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Abstract—This paper provides a complete characterization of
the boundary of an achievable rate region, called the Pareto
boundary, of the single-antenna Z interference channel (Z-IC),
when interference is treated as noise and users transmit complex
Gaussian signals that are allowed to be improper. By considering
the augmented complex formulation, we derive a necessary and
sufficient condition for improper signaling to be optimal. This
condition is stated as a threshold on the interference channel
coefficient, which is a function of the interfered user rate and
which allows insightful interpretations into the behavior of the
achievable rates in terms of the circularity coefficient (i.e., degree
of impropriety). Furthermore, the optimal circularity coefficient
is provided in closed form. The simplicity of the obtained
characterization permits interesting insights into when and how
improper signaling outperforms proper signaling in the single-
antenna Z-IC. We also provide an in-depth discussion on the
optimal strategies and the properties of the Pareto boundary.

Keywords—Improper signaling, Z interference channel, Pareto
boundary.

I. INTRODUCTION

It is widely known that proper Gaussian signals are capacity-
achieving in different wireless communication networks, such
as the point-to-point, broadcast and multiple-access channels.
Because of that, the use of such a signaling scheme is generally
assumed in the study of multiuser wireless networks. The
capacity-achieving property of proper signaling stems from
the maximum entropy theorem, which states that the entropy
of a random variable under a power constraint is maximized
for a proper Gaussian distribution [1]. However, in networks
where interference presents the major limiting factor, proper
Gaussian signaling has recently been shown to be suboptimal,
and improper Gaussian signaling, also known as asymmetric
complex signaling, has been proved to outperform proper
signaling in different interference networks [2]-[19].

An improper complex random variable differs from its
proper counterpart in that its real and imaginary parts are
correlated or have unequal variance, or, in other words, the
random variable is correlated with its complex conjugate [20].
Such signals arise naturally in communications, e.g., due
to gain imbalance between the in-phase and in-quadrature
branches, or due to the use of specific digital modulations,
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such as binary phase shift keying (BPSK) or Gaussian mini-
mum shift keying (GMSK). Whenever the received signal is
improper, linear operations must be replaced by widely linear
operations, which are linear in both the random variable and
its complex conjugate, in order to fully exploit the correlation
between the signal and its complex conjugate [20]-[22]. The
design of such widely linear receivers has been extensively
studied in the literature (see, e.g., [23]-[26] and references
therein). However, the transmission of improper signals to
handle interference more effectively is a rather new line of
research.

We would like to add that digital modulation schemes
yield cyclostationary signals, i.e., the mean, autocovariance
and complementary autocovariance funtions are periodic. It
has been shown that exploiting this property along with the
impropriety leads to an improved performance [27]-[31]. For
example, [27] shows that the optimal transmit signal must
also be cyclostationary if the receiver is corrupted by a
cyclostationary Gaussian noise.

The first study on the benefits of improper signaling for
interference management was carried out in the 3-user inter-
ference channel (IC) [2]. That work showed an improvement in
terms of degrees-of-freedom (DoF), which represent the maxi-
mum number of interference-free streams and characterize the
asymptotic sum-capacity. Similar DoF results were derived for
the 4-user IC [3], the 3-user multiple-input multiple-output
(MIMO) IC [4], the interfering broadcast channel [5], and
the MIMO X-channel [6]. However, improper signaling not
only increases the achievable DoF, but also the achievable
rates in interference-limited networks. The optimal rate region
boundary for maximally improper transmissions (i.e., perfect
correlation between real and imaginary parts or either zero
real or imagniary part) was derived for the 2-user IC in
[7], showing substantial improvements over proper signaling.
Additionally, [8] proposed a suboptimal design of the improper
transmit parameters, which outperforms the proper and the
maximally improper scheme. A similar suboptimal design was
also proposed in [9] for the K-user multiple-input single-
output (MISO) IC. Improper signaling in the IC has also been
applied to reduce the symbol error rate [10] and as a mixed
improper/proper approach in the MIMO-IC [11]. In addition
to the IC, the use of improper Gaussian signaling has also
been shown beneficial for other multiuser scenarios, such as
the broadcast channel with linear precoding [12], relay-assisted
communications [13], or underlay cognitive radio networks
[14]-[16].

A particular case of the 2-user IC is the Z-IC, also known
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as one-sided IC [32]. The difference with respect to the 2-user
IC is the fact that only one of the receivers is affected by
interference.! The capacity region of the Z-IC is only known
in the strong and very strong interference regimes [32], [34],
and it is achievable by a non-linear operation at the receiver.
Less complex non-linear techniques have also been studied
(see, e.g., the characterization of the rate region boundary
of the 2-user IC with successive interference cancellation
at the receivers [35]). Even for such techniques, it is not
known whether proper signaling is optimal. Nevertheless, it is
more convenient to perform linear (or widely-linear) operations
while treating the interference as noise, so that the complexity
can be reduced. Restricted to linear operations, improper
signaling presents a useful tool to improve the performance
over proper signaling.

Improper signaling for the Z-IC has recently been consid-
ered in [17], where the sum-rate maximizing scheme was
derived in closed form. To that end, [17] considered the
so-called real-composite model, where complex signals are
regarded as real signals of double dimension. However, despite
some remarkable efforts [36], the real-composite model is
not as insightful as the augmented complex model, which
works with the signal and its complex conjugate. For ex-
ample, the circularity coefficient, which measures the degree
of impropriety, is a quantity easily derived in the augmented
complex formulation, but is much more difficult to express
through its real-composite counterpart. The multi-antenna Z-
IC with improper signaling has been addressed in [18] and its
journal version [19]. The inclusion of the spatial dimension
makes a complete analytical assessment intractable, which is
why the authors proposed an heuristic scheme to optimize
the widely linear operation at the transmitter, which permits
a trade-off between the rates of both users. This way, [19]
obtained an achievable rate region that is larger than that
obtained by proper signaling. Although the authors of [18],
[19] mainly focused on the real-composite representation, they
also considered the augmented complex formulation. Thus, the
optimal transmission scheme for the interfered user is obtained
using the former, whereas that of the interfering user through
the latter.

In our work, we adopt the augmented complex model
to provide a complete and insightful characterization of the
optimal rate region boundary, called the Pareto boundary, of
the single-antenna Z-IC, when users may transmit improper
Gaussian signals, assuming that interference is treated as noise.
Our main contributions are summarized next.

e We extend the results of [17], where only one point of
the rate region boundary is derived, to provide a com-
plete characterization of the Pareto optimal boundary in
closed form. We show that the rate region boundary can
be described by a threshold on the interference channel
coefficient, which determines when improper signaling
is optimal.

e By adopting the augmented complex formulation, we
provide, for each point of the boundary, closed-form

INotice that the Z-IC is different from the Z-channel, where the cross-link
also conveys a desired message (see, e.g., [33] and references therein)

expressions for the transmit powers and circularity co-
efficients, which are a direct measure of the degree
of impropriety of the transmit signals. This permits
insightful conclusions and a full assessment of the im-
provements of improper signaling over proper signaling
in the single-antenna Z-IC. Thus, we analyze how the
degree of impropriety affects the rate in the different
boundary points, and we investigate the conditions that
must be fulfilled for improper signaling to outperform
proper signaling. The connection between the optimal
circularity coefficients of both users and a further in-
depth discussion of our characterization is also provided.

The rest of the paper is organized as follows. Section II
provides some preliminaries of improper random variables and
describes the system model. The characterization of the rate
region boundary is derived in Section III, and a discussion
on the results is presented in Section IV along with several
numerical examples illustrating our findings. Finally, Section
V concludes the paper.

II. SYSTEM MODEL
A. Preliminaries of improper complex random variables

We first provide some definitions and results for improper
random variables that will be used throughout the paper. For
a comprehensive treatment of the subject, we refer the reader
to [20].

The variance of a zero-mean complex random variable z is
defined as 02 = El|z|?], where | - | is the absolute value and
E[] is the expectation operator. The complementary variance
of a zero-mean complex random variable x is defined as
6% = E[2?]. If 62 = 0, then xz is called proper, otherwise
improper. Furthermore, o2 and 2 are a valid pair of variance
and complementary variance if and only if o> > 0 and
|62] < 0.

The circularity coefficient of a complex random variable
x is defined as the absolute value of the quotient of its
complementary variance and its variance, i.e.,

52|
The circularity coefficient satisfies 0 < x < 1 and thus
measures the degree of impropriety of x. If x = 0, then z
is proper, otherwise improper. If kK = 1 we call x maximally
improper.

B. System description

We consider the single-input single-output (SISO) Z-IC
with no symbols extensions. Without loss of generality and
for the sake of exposition, we adhere to the standard form,
as depicted in Fig. 1. Denoting by /ai> the real channel
coefficient between transmitter 2 and receiver 1, the signal
at both receivers can be modeled by

Y1 = 51+ +/aias2 +nq ()
Y2 = S +na , 3)
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Fig. 1. SISO Z-IC in standard form. This model is described by three
parameters: the power budgets P; and P», and the interference channel
coefficient aqo.

where s; and n; are the transmitted signal and noise of the ¢th
user, respectively. The additive white Gaussian noise (AWGN)
has variance 1 and is assumed to be proper, whereas the
transmitted signals are complex Gaussian random variables
with variance E[|s;|?] = p; and complementary variance
E[sf] = p;. Thus, the rate achieved by each user, as a function
of the design parameters p; and p;, ¢ = 1,2, is given by [§]

R ~ P1
1 (p1,P1, P2, P2) =log, ( i 1 +p2a12)
1 1—6_2|6y |2
+ —lo — ) 4
2 82 (1 - 02_12|621|2 @

_—21= |2
~ ]- 1 Cyg ‘Cy2|
Ry (p2,p2) = logy (1 + p2) + - log, 2 2| )
2 1- Czy |CZ2‘

where
¢y, =p1 +p2a12+1, (6)
Cy, =p2+1, @)
are the variances of the received signals,
Cy, = P1 + D2a12 , (8)
Cyy = D2, )]
the complementary variances of the received signals,
Cz;, =poaiz+1, (10)
Czp =1, (11)

are the variances of the interference-plus-noise signals, z; =
\/G1282 + N1, 22 = na, and

&, = Pears , (12)
&, =0, (13)

the complementary variances of z; and zs. Assuming that
the power budget of the ith user is F;, the achievable rate
region with improper Gaussian signaling is then the union of
all achievable rate tuples, i.e.,

R = U (R1 (p1,DP1,p2,P2) , R2 (p2,D2)) - (14)

0<p;<P;

= Vi
[Bil<ps 7"

Notice that we have included the constraint |p;| < p; in (14).
As stated in Section II-A, this condition must be fulfilled for
p; and p; to be a valid pair of variance and complementary
variance.

III. PARETO BOUNDARY OF THE RATE REGION

The Pareto boundary of the rate region described by (14)
comprises all Pareto optimal points, which are defined as
follows [37].

Definition 1. We call the rate pair (R;, Ry) Pareto-optimal if
(R}, Ry) and (Ry, R}), with R} > R; and R/, > Rj, are not
achievable.

In this section we characterize this boundary by deriving
the optimal transmission parameters, p; and p;, ¢ = 1,2, that
achieve each point of the boundary.

First, we notice that, since user 1 does not interfere with user
2, its optimal transmit strategy maximizes its own achievable
rate. Consequently, its transmit power must be maximized,
which implies p; = Pj;. Second, p; and p; are a valid pair
of variance and complementary variance if and only if p; > 0
and |p;| < p;. Consequently, the complementary variance can
be expressed as p; = pmiemi, where r; is the circularity
coefficient, which measures the degree of impropriety. Hence,
|pi| < p; is equivalent to 0 < k; < 1. With these considera-
tions, R, can then be expressed as

1
Ry = §log2 [

(p2a12 + PL +1)°

(p2a12 + 1)2 - \p26-7¢2"€2a12\2

P2 Kaara + Pre?® g | 1s)
(p2a12 + 1)2 — \p2€3¢2ﬁ2a12\2 .

Through (15) it is clear that R; is maximized when
P2 Kaara + Pre? iy | is minimized, which yields

K1 = min <p2“2a12,1> , (16)

Py
pr=da+m. 17

From (16) we observe that, if ko = 0, i.e., user 2 transmits a
proper signal, then user 1 must also transmit a proper signal
by setting x; = 0. Similarly, if user 2 transmits an improper
signal (k2 > 0), then the signal transmitted by user 1 must
also be improper. According to (17), the difference between
the phases of the complementary variances of the desired and
interference signals at receiver 1 is 7. Such a phase difference
can be interpreted by looking at the joint distribution of the real
and imaginary parts of the desired signal and interference at
receiver 1. The level contours of their distributions are ellipses
whose major axes are rotated by 7/2 with respect to each other
[20], so that the signal and interference power are concentrated
along orthogonal dimensions.

Now we observe the following. With the optimal choice of
¢1, given by (17), the effect of ¢ is compensated at receiver

2For the sake of brevity, we omit the dependence of R; and R2 on the
design parameters when it is self-evident or not relevant.



1. Thus the achievable rate of user 1 is independent of the
specific value of ¢-. Furthermore, since user 2 is not affected
by interference, ¢ also has no impact on its achievable rate.
Hence, without loss of generality, we can take ¢o = 0. With
these considerations, the design parameters are reduced to the
transmit power po and circularity coefficient ko of user 2. After
some manipulations of (5) and (15), the achievable rates of user
1 and user 2, as a function of the design parameters, are given
by

1 (p2ai2+P1+1)? .
5 log, {Hmam(mam(lng)“)] ifry <1
B (b2, m2)= | 2Py (pra15(1++2)+1) ’
1 1(p2ai12 K2 H —
2 10g2 |:1 + 1+P2a12(P2a12(1*N§)+2) if 51 1
(18)
1
Ry (p2, k) = 5 logy [1+po (p2(1—K3)+2)] , (19)

and the achievable rate region defined in (14) can then be
expressed as

R= U

0<p2<P>
0<ra<l

(R1 (p2, K2) , Ra (p2, k2)) - (20)

In order to characterize the boundary of the region defined in
(20), we notice that the achievable rate of user 1 is bounded
as

0 < Ry (p2, k2) <logy (1+ P1) . @n

For each achievable rate of user 1, the corresponding Pareto
optimal point is given by the one maximizing the rate of user
2, Ro(pa, K2), which can be cast as the following optimization
problem

P: maximize Ry (p2,k2) ,
D2,k2
subject to 0 <py < Py,
0 S Ko S 1 9

Ry (p2,k2) > alogy (1+ P1) . (22)

for a given « € [0, 1]. Thus, we can compute every point of
the rate region boundary by varying « between 0 and 1 and
solving problem P.

The set of constraints of problem P, which defines the
feasibility set of our design parameters, consists of two con-
straints affecting the design parameters independently, namely,
the power budget constraint and the bounds on the circularity
coefficient, and an additional one that jointly constrains po
and k9. The latter expresses a rate constraint on user 1, so
that a specific point of the region boundary, determined by «,
is computed. For a given ko, this constraint essentially limits
the transmit power of user 2, ps. Consequently, we can rewrite
it in a more convenient form, as we express in the following
lemma.

Lemma 1. Let v, = 2% — 1 and R = alogy(1+ Py). The rate
constraint Ry (p2,k2) > R is then equivalent to the power
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Fig. 2. Example of the transmit power and power constraints of user 2,

for P1 = 20, P = 10, a;j2 = 0.5 and o = 0.7. The shaded area is
the set of possible transmit powers, and Kmax is the value of k2 such that
q(/{max) = Ps.

constraint py < q (kz2), where q(k2) is given by

(Pr=720)+1/ (2at+1)[P? (1-13) +(v2r —2P1)r3]

a(rz)= a2 Gt D (1) 1] A
1 2P ) _

a12(1—k2) ﬁ o ifrr=1

(23)

Proof: Please refer to Appendix A. ]

As a result of Lemma 1, we can equivalently state problem

P as

P : maximize Rs (p2, K2)
D2,Kk2
subject to 0 < p2 < min[g(k2), Pe] ,
0 S ) S 1.

For the sake of illustration, we plot in Fig. 2 an example
of the two constraints affecting the transmit power of user 2,
namely, ¢(k2) and P,. Obviously, g(k2) is increasing in ko,
since an interference with a higher degree of impropriety is
less harmful, which is why user 1 tolerates a higher amount
of interference power without reducing its achievable rate. To
achieve the global maximum of problem P, it is clear that we
must set po(k2) = min|g(ka), Ps], where we have explicitly
expressed its dependence on k5. Consequently, the number
of design parameters is reduced to one, ko, and P is further
simplified to

P: maximize
K2

subject to

Ry (k2) ,
OS52S17



where Ro(k2) can now be expressed as

Ry (ko) = %log2 {1 + pa (K2) [pg (k2) (1 — /{%) + 2]} .

(24)
Notice that, by expressing ps as a function of ks, Ra(ks)
is now also a function of k5 only. That is, the key task
now is to determine the optimal circularity coefficient of the
second user, or, in other words, the degree of impropriety of
its transmit signal such that its achievable rate, given by (24),
is maximized.

In the forthcoming lines we will analyze when Ra(k2) is
maximized by an improper signal, i.e., ko > 0, and then we
will derive the optimal value of ko in those cases. That is,
we want to determine the conditions that must be fulfilled for
improper signaling to outperform conventional proper signal-
ing. Since there are two different power constraints affecting
p2, namely, the power budget of user 2 and the interference
power created at user 1, we will start by dropping the power
budget constraint to analyze how the interference constraint,
q(k2), affects the rate of user 2 as a function of xy. We first
present the following lemma.

Lemma 2. Let po(ka) = q(k2) and assume that there exists

8%2’5;2) > 0. Then 81%827,52"2) > 0 for all

Ro such that R
R K2=RK2
Ko > Kao.
Proof: Please refer to Appendix B. [ |
Lemma 2 leads to the following key result.

Lemma 3. Let po(ka) = q(k2) and

P,

pla) =1- ————, (25)
YeR — VR

(Pr—7g)*

(’Yzé—’vé)(\/’vzz:z—2pl—’m
0

)2 lf2P1 <72R

a) = . (26)

otherwise

Then, the dependency of Ra(k2) on ko can be described as
follows.

o Ifain > u(a), then Ro(ksa) increases monotonically in
K.

o Ifp(a) > aia > (), then there exists ko > 0 such that
RQ(K/Q) < RQ(O) for Ko < Ko and RQ(K/Q) > RQ(O) oth-
erwise. Furthermore, Ry(k2) increases monotonically

for ko > Rao.
o Ifiu(a) > aya, then Ry(ka) < Ra2(0) for all values of
Ka.
Proof: Please refer to Appendix C. [ |

To illustrate the characterization provided in Lemma 3, we
plot in Fig. 3 the rate of user 2 normalized by the proper
signaling rate with examples for each of the three cases
described in Lemma 3. We use o« = 0.7 and P, = 10,
which gives 1(0.7) = 0.571 and ¢(0.7) = 0.545. Notice that
the three curves vary only slightly with ko because the three
chosen values of a1 (0.5, 0.55 and 0.6) are all close to the
thresholds. Lemma 3 describes how the interference constraint
q(k2) shapes the dependency of the rate of user 2 on the
degree of impropriety of its transmitted signal. Thus, if we

1.02
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Ra(k2)/R2(0)

0.99

0.98 ‘ ‘ ‘ ‘ '
0 0.2 0.4 0.6 0.8 1

K2

Fig. 3. Tllustration of Lemma 3. We set « = 0.7 and P; = 10, which yields
1(0.7) = 0.571 and ¢(0.7) = 0.545.

drop the power budget constraint or, alternatively, if the power
budget is sufficiently high, improper signaling outperforms
proper signaling for all values of ko if a;2 > wu(«), but
only for some values of kg if u(a) > a2 > (), and it
is always suboptimal if a;o < (). It can be clearly seen
now what the impact of the power budget constraint is. For
the cases a;s > p(a) and pla) > ap > (), ko = 1
maximizes Ro(rk2). However, increasing x4 is only meaningful
if it also permits increasing the transmit power. When the
power budget constraint is considered, there may exist Kpax
such that g(kmax) = P», hence increasing ko beyond that
point does not permit a further increase in the transmit power
(see Fig. 2). Therefore, when u(a) > aja2 > t(«) improper
signaling will be optimal if K,,x > Ko, Where Ko > 0 is such
that Ry (R2) = R2(0) (see Fig. 3). On the other hand, improper
signaling will be optimal for aj2 > u(«) only if ¢(0) < Ps.
This condition means that proper signaling does not permit
transmitting at maximum power, thus there is still power left
over, which can be exploited by improper signaling to improve
the achievable rate.

With all these ingredients, we can derive a complete char-
acterization of the optimality of improper signaling for this
scenario and, consequently, of the Pareto-optimal region. Our
main result is presented in the following theorem.

Theorem 1. Let us define 1(«) as in (26) and
ple) =mox |4 (D) wtl] )

TR

if n(e) > B +ar
otherwise ,

n(a)
V(@) = § 15 @vap+1)—Pi(2va+1)
Yr[P2+2(725+1)]

(28)




and
n(a) = ap — Prar + \/(ap — Pyar)? 4 2P (a% + a%)
= 5 ,
(29)
1 /(P
- — (X _1 30
ap P2 (’YR ) ) ( )
1 /2P, )
ar=— | ———-1] . (€2))
! Py (’YzR

Then, improper signaling is required to maximize Ro(k2) if
and only if
a1z > max [v(w), p(a)] . (32)

Furthermore, if this expression holds, the optimal circularity
coefficient is
o — 1
2 KZIIIB,X

where Kmax IS the minimum value of ko such that P, <
Q(Hmax)~

Proof: Please refer to Appendix D. ]

Before concluding this section, we introduce the following

definition, which will be useful to describe the properties of
the Pareto boundary.

ifq(l) < P,
otherwise (33)

Definition 2. We call power-limited region all the points of
the rate region boundary for which ¢(a)) = 0 or, alternatively,
2P > v5r. We call the remaining points of the rate region
the interference-limited region, i.e., those for which ((a) > 0
or, alternatively, 2P, < ¥y5.

IV. DISCUSSION AND NUMERICAL EXAMPLES

This section provides a discussion on the derived charac-
terization along with some numerical examples illustrating the
most remarkable features of improper signaling in the Z-IC.
Afterwards, the connection to related works in the literature is
presented.

A. Optimal strategies

1) Optimality of proper signaling: As pointed out at the
beginning of Section III, if proper signaling is the optimal
strategy for one of the users, then it is also optimal for the
other one. This means that any point of the region boundary is
achieved by both users employing the same signaling scheme,
i.e., either proper or improper, but not a combination of both.

2) Maximally improper signaling for both users is optimal
at most at one boundary point: It can be noticed that there is
at most one boundary point where both users simultaneously
transmit a maximally improper signal, ie., k1 = Ky = 1
happens for no more than one Pareto-optimal point. This is
due to the fact that, if the rate constraint (22) can be fulfilled
for k1 = 1 (which corresponds to the case 2P > vy3),
then user 1 tolerates an infinite amount of maximally improper
interference along the orthogonal direction (see second equa-
tion in (23)). However, user 2 may only increase its rate by
increasing ko if it is operating below its power budget, since

e e ® +10
maximum sum-rate
I
© 1 —oF
5
@ -
.
i< I
= 0.8 7
Q p
Q L4
E /! =
(] ’
S 0.6 7 P2
© 1
> 1
E :
<
= 04 !
QO 1
= 1
. - 1
© U
0.2 K61
Y )
O L Il | |

0 0.5 1 1.5 2 2.5 3 3.5
R [b/s/Hz]

Fig. 4. Dependency of the optimal circularity coefficients and the transmit
power p on R; for ajo = 2.

the only purpose of increasing ko is to increase py as well.
Because of this and because ¢(r2) is a continuous function for
2P > vy, setting k1 = ko = 1 is always suboptimal when
2P, > 7,5. However, this reasoning is not applicable when
2P, = ~,p, since g(k2) turns into a discontinuous function
for k1 = 1. This is because, in that case, g(k2 < 1) = 0 and
g(ke = 1) = oco. The intuition behind this behavior is that,
when 2P, = ~,p, the first user achieves its corresponding
rate with a maximally improper signal, i.e., k; = 1, only if
the interference is orthogonal to the signal subspace, i.e., only
when the second user also transmits a maximally improper
signal. Consequently, ko = 1 must hold if 2P, = 4,5 and
k1 = 1. Furthermore, since po = P> when ko = 1, the
condition k1 = 1 is equivalent, by (16), to Pyaio > Pi.
That is, both users transmit maximally improper signals at
the boundary point for which R; = %logQ(l + 2P;) only
if P 2012 Z P 1-

To illustrate this property, we provide two simulation exam-
ples. As a first example we consider the channel coefficient
a12 = 2 and the power budgets P, = P, = 10. Figure
4 shows the optimal circularity coefficients and the transmit
power of user 2. In this example Pra;2 > P; holds and
because of that both users transmit maximally improper signals
for Ry = 2.2 b/s/Hz. We can observe a discontinuity in the
maximum transmit power of user 2, which will be explained
later. Notice that, as R; approaches its maximum value of
3.46 b/s/Hz, k1 goes towards O while ko remains static at 1.
Although this might seem to violate our statement in Section
IV-Al, k4 is only equal to zero when ps is, which only happens
at R; = 3.46 b/s/Hz. In this case, the circularity coefficient
is no longer meaningful since the transmit power is zero.
Therefore, all the boundary points satisfy our claim, which
is also clear according to the optimal value of x; in (16).
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As a second example we consider a;o = 0.8. In this
case Prais < Pi, hence it is expected that there are no
boundary points that are achieved by both users transmitting
maximally improper signals. This can be observed in Fig. 5,
which depicts the dependency of the circularity coefficients
and transmit power on the rate, R;. At the boundary point
for Ry = 2.2 b/s/Hz, user 2 chooses the transmit signal as
maximally improper, but the optimal circularity coefficient of
user 1 equals 0.8. In Fig. 5 we can also observe a discontinuity
in the maximum transmit power and in the circularity coeffi-
cients at approximately R; = 2.9 b/s/Hz. This discontinuity
is different from the one observed in Fig. 4 and can be
explained as follows. At the point of the discontinuity we have
a12 = max[i(a), p(«)]. Furthermore, at this point ¢(1) < Ps.
This means that maximally improper signaling achieves the
same rate as proper signaling. Proper signaling starts outper-
forming improper signaling once R; increases beyond that
point, in which case the optimal circularity coefficient jumps
from ko = 1 to ke = 0, and the maximum transmit power
jumps then from ¢(1) to ¢(0).

3) Relationship between k1 and ko: Expression (16) also
permits drawing insightful conclusions about the relationship
between the circularity coefficients of both users. According
to Theorem 1, 0 < ko < 1 implies po = P». Hence, k1 < Ko
holds if ko > 0 and Pra12 < P, i.e., when the signal-to-
interference ratio (SIR) is greater than one. In such a case, it
can be noticed that the signal transmitted by the first user is
never chosen as maximally improper at any point of the Pareto
boundary. This behavior can be clearly observed in Fig. 5. On
the other hand, when Pai2 > Pj, or, alternatively, when the
SIR is equal to or lower than one, x; > ko holds whenever
0 < k9 < 1, as can be seen in Fig. 4.

If the signal transmitted by user 1 is chosen as maximally

improper for some points of the boundary, it will remain so
as ko — 1, or, in other words, as 7,5 — 2P;. This is because
ko < 1 implies po = P», so that, by (16), the first user will not
decrease its circularity coefficient. However, once ko equals
1, which corresponds to the point 2P, = 45, the degree of
impropriety of the first user will then start decreasing with R,
since these rates are not achievable for xq = 1.

B. Properties of the Pareto boundary

1) Behavior in the power-limited and interference-limited
regions: The power-limited region, which refers to the power
limitation of the second user, comprises all boundary points
satisfying 2Py > 7,5, or, alternatively, Ry < £ logy(1+2P;).
In this region improper signaling is always optimal as long as
the power budget P, is sufficiently high. In other words, the
optimality of improper signaling is only determined by p(«),
which depends on P, and goes towards 0 as P increases.
Furthermore, user 1 can achieve its required rate with a
maximally improper signal, i.e., with k; = 1. In this case,
the interference along the unused dimension does not have
any impact on its achievable rate, therefore Ry — oo as
P, — oo. In the interference-limited region, user 1 must
choose a circularity coefficient smaller than one to achieve
the desired rate, and hence the tolerated interference is finite
for all values of ko. As a result, the transmit power of the
second user is eventually limited by ¢(x2) as P> grows, which
bounds the achievable rate. In other words, the optimality of
improper signaling is eventually determined by ¢(«), which is
independent of the power budget Ps.

2) Transition between power-limited and interference-
limited regions: An interesting feature is that there may be
abrupt changes in the achievable rate of user 2 when we shift
from one region to the other, which are due to a jump in
the tolerable interference power (as observed in Fig. 4). This
can be explained as follows. In the power-limited region the
transmit power always equals the power budget when improper
signaling is optimal, i.e., pa(k2) = P» if k2 > 0. However, in
the interference-limited region the transmit power is dominated
by the function ¢(x2) when the power budget exceeds the value
of that function, i.e., when P5 > ¢(1). Hence, by using (16), it
can be easily seen that hmV ns2P g2(1) = P1
may be a jump in the maximum transmit power i e., a disconti-
nuity in the maximum transmlt power of user 2 as a function of
Ry, from py = Py to py = 112 whenever P, > L. That is, the
lower the SIR, the more prominent the power ]ump is, whereas
no jump will be observed when the SIR is equal to or greater
than 1. This discontinuity in the maximum transmit power
implies a similar jump in the maximum achievable rate of user
2, making lim_ o p+ Ry(k2) # lim 2P Ry (k2). This
is illustrated in Flgs 6 and 7, where the Pareto Boundary of the
rate region is depicted for the previously considered examples,
ie., aj2 = 2 and a;5 = 0.8, respectively. We also depict in
the figures the rate region boundary for proper signaling, and
the enlargement of the rate region due to time sharing.

Figure 6 corresponds to a scenario where the SIR is below
one, therefore we can observe that the Pareto boundary is
discontinuous. As explained earlier, this is the result of a jump




T T

3.0 p==== + T T T
RN interf.-limited

power-limited

3 - |
2.5 . .
maximum
—_ sum-rate
)
Cg 1.5

- -+ Proper signaling
1r Proper signaling N,
(time sharing)
—— Improper signaling
Improper signaling

(time sharing)

0.5¢

!

0 05 1 15 2
Ry [b/s/Hz]
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in the maximum transmit power of user 2, ps, which can
also be observed in Fig. 4. Specifically, the maximum transmit
power in the interference limited region equals py = C% =
so there is a power jump from py = P» = 10 to p» = 5. Notice
that at the discontinuity, which approximately corresponds
to R; = 2.2 b/s/Hz, all the rates in the half-open interval
Ry € [1.7,2.3) b/s/Hz are achievable but do not belong to
the Pareto boundary as defined at the beginning of Section III.
Similarly, all the rate pairs Ry = 3.4 b/s/Hz and R; € (0,0.6)
b/s/Hz are achievable but do not belong to the Pareto boundary.
Therefore, these two line segments are plotted in dashed lines
in Fig. 6.

The scenario corresponding to Fig. 7 presents an SIR greater
than one. Because of that, the transition from the power-limited
to the interference-limited regions presents no discontinuity as
there is no jump in the transmit power at 2P; = 7,5 (see
Fig. 5). Notice that the discontinuity in the maximum transmit
power at Ry = 2.9 b/s/Hz, which is due to a2 falling below
the threshold, does not cause a discontinuity in the Pareto
boundary. As previously explained, this is because at that point
a1z = max[it(a), p(«)] holds, so proper and improper signal-
ing achieve the same rate. Therefore, Ry changes smoothly
even though the transmit power and circularity coefficients
jump.

Figures 6 and 7 also illustrate that the dependency of
Rs on R; in the power-limited region is different from the
interference-limited region. Specifically, Ro decreases more
slowly with R; in the former. This is due to the fact that
in these examples ps = P» holds in the entire power-limited
region, and therefore the decrease in Rs is due to an increase in
k2. In the interference-limited region, however, ps decreases
towards 0 as R; increases, which has a stronger effect on
the achievable rate. The transition between these two different
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behaviors leads to a sharp bend in the Pareto boundary, as
observed in Figs. 6 and 7. It corresponds to the transition
between the power-limited and interference-limited regions
only if P, > ¢(1) holds in the entire interference-limited
region, and improper signaling is optimal in the power-limited
region. This is because these conditions imply that ko = 1 is
optimal at the transition point 2P; = <y, 5. Therefore, to satisfy
the rate of the first user p, must decrease once we move into
the interference-limited region, which changes the behavior of
Ry. If P, < ¢(1) for some points in the interference-limited
region, then ko < 1 is optimal at 2P; = ~,5. Increasing
ko while keeping po constant permits achieving the required
R; when we move into the interference-limited region until
ko = 1 is reached. Hence the dependency of Rs on R; will
change at the value of R; such that P, = ¢(1), which is
slightly shifted to the right. Figures 6 and 7 also show the
enlargement of the rate region due to improper signaling. In
these examples, the interference level is significant, so the
achievable rate region by improper signaling is substantially
larger than that of proper signaling, especially in the scenario
shown in Fig. 6.

It is also worth highlighting that time sharing provides a
substantial enlargement of the rate region for both proper and
improper signaling, but there is still a significant gap between
the performance of both strategies. In Fig. 6, the rate region
achieved by improper signaling is convexified by time sharing
between the extreme points of the Pareto boundary, which
correspond to proper signaling transmissions, and the point at
the transition between the power-limited and the interference-
limited regions, where both users transmit maximally im-
proper signals. By contrast, all the Pareto boundary points in
the power-limited region belong to the convex hull in Fig.
7, and time sharing improves the performance only in the



interference-limited region.

3) Operation regimes: Considering the possibly suboptimal
approach of always treating interference as noise, we may
distinguish the following operation regimes that account for
the optimality of improper signaling.

e Strictly improper regime: If a5 > %, we say the
Z-1C is in the strictly improper regime. In this regime
and treating interference as noise, all the Pareto-optimal
points satisfying R; > log2(1 + 1+l};71au) are achieved
by improper signaling, i.e., ko > 0.

e Selective lmproper/proper regime: If P +1 > ajp >
min, max[t(a), p(a)], we say the Z-IC is in the selec-
tive improper/proper regime. In this regime and treating
interference as noise, only a subset of the Pareto-optimal
points satisfying R, > logy(1+ ) is achieved by
improper signaling, i.e., ko > 0.

e Strictly proper regime: If as <
min, max[e(a), p(a)], we say the Z-IC is in the
strictly proper regime. In this regime and treating
interference as noise, all the Pareto-optimal points are
achieved by proper signaling, i.e., ko = 0.

Note that (R; = logy(1 + H_l};ﬁ),Rg = logy(1 + P))
always belongs to the Pareto boundary and can only be
achieved by proper signaling. Because of that, the operation
regimes described above explain the optimal strategles for
the boundary points satisfying R; > logy(1 + m) The
strictly improper regime is obtained making use of Lemma 3,
which establishes that a1 > p(a) = 1— . }3 is a sufficient
condition for improper signaling to be optlmal 1? proper signal-
ing does not allow maximum power transmission, i.e., if B; >
log, (1 + 1—0—1;(1 ). Therefore, p(«) > max[c(«r), p(«)] holds

Py
1+Poaiz

for all boundary points satisfying Ry > log,(1 + m)
Furthermore, it can be easily checked that
P P
1) =(1) = = 1 1 34
p1) = 1(1) = g = max (). p()] = 5 - B9

Since p(«) is an increasing function, the condition for the
optimality of improper signaling is fulfilled in the strictly
improper regime for all Pareto-optimal points except for 21 =
logQ(l + 1T P o ) An example of the operation in the strictly
improper regime is given in Fig. 6 (and the corresponding Fig.
4). Figures 5 and 7 correspond to the selective improper/proper
regime, and we can observe that improper signaling is optimal
only in the interval R; € (1.1,2.9) b/s/Hz.

When we move from the power-limited region to the
interference-limited region we have

. 1 v 1 1
lim «(a) = - R _ (1=
arot Ay t+1 4 JIt2P,

. 1 1
= alfgg max [t(a), p(a)] > 1 (1 - m) N EN))

where o is such that 2P; = 7, 5. Therefore, proper signaling
is the optimal strategy in the whole interference-limited region
. 1 1 .

1i alg.g I .(1 — \/TTP) In such a case, be?ne.ﬁts of improper
signaling, if any, are limited to the power-limited region. No-
tice that, as P; increases, this condition converges to aj2 < i.

C. Relationship to previous work

Finally, we would like to connect our results to related
works in the literature. In our previous work [14], we studied
a similar scenario in the context of underlay cognitive radio.
We considered the Z-IC with the restriction that the first user
transmits only proper signals, i.e., k1 = 0. A characterization
of the maximum achievable rate of user 2 was derived in
terms of a threshold in aqs. Speciﬁcally, improper signaling
was shown to be optimal if ajo > 1 — This threshold is
strictly higher than the one obtained for ilie general Z-1C (it
can easily be seen that 1 — WP L > p(a) > (). This is in
agreement with the fact that, i we let the first user optimize
its circularity coefficient, the rate achieved by the second user
can only increase.

The Z-IC was also considered in [17], and the transmit
strategy that maximizes the sum-rate was derived in closed
form based on the real-composite model. Although such a
model is usually more convenient from an optimization point-
of-view, it is not as insightful as the augmented complex model
since some of the features of the improper signal are not easily
captured. This is the case for the degree of impropriety, which
is elegantly given by the circularity coefficient. We would like
to stress that in [17] only one point of the rate region was
characterized, whereas in this work we completely character-
ized the boundary of the rate region. Furthermore, since we
consider the augmented complex model, we provided closed-
form formulas for the circularity coefficients, thus providing a
more insightful description of how improper signaling behaves
in this scenario. Nevertheless, some of the conclusions drawn
in [17] fall within our characterization of the rate region bound-
ary. By looking at the structure of the sum-rate maximizing
transmit strategies in [17, Eq. (31)], we observe that improper
signaling is chosen when aj2 > 1. This condition belongs to
the strictly improper regime, and the solution presented in [17,
Eqg. (31)] can be seen as a special case of (33). Furthermore,
according to [17], when improper signaling is preferred for the
sum-rate maximization, the signal transmitted by one of the
users is chosen as maximally improper, and the selection of
the user depends on whether or not the condition Prais < P;
holds. This is in agreement with our previous discussion, where
we pointed out that the circularity coefficient of the first user
is always equal to or smaller than that of the second user
whenever the aforementioned condition is fulfilled. In such a
case, the Pareto optimal point that corresponds to the sum-
rate maximization is then the point that satisfies ¢(1) = P».
Otherwise, if Poa1s > Py, the sum-rate is maximized when the
first user transmits a maximally improper signal, and in this
case the circularity coefficient of the second user is smaller
than 1 except for Ry = § log,(1 4 2P).

The MIMO Z-IC with improper signaling has been consid-
ered in [18], [19]. Due to the inclusion of the spatial dimension,
an analytical characterization of improper signaling similar to
that of Theorem 1 becomes intractable. Notice that in the SISO
Z-1C, the impropriety is completely described by the circularity
coefficient. However, in the MIMO case, the description of
the impropriety is by means of the complementary covariance
matrix, which is characterized by a set of circularity coeffi-




cients and a unitary matrix [20]. Because of that, the authors
proposed a heuristic scheme to design the complementary
covariance matrix of the transmitted signal of user 2 such
that it permits easy control of the degree of impropriety. An
interesting aspect of [18], [19] is the fact that it does not
completely stick to a particular model for the representation of
improper signals. Thus, they use the real-composite model to
optimize the transmission scheme of user 1, while they design
the scheme of the second user by means of the augmented-
complex formulation. Interestingly, the achievable rate regions
obtained in [18], [19] have a shape similar to those in Figs.
6 and 7. This suggests that some of our conclusions for the
single-antenna Z-IC might be extended to the more general
MIMO Z-IC.

V. CONCLUSION

We have analyzed the benefits of improper signaling in the
single-antenna Z-IC. Under the assumption that interference
is treated as Gaussian noise, we have derived a complete and
insightful characterization of the Pareto boundary of the rate
region, and the corresponding transmit powers and circularity
coefficients in closed-form. This characterization has been
derived by analyzing how the circularity coefficients affect
the performance at the different boundary points. Specifically,
we have shown that improper signaling is optimal when the
interference coefficient exceeds a given threshold that depends
on the rate achieved by the interfered user. We have shown that
the rate region can be substantially enlarged by using improper
signaling, especially when the relative level of interference is
high.
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APPENDIX A
PROOF OF LEMMA 1

Let us first consider x; = 1. In this case R (p2, ko) > R is
equivalent, because of (18), to the quadratic inequality
P3aiamar (1 — K3) + pa2aiz [yag — P1 (1 + ko)
+vr — 2P <0, (36)
which is convex and only has one positive root given by
P14+ K2) = vp +|P1 (1 + K2) — Yapk2|
b2 = - 2 .
a1272 (1 — K3)
Notice that the rate constraint of user 1 can only be fulfilled

with a maximally improper signal if R < % log,(1+2P;), that
is, if user 1 can achieve its rate by transmitting all power over

(37

the real or imaginary part. This means that 2P; > 7,5 holds
whenever k1 = 1, which implies P;(1 4 k2) — yo5k2 > 0.
Hence, (37) can be simplified to p; = ¢(k2), where ¢(k2) is
given by the second branch of (23). If k1 < 1, Ry (p2,k2) > R
is equivalent to the quadratic inequality

p%a%z [(’YzR + 1) (1 - “g) - 1] — p22ay2 (Pl - ’YzR)
Tp+l—(1+P)*<0. (38)

The equivalent power constraint will then be given by one of
the roots of this equation. In order to determine which one
of the two roots must be considered we can use the fact that
R (p2, ka) is decreasing in po. This means that at least one of
the roots will violate the condition 0 < x; < 1, with k1 given
by (16). The roots of (38) are

1
Can[(pr+1) (1—k3) —1]

(Pl —’YQR)i

\/(Pl —%r) + (rer +1) (1 - k3) —1] [(1 +P)? a5 — 1}}

(39)
Notice that (1+ P1)? — o5 — 1= (1+ P1)? — (1 + P)?* >
0. Therefore, if (38) is convex, i.e., if [(yo5 + 1)(1 — k3) —
1 > 0, (38) has one negative and one positive root, and the
equivalent power constraint will be given by the latter if it
satisfies k1 < 1. Otherwise, the rate expression for k1 = 1
must be considered. If (38) is concave, both roots can be either
positive, negative, or complex. For the last two cases, none of
them satisfies 0 < k1 < 1, so the equivalent power constraint
must be obtained through the expression for x; = 1. If the
two roots are positive, the monotonicity of Rj(ps2,k2) in ps
is not fulfilled for the largest root, hence the equivalent power
constraint is determined by the smallest root. For all these
cases, the root that must be considered is obtained by taking the
positive square root in (39) which, after some manipulations,
yields ps = q(k2), with g(k2) being given by the first branch
of (23). This concludes the proof.

APPENDIX B
PROOF OF LEMMA 2

Through (24), the derivative of Ry (k2) with respect to k3
is non-negative if

OR(k2) Jq(k2)
Tﬁ% >0 & 2 8&% [(I(’@)(l - "53) + 1] > Q(/‘LQ)Q .
(40)
Let us first consider k1 = 1. In this case we have
9q(k2) q(k2)
= . 41
K3 2ko(1 — Ka) “n
Plugging (41) into (40) we obtain
OR
Maln) 50 6 gl -m) 4120, @)
2

which holds for all values of k5. If k1 < 1, (38) holds with
equality for po = ¢(k2). Therefore, evaluating (38) at po =



q(rk2) and taking the derivative with respect to x2 yields

9q(k2) _ q(k2)?a12(yer + 1)
ors  2q(k2)arz[(ap +1) (1 —K3) — 1] = 2(P1 — 721(%4)35

Plugging (43) into (40) we obtain

aR;égQ) >0 &
a12(v2r + 1) [q(k2) (1 — £3) +1]
q(k2)ars (o +1) (1 — K2) — 1] — (P — Y25) >1. (44)

The denominator in this expression can be shown to be positive
as follows. Since we are assuming that x; < 1 holds, we have,
through (23), that g(k2)ai2[(vap + 1)(1 — K3) — 1] — (P —
12r) = V(2 + D[PE(1 — #3) + (125 — 2P1)K3), hence it
is positive. Consequently, we obtain
OR r—P1—q
2(532) 50 ap> 2R=D q(k2)
Ir3 Yor +1

. (45)

where G(k2) = q(k2)ai2, which does not depend on aio as
can be seen from (23). Let 42 be such that the right-hand side
of (45) holds with equality. Since 242} > 0 for g(k,) > 0,
d(k2) increases with ko and, consequently, the right-hand side
of (45) holds with strict inequality when k2 > Ro. As a result,
the derivative of Ro(k2) is positive whenever ko > ko, which
concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

By Lemma 2, Ry(k2) increases monotonically in k2 as long
as 8%27(”2) > 0 for kg = 0. Clearly, s is also zero at this
point, thus we can apply (45), yielding

-n- (-

_P —q
aip > ! q(O)
Yor + 1 Yor +1
P
=1- ——— =u(a), (46)
Y2R — TR

which proves the first case. In the second case, improper
signaling outperforms proper signaling only for ko > ko. By
Lemma 2 we also know that, if improper signaling outperforms
proper signaling for ko = kb, then the rate improvement will
be strictly positive for ko > k). Therefore, when Ry(1) >
R5(0) holds, there must be &y such that Rp(R2) = R2(0)
and Ra(k2) > R2(0) for all ko > Ro. To evaluate when
R5(1) > R2(0) holds, we first consider the boundary points
satisfying 2P; > ~,p. Since at these points user 1 can
achieve its required rate with a maximally improper signal,
ie., with k1 = 1, we have that ¢(1) = oo. Consequently,
R3(1) > R2(0) is always fulfilled for a;2 > 0, which yields
the second branch of (26). For the boundary points satisfying
2P; < 735, k1 < 1 holds. Therefore, using the corresponding
branch in (23) for ko = 1 yields

1

P {721? —Pi—V(r+1) (2 — 2P1)} . @)
12

q(1) =

Using this expression and (24), Ry(1) > R2(0) holds if

2

o or = Pr = Var + 1) (ar — 2P1)|

1 P, 1 P,
GG
a2 \VR a2 \V7R

which yields

1) +2} . (48)

2
(& _ 1)
TR

2[ver— Pr— v/(iar + 1) (ar — 2P1) —

ajo >

ooy 1j '
R
49)

Taking into account that y,5 + 1 = (v5 + 1)%, we have

(P — )
Y& (V& + 1) [(v2r — 2P1) + v2r — 27&
2

- Q’YR\/ Yor — 2P
(P —r)

= = L(a) )
(Yer —VR) (\/ Yor — 2P1 — )
(50)

which yields the first branch of (26). Finally, if a12 < ¢(«) then
we have Ry(1) < R9(0) and, by Lemma 2, Ry(k2) < R2(0)
for all k9. This yields the third case and concludes the proof.

aig >

APPENDIX D
PROOF OF THEOREM 1

By Lemma 3, improper signaling can only be optimal if
aiz > t(«). However, this condition is not sufficient, since
it does not take the power budget constraint into account.
Firstly, since increasing ko can improve the rate only if this
permits increasing the transmit power as well, we must have
that ¢(0) < P». This is equivalent to

1 (P 1 /P
q(0)2(1—1> < P ®a12><1—1> .
a2 \ YR P2 \ g

(5D
If a5 is greater than this quantity and also than ¢(«), we know
by Lemma 3 that ko = 1 is optimal if ¢(1) < P5. Otherwise, it
is clear that, if improper signaling is optimal, then the optimal
circularity coefficient ko will satisfy p(k2) = P». Let us denote
this circularity coefficient as k9 = Kmax. Then, using (24) we
have

RZ(Hmax) > R2(0) ==

1 1 (P 2P +1
maxgl |:1+<1_1>:| + 2;_ :
P2 a12 TR P
(52)

Therefore, we have to evaluate the condition for K.y, With
P(Kmax) = P, fulfilling the above expression. Let us first
consider the case k1 = 1. From (23), we have that

! <2P11). (53)

a12P> \ 2R

q(Hmax) = P2 < Kmax = 1—-



Plugging this expression into (52) we have the condition

1-— — =1 <
a12P> \ 125
1 1 (P )F
1— = |1+ — (= -1]| +
Pf{ aig (73

which, after some manipulations, yields the quadratic inequal-
ity

2P +1

il 54
e

1
a2y + a1z (Pear — ap) — §P2 (a? + azp) >0, (55)
where ap and a; are respectively given by (30) and (31). This
quadratic expression is convex and has at most one positive
root. Hence, the condition on a;5 is given by the largest root,
which is

ap — Pray + \/(ap — Pyar)? 4 2P (a? + a3)

aip > 5

(56)
This expression, however, is only applicable if x; = 1 holds
for the above threshold. Using (16), k1 = 1 holds if

ap —P2a1+\/(ap —P2a1)2+2P2(a%+a%,) P
> — +ay.
2 P,
(57)
Otherwise we have k1 < 1, thus we have to obtain Ky ,x Using
the first branch in (23) (or, alternatively, taking equality in (38)
with po = P»), which yields

Q(/{max) = P2 A

s Pana[Prarnrog —2(Pr—p) + er +1— (1+ P)?

Hmﬂx
Pia3y (12r +1)
(58)

Plugging this expression into (52) we obtain

Prarz [Poarayon — 2(Py — op)] + Yo + 1 — (P + 1)°
Pia3, (vor +1)

1 1 /P 2 op, 41
e G 5
P a12 \YR

P
which, after some manipulations, yields
1 P — 5
PZ—— 42pP, {172’* n 1}
Yor +1 a2 (Yap +1)

14+ P) —~yp— 1 1 /P 2
L AP~ on +1—[1+<1—1>} >0.
aty (o +1) a2 \Vr
(60)

<

(59)

Since the above quadratic expression is convex, we have to
consider the largest root. As expected, one of the roots is

&1(50, ©1)
a12 \YRr

which corresponds to the maximum power allowed by proper
signaling. Since we have already considered this threshold in

(51), we have to use the second root, which can be simplified
to

1
Py=— {2(721? +1) (1 —a12) —
ai2

TR

(62)

If the above root is the largest one, the inequality (60) is sat-

isfied when P exceeds this value, which yields the condition

> JRE0RRED — P +1) 63)

Vr[P2+2(v2r +1)]

Combining (51)-(63) we obtain that a12 > p(«) must hold

for improper signaling to be optimal, with p(«) given by

(27). However, this condition is only valid if a;2 > ().

Consequently, improper signaling will be optimal if and only

if aq2 is greater than the dominating threshold, i.e., if and only

if a12 > max[t(x), p(e)]. If this expression is satisfied, then

by Lemma 3 k5 must be increased until p(k2) = Pa, thus the

optimal circularity coefficient is given by (33). This concludes
the proof.
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