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Abstract

Interference temperature (IT) is a widely-used approach for protecting primary users (PUs) from

the secondary users (SUs) in underlay cognitive radio. However, when multiple antennas are

available at the transmitters and receivers, the spatial structure of the interference comes into

play, strongly affecting the performance of the primary network. In this work, we propose inter-

ference shaping constraints as an alternative to IT-based approaches. Spatial shaping constraints

take account of the structure of interference and exploit it in benefit of the secondary network.

Moreover, they can be designed dynamically based on the channel conditions and performance

requirements of the PUs. We first show that spatial shaping constraints generalize IT, in that the

latter can be expressed as a set of isotropic shaping constraints on each interference dimension.

Then, we exemplary consider a PU that has a rate requirement, and propose an algorithm for

obtaining suitable shaping matrices, which can be easily modified to include primary transmit-

ter cooperation. This algorithm is performed at the primary receiver using only local channel

state information. Afterwards, we address the transceiver optimization of the SU, modeled as a

multiple-input multiple-output point-to-point link, and provide optimal and suboptimal transmit

covariance designs under the proposed shaping constraints.
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1. Introduction

The number of wireless devices has significantly increased in the last few years. However,

current wireless networks are based on fixed spectrum assignment policies, which make the fre-

quency spectrum unoccupied in many cases and, consequently, results in a poor utilization of

the radio resources [1]. In pursuit of an efficient use of them, a flexible usage of the frequency5

spectrum is needed, in the sense that the channel access is based not only on license holding, but

also on its current occupancy [2]. In this context, cognitive radio (CR) has emerged as a promis-

ing approach to realize spectrum sharing [3]. CR is based upon the deployment of cognitive

users that are capable of accessing the spectrum without disrupting other users communication,

by making intelligent use of side information.10

CR is typically applied on a hierarchical spectrum usage, where there are users who have

license to access the spectrum, but there are also cognitive users that are able to detect the so-

called spectrum holes to opportunistically access the wireless channel when it is not being used

by the licensees. The former are usually referred to as primary users (PUs), whereas the latter are

typically denoted as secondary users (SUs). This paradigm is called interweave CR and, while15

it was the original idea of CR, two other paradigms have been proposed, which require different

cognition levels: overlay and underlay. An interesting tutorial on the three CR paradigms can

be found in [4]. Both overlay and underlay approaches allow concurrent transmission of PUs

and SUs, and their main difference is that, in the former case, the PU message is assumed to

be known by the SUs, who exploit this side information to cancel their interference or to relay20

the PU message. Alternatively, the latter case uses interference constraints to guarantee that the

interference power at the PUs is below a tolerable level. In this paper, we focus on the underlay

CR paradigm and propose a simple modification which, with a limited exchange of information

between the PU and SU networks, allows us to greatly improve the SU performance.

In underlay CR networks, the interference at the primary receivers due to secondary trans-25

missions may be unpredictable. In order for the PUs to meet their performance requirements and

operate satisfactorily, such interference must be properly managed. To this end, the interference

temperature (IT) approach has been proposed as a means of measuring and controlling the in-

terference in an underlay CR network [5]. More specifically, IT approaches set an acceptable

noise floor threshold such that, whenever the interference plus noise power is below that limit,30

the SUs can access the medium without disrupting the PUs communication. The optimization
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of the SUs transmissions subject to the aforementioned IT constraints has received a great deal

of attention in recent years, and a wide range of scenarios and approaches have been considered

[6–16]. A particular case of IT constraints are the null constraints, whereby the IT threshold

is set to zero, forcing the SUs to opportunistically utilized the unused PU directions [17]–[20].35

Furthermore, [19, 20] propose some cooperation between primary and secondary networks, re-

sulting in a significant performance improvement of the secondary network with little impact on

the PU. Cooperative cognitive radio networks have been recently proposed as a different level of

cooperation between primary and secondary users [21]. This new paradigm follows the overlay

CR principle but includes cooperation between PUs and SUs to improve the performance of both40

types of users.

While in the case of single-antenna nodes or single-carrier transmissions the achievable rate

of the PU is completely determined by the total interference plus noise power, when multiple sig-

nal dimensions are available (space, frequency...) this is no longer true, since how the interference

is distributed in the receiver space strongly affects its performance. Although IT constraints have45

been also considered at each receiver antenna or at the receiver subspace (i.e., after the decoding

process, which is usually referred to as interference perceived at the primary receiver) [6, 9],

they still do not capture the whole spatial structure of interference. In fact, multiple antennas

have been mainly exploited at the SU side to improve their performance while satisfying the IT

constraint. For example, antenna selection can be performed to allow low-complexity secondary50

transmitters benefit from spatial diversity [13], whereas transmit precoding allows the SUs to re-

duce the interference level at the primary receivers [14–16]. However, the IT constraint presents

limitations for multiple-antenna systems in that the total interference power at the primary re-

ceiver does not absolutely reflect its performance. Because of that, multiple antennas can be

exploited not only at the SU side to reduce interference, but also at the PU side to set more suit-55

able interference constraints that capture the spatial features of the interference. Following these

lines, some recent works have considered alternatives to IT for MIMO systems. For instance,

in [22] the PU channel state information (CSI) is exploited at the SU to optimize its transmit

covariance matrix subject to an explicit PU rate constraint, which is shown to outperform the

IT approach. Nevertheless, such an approach requires additional cross-information between pri-60

mary and secondary networks, which reduces the actual net throughput and increases the overall

system complexity. Linear matrix inequality constraints (similar as the one considered in this
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paper) have been studied in our previous works [23, 24] and in [25], where authors consider the

robust optimization of the PU covariance matrix under different interference constraints. Similar

interference constraints have also been considered in the context of cellular networks in [26],65

where shaping constraints are used to upper-bound the worst-case interference covariance matrix

when the interference channels are unknown; and in [27, 28] to efficiently coordinate interfer-

ence with an underlaying device-to-device communication network. The latter is closely related

to underlay cognitive radio since the interference constraint is optimized to ensure a given qual-

ity of service. The proposed algorithm aims at maximizing the tolerable interference power, but70

without exploiting the cross-CSI. A more general scenario is considered in [29], where an uplink-

downlink duality is introduced for minimax problems with linear matrix inequality constraints,

which usually appear in robust optimization under worst-case interference.

Motivated by these ideas, in this paper we study alternatives to IT constraints when multiple

spatial dimensions are available, with reduced cooperation and limited CSI exchange between75

primary and secondary networks. We base on the same principle as the aforementioned works on

interference shaping [25–28], but focus on the design of the spatial shaping matrices to efficiently

handle interference between networks whose cooperation and CSI is limited, which is exemplary

illustrated through the underlay CR paradigm. Notice that, unlike conventional underlay CR, our

method requires some cooperation between primary and secondary networks, thereby boosting80

the performance of the SUs while providing a better protection to PUs. This is motivated by the

aforementioned cooperative PU-SU schemes, where the benefit of cooperation has been shown

for different CR paradigms (see, e.g. [4][19]–[21] and references therein).

This paper builds up on our previous work in [23, 24]. Here, we extend the design of spa-

tial shaping constraints by presenting a more general optimization framework, where primary85

transmitter cooperation can easily be introduced. Furthermore, we present a stronger connec-

tion between spatial shaping and interference temperature, and provide a detailed analysis on the

properties of the proposed interference shaping constraints. We additionally address the opti-

mization of a MIMO SU under a spatial shaping constraint and provide several numerical exam-

ples that illustrate the performance of the proposed approach compared to IT and the alternative90

technique presented in [22].

The rest of the paper is organized as follows. Section 2 provides a general description of the

problem and introduces the concept of spatial interference shaping. The design of suitable spatial
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Figure 1: General scenario and problem overview.

shaping constraints is presented in Section 3. In Section 4, we describe the system model from the

secondary network standpoint and tackle the optimization of the SU transmission schemes under95

transmit shaping constraints for a point-to-point MIMO SU. Section 5 illustrates the performance

of the proposed spatial shaping constraints through several numerical examples. Finally, Section

6 presents the concluding remarks.

2. General model and problem overview

2.1. System description100

Consider a primary point-to-point link where the transmitter and receiver are equipped with

M0 and N0 antennas, respectively. Furthermore, K unlicensed devices or SUs equipped with M

transmit antennas each wish also to access the wireless channel, as depicted in Fig. 1. Following

the underlay CR paradigm, the SUs are allowed to coexist with the PU as long as they control

the generated interference in such a way that a prescribed rate constraint at the PU is guaranteed105

at the PU. Hence, when the PU is not fully loaded, i.e., its rate requirement is below its point-to-

point capacity, the SUs have an opportunity to access the channel by controlling the interference

generated at the primary receiver by means of power control or beamforming.
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If we denote the channel from the k-th SU to the primary receiver as Gk, and the direct

channel of the PU as H0, the signal received by the latter can be expressed as

y = H0x︸︷︷︸
desired signal

+

K∑
k=1

Gkzk︸ ︷︷ ︸
interference from SUs

+ n , (1)

where x ∼ CN (0,Q0) and zk ∼ CN (0,Qk) are the transmitted signals by the PU and kth SU,

respectively, with Q0 ∈ SM0
+ and Qk ∈ SM+ being the respective transmit covariance matrices

(SN+ is the set of N × N positive semidefinite matrices), and n ∼ CN
(
0, σ2I

)
is the additive

white Gaussian noise (AWGN). Both PU and SU transmit signals are assumed to be independent.

Denoting as P0 and P the power budgets of the PU and SUs, respectively, the transmit covariance

matrices satisfy Tr(Q0) ≤ P0 and Tr(Qk) ≤ P .3 When the transmit covariance matrix of the

PU is fixed, we can express its achievable rate as a function of the transmit covariance matrices

of the SUs as

RPU
(
{Qk}Kk=1

)
= log2

∣∣∣∣∣∣I +

(
σ2I +

K∑
k=1

GkQkG
H
k

)−1
H0Q0H

H
0

∣∣∣∣∣∣ . (2)

The rate constraint can therefore be written as

RPU
(
{Qk}Kk=1

)
≥ R̄ , (3)

where R̄ is the prescribed rate requirement.

2.2. Spatial interference shaping110

There are different approaches that can be carried out to ensure that the PU achieves its rate

requirement in spite of the secondary transmissions. In CR, null or little cooperation between

primary and secondary networks is typically desirable. Thus, the conventional way consists in

setting an interference power constraint, Tr(
∑K
k=1 GkQkG

H
k ) ≤ t, where t is the predefined IT

threshold, as a surrogate of the rate constraint (3), so that an appropriate selection of t ensures

the rate of the PU. This accordingly decouples both networks, as the interference power or IT

3Without loss of generality, we consider that the secondary transmitters are equipped with the same number of anten-

nas and have equal power budgets. The proposed algorithms can be straightforwardly extended to account for unequal

number of antennas and/or power budgets.
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constraint bounds the impact of the secondary network over the PU. When the primary receiver

has multiple antennas, however, the total interference power does not provide a complete char-

acterization of the interference, since its spatial distribution strongly affects the transmission rate

achieved by the PU. With multiantenna systems, the IT threshold, t, must be chosen to guaran-

tee a worst-case interference covariance matrix [30]. This can be accomplished by solving the

following optimization problem [30]

PIT : maximize
t

t ,

subject to log2

∣∣∣I +
(
σ2I + K

)−1
H0Q0H

H
0

∣∣∣ ≥ R̄ , K ∈ K(t),

where K(t) = {K � 0 : Tr(K) ≤ t}.

As an alternative to IT constraints, in this paper we consider spatial shaping (SS) constraints

in order to dynamically exploit the spatial structure of the interference. Unlike IT, the SS ap-

proach does not define a specific constraint but a class of constraints. Basically, it consists in

limiting or even forbidding interference power in some directions that can be specially detrimen-

tal for the PU performance. Spatial shaping constraints can be designed such that particularly

harmful spatial structures are avoided, thereby increasing the tolerable interference power with-

out compromising the PU performance. In general terms, the design of the SS constraint can be

formulated as a generalization of the IT design problem PIT as

PSS : maximize
S

f(S) ,

subject to log2

∣∣∣I +
(
σ2I + K

)−1
H0Q0H

H
0

∣∣∣ ≥ R̄ , K ∈ K(S),

where the cost function f(S) and the set of admissible interference covariance matrices K(S)

can be designed in many different ways. In this paper, we consider SS constraints of the form4

Qk � Sk , k = 1, . . . ,K , (4)

where Sk is the positive-semidefinite shaping matrix of the kth SU. By means of (4), the transmit

covariance matrix of each secondary transmitter is constrained. In this case, the set of admissible

4Similar spatial shaping constraints can be considered at different points of the communication link, e.g., by con-

straining GkQkG
H
k or

∑K
k=1 GkQkG

H
k , which may require different levels of cooperation and CSI knowledge. In

this work, we restrict to spatial shaping of the transmit covariance matrices as in (4) for the sake of exposition.
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interference covariance matrix has the form K({S}Kk=1) = {K : K =
∑K
k=1 GkQkG

H
k ,0 �

Qk � Sk}. The cost function f({Sk}Kk=1) can be, e.g., f({Sk}Kk=1) =
∑K
k=1 wk Tr(Sk), which115

is the weighted sum of allowable transmit powers and is the cost function that we will adopt in

this paper; f({Sk}Kk=1) =
∑K
k=1 wk log2 |I + 1

σ2 Sk|, which is an upper-bound of the expected

weighted sum-rate of the secondary network; or any other similar concave cost function.

As we will show, the spatial shaping matrices in (4) can be designed to ensure, without

applying any additional constraint to the secondary network, the PU rate constraint independently120

of the specific transmit covariance matrices of the SUs. This means that, similarly to the IT

constraint, SS constraints decouple both the primary and secondary networks. Furthermore,

since each matrix Sk directly constrains the transmit covariance matrix of the corresponding SU,

this approach does not require the SUs to acquire the cross-channel matrices, Gk.

In the following lemma, we show that a shaping constraint in the form of (4) can be used as125

a substitute for the rate constraint (3) by a proper selection of Sk, k = 1, . . . ,K.

Lemma 1. Let Sk ∈ SN+ , k = 1, . . . ,K, be such thatRPU({Sk}Kk=1) ≥ R̄. ThenRPU({Qk}Kk=1)

≥ R̄ for all Qk ∈ SN+ satisfying Qk � Sk.

Proof. This can easily be proved using the equivalence X � Y ⇔ X−1 � Y−1 [31], which

yields

Qk � Sk ⇒ Q
H
2

H

(
σ2I +

K∑
k=1

GkQkG
H
k

)−1
Q

1
2

H � Q
H
2

H

(
σ2I +

K∑
k=1

GkSkG
H
k

)−1
Q

1
2

H ,

(5)

where QH = H0Q0H
H
0 and (·)H

2 = [(·) 1
2 ]H . By (5), and since log2 |I + X| is matrix-monotone

[31], RPU({Qk}Kk=1) ≥ RPU({Sk}Kk=1) ≥ R̄ holds, which concludes the proof.130

Hence, the rate of the PU is ensured whenever the spatial shaping matrices {Sk}Kk=1 are

designed such that RPU({Sk}Kk=1) ≥ R̄.

2.3. Problem overview

There are two different problems addressed in this paper, as illustrated in Fig. 1. In the

first one, we take the point of view of the PU and consider the following question: given a rate135

requirement as in (3), how can we design the spatial shaping matrices {Sk}Kk=1, such that the

performance of the secondary network is maximized, while (3) is fulfilled for all Qk � Sk?
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Differently from the IT approach, in which the maximum interference power threshold, t, is

univocally given by the rate requirement (3) [30], a suitable design of the spatial shaping matrices

seems more complicated and different criteria could be followed. The tricky point here is the140

fact that cooperation and cross-information between primary and secondary networks must be

kept to a minimum, and therefore relating {Sk}Kk=1 to a performance metric of the secondary

network without any knowledge about most of its parameters (direct channels, optimal transmit

directions, etc.) is not trivial. To be more specific, we consider the following assumptions for

this first problem:145

• The primary receiver has perfect local CSI, i.e., the channels from each transmitter (H0

and Gk, k = 1, . . . ,K) to the primary receiver are known.

• The primary receiver knows the power budget of the SUs.

• The primary receiver has no additional information about the secondary network, such as

its topology or the SU-SU channels.150

• The primary transmitter is unaware of the secondary network activity.

Under these assumptions, the primary receiver designs the shaping matrices and feeds them back

to the secondary network through a feedback link. At this stage, the PU is concerned with the

SU performance only in the design of the shaping constraints. The shaping matrices obtained

this way are subsequently used in the second stage by the SUs, where the actual performance of155

the secondary network is optimized.

In the second problem, we shift attention to the secondary network, and address the transmit

covariance matrix optimization under shaping constraints for a point-to-point MIMO SU. Notice

that, if the primary and secondary networks were jointly optimized, the whole network could

be regarded as a MIMO IC. Although the joint optimization of this IC network topology might160

be optimal from the point of view of the SUs, it would require a completely-aware and fully-

collaborative PU, which clearly departs from the underlay CR paradigm. On the other hand, the

proposed approach can be regarded as partially distributed, where first the PU designs the spatial

shaping matrices using local CSI and feeds them back to the secondary network, which then

exploits this knowledge and its own local CSI to optimize its performance without any further165

cooperation with the PU.
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2.4. Spatial shaping versus interference temperature

Although the SS approach may seem different from IT at first glance, there is a close con-

nection between them. To ensure the instantaneous PU rate, the IT threshold must also be dy-

namically designed based on the PU rate requirement and its channel matrix. In comparison with170

the IT approach, the proposed SS designs require only little cooperation increase in that the local

SU-PU channels, Gk, k = 1, . . . ,K, must be estimated by the primary receiver.

From a mathematical viewpoint, IT can actually be shown to admit an SS representation.

That is, in general terms, SS encompasses a broader class of constraints that includes IT as a

special case. Since the IT constraint affects the trace of the interference covariance matrix K,

we have to focus on a shaping constraint on K in order to show this relationship, i.e., we have

to consider the constraint K � P, where P is the shaping matrix. Nevertheless, this constraint

is implied by {Qk � Sk}Kk=1, i.e., {Qk � Sk}Kk=1 ⇒ K �
∑K
k=1 GkSkG

H
k = P. Now

let K =
∑r
i=1 kik

H
i , with r being the rank of K, be an arbitrary decomposition, which may

represent the aggregation of all incoming interfering streams from the SUs. By introducing the

auxiliary shaping matrices {Pi}ri=1, the shaping constraint can be written as

K � P ⇔

 kik
H
i � Pi , i = 1, . . . , r∑r
i=1 Pi � P

. (6)

Therefore, the design of P following the lines of PSS can equivalently be accomplished by

optimizing the auxiliary shaping matrices {Pi}ri=1. Their optimal solution will minimize the

uncertainty of the interference and enforce it to match the best case in terms of PU rate. In other

words, the optimal matrices {Pi}ri=1 will be rank-one since so are {kikHi }ri=1, yielding the

bidirectional equivalence in (6). On the other hand, when the secondary network is constrained

with an IT threshold, we can derive a similar equivalence by using Lemma 3 in Appendix A and

the set of auxiliary IT thresholds {ti}ri=1, yielding

Tr (K) ≤ t ⇔

 kik
H
i � tiI , i = 1, . . . , r∑r
i=1 tiI � tI

. (7)

By comparing (6) and (7), it can be readily observed that the IT constraint is equivalent to a set of

isotropic shaping constraints on each interference dimension, hence presenting a particular case

of the spatial shaping (by constraining Pi and P to be of the form tiI and tI, respectively). In175

the IT problem there is a complete uncertainty in the spatial signature of the interference, since

the interference directions ki are not enforced to lie on any particular subspace.
10



This relationship shows that the IT constraint admits indeed a specific SS representation.

Dropping this particular SS structure leads to more general shaping constraints that permit con-

trolling the spatial signature of the interference. Therefore, although any of the two constraints180

may serve as a surrogate for the rate constraint (3), spatial interference shaping provides extra de-

grees of freedom that can be exploited to enhance the secondary network performance by wisely

minimizing the uncertainty of the interference.

3. Design of spatial shaping matrices

In this section, we address the first problem, i.e., the design of the spatial shaping matrices.185

Recall that these matrices are computed at the primary receiver exploiting its local CSI, and

will be then fed back to the secondary network. Then, the SUs can optimize their own transmit

strategy under the constraints provided by the shaping matrices, hence the PU rate is ensured.

3.1. Admissible transmit power maximization without primary transmitter cooperation

As previously discussed, the PU has little knowledge about the secondary network. However,

in order to compute suitable shaping matrices {Sk}Kk=1, it must follow some criterion reflecting

the performance of the secondary network. In this paper we will use the weighted sum of ad-

missible transmit powers of the SUs as the performance metric since it can be obtained solely

through the shaping matrices, hence no additional assumptions are required. Note that increasing

the allowable transmit power does not necessarily lead to an increase in the performance of the

SUs. For example, the eigenvectors of {Sk}Kk=1 also affect the performance of the SUs. How-

ever, every possible set of eigenvectors is equally a good choice from the PU standpoint due to its

lack of knowledge about the secondary network. Consequently, maximizing the allowable trans-

mit power can be considered as a reasonable choice given the considered assumptions. Therefore

we propose the following optimization problem as a particular instance of PSS5

P0 : maximize
{Sk}Kk=1

K∑
k=1

wk Tr (Sk) ,

subject to RPU
(
{Sk}Kk=1

)
≥ R̄ ,

0 � Sk � P I , k = 1, . . . ,K .

5Although we consider the weighted sum of admissible transmit powers as the performance metric, the proposed

algorithm (to be described later) is also applicable for any other concave function of {Sk}Kk=1.
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In words, the solution of P0 is given by the worst-case covariance matrices that maximize190

the weighted sum of admissible transmit powers (notice that we use the term worst-case to refer

to the SS matrices, since they are an upper-bound of the actual transmit covariance matrices).

The weights wk can be tuned to achieve fairness among the SUs. For example, users that are

farther from the primary receiver will systematically be allowed to transmit more power than

users that are closer. Therefore, each weight wk can be selected based on the eigenvalues of195

GH
k Gk, so that fairness can be achieved. We would also like to remark the last constraint in P0,

which limits the maximum eigenvalue of Sk by the power budget of the SUs P . The rationale

behind this constraint is that the SUs are unable to transmit with a signal power higher than P

along any spatial direction. Such a constraint may seem counterintuitive at first glance, as the

transmit covariance matrix of the kth SU is also constrained by its power budget as Tr(Qk) ≤ P .200

However, it can be noticed that using the constraint Tr(Sk) ≤ P instead of Sk ≤ P I yields more

restrictive shaping matrices in terms of admissible transmit power, i.e., the optimal value of the

cost function of P0 is always equal to or greater than that obtained substituting Sk � P I by

Tr(Sk) ≤ P . This is because the set of matrices that fulfill Tr(Sk) ≤ P constitutes a subset of

those satisfying Sk � P I. In addition, Sk = P I is the least stringent shaping matrix we can205

choose such that Qk � Sk is fulfilled for any Qk satisfying Tr(Qk) ≤ P . This means that the

SU is actually spatially-unconstrained in that case, which can be the case if the rate constraint of

the PU is low, hence admitting any secondary transmission.

P0 is not a convex optimization problem due to the rate constraint, which makes the prob-

lem difficult to solve [32]. In [33], an optimization framework for finding Karush-Kuhn-Tucker210

(KKT) points of non-convex problems was proposed, based on convex approximations of the

non-convex constraints. The key idea is to replace the non-convex constraints by a convex

approximation at a given point, and solve the resulting problem. Doing this iteratively the

method is shown to converge to a KKT point of the original problem (provided that they ex-

ist). Let R̃PU({Sk}Kk=1, {S`k}Kk=1) be the convex approximation of RPU({Sk}Kk=1) at Sk = S`k,215

k = 1, . . . ,K. Then, the following properties must be fulfilled for the successive convex ap-

proximation method to be applicable to our problem [33]:

1. RPU({Sk}Kk=1) ≥ R̃PU({Sk}Kk=1, {S`k}Kk=1) , ∀Sk ∈ SN+ .

2. RPU({S`k}Kk=1) = R̃PU({S`k}Kk=1, {S`k}Kk=1).

3. ∇Sk
RPU({S`k}Kk=1) = ∇Sk

R̃PU({Sk}Kk=1, {S`k}Kk=1), k = 1, . . . ,K,220

12



where∇Sk
RPU({Sk}Kk=1) is the derivative of RPU({Sk}Kk=1) with respect to Sk. We first notice

that RPU({Sk}Kk=1) is convex [34], but should be concave for P0 to be a convex optimization

problem. Since the best concave approximation of a convex function is a linear function, we

approximate RPU({Sk}Kk=1) by a first-order Taylor expansion. It is easy to see that this linear

approximation satisfies the above conditions and can thus be used for a successive convex ap-

proximation method. Taking this into account, we obtain a sequence of convex approximations

of P0, {P`0}L`=1, where the `th approximation is given by

P`0 : maximize
{Sk}Kk=1

K∑
k=1

wk Tr (Sk) ,

subject to RPU
(
{S`−1k }Kk=1

)
+

K∑
k=1

Tr
[
∇Sk

RPU
(
{S`−1k }Kk=1

)H (
Sk − S`−1k

)]
≥ R̄ ,

(8)

0 � Sk � P I , k = 1, . . . ,K ,

where {S`−1k }Kk=1 is set as the optimal solution of P`−10 and ∇Sk
RPU

(
{Sk}Kk=1

)
is given by

(9). The proposed successive convex approximation algorithm is summarized in Algorithm 1.

Notice that we have to choose an initial point, {Sinit
k }Kk=1, for Algorithm 1. This initial point

must satisfy the constraints of the original problem, i.e., 0 � Sinit
k � P I, k = 1, . . . ,K, and

RPU({Sinit
k }Kk=1) ≥ R̄. Such an initial point can be found, e.g., by setting Sinit

k = γI, being γ225

the highest value in the interval [0, P ] such that RPU({γI}Kk=1) ≥ R̄. We would also like to

point out that new shaping matrices must be computed by the PU every time its channel or its

transmit covariance matrix changes. Nevertheless, this is also the case of any other approach that

guarantees the instantaneous rate of the PU. In this regard, the proposed technique seeks a good

trade-off between performance and cooperation requirements.230

∇Sk
RPU

(
{Sk}Kk=1

)
= − 1

log 2
GH
k

(
σ2I +

K∑
k=1

GkSkG
H
k

)−1
H0Q0H

H
0 ×I +

(
σ2I +

K∑
k=1

GkSkG
H
k + H0Q0H

H
0

)−1
H0Q0H

H
0

(σ2I +

K∑
k=1

GkSkG
H
k

)−1
Gk .

(9)
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Set f?P0
0

= 0, ` = 0 and a tolerance, ε; where f?P`
0

denotes the optimal value of P`0
Choose an initial point S0

k = Sinit
k , k = 1, . . . ,K.

repeat

1. ` = `+ 1.

2. Construct P`0 by replacing the rate constraint with its first order approximation at

{S`−1k }Kk=1.

3. Solve P`0 to obtain {S?k}Kk=1 and f?P`
0

and set, for each k = 1, . . . ,K, S`k = S?k.

until f?P`
0
− f?P`−1

0

≤ ε.

Algorithm 1: Successive convex approximation algorithm for finding local optima of P0.

Although the approximated problem P`0 is convex and can therefore be solved efficiently by

standard numerical methods, it has a special structure that allows us to devise a more focused op-

timization algorithm with much reduced computational complexity. Since the objective function

and approximated rate constraint are linear, the resulting problem at each iteration of Algorithm

1, P`0, is a semidefinite programming (SDP) problem, whose optimal solution is characterized235

by the following lemma.

Lemma 2. Let S?k, k = 1, . . . ,K, be the optimal solution of P`0, and let also S?k = FkΣkF
H
k

and w−1k ∇Sk
RPU

(
{S`−1k }Kk=1

)
= VkΛkV

H
k be the singular value decomposition (SVD). Then

Fk = Vk. Furthermore, let π(i) ∈ {(k,m) : 1 ≤ k ≤ K, 1 ≤ m ≤ M}, i = 1, . . . ,MK,

with π(i) 6= π(j) for i 6= j, be an ordering such that Λπ(1) ≤ Λπ(2) ≤ . . . ≤ Λπ(MK), where

Λ(k,m) is the mth element in the diagonal of Λk. Then, the following holds

Σπ(i) < P ⇒ Σπ(i+1) = 0 , i = 1, . . . ,MK − 1 . (10)

Proof. Please refer to Appendix B.

Notice that π(i) in Lemma 2 is an index pair, i.e., it takes a value π(i) = (ki,mi), so

Σπ(i) is the mith element in the diagonal of matrix Σki . First, Lemma 2 states the optimal

transmit directions of the SUs in terms of the approximated problem. That is, the eigenvectors of240

∇Sk
RPU

(
{S`−1k }Kk=1

)H
associated with the lowest eigenvalues are the directions along which

the kth SU interfere the least in terms of the approximated rate expression. Once the optimal

transmit directions have been identified, P`0 turns into a linear programm (LP), whose solution
14



Set i = 0 and Σk = 0, k = 1, . . . ,K. Define K = {1, . . . ,K}, Mk = {1, . . . ,M},

k = 1, . . . ,K, and β = RPU
(
{S`−1k }Kk=1

)
− R̄−

∑K
k=1 Tr

(
∇Sk

RPU
(
{S`−1k }Kk=1

)H
S`−1k

)
.

repeat

1. i = i+ 1.

2. Denote Λ(k0,m0) = mink∈K
{

minm∈Mk

(
Λ(k,m)

)}
.

3. K = K − {k0} andMk0 =Mk0 − {m0}.

4. Σk0,m0
= min

(
P, β

wk0
Λ(k0,m0)

)
.

5. β = β − wk0Λ(k0,m0)Σ(k0,m0).

until i = MK or Σ(k0,m0) < P .

Algorithm 2: Algorithm to find the optimal solution of P`0.

is an extreme point of the feasible set. The optimal extreme point is characterized by (10),

which can be interpreted as follows. The secondary network is first allowed to transmit along245

the relative least harmful direction (i.e., the one associated with Λπ(1)) with a signal power such

that the approximated rate constraint holds with equality. If such signal power is greater than the

SU power budget, it is then set to P , what lets the SUs transmit along the next direction (that

associated with Λπ(2)). This is repeated until the rate constraint holds with equality or all the

eigenvalues of {S?k}Kk=1 have been set to P . Notice that, in the latter case, S?k = P I holds for250

k = 1, . . . ,K. This observation permits computing the optimal solution of P`0 in at most MK

iterations, as detailed in Algorithm 2.

3.2. Admissible transmit power maximization with primary transmitter cooperation

So far we have considered that the PU has a fixed transmission strategy, Q0, independent

of the shaping matrices {Sk}Kk=1. However, these matrices upper-bound all possible trans-

mit covariance matrices and, therefore, all possible interference covariance matrices. In other

words,
∑K
k=1 GkSkG

H
k represents the worst-case interference covariance matrix at the primary

receiver. Therefore, it can be exploited at the PU to optimize its transmit covariance matrix so

as to further relax the shaping constraint without jeopardizing its data rate. Note that Q0 cannot

be directly optimized to reduce the impact of the interference at the secondary network since the

PU-SU channels are unknown, and hence the PU transmit covariance matrix can only be opti-

15



mized to reduce the stringency of the spatial shaping constraint. To this end, expressing the PU

rate given by (2) as a function of both {Sk}Kk=1 and Q0, i.e., RPU({Sk}Kk=1,Q0), problem P0

can be modified as

P̃0 : maximize
{Sk}Kk=1,Q0

K∑
k=1

wk Tr (Sk) ,

subject to RPU
(
{Sk}Kk=1,Q0

)
≥ R̄ ,

0 � Sk � P I , k = 1, . . . ,K ,

Tr (Q0) ≤ P0 ,

Q0 � 0 ,

where P0 is the power budget of the PU. The joint optimization of the shaping and PU covariance

matrices makes P̃0 even more difficult to solve than the original problem P0. However, we can255

exploit the iterative nature of the successive convex approximation in Algorithm 1 to include a

suboptimal optimization of the transmit covariance matrix Q0 with little increase in complexity.

To this end, we first notice that, with {Sk}Kk=1 being fixed, Q0 must be selected such that the pri-

mary user rate is maximized, which translates into the well-known singular value decomposition

(SVD) and waterfilling power allocation [35]. Hence, we may perform a joint alternating opti-260

mization and successive convex approximation by including an additional transmit optimization

step for the PU (SVD and waterfilling) between steps 1 and 2 of Algorithm 1. Notice that the

objective function is still decreasing at each step, so the convergence properties of Algorithm 1

also apply to the joint SS-PU optimization.

3.3. Discussion265

Before moving to the optimization of the secondary network, we would like to make some

remarks about the intuition behind the solution of the proposed algorithms and its connection to

the IT approach. To this end, we provide in the following a discussion along with some numerical

examples. For all simulations we take wk = 1, k = 1, . . . ,K. We define the transmit signal-

to-noise ratio (SNR) of the PU and SUs as SNRPU = P0/σ
2 and SNRSU = P/σ2, respectively,270

and consider σ2 = 1 without loss of generality. Unless stated otherwise, the entries of the

channel matrices are independently distributed as complex Gaussian random variables with zero

mean and unit variance. All results are obtained by averaging 1000 independent Monte Carlo

simulations.
16
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Figure 2: Tolerable INR at the primary receiver for K = 1, M0 = N0 = M = N = 3, and SNRSU = SNRPU =

20 dB.

3.3.1. Tolerable interference power275

Since the IT approach only constrains the trace of K, it guarantees the PU a given instanta-

neous rate by looking at the worst-case interference covariance matrix, and the worst-case inter-

ference at each stream is higher the greater the signal power is [30]. In other words, dominant

streams are assumed to receive more interference when the IT threshold is obtained, resulting

in a very conservative, and therefore pessimistic, interference constraint. On the other hand, the280

proposed spatial shaping approach works just the other way around. That is, in order to maxi-

mize the admissible transmit power of the secondary network, it enforces the SUs to confine their

interference along the weakest data streams, so that the impact of such interference is lower and

thus the admissible SU transmit power can increase. We illustrate this feature in Fig. 2, which

depicts the tolerable interference-to-noise ratio (INR) for K = 1, M0 = N0 = M = N = 3,285

and SNRSU = SNRPU = 20 dB. We also consider that the PU performs the optimal strategy in

the absence of interference, i.e., SVD of its direct channel followed by waterfilling power allo-

cation [35], and the rate constraint is taken as a fraction of its maximum achievable rate, i.e.,

R̄ = α log2 |I + 1
σ2 H0Q0H

H
0 |, where α ∈ [0, 1] is the loading factor. As can be seen in Fig. 2,

SS substantially increases the tolerated INR for all values of α.290
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Figure 3: Worst-case SINR at each signal dimension for the same parameters as in Fig. 2.

3.3.2. Dependency with the signal space

Since in both cases (IT and SS) the interference covariance matrix is upper bounded, it is

worth looking at how these upper bounds differ. To this end, let us now consider the dependency

between the signal covariance matrix, QH = H0Q0H
H
0 , and the interference covariance matrix

upper bound, KUB =
∑K
k=1 GkSkG

H
k . We plot the worst-case signal-to-interference-plus-295

noise ratio (SINR) of each signal dimension of the PU for both IT and SS in Fig. 3. As can be

observed, the proposed spatial shaping approach yields worst-case SINRs that are more spread

out than those obtained by the IT approach. Thus, since the strongest signal mode conveys the

higher information rate, the SS approach provides it with a minimum SINR that is much higher

than that ensured by the IT approach. This is accomplished by lowering the guaranteed SINR300

at the other signal modes, as they have a lower contribution to the data rate. Notice also that,

if we move from α = 1 to the left part of the figure, the total admissible interference power

is increasing. Looking at the SS approach, this has firstly an effect on the SINR of the weakest

stream, while the SINR of the remaining two is almost constant, which means that SS is enforcing

the interference to be confined into the direction of the weakest stream. If we continue further to305

the left, the SINR of the second stream starts decreasing as well, while that of the strongest one

remains almost unchanged. This is because the interference is being confined into the subspace

spanned by the last two signal modes as α decreases. However, the IT approach shows a similar

SINR reduction for the three streams, which is the result of not exploiting the spatial dimension.
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As an extreme example, consider the case where α = 1 but the PU does not use all the

available dimensions. That is, there are some signal-free spatial dimensions where the SUs can

interfere without reducing the PU rate. Notice that, since α = 1, the PU does not admit any

interference power along signal dimensions. In this case, the conventional IT approach sets an

interference power constraint equal to zero, as the worst-case interference covariance matrix

assumes interference along the signal dimensions. This could be overcome by constraining the

perceived interference power, i.e., the interference power on the signal subspace, rather than the

total interference power [9]. This is also referred to as opportunistic interference alignment (IA)

[17], where the SUs opportunistically access the channel by confining their transmit signals on

the unused receiver subspace, and this is precisely what SS automatically does by optimizing

the shaping matrices {Sk}Kk=1. This can be easily observed by looking at the optimal transmit

directions stated in Lemma 2. To show this, we rewrite the rate constraint in P`0 as

RPU
(
{S`−1k }Kk=1

)
+ Tr

[
∇KUBRPU

(
{S`−1k }Kk=1

)H K∑
k=1

Gk

(
Sk − S`−1k

)
GH
k

]
≥ R̄ . (11)

Therefore, if each GkS
`−1
k GH

k lies within the null space of H0Q0H
H
0 , the smallest eigenvalues310

of ∇KUBRPU
(
{S`−1k }Kk=1

)
belong to this subspace as well (see (9)), so S`k = S`−1k , i.e., it is a

stationary point of P0. As a result, the spatial shaping constraint forces the SUs to align their

interference within the unused subspace in an automatic way, clearly showing its superiority over

the IT approach.

3.3.3. Dependency of the interference subspaces315

For multiple secondary users it is worth analyzing how KUB
k = GkSkG

H
k and KUB

i =

GiSiG
H
i , k 6= i, relate. As previously discussed, the design of the shaping matrices tends to

confine the interference subspace within the weakest signal modes, thus the subspaces spanned

by KUB
k and KUB

i tend to overlap. In other words, the SUs are enforced to perform IA at the

primary receiver. We illustrate this observation in Fig. 4, where the eigenvalues of the normalized320

interference covariance matrix, which is the covariance matrix divided by the SNR, are depicted

as a function of the number of users K. The system parameters are M0 = N0 = M = N = 4,

SNRSU = SNRPU = 20 dB, and α = 0.7. Figure 4 shows that, in this scenario, the rank of

the interference covariance matrix is two independently of the number of users. This means

that the SUs are enforced to perform IA on a specific two-dimensional subspace at the primary325
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Figure 4: Eigenvalues of the normalized interference covariance matrix for M0 = N0 = M = N = 4, SNRSU =

SNRPU = 20 dB, and α = 0.7.

receiver. Because of that, the interference level at each of the two dimensions can grow almost

linearly with the number of users. Obviously, the rank of the interference covariance matrix

is a function of the parameters and channel realizations, so its rank will be different for other

scenarios. The key point here is the fact that IA is automatically carried out without requiring the

SUs to cooperate with each other if they just design their transmit covariance matrix under the330

spatial shaping constraint {Qk � Sk}Kk=1. That is, IA is achieved at the primary receiver using

only local CSI and with non-cooperative SUs. Notice that the latter point is specially interesting

when the SUs are low-power devices far from each other, in which case cooperation among them

might not be even possible.

3.3.4. Power allocation of the primary user335

Finally, we provide some intuitions on the solution obtained with the joint SS-PU optimiza-

tion described in the previous section. The optimal PU transmit covariance matrix is obtained,

at each step, as the optimal waterfilling solution given the current shaping matrices. Since the

proposed SS tends to allow more interference power into the weakest streams of the PU, the

waterfilling step will allocate more power to the strongest streams, which will receive less inter-340

ference due to the shaping constraint, and less power to the weakest streams, which will receive

more interference due to the shaping constraint. Upon convergence, there will be more differ-

ence in terms of power allocation and maximum level of interference between the PU streams
20
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Figure 5: Example of power allocation of the PU data streams for fixed (solid blue lines) and optimized (dashed red

lines) transmit covariance matrix. We use the same parameters as in Fig. 2.

than with the algorithm without PU optimization, which can even yield a rank-deficient trans-

mit covariance matrix for the PU. Fig. 5 shows an example of the average SNR per stream for345

both cases, i.e., fixed and optimized PU transmit covariance matrix, which is agreement with our

intuitions.

4. Transmit covariance optimization under shaping constraints

In this section we address the optimization of a point-to-point MIMO SU under the proposed

SS constraint. It is worth stressing that, at this point, there is no need of any further cooperation

between networks, or of any joint optimization stage, since the PU is already protected by Q � S

(see Lemma 1). Consequently, the PU and SU networks are totally decoupled. We consider the

following optimization problem.6

P1 : maximize
Q

log2

∣∣∣I +
(
σ2I + G0Q0G0

)−1
HQHH

∣∣∣ ,
subject to 0 � Q � S ,

Tr (Q) ≤ P ,

where G0 is the PU-SU channel. Although the above problem is convex, we can derive insightful

closed-form expressions for some special cases, which we describe in the following proposition.350

6A similar problem was considered in [36], but it cannot be applied here due to the transmit power constraint.
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Proposition 1. Problem P1 admits a closed-form optimal solution in the following cases

• If Tr (S) ≤ P :

Q? = S . (12)

• If rank (Q?) = 1:

Q? = q? (q?)
H
, (13)

q? = S
1
2 νmax

[
S

1
2 HH

(
σ2I + G0Q0G0

)−1
HS

1
2

]
. (14)

• If rank (Q?) = rank (S):

Q? = S− F̃Φ

(
Υ− 1

µ
I

)+

ΦHF̃H , (15)

where F̃ is a unitary basis for the complementary subspace of the nullspace of S,

Σ̃+
[
F̃HHH

(
σ2I + G0Q0G0

)−1
HF̃

]−1
= ΦΥΦH (SVD), and µ such that Tr (Q?) =

P .

Proof. Please refer to Appendix C.355

Note that, although the last two cases in Proposition 1 require the rank of the optimal solu-

tion, which is unknown, (13)–(15) can still be exploited as follows. First, we can apply (15) to

obtain a candidate covariance matrix Q′. According to the proof in Appendix C, (15) is obtained

assuming that constraint Q � 0 is not active. Hence, if Q′ � 0 holds, it means that Q′ is indeed

the optimal solution of P1. Otherwise, the rank of the optimal covariance matrix is lower than360

the rank of S. In this case we can follow two different approaches. In the first one, we find the

optimal solution Q? by numerically solving P1. In the second one, we find a suboptimal solution

as follows. First, choose the maximum value of µ such that (15) returns a positive semidefinite

matrix, i.e., Q′ � 0. Second, since this solution violates the power constraint, we scale Q′ such

that Tr(Q′) = P . Third, compute the optimal rank-one solution using (13). Finally, take the best365

between both solutions. Notice that, although the last approach yields, in general, a suboptimal

solution, the computational complexity is substantially lower than the numerical method.

5. Numerical examples

In this sectionwe compare the rate achieved by four different approaches in the considered

point-to-point MIMO SU, namely, IT constraint, explicit rate constraint by exploiting PU CSI370
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Figure 6: Achievable rate of a 3×3 SU coexisting with a 3×3 PU for α = 0.75 (a), α = 0.5 (b), and SNRPU = 20 dB.

[22] (ERC), and spatial shaping with and without primary transmitter cooperation (SS coop. and

SS, respectively). The performance of the suboptimal design of the transmit covariance matrix

proposed in the previous section is also depicted for comparison. The number of transmit and re-

ceive antennas is 3 for both PU and SU. In the ERC approach, the SU must acquire the SNR of the

PU, SNRPU, the signal covariance matrix, H0Q0H
H
0 , the PU rate requirement, R̄, and the SU-PU375

channel matrix, G. With this information, the transmit covariance matrix of the SU can directly

be optimized under the PU rate constraint without the need of interference constraints. Notice,
23
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Please refer to the legend of Fig. 6.

however, that this approach requires much more signaling and/or cross-information between the

PU and the SUs, and can be regarded as fully cooperative. Furthermore, if the secondary network

is comprised of several SUs, these must cooperate to satisfy the PU rate constraint, which might380

not be even possible if they cannot establish a reliable communication, due to, e.g., low transmit

power or large distance between them. Figures 6(a) and 6(b) show the achievable rate of the SU

as a function of its transmit SNR for α = 0.75 and α = 0.5, respectively, and SNRPU = 20 dB.

For low SNR, IT and SS perform similarly, but the latter provides significant improvement as

the SNR increases. On the other hand, SS exhibits little degradation with respect to ERC. When385

the PU optimizes its transmit covariance matrix, the performance of the SU is significantly in-

creased. Notice that optimizing the PU transmit covariance matrix is possible in the proposed

approach, but not in the ERC technique. This is a clear advantage of the proposed method, which

permits substantially increasing the performance of the SU but keeping at the same time limited

cooperation and CSI knowledge. Note that this benefit is not only due to the PU tolerating more390

interference, but also because the impact of the interference at the SU is also reduced. The rea-

son is that the PU tends to allocate more power to the directions where the interference is less

significant, resulting in a more unequal power allocation that may even end up in a reduction of

the rank of the transmit covariance matrix. From the secondary receiver viewpoint, this implies

an interference that is stronger in some directions, resulting in a higher achievable rate.395
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Figure 8: Achievable rate of a 3× 3 SU coexisting with a 3× 3 PU for SNRSU = SNRPU = 20 dB. Please refer to the

legend of Fig. 6.

Figure 7 illustrates the rate of the SU as a function of σ2
SU-PU, which represents the channel

strength of the SU-PU link. The other system parameters are set to SNRSU = SNRPU = 20 dB

and α = 0.6. It is observed that IT yields a substantial decrease in achievable rate when the

interference level increases. On the other hand, SS shows a dependence on σ2
SU-PU similar to

that of ERC. This is because both techniques exploit the spatial dimension, confining the inter-400

ference into a reduced dimensional subspace when the interference is more significant. Figure

7 evidences again the limitation of IT to deal with interference in multiple-antenna systems. On

the contrary, the proposed approach provides a good trade-off between interference management

capabilities and PU-SU cooperation. Furthermore, by letting the primary transmitter adjust its

transmit covariance matrix, the performance of the SU greatly increases, substantially outper-405

forming that of ERC and exhibiting an almost constant rate in the considered σ2
SU-PU range.

Finally, we depict in Fig. 8 the dependence of RSU on α for SNRSU = SNRPU = 20 dB.

Similar conclusions are drawn from this example. A special mention deserves the substantially

higher performance of SS coop. for medium and low values of α. This observation shows again

that the performance increase thanks to the primary transmitter cooperation is mainly due to the410

fact that the PU tends to reduce the number of transmitted streams, making the interference to

the SU less detrimental. Hence, when α is small, the PU rate constraint is guaranteed with just

one data stream, which leaves the secondary receiver with two interference-free dimensions.
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Note that the suboptimal design of the transmit covariance matrix entails a negligible per-

formance loss compared to the optimal solution with the advantage of having much less com-415

putational complexity. Note also the SS coop. scheme requires only local CSI at the primary

receiver, i.e., the same information as SS. As we have seen in Figs. 6–8, this scheme yields

higher performance than ERC in the considered scenarios, even though ERC requires higher

CSI. Furthermore, an optimization of the primary transmitter covariance matrix is not possible

with the ERC technique, since the PU does not have any information about the interference.420

6. Conclusion

In this work, we have considered underlay CR from two different viewpoints: design of

interference shaping constraints for protecting the PUs and optimization of the secondary net-

work subject to these constraints. We have considered multiple-antenna systems, where the

interference may come from different spatial directions. Thus, we have first proposed shaping425

constraints that take the spatial structure of the interference into account and shown that they gen-

eralize IT constraints, which pay attention only to the total interference power. Specifically, we

have proved that IT constraints can be reformulated as a set of isotropic shaping constraints on

each signal dimension. Therefore, the introduction of spatial shaping constraints presents a new

way of managing interference in coexisting networks with little cooperation and cross-channel430

knowledge. By allowing some cooperation with the PU, we proposed an algorithm to obtain

suitable shaping matrices when the PU is constrained to achieve a minimum rate requirement.

Then, we have addressed the problem of designing the secondary transmit covariance matrix un-

der the proposed shaping constraints for a point-to-point SU. We have shown that the proposed

approach substantially improves the rate of the SU and presents little degradation with respect to435

approaches that assume global CSI. Furthermore, the proposed technique permits as well opti-

mizing the transmit covariance matrix of the PU taking the interference into account and without

requiring additional cooperation or overhead, which significantly boosts the SU performance.

Appendices

A. Auxiliary lemma440

Lemma 3. Let S ∈ SN+ and a ∈ CN×1. Then, if S is full-rank, aaH � S holds if and only

if aHS−1a ≤ 1. If S is rank-deficient, aaH � S holds if and only if ãHΣ−1ã ≤ 1, where Σ
26



is a diagonal matrix containing the non-zero eigenvalues of S and a = Fã, with F being the

eigenvectors of S associated to the non-zero eigenvalues.

Proof. It is easy to see that aaH � S is equivalent to λmax[(S−
1
2 )HaaHS−

1
2 ] ≤ 1 when S has445

full rank. Since (S−
1
2 )HaaHS−

1
2 is rank-one, its maximum eigenvalue is given by aHS−1a.

When S is not full-rank, a must lie in the range of S, and can be therefore written as a = Fã,

and the same procedure can be applied, which concludes the proof.

B. Proof of Lemma 2

Let us denote as λ↓(A) and λ↑(A) the set of eigenvalues of A in decreasing and increasing

order, respectively. Since ∇Sk
RPU({S`−1k }Kk=1) is negative semidefinite (see (9)) we have [37,

9.H.1.h.]

Tr
(
−∇Sk

RPU
(
{S`−1k }Kk=1

)H
Sk

)
≥
∑

λ↓
(
−∇Sk

RPU
(
{S`−1k }Kk=1

))
� λ↑ (Sk) , (B.1)

where � denotes Hadamard (element-wise) product, which is equivalent to

Tr
(
∇Sk

RPU
(
{S`−1k }Kk=1

)H
Sk

)
≤
∑

λ↑
(
∇Sk

RPU
(
{S`−1k }Kk=1

))
� λ↑ (Sk) . (B.2)

Since
∑
k Tr(Sk) =

∑
k Tr(Σk) and 0 � Sk � P I ⇔ 0 � Σk � P I, the eigenvectors of

Sk affect only the constraint (8), which, along with (B.2), implies Fk = Vk for the optimal

solution. Taking this into account, and denoting S̃k = wkSk = VkΣ̃kV
H
k , the cost function of

P`0 becomes
∑K
k=1 Tr(Σ̃k), and the left-hand side of (8) turns into

RPU
(
{S`−1k }Kk=1

)
+

K∑
k=1

Tr
[
∇Sk

RPU
(
{S`−1k }Kk=1

)H (
Sk − S`−1k

)]
=

RPU
(
{S`−1k }Kk=1

)
+

K∑
k=1

Tr
(
∇Sk

RPU
(
{S`−1k }Kk=1

)H
S`−1k

)
−

K∑
k=1

M∑
m=1

Λk,mΣ̃k,m . (B.3)

Hence, the cost function is maximized by increasing the eigenvalue Σ(k,m) of Sk, associated450

with the lowest Λ(k,m) until (8) holds with equality or its maximum value P (due to the last

constraint in P`0) is reached. In the latter case there is still room for improvement since (8) does

not still hold with equality, thus allowing to increase the next eigenvalue (that associated with

the next lowest Λ(k,m)). Notice that such sequential procedure provides extreme points of the

feasible set until the optimum is attained, which yields (10) and concludes the proof.455
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C. Proof of Proposition 1

In the first case the power constraint is not active, thus the rate is maximized by transmitting

the maximum allowable power at each direction, which yields (12). For the second case we make

use of Lemma 3 to rewrite P1 as

q̃ = arg max
q̃HΣ̃

−1
q̃≤1

{
q̃HF̃HHH

(
σ2I + G0Q0G0

)−1
HF̃q̃

}
, (C.1)

where q = F̃q̃, F̃ is a matrix containing the eigenvectors of S with non-zero eigenvalues, and

Σ̃ is a diagonal matrix with the non-zero eigenvalues of S. Notice that the power constraint,

qHq ≤ P , is implicit in q̃HΣ̃
−1

q̃ ≤ 1 as long as the actual power budget of the SU is used for

the design of the shaping matrix in P0. By letting a = Σ̃
− 1

2 q̃, the foregoing problem turns into

the following eigenvalue problem

a = arg max
‖a‖=1

{
aHS

1
2 HH

(
σ2I + G0Q0G0

)−1
HS

1
2 a
}
, (C.2)

which yields (13). The solution to the third case can be found by using the slack variable L =

S−Q. Also, if S is rank deficient, we may express Q = F̃Q̃F̃H and L = F̃L̃F̃H . Taking this

into account, P1 can be equivalently written as

maximize
L̃

log2

∣∣∣∣∣I−
{

Σ̃ + σ2
[
F̃HHH

(
σ2I + G0Q0G0

)−1
HF̃

]−1}−1
L̃

∣∣∣∣∣ ,
subject to 0 � L̃ � Σ̃ ,

Tr
(
L̃
)
≥ Tr (S)− P . (C.3)

Since rank(Q?) = rank(S), L̃ � Σ̃ is not active, which turns problem (C.3) into a similar type

of the classical MIMO capacity. Hence, the KKT conditions yield the classical solution for L̃

(i.e., SVD and waterfilling power allocation) but with the reversed sign within the waterfilling.

Taking this into account, and since Q = S− F̃L̃F̃H , we obtain (15), which concludes the proof.460
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