efficiently than parvo- or conio-cells because
they are larger and activation thresholds are low for neurons with large diam-
eters (Ranck, 1975). The lack of complexity of cortical input after electrical
stimulation leads to an inefficient stimulation of the cortex. Summarizing, one
might expect that visual point stimuli are more efficient and hence activate a
larger cortical area than electrical point stimuli of the same retinal extent.

Grinvald et al. (1994) reported how after visual stimulation onset, cortical
activity spread from the site of initiation over an area at least ten times larger
in upper cortical layers (real-time optic imaging after visual stimulation with
small drifting gratings). The space constant for this spread was 1.5 mm per-
pendicular and 2.7 mm parallel to the V1/V2 border in macaque monkey. The
activity spread at velocities of 0.10-0.25 m/s.

Cynader et al. (1987) estimated the width of vPSFs in area 18 of the cat to
0.8-2.35 mm (FWHH) along the anterio-posterior axis (approximately along
the vertical meridian). As a possible reason for broad vPSFs they suggested
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a ”compromise between the contradictory demands for high precision of local-
ization of multiple stimuli and representation of many response features for
each point in visual space.”

Jancke et al. (1999) and Dinse and Jancke (2001) transformed cortical ac-
tivity maps of cats to visual space. The projection was performed according to
the visual RF's of the cortical recording sites in order to study cortical responses
to visual stimuli in a common metric space. In the context of retinal electrical
stimulation, this transformation would facilitate an impression of what elec-
trical stimuli might "mean” for an observer, since cortical responses would be
assessed in visual space rather than in cortical coordinates. However, a prereq-
uisite for this approach is the existence of retinotopic cortical maps that do not
alter in response to long-term electrical stimulation. This cannot be expected
in blind people, especially after a prolonged deprivation of meaningful physi-
ological input to the cortex. Instead, is has been reported that adult cortical
connectivity adapts to the lack of sensory input by substantially rearranging
RF-maps (Pons et al., 1991; Rauschecker, 1995). The rather stereotype and
highly synchronized cortical input after electrical stimulation with a retinal
implant is expected to evolve a much simpler cortical representation of the
visual world (”Hebbian learning”). With a retinal implant, visual objects will
be cortically represented in an one-to-one retinotopic fashion (Wilms et al.,
1999). Thus, in the framework of predicting the spatial resolution of electrical
retina stimulation in deprived visual cortices, it is sufficient to analyze the
cortical representation of electrical stimuli rather than their transformation to
visual space.

4.5 Estimate of temporal resolution with
retinal implants

4.5.1 Analysis of response rise times

Temporal resolution achievable with electrical retina stimulation was assessed
by estimating the signal rise time at the initial phase of cortical LFP responses
to electrical stimuli. As expected, the rise time declined with increasing stim-
ulation strength. Since the electrical field produced by the retina electrode
extends to a retinal area that is larger for higher stimulation currents, an in-
creasing number of retinal ganglion cells can be activated synchronously. As
a result, spatial integration at subsequent synaptic connections (ALGN and
layer 4 of the cortex) requires less time for the post-synaptic neurons to be-
come supra-threshold. In this way, the first volley of activity is conveyed faster
to the cortex. Rise times were in the range of 8-12 ms, depending on the stim-
ulation current amplitude. Taking twice the rise time as a measure for the
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temporal resolution, electrical stimulation at 40-60 imp/s will probably be re-
solved by the cortex. Strong electrical stimuli yield higher temporal resolutions
since response rise times are shorter.

4.5.2 Dependency between stimulation rate and efficacy

The temporal resolution for visual stimuli can be defined as the smallest per-
ceivable temporal interval between visual stimuli. This interval is estimated
in psychophysical tests by presenting visual stimuli at various repetition rates
(van de Grind et al., 1973; Ripps and Weale, 1976). The maximum perceivable
repetition rate, the ”critical flicker frequency” (CFF) is limited by the refrac-
tory period of activated neurons along the visual pathway and depends on the
light intensity of the test stimulus. Stimulation at repetition rates exceed-
ing the CFF leads to a perceived fusion of individual stimuli resulting in the
percept of continuous illumination (Kelly, 1972). In the photopic range, the
CFF increases with the logarithm of the stimulus luminance and typically is
between 10-50 imp/s (" Ferry-Porter-law”; van de Grind et al., 1973). Griisser
and Creutzfeld (1957) reported that in cat visual cortex, individual neurons
can follow visual stimuli at up to about 47 imp/s at 500 lux luminance. The
average cortical CFF in their preparation was 18.8 imp/s. At stimulus rep-
etition rates beyond the CFF, retinal and cortical neurons fail to respond to
every flicker but still exhibit increased stimulus-locked activity.

In analogy to the visual CFF, flicker fusion frequencies were also examined
for phosphenes evoked by electrical stimuli to the eye. In psychophysical ex-
periments with human observers, one electrode was placed on the forehead,
the other on the temporal bone near the eye (van de Grind et al., 1973). Sim-
ilar to visual stimulation, the CFF increases with electrical stimulus intensity.
The minimum threshold in the light-adapted eye amounts to about 20 imp/s.
Generally, electrical CFFs were found to be higher than visual CFFs (van de
Grind et al., 1973).

In this study, the maximum frequency of epi-retinal electrical stimulation
capable of evoking significant neuronal activity was estimated. Stochastic stim-
uli were used in order not to overstate temporal resolution by the analysis of
responses to continuously oscillating stimuli (Boynton, 1972). In a series of
measurements, the mean stimulation rate of electrical stimuli with Gamma
distributed inter-stimulus intervals was varied systematically. Electrical stim-
ulation at mean rates of 60-80 imp/s were efficient in evoking a significant
number of spikes (S/N > 2, Fig. 3.15 A) if retinal stimulation sites matched
the RFs of the cortical recording sites. Obviously, these rapid sequences of
electrical stimuli with natural interval statistics can modulate cortical activ-
ity. This suggests that coding of visual stimulus information is possible at a
temporal resolution of 12.5 ms.
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According to the data, the maximum efficient electrical stimulation fre-
quency is in the same range or higher than the psychophysical CFF for visual
stimulation. This is not astonishing, because the slow intra-retinal signal pro-
cessing is by-passed by epi-retinal electrical stimulation.

4.5.3 Analysis of response duration

As a rough estimate of the temporal resolution achievable, the durations of the
excitatory phase of LFP responses were examined. Response durations were
20-50 ms in most cases. Shortest durations, hence best temporal resolutions,
result with stimulation just above threshold level. However, the excitatory
response duration can rise significantly for stimulation at higher amplitudes
(Fig. 3.1). The response durations suggest that electrical stimulation at about
20-50 imp/s should be possible. When SUA is concerned, response durations
dramatically shrink to 0.5 ms (absolute width of spike latency distributions
in Fig. 3.17). However, this does not imply that temporal resolution of elec-
trical stimulation is in the range of 0.5 ms. Electrical stimulation at a rate
of 2000 imp/s is certainly not efficient. Although retinal ganglion cells can
discharge at rates of 200-800 imp/s in burst mode (Kuffler, 1953) and optic
nerve fibers can convey spikes at a maximum rate of 400-800 imp/s (Enroth,
1952), the maximum perceivable rate is much lower. The data shows that re-
sponse S/N-ratios drop to chance level at electrical stimulation rates beyond
100 imp/s (Fig. 3.15 A). Therefore, the response duration affects the precision
rather than the achievable temporal resolution of retina stimulation.

Eger (2001) analyzed LEP and MUA in response to electrical stimuli with
Gamma distributed inter-stimulus intervals. He reported that stimuli conveyed
a maximum of transinformation in the range of 20-140 bit/s at mean stimulus
rates of 2040 imp/s suggesting a temporal resolution of 25-50 ms. Due to the
high S/N-ratios for first spike responses (Fig. 3.15 A), the maximum amount of
transinformation conveyed by SUA may be shifted to even higher stimulation
rates compared to LFP and MUA.

Summarizing, is is useful to assess temporal resolution by the analysis
of stimulation efficacy (S/N-ratios), signal rise times, and transinformation
between stimulus and response. These methods yield temporal resolutions
of about 40 imp/s, which may be regarded as a lower bound for temporal
resolution in the design of a retinal implant. Electrical stimulation at an
overall frame rate above the CFF avoids the sensation of a — probably annoying
— pseudo-visual flicker.

Cues for visual binding arise from the temporal structure of the stimulus
(Lee and Blake, 1999). Since a high precision of cortical responses to electrical
retina stimulations is guaranteed (Fig. 3.17), the coding of complex objects
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that involves linking of even disjoined object parts seems feasible.

4.6 Cortical plasticity under electrical retina
stimulation

The learning capacity (”plasticity”) of the visual cortex is expected to play a
crucial role in the functioning of any retinal implant (Wilms et al., 1999). In
particular, it is expected that the visual cortex reacts in a way to optimize
its information processing capabilities for the unfamiliar pseudo-visual electri-
cal input (Joublin et al., 1996; Zeki, 1993). In preliminary experiments we
attempted to induce "learning effects” by prolonged electrical stimulation ses-
sions with single or paired stimulation electrodes. Stimulation sessions lasted
for up to 25 min of repetitive stimulation with various stimulation current am-
plitudes and rates. However, no significant changes, neither in RF position,
size, nor the coupling strength of pairs of recording channels were observed.

Dinse et al. (1993) reported that significant changes in cooperativity of
single neurons parallel RF changes. These effects were observed after sev-
eral hours of intra-cortical micro-stimulation in the somatosensory cortex of
monkeys and rats. Godde et al. (1996) reported that 6-15 hours of tactile
coactivation resulted in selective and reversible reorganization of RFs and cor-
tical maps in the hind paw representation of adult rats. Later, they found that
tactile coactivation-induced changes in spatial discrimination performance of
human volunteers could be evoked with stimulation protocols exceeding 30 min
(Godde et al., 2000).

This suggests that experiments addressing the question whether cortical
plasticity may be mediated by electrical retina stimulation should use longer
stimulation sessions of several hours. To keep experimental conditions stable
over such long periods of time, the long term implantation of retinal implants
is necessary. The time course of potential learning effects can be uncovered by
monitoring the cortical responses to test stimuli.

Klinke et al. (1999) reported that congenitally deaf cats showed improved
hearing ability when exposed to months of meaningful electrical stimuli by
an implanted cochlear stimulator. In particular, ”chronically implanted cats
produced field potentials of higher amplitudes, expanded area, developed long
latency responses indicative of intra-cortical information processing”. How-
ever, when congenitally or pre-lingually deaf adult humans received cochlear
implants, the results were disappointing.

Long-term exposure to spatio-temporal input patterns leads to a reorga-
nization of cortical connectivity. In blind people with profound practice in
Braille reading, visual areas V1 and V2 exhibit an increased cerebral blood
flow when subjects were instructed to perform discriminative Braille or non-



68 OUTLOOK ON VISUAL PROSTHESES

Braille reading tasks. In contrast sighted subjects showed a decreased regional
cerebral blood flow in the same task (Sadato et al., 1996). Similarly, string
players who started playing in early childhood, exhibited an increased cortical
representation of the fingers of their left hand (Elbert et al., 1995).

Lack of spatio-temporal input patterns due to visual scotoma (e.g. retinal
injury) or after deafferentiation of sensory input (Pons et al., 1991; Rauschecker,
1995) can lead to long-term reorganizational changes that allow adjacent af-
ferents, even of other modalities, to take over idle cortical area for information
processing.

Experiments on the spatio-temporal resolution were performed in cats with
intact visual systems. Although the cat was chosen for its similar visual system,
it still remains unclear whether conclusions drawn from these experiments have
significance for the assessment of spatio-temporal resolution in blind human
patients. Studies in blind volunteers including rehabilitation training methods
for fine tuning of the visual implant will further improve predictions on the
benefit of a visual prosthesis based on electrical retina stimulation.

4.7 Outlook on visual prostheses

Our data show that best spatial resolutions of electrical retina stimulation
were in the range of 0.8° — 2.0°. The methods used were chosen to obtain
a conservative measure for the spatial resolution. Thus higher spatial resolu-
tions are probably possible. Cha et al. (1992a) reported that a pixelized vision
system based on a 25x25 square grid spanning 30° visual angle is sufficient
to allow sighted volunteers to navigate in complex visual environments with
nearly normal speed. In order to equip the implant patient with such a pix-
elized vision one requires an angular resolution of 1.2° at 625 stimulation sites.
Unfortunately, this does not suffice for normal reading. Cha et al. (1992b)
demonstrated that 625 pixels with a spacing of 4 min of arc (1.7° of central vi-
sual field) was needed to allow sighted volunteers reading at 2/3 normal speed
(170 words/min with scrolled text or 100 words/min with fixed text). The
epi-retinal approach, however, facilitates optical zooming into the visual field
and is therefore capable of adjusting angular resolution at the expense of the
size of the simultaneously represented visual field. This feature is not supposed
for the current sub-retinal approach, which is constrained to a fixed angular
resolution.

An angular resolution of 0.8° provides the potential implant patient with
an artificial visus of 1/48. Equipped with a sufficient number of stimula-
tion electrodes, the patient will still be legally blind but probably be able to
discriminate large objects for navigation in visual environments (Cha et al.,
1992a).

From the neurophysiological point of view, temporal resolution is a minor
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problem. Stimulation rates of 80 imp/s evoke significant cortical single unit
activity. The analysis of LFP rise times suggests temporal resolutions in the
range of 40-60 imp/s. Eger (2001) found a maximum of transinformation in
population activity at mean stimulus rates of 2040 imp/s. Thus, electrical
stimulation beyond the psychophysical CFF should be feasible and avoid the
perception of pseudo-visual flicker.

There is some evidence that epi-retinal stimulation with flat electrode con-
tacts tends to activate ganglion cell axons rather than somata. This means
that the spatial resolution of electrical retina stimulation is better perpendicu-
larly, than in parallel to axon fibers. In order to overcome this asymmetry, one
should aim at stimulating somata or axons that originate in proximal somata
rather than in distal ones. This may be achieved by stimulation electrodes
that impinge on the membrana limitans interna and traverse the axonal layer
towards the somata (”quasi-intra-retinal stimulation”; Eckhorn, 1997). The
study of LFP- and MUA-vRFs for retinal fiber electrodes may shed light on
the benefits of the quasi-intra-retinal stimulation approach (cf. 3.3): the angu-
lar separation of LFP- and MUA-vRF's should decrease with the penetration
depth of the recording electrode into the retina. As the electrode tip traverses
several layers of axons, the MUA signal contains spikes originating from in-
creasingly proximal ganglion cell somata. If the electrode tip is in the vicinity
of a ganglion cell soma, MUA-vRFs and LFP-vRFs should become congruent.
However, it is still not clear, whether the retinal neurons activated by electrical
stimulation are located within vRFs of the retinal electrodes. Soma spikes are
larger in amplitude and duration and therefore more likely to be detected in
vRF measurements (Kuffler, 1953). On the other hand, retinal axons of more
distal somata might be more likely to be electrically stimulated since they have
lower stimulation thresholds than somata (Nowak and Bullier, 1997b,a).

The sub-retinal approach elegantly evades the axon stimulation problem
by stimulating the retinal network at its natural input level near the photore-
ceptor layer. However, the proposed sub-retinal concept relies more strongly
on a more or less intact intra-retinal circuitry than the epi-retinal approach.
Moreover, state-of-the-art photodiode stimulation arrays are not capable of
extracting enough stimulation energy out of the naturally occurring levels of
retinal illumination, yet. Equipping the sub-retinal implant with an exter-
nal power supply as proposed by Zrenner et al. (1999) might overcome this
limitation.

Further research should concentrate on the influence of electrical multi-focal
stimulation on the spatio-temporal resolution feasible with electrical retina
stimulation, since this will be the normal working condition of a retina implant.
Within the framework of this study, Eger (2001) already applied information
theoretical analyses to this problem.
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The use of an implant to bypass the degenerated retinal layers mirrors the
successful cochlear implant in the auditory domain, which has restored useful
hearing to many deaf patients. Post-implantation training and rehabilitation
concepts for the cochlear implant patient should be adapted to the needs of
retina implant patients. The brain and — ultimately — the patient must become
familiar with a spatio-temporal pseudo-sensory input that he or she has not
yet learned to identify as the perception of a visual object.
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Figure 5.1: Logical circuit of the multiplexer (”4-out-of-8 selector”) used for gen-
erating spatio-temporal electrical stimuli. One of four parallel channels is depicted.
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Abbreviations

CFF critical flicker frequency

FWHH full width at half height: the widths of ePSFs were defined as
the FWHH of the Gaussian fits

LFP local field potentials

dLGN dorsal lateral geniculate nucleus

MUA multi unit activity

ePSF electrical point spread function

vPSF visual point spread function

PSTH peri stimulus time histogram

cRF classical receptive field

eRF electrical receptive field

vRF visual receptive field

SNR signal-to-noise ratio

SUA single unit activity

V1 primary visual cortex

W denotes the W pathway of the visual system originating in the

conio-cellular retinal cells

X denotes the X pathway of the visual system originating in the
parvo-cellular retinal cells

Y denotes the Y pathway of the visual system originating in the
magno-cellular retinal cells
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Glossary

Action potential A rapid, transient, all-ornone* change in electrical potential
between the inside of a nerve cell and the extracellular medium that can occur
when a cell has been activated by a stimulus. The action potential is followed
by a period of unresponsiveness (absolute refractory period) or reduced respon-
siveness (relative refractory period) to further stimuli.

Afferent Heading towards. In sensory systems, afferent signals are those carrying
sensory information to the central nervous system. cf. Efferent

All-ornone When activated by a stimulus, a nerve cell’s response is marked
either by a stereotype operation or by none at all.

Area 17 Part of the primary visual cortex®.
Area 18 Part of the cat primary visual cortex*.

Area centralis Area in a vertebrate retina rich in cones. The area centralis de-
notes the central region of the retina enabling the highest spatial resolution. In
the human eye the area centralis corresponds to the fovea.

Axon Single and usually long nerve cell process that conducts action potentials
away from the cell body. The velocity for traveling action potentials is between
1 and 100 meters per second. Conduction velocity is bigger in axons with a
large diameter. Retinal ganglion cell* axons are translucent and cross over the
retina towards the optic disk*. They form the innermost retinal layer and thus
can be electrically stimulated with epi-retinal electrodes.

Chronaxie The stimulus duration necessary to stimulate a neuron above thresh-
old, if the stimulation amplitude is twice the rheobase*. The chronaxie is useful
as an index of the excitability of a preparation.

Critical flicker frequency, CFF The maximum perceivable repetition rate. Vi-
sual stimulation at repetition rates exceeding the CFF leads to a perceived
fusion of individual stimuli, resulting in the perception of continuous illumina-
tion.

Classical receptive field The visual classical receptive field is defined as the reti-
nal area which is capable of modulating the activity of a cortical neuron if vi-
sually stimulated. In this study visual receptive fields ("vREF”) were analyzed
mostly for populations of cortical neurons. In analogy to this receptive field
concept in the visual domain, ”electrical receptive fields” ("eRFs”) were esti-
mated as well. Accordingly, eRFs were defined as the retinal area capable of
modulating cortical activity when stimulated electrically.
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Efferent Heading away. In sensory systems efferent signals carry information to
the peripheral motor system. cf. Afferent.

Electrical receptive field cf. Classical receptive field.
ePSF cf. PSF.

Epi-retinal stimulation Electrodes are lowered onto the inner retinal surface
(epi-retinal positioning). Electrical stimuli can evoke spikes™ in retinal ganglion
cells and axons. Typically, threshold currents for biphasic current-balanced
impulses of 0.4 ms duration are in the range of 20 — 40uA.

Excitatory post-synaptic potential, EPSP In excitatory chemical synapses, a
pre-synaptic neuron releases transmitters into the synaptic gap. This causes
an inward current into the post-synaptic cell, leading to a voltage drop, the
EPSP. Temporal integration of many EPSPs can drive the post-synaptic neuron
towards its threshold level for generating an action potential®.

Ganglion cells Output neuron of the retina. Ganglion cell axons* form the optic
nerve. Ganglion cells can be classified by different morphological and physio-
logical features (cf. X-, Y-, W-cells). Ganglion cells have concentric receptive
fields* (RF) with antagonistic center-surround properties. ON-ganglion cells re-
spond best to a spot of light focused on the RF center, whereas OFF-ganglion
cells prefer a dark spot with bright surround.

Inhibitory post-synaptic potential, IPSP In contrast to the excitatory post-
synaptic potential®, other types of transmitters cause an outward current in the
post-synaptic cell, leading to its hyperpolarization.

dLGN A sub-cortical, thalamic structure receiving direct input from the retinae
via the optic nerves. The dLGN comprises several layers that distinctly pro-
cess information from retinal cells. The dLGN relays incoming activity to the
primary visual cortex®.

Local field potentials, LFP Signals resulting from bandpass filtering of extra-
cellularly recorded signals (1-140 Hz) mainly capturing slow potentials, such as
EPSPs* or IPSPs™.

Magno cells Type of ganglion cells in the primate retina which correspond to
Y-cells* in the cat.

Multi unit activity, MUA Spiking activity of a population of neurons. Tech-
nically, the extracellularly recorded signal is highpass filtered (0.5-10 kHz),
subsequently rectified, and then lowpass filtered. Therefore, MUA reflects the
envelope of spiking activity, an estimate for the population spike density.

Optic disk The retinal site where the ganglion cell axon fibers leave the retina.
Contains no photoreceptors and therefore creates a blind spot in the visual field.

Parvo cells Type of ganglion cells in the primate retina which correspond to X-
cells® in the cat.

Primary visual cortex, V1 Defined as that part of the cortex that receives direct
input from the dLGN*. For primates, primary visual cortex, V1, and area 17
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are synonymous terms. In cat, area 18 and 19 also get input from the dLGN
and thus belong to the primary visual cortex.

Peri stimulus time histogram, PSTH Cortical responses are averaged over iden-
tical stimulus conditions to increase the signal-to-noise ratio of the estimated
cortical response.

Point spread function, PSF Cortical activity distributions. The amplitudes of
normalized averaged cortical responses to visual stimuli (vPSF) or electrical
stimuli (ePSF) were plotted against the cortical recording electrode separations.

Receptive field, RF Defined as the restricted region of the sensory input space
(e.g. retina or skin) that influences the activity of a neuron. In analyses of the
visual system, the RF is usually projected onto a tangent screen.

Retinotopy A preservation of spatial relationships of retinal locations in higher
brain representations.

Rheobase Minimum stimulus amplitude necessary to stimulate a neuron above
threshold.

Spike cf. Action potential.

Spike raster plot The spikes detected in each stimulus trial are marked in piled
TOWS.

Single unit activity, SUA Comprises action potentials of single neurons, cf. Ac-
tion potentials.

Sub-retinal stimulation Electrode arrays are implanted under the neural retina
in the sub-retinal space. Electrical stimuli activate outer retinal cells and thus
the retinal neural network. cf. Epi-retinal stimulation.

V1 cf. Primary visual cortex.
Visual receptive field cf. Classical receptive field.

Visus Measure for visual acuity. The visus is defined as the reciprocal of the
minimal separable visual angle in arc minutes. In normal vision, the visus
equals one.

vPSF cf. PSF.

X cells Type of ganglion cells primarily responsible for the cat’s contrast sensitivity
at high spatial frequencies. X type ganglion cells have small RFs and produce
a sustained response. Their axons® have a low conduction velocity for action
potentials®. X cells are separated into two classes, ON-center and OFF-center
cells. cf. Ganglion cell.

Y cells Type of ganglion cells with larger RFs than X cells. They respond tran-
siently to rapid stimulus motion. Y cells are separated into two classes, ON-
center and OFF-center cells. cf. Ganglion cells.

W cells Type of ganglion cells. cf. Ganglion cells.
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