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Abstract 

The diagnostic value of cerebrospinal fluid (CSF) biomarkers is well established in AD, 

but our current knowledge about how abnormal CSF levels affect cerebral integrity, at 

local and network level, is incomplete in asymptomatic older adults. Here, we have 

collected CSF samples and performed structural magnetic resonance imaging (MRI) 

scans in cognitively normal (CN) elderly as part of a cross-sectional multicenter study 

(SIGNAL project). To identify group differences in cortical thickness, white matter 

(WM) volume and properties of structural networks, participants were split into controls 

(N=20), positive amyloid-β (Aβ1-42
+) (N=19), and positive phosphorylated tau (p-tau+) 

(N=18). The Aβ1-42
+ group exhibited thickening of middle temporal regions, while p-

tau+ individuals showed thinning in the superior parietal and orbitofrontal cortex. 

Subjects with abnormal CSF biomarkers further showed regional WM atrophy and 

more segregated cortical networks, the Aβ1-42
+ group showing heightened isolation of 

cingulate and temporal cortices. Collectively, these findings highlight the relevance of 

combining structural brain imaging and connectomics for in vivo tracking of AD lesions 

in asymptomatic stages. 

 

Keywords: Preclinical Alzheimer's disease, SNAP, CSF biomarkers, cortical thickness, 

structural cortical networks, white matter. 
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1. Introduction 

Deposition of intracellular neurofibrillary tangles (NFT) and extracellular Aβ plaques, 

the main pathological features of AD, promote cerebral insults characterized, at 

macroscopic level, by regional atrophy of AD-related brain regions, and 

microscopically by cumulative neuronal loss, synaptic dysfunctions, and alterations of 

dendritic arborization (Bobinski et al., 2000). Accumulated evidence suggests that Aβ 

depositions and AD-like neurodegenerative changes are present in the brain of a high 

proportion of asymptomatic older individuals (Jack et al., 2014; Gordon et al., 2016), 

supporting interventions in CN at-risk subjects aimed to postpone, reduce the risk of, or 

prevent the clinical onset of AD (Reiman et al., 2010). 

Cerebrospinal fluid (CSF) is in direct contact with the brain and therefore its 

composition reveals biochemical changes occurring in the extracellular spaces. 

Accordingly, CSF concentrations of Aβ1-42, total tau (t-tau), and p-tau indirectly reflect 

the presence of Aβ plaques, axonal damage, and accumulation of NFT, respectively 

(Blennow and Hampel, 2003; Hampel et al., 2010). The validity of these CSF 

biomarkers has been further confirmed in brain autopsy of AD patients, showing that 

the lower the Aβ1-42 levels, the higher the density of amyloid plaques (Strozyk et al., 

2003), and the higher the concentration of p-tau, the larger the NFT burden (Buerger et 

al., 2006; Tapiola et al., 2009). Previous studies have established the presence of AD 

lesions to a lesser degree in CN elderly subjects at the time of death (Knopman et al., 

2003; Dugger et al., 2014), suggesting that AD pathology precedes clinical symptoms. 

In line with these findings, the presence of abnormal concentrations of Aβ1-42 and p-tau 

in CSF of CN elderly has been associated with poorer cognitive performance (Hedden 

et al., 2013; Pettigrew et al., 2015), increased risk of developing cognitive decline 

(Fagan et al., 2007; Roe et al., 2013), and structural and functional changes in the 
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cortical mantle (Sheline et al., 2010; Fortea et al., 2010; 2011; Bateman et al., 2012; 

Mattsson et al., 2015). 

Measurements of cortical thickness have gained importance in AD research since they 

provide a powerful non-invasive and in vivo estimate of neuronal shrinkage and 

neuronal loss in humans (Fischl and Dale, 2000; Salat et al., 2004). Whereas most of 

the studies performed to date have shown gray matter (GM) reductions in 

asymptomatic older adults with cerebral amyloidosis (e.g., Storandt et al., 2009; 

Fjell et al., 2010; Tosun et al., 2010; Becker et al., 2011; Arenaza-Urquijo et al., 

2013; Doherty et al., 2015), others have found increased gray matter associated 

with abnormal Aβ1-42 concentrations (Chetelat et al., 2010; Fortea et al., 2010; 

2011; 2014; Johnson et al., 2014), raising the question of whether cortical 

hypertrophy in A β1-42
+ asymptomatic elderly subjects should also be considered as 

a signature of preclinical AD. However, no study to date has evaluated the 

independent effect of cerebral amyloidosis and neurodegeneration on cortical thickness 

and cerebral WM volume as revealed by abnormal CSF levels of Aβ1-42 and p-tau 

respectively.  

Variations in GM covariance networks have shown to be helpful at discriminating 

among CN elderly subjects, prodromal and clinical AD stages (He et al., 2008; Yao et 

al., 2010; Spreng and Turner, 2013; Tijms et al., 2013; Romero-Garcia et al., 2016). 

Most of these studies have revealed that GM networks of MCI/AD patients have a less 

optimal topological organization characterized by increased segregation and decreased 

integration (He et al., 2008; Tijms et al., 2013; Romero-Garcia et al., 2016). But 

whether topology of GM networks is similarly affected in CN subjects with abnormal 

CSF Aβ1-42 or p-tau levels is unknown. 
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To our knowledge, only one study has previously assessed the relationship between 

CSF Aβ1-42 levels and GM network disruptions in CN adults (Tijms et al., 2016). 

Results showed that lower Aβ1-42 levels were linearly associated with lower 

connectivity density, and nonlinearly with lower clustering values and higher path 

length values, which is indicative of a less efficient network organization (Tijms et al., 

2016). Nevertheless, the potential contribution of abnormal p-tau levels on topological 

properties of GM networks was not specifically assessed in that study. Furthermore, 

18% of their participants showed a Clinical Dementia Rating (CDR) score of 0.5 and 

only 13% of them had abnormal Aβ1-42 levels (i.e., < 550 pg/mL), remaining uncertain 

whether Aβ1-42-related changes in topological organization of GM networks could 

indeed be extrapolated to preclinical AD stage 1.  

In the present study, we have compared patterns of cortical thickness and cerebral WM 

between CN elderly subjects showing normal and pathological CSF levels of either Aβ1-

42 or p-tau. We hypothesize that individuals with pathological CSF Aβ1-42 levels will 

show thickening of AD-related cortical regions likely due to neuronal hypertrophy 

and/or Aβ-associated neuroinflammation, whereas those with pathological CSF p-tau 

levels will exhibit patterns of cortical thinning in vulnerable AD regions probably 

caused by NFT-related neurodegeneration. We further expect that WM concentrations 

will be lower in subjects with abnormal CSF values since amyloid and tau pathologies 

have shown pernicious effects on WM integrity from early AD stages (Hertze et al., 

2013; Gold et al., 2014; Dean et al., 2017). Additionally, we have applied a graph 

theoretical approach to compare topological organization of cortical thickness networks 

between subjects with and without abnormal CSF levels. Our prediction is that Aβ1-42
+ 

and p-tau+ individuals will present more segregated cortical networks, this effect being 

more evident in those regions where the Aβ load and neurodegeneration occur earlier in 
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AD (i.e., parietal and temporal lobes, respectively). Evidence suggests that the loss of 

integration in structural cortical networks appears late in AD (He et al., 2008; Romero-

Garcia et al., 2016; see Tijms et al., 2016 for opposite results). Therefore, we expect that 

CN elderly subjects with abnormal CSF levels will show more segregated GM cortical 

networks while maintaining unaltered their integration capability. 

2. Materials and Methods 

2.1. Subjects 

The study sample consisted of 57 CN elderly volunteers recruited at the Hospital Santa 

Creu i Sant Pau (Barcelona, Spain) and the University Hospital Marqués de Valdecilla 

(Santander, Spain), as part of a cross-sectional multicenter study called “SIGNAL 

project” (https://www.signalstudy.es/en/). Participants underwent neurological and 

neuropsychological evaluation (i.e., Mini Mental State Examination, Boston Naming 

Test, Clock Test, CERAD Word List, Rey-Osterrieth Complex Figure Test, and the 

Visual Object and Space Perception Battery). All of them showed normal cognitive 

performance relative to appropriate reference values for age and education (see Table 

1), global CDR score of 0 (no dementia), as well as normal independent function. 

Subjects gave their informed consent prior to their inclusion in the study, which was 

approved by the local ethics committee at each center. Participants were grouped into 

controls (N=20) if they revealed normal CSF Aβ1-42 (≥ 550 pg/mL) and p-tau (< 61 

pg/mL) levels, Aβ1-42
+ (N=19) if they showed abnormal Aβ1-42 (< 550 pg/mL) and 

normal p-tau levels, and p-tau+ (N=18) if they presented abnormal p-tau (≥ 61 pg/mL) 

and normal Aβ1-42 levels.  

2.2. CSF measures 
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CSF was obtained through lumbar puncture and collected following international 

consensus recommendations (Alcolea et al., 2015). Briefly, CSF was collected in the 

morning between 09:00 and 12:00 hours in polypropylene tubes and immediately 

centrifuged for 10 min (1900-2000g). The first 1-2 cc were discarded to avoid hematic 

contamination. CSF samples were aliquoted (0.5 mL) into polypropylene tubes and 

frozen at -80°C. All CSF samples were shipped in dry ice to the Hospital Santa Creu i 

Sant Pau, where they were analyzed. Commercially available enzyme-linked 

immunosorbent assay (ELISA) kits were used to determine levels of Aβ1-42 (Innotest β-

amyloid1–42; Fujirebio Europe) and p-tau (Innotest Phospho-Tau181P; Fujirebio Europe), 

following the manufacturer's recommendations. 

2.3. MRI acquisition 

Participants were scanned in two different centers (Hospital Santa Creu i Sant Pau and 

University Hospital Marqués de Valdecilla) using the same protocol and identical MRI 

scanners (Philips Achieva 3T, 8-channel head coil). High-resolution structural scans 

were obtained with a T1-weighted magnetization-prepared rapid gradient echo sequence 

(1 mm3 voxel size, no gap between slices, repetition time = 8.2 ms, echo-time = 3.8 ms, 

flip angle = 8º, matrix size = 240 x 234). Neuroimaging analyses were performed in the 

Laboratory of Functional Neuroscience at the Pablo de Olavide University (Seville, 

Spain). 

2.4. Cortical thickness estimation 

Cortical thickness was estimated using surface-based methods with analysis tools 

implemented in Freesurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/), which have 

previously been validated against histological data (Rosas et al., 2002) and manual 
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segmentation (Kuperberg et al., 2003; Salat et al., 2004). The Freesurfer analysis 

pipeline involves intensity normalization, registration to Talairach space, skull 

stripping, WM segmentation, tesselation of the WM boundary, and automatic correction 

of topological defects (Fischl and Dale, 2000). Pial/WM boundaries were manually 

corrected on a slice-by-slice basis in each participant to increase the reliability of 

cortical thickness measurements. Special attention was paid to cortical regions at the 

border with the CSF to avoid partial volume effects. Cortical thickness maps were 

smoothed using non-linear spherical wavelet-based de-noising schemes, which have 

proved to enhance specificity and sensitivity at detecting local and global changes in 

cortical thickness (Bernal-Rusiel et al., 2008). 

2.5. GM and WM volume estimation 

The volume of cortical GM and cerebral WM was separately assessed using the voxel-

based morphometry (VBM) approach integrated in SPM12 (Wellcome Trust Center for 

Neuroimaging; www.fil.ion.ucl.ac.uk/spm). Briefly, T1-weighted brain images were 

manually reoriented to the anterior commissure and further segmented into different 

compartments using the unified segmentation approach implemented in SPM12. Next, 

the diffeomorphic anatomical registration through an exponentiated lie algebra 

(DARTEL) algorithm was applied to segmented brain images to obtain an enhanced 

inter-subject registration with improved realignment of smaller inner structures 

(Ashburner, 2007). GM and WM maps were spatially normalized into the Montreal 

Neurological Institute (MNI) brain space (voxel size = 1.5 mm3), and smoothed with an 

isotropic Gaussian kernel of 12 mm full-width at half-maximum. Group differences in 

WM were located in specific WM tracts using the JHU white-matter tractography atlas 

(Hua et al., 2008). 
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2.6. Estimation of cortical thickness networks and topological properties 

Many real complex systems exhibit small world properties characterized by a high 

density of local connections (i.e., network segregation) together with a scarce number of 

links between distant regions (i.e., network integration), leading to highly efficient 

networks with a relatively low wiring cost and optimal adaptability to a broad range of 

circumstances (Travers and Milgram, 1969). Topological properties of cortical 

thickness networks have provided novel insights into the organizational principles of 

the human neocortex (He et al., 2007; Bassett et al., 2008; Chen et al., 2008; Lv et al., 

2010). Correlated changes in cortical thickness have been used to assess the total 

correlation strength at every point in the cortex, and to investigate spatial differences in 

cross-cortical correlations between groups of subjects (Lerch et al., 2006). It has been 

hypothesized that networks of cortical thickness covariance may arise from genetic 

influences on normal development and aging, mutual trophic reinforcement as well as 

experience-related plasticity (Evans, 2013). 

The analysis pipeline used here to obtain topological properties of cortical thickness 

networks has been described in detail elsewhere (Romero-Garcia et al., 2012; 2014). 

Briefly, we have employed a cortical scheme comprising 599 regions (250 mm2 each) 

that has shown a good trade-off between small-world attributes and the number of 

regions in cortical thickness networks (Romero-Garcia et al., 2012). Next, partial 

correlations of interregional cortical thickness, adjusted by age, were used to build the 

thickness-based cortical network. Covariance patterns of cortical thickness were 

modelled through weighted graphs to encode the strength of connections between 

cortical regions. Correlations exceeding the statistical threshold (corrected p-

value<0.05) were considered as significant connections in the cortical thickness 

network obtained for each group (i.e., controls, Aβ1-42
+ and p-tau+). 
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In the present study, the weighted clustering coefficient of the cortical thickness network 

(Cp) was computed as the likelihood whether the neighboring nodes are connected with 

each other (Onnela et al., 2005): 

 

where N is the number of regions, wij is the weight connection between region i and j, 

and ki is the degree of node i. 

The weighted path length was defined as the average minimum travel distance that links 

any two nodes of the network, considered as the inverse of the weights of the 

connections (Newman, 2003): 

 

where Lij is the inverse of the edge weight (Lij = 1/wij). 

To determine lobe connectivity, we computed the inward/outward lobe connectivity 

strength (Sl) in each cortical lobe separately (i.e., frontal, central, parietal, temporal, 

occipital, and cingulate cortex) (Romero-Garcia et al., 2016): 

 

 

where Sl is the sum of weights of the lobe (l) separated into four categories: (i) ���� 

reveals connections between regions that belongs to l, (ii) �������� shows connections 

from l to nodes out of l with the endpoint in the same hemisphere, (iii) �����	�� refers to 
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connections that leave l.  
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A more detailed explanation of the above-mentioned network metrics is found 

elsewhere (Rubinov and Sporns, 2010). Network metrics may be influenced by 

characteristics of the network structure, such as the number of nodes and the amount of 

weights within the graph, making group comparisons problematic. To counteract these 

effects, 100 random networks with similar properties to the real network were built 

permuting all the network weights in each group (Maslov and Sneppen, 2002). This 

process preserves the nodes and the sum of weights but not the degree distribution. 

Finally, each metric was normalized by dividing the real value by the average across the 

100 randomly rewired networks.  

2.7. Statistical analysis 

Statistical analyses were performed with SPSS v22 (SPSS Inc. Chicago, IL). We first 

assessed the normality assumption of all variables with the Shapiro-Wilk test. 

Demographic, cognitive and CSF data were normally distributed, allowing us to use 

parametric statistical tests with these variables. Group differences in demographic 

characteristics and cognitive performance were assessed with unpaired t-tests, with the 

exception of gender and ApoE ε4 distribution that was compared with the chi-square 

test. 

Group differences in cortical thickness were assessed with an analysis of covariance 

(ANCOVA) performed in each hemisphere, with group as the main factor and age as 

nuisance. The ApoE ε4 was not included as nuisance because its contribution was 

not significant. Results were corrected for multiple comparisons using a previously 

validated hierarchical statistical model (Bernal-Rusiel et al., 2010). This procedure first 

controls the family wise error (FWE) rate at the level of clusters (p<0.05) by applying 

random field theory over smoothed statistical maps; and next controls the false 
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discovery rate (FDR) at the level of vertex (p<0.05) over unsmoothed statistical maps 

limited to significant clusters. The interaction between Aβ1-42
+ and p-tau+ could not be 

tested due to the small number of participants (N=5) who showed abnormal 

concentrations in the two CSF markers. 

Voxel-wise group differences of cortical GM and cerebral WM were assessed using 

ANCOVAs with age as nuisance. Statistical maps were thresholded at p<0.05 at the 

cluster level using the FWE rate.  

As the distribution of the different network metrics is unknown, nonparametric 

permutation tests were used to assess group differences for each normalized metric 

derived from cortical thickness networks. Briefly, for each pair of groups (controls 

versus Aβ1-42
+, controls versus p-tau+, Aβ1-42

+ versus p-tau+), each subject was randomly 

reallocated to one of the two groups. Based on the randomly resampled subjects, 

network metrics were calculated using the same procedure as with the original data. 

Differences between metrics across permutations (N=10,000) were computed to build a 

reference distribution, and the 95th percentile value of this distribution was taken as the 

statistical threshold to retain or reject the null hypothesis of no group differences for 

each metric. In the particular case of the lobe connectivity metric, the inward/outward 

lobe connection strength was computed in different lobes for the left and right 

hemisphere separately. The multiple testing issue was counteracted employing a unique 

reference distribution collecting, for each permutation, the maximum square of metric 

differences. If the square of the original metric was higher than the 95th percentile of 

the maximum values of differences, it was considered statistically significant after 

controlling for the FWE rate (Maris, 2004).  
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3. Results 

3.1. Demographic characteristics and cognitive functioning 

Table 1 contains descriptive information of demographic, cognitive and CSF data in 

each group. All groups were comparable in sex distribution and education years, but p-

tau+ subjects were significantly older than controls (p=0.001). Scores derived from the 

neuropsychological evaluation did not differ among groups. Ranges of CSF values for 

each group were as follows: controls (Aβ1-42: 764-1063.5 pg/mL; p-tau: 30-45 pg/mL), 

Aβ1-42
+ (Aβ1-42: 322-533.5 pg/mL; p-tau: 18-55.5 pg/mL), and p-tau+ (p-tau: 61.5-132.5 

pg/mL; Aβ1-42: 583.5-1055.5 pg/mL). 

3.2. Effects of abnormal CSF biomarkers on cortical thickness 

Table 2 and Figure 1 show significant group differences in surface-based cortical 

thickness measures. Relative to controls, Aβ1-42
+ individuals exhibited thickening of left 

middle temporal regions (p=10-4), while p-tau+ subjects showed cortical thinning in 

medial orbitofrontal regions (p=10-4) as well as in the left superior parietal lobe (p=10-5) 

and right precuneus (p=10-3).  

3.3. Effects of abnormal CSF biomarkers on GM and WM volume 

No group differences were found in cortical GM volume. Table 3 and Figure 2 show 

significant group differences in voxel-based measurements of WM volume. Compared 

with controls, Aβ1-42
+ subjects showed lower WM volume in the left parahippocampal 

cingulum that extended to forceps major (p=10-4) and right subgenual cingulum 

(p=0.004). The loss of WM integrity was also evident in p-tau+ subjects in the 

parahipocampal cingulum (p=10-5) and uncinate fasciculus of the left hemisphere that 

further extended to regions of the inferior longitudinal fasciculus (p=0.003). 
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3.4. Effects of abnormal CSF biomarkers on the topology of cortical thickness networks 

Figure 3 displays group differences in the topological organization of cortical thickness 

networks. Table 4 depicts group differences in inward/outward connectivity strength for 

each cortical lobe. Both Aβ1-42
+ and p-tau+ individuals exhibited cortical thickness 

networks significantly more segregated than controls as revealed by the Cp metric 

(p=0.0004 and p=0.0001, respectively). Lobular isolation reflected in the 

inward/outward connectivity metric was higher in Aβ1-42
+ subjects than in controls 

(p=0.01), likely due to the significant segregation of the left cingulate cortex (p=0.03) 

and the right temporal lobe (p=0.04). The lack of significant differences for the Lp 

metric indicated that abnormal levels of CSF biomarkers did not influence integration of 

cortical thickness networks in CN elderly subjects. 

4. Discussion 

The present study investigated whether abnormal CSF concentrations of Aβ1-42 or p-tau 

in CN elderly are associated with structural changes in different brain compartments 

(cortical thickness and WM volume) and/or with variations in the topological 

organization of cortical thickness networks. Results revealed that the pattern of cortical 

thickness is biomarker specific. In particular, we found that cortical thickness was 

increased in Aβ1-42
+ subjects in middle temporal regions but decreased in p-tau+ 

individuals in fronto-parietal regions. Abnormal CSF values of the two biomarkers 

appeared associated with WM atrophy in antero-posterior regions of the cingulum 

bundle and with more segregated cortical networks. In the particular case of Aβ1-42
+ 

individuals, network segregation was further accompanied by increased isolation of 

temporal and cingulate regions. Collectively, these results highlight the relevance of 
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combining CSF measures with structural neuroimaging and connectomics to better 

define the landscape of brain changes in CN elderly subjects at risk for AD. 

4.1. Abnormal CSF measures and cortical thickness in CN elderly 

Here, we have shown that Aβ1-42
+ subjects exhibited cortical thickening of middle 

temporal regions, supporting the hypothesis that cerebral amyloidosis without evidence 

of neurodegeneration is associated with pathological increases of cortical thickness in 

CN older adults (Fortea et al., 2014). Previous studies have linked abnormal CSF 

biomarkers to variations in cortical thickness in CN elderly subjects with contradictory 

results, likely due to differences in the criteria for establishing preclinical AD. In one of 

these studies, Aβ1-42
+

 individuals evidenced thickening of middle temporal and inferior 

parietal regions, whereas the interaction between Aβ1-42
+ and p-tau+ led to regional 

patterns of cortical thinning (Fortea et al., 2014). Evidence suggests that pathological 

cortical thickening occurs long before the onset of clinical AD symptoms (Chetelat et 

al., 2010; Fortea et al., 2010; 2011; 2014 Johnson et al., 2014), which has been 

interpreted as brain reserve or other compensatory processes in response to toxic effects 

of Aβ oligomers or diffuse plaques (Chetelat et al., 2010). Furthermore, asymptomatic 

presenilin-1 (PSEN1) mutation carriers showed increased thickness in the precuneus 

and parietotemporal cortices (Fortea et al., 2010) and accelerated rates of cortical 

thinning in fronto-parieto-temporal regions (Sala-Llonch et al., 2015). Although the 

neurobiological substrate of cortical thickening in CN Aβ1-42
+ elderly subjects is far 

from being understood, post mortem brain studies have found that asymptomatic 

subjects with amyloid plaques had hypertrophy of neuronal cell bodies, nuclei, and 

nucleoli (Iacono et al., 2008). These cellular changes have also been observed in 

transgenic AD mouse models, indicating that overexpression of amyloid precursor 

protein is necessary and sufficient for hypertrophy of cortical neurons (Oh et al., 2009), 
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and may indeed represent a very early reaction to cerebral amyloidosis or result from 

the activation of cellular processes in an attempt to prevent the natural progression of 

AD (Iacono et al., 2008). Therefore, converging lines of evidence suggest that cortical 

hypertrophy is potentially feasible at least during initial amyloidosis in asymptomatic 

elderly subjects. 

Tau proteins are abundant in the cerebral cortex, appearing in regions that accumulate 

NFT as well as in other regions where NFT are not present (Trojanowski et al., 1989). 

High concentrations of CSF p-tau have been associated with cognitive decline in MCI 

(Buerger et al., 2002) and with neocortical NFT-pathology in AD patients (Buerger et 

al., 2006). Other studies have further shown that abnormal CSF tau biomarkers in CN 

elderly subjects are associated with hypometabolism in parietal regions (Petrie et al., 

2009) and reduced cerebral blood flow in parietal, temporal, and frontal lobes (Stomrud 

et al., 2012), likely boosting synaptic dysfunctions and disconnection of cortical hubs 

caused by Aβ depositions (Drzezga et al., 2011). 

It has been proposed that individuals with evidence of neurodegeneration but normal 

levels of Aβ1-42 might be classified as having suspected non-Alzheimer pathology 

(SNAP), this condition occurring in 23% of CN individuals older than 65 years (Jack et 

al., 2012). There is currently intense debate about whether SNAP is a primary age-

associated tauopathy (Crary et al., 2014) or represents an invariant feature of AD 

(Duyckaerts et al., 2015). Prospective studies have shown that 42% of the Aβ1-42
+ 

subjects had SNAP at baseline and later transitioned to MCI/AD (Jack et al., 2013). Our 

results revealed that p-tau+ individuals exhibited cortical thinning in superior parietal 

regions bilaterally and in medial aspects of the left orbitofrontal cortex. Whether these 

p-tau+-related patterns of cortical thinning are part of normal aging processes, other 

non-AD neurodegenerative disorders or represent part of the AD spectrum remains to 
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be determined in longitudinal studies with SNAP individuals using tau PET imaging 

combined with changes in cortical thickness. Beyond this question, and given that 

SNAP is relatively prevalent in the normal population (Jack et al., 2012), our cortical 

thickness results may have implications for the follow-up of SNAP in clinical settings 

and/or serve as surrogate of the evolution CN subjects with positive markers of 

neurodegeneration. 

Most of our cortical thickness findings were circumscribed to the left hemisphere, 

replicating previous observations in MCI and AD patients using either VBM (Chetelat 

et al., 2002; Thompson et al., 2003; Karas et al., 2004) or surface-based cortical 

thickness analysis (e.g., Lerch et al., 2005; Singh et al., 2006). Longitudinal studies 

showed that left GM loss of medial temporo-parietal regions was strongly correlated 

with worse cognitive performance and faster leftward reduction of GM loss rates in AD 

patients, supporting a left lateralized acceleration of GM degeneration with advancing 

AD (Thompson et al., 2003). Clinico-pathological studies have also revealed a marked 

left predominance for vascular lesions not only in demented but also in CDR 0 cases, 

suggesting that vascular burden in the left hemisphere may remain cognitively silent 

while the right hemisphere is not invaded by AD lesions (Giannakopoulos et al., 2009).  

Changes in surface-based cortical thickness observed in CN subjects with abnormal 

CSF levels of Aβ1-42 and p-tau could not be replicated using volume-based analysis of 

GM density. Several reasons may account for this disparity of results. First, estimation 

of cortical thickness has demonstrated to provide a more sensitive measure of age-

related decline in cortical GM compared with VBM techniques (Hutton et al., 2009). 

Second, VBM approaches seem to be less accurate than surface-based cortical thickness 

analysis, likely due to the limited resolution of the voxel grid. Furthermore, they are less 

robust to noise, and are significantly affected by partial volume effects at the boundaries 
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of convoluted structures such as deep sulci (Acosta et al., 2009). Finally, VBM analysis 

is sensitive to T1 signal variations, likely due to bias correction, an issue that does not 

occur with surface-based cortical thickness estimation methods (Chung et al., 2017).  

4.2. Abnormal CSF measures and WM volume in CN elderly 

Evidence of selective WM shrinkage in nondemented patients with histopathological 

lesions of AD was provided nearly three decades ago, suggesting that WM degeneration 

is likely due to cytoskeletal abnormalities associated with axonal degeneration (de la 

Monte, 1989). To date only a few studies have assessed WM alterations in CN elderly 

subjects with positive AD CSF biomarkers, and all of them were focused on changes in 

the WM microstructure using diffusion tensor imaging (Gold et al., 2014; Melah et al., 

2016; Hoy et al., 2017). Some of these studies showed a widespread pattern of affected 

regions including frontal, parietal, and especially temporal WM (Gold et al., 2014; Hoy 

et al., 2017), whereas others reported focal patterns of WM damage in AD-related 

regions (Melah et al., 2016). 

To our knowledge, results of the present study constitute the first in vivo evidence of 

morphometric WM atrophy in CN older adults with abnormal AD CSF measures. We 

found that p-tau+ subjects showed reduced concentrations of WM in the left uncinate 

fasciculus. The fiber bundles of the uncinate fasciculus originate in the WM of the 

temporal lobe, course around the middle cerebral artery, enter the extreme and external 

capsules, and continue into the orbitofrontal cortex (Kier et al., 2004). Interestingly, p-

tau+ individuals further showed thinning of the left orbitofrontal cortex in our study, 

suggesting potential disruption in connectivity between frontal and inferior temporal 

cortex, which in turn has been postulated as a possible cause of memory impairment 

(Gaffan et al., 2002). Moreover, the uncinate fasciculus has a ventral part that connects 
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the orbitofrontal cortex with the hippocampus (Schneider et al., 1965), region that 

presents more accumulation of synaptic p-tau levels as compared to Aβ1-42 (Fein et al., 

2008). 

The cingulum bundle forms a WM tract integrated by subgenual, retrosplenial, and 

parahippocampal subdivisions, each of these regions with different WM microstructure 

(Mufson and Pandya, 1984) that impact differently on the capacity of the WM to 

transmit electrical impulses (Beaulieu, 2002). Growing evidence suggests that the 

cingulum becomes especially vulnerable in different AD stages, affecting both posterior 

(Zhang et al., 2007; Chua et al., 2009; Delano-Wood et al., 2012) and anterior 

subdivisions (Rosenberg et al., 2013). In the present study, Aβ1-42
+ and p-tau+ subjects 

exhibited lower WM volume in caudal parts of the cingulum, termed the 

"parahippocampal" portion because the large majority of fibers project to the medial 

temporal lobe (Jones et al., 2013), structure that has shown a rapid rate of atrophy in 

patients with histopathologically-confirmed AD (de Leon et al., 1993; Jobst et al., 

1994). 

Analysis further revealed reduced WM concentrations in the anterior part (subgenual) of 

the cingulum in Aβ1-42
+ individuals as compared with controls. The subgenual cingulum 

projects the insula and amygdala (Klingler and Gloor, 1960), and receives cholinergic 

efferents from the diagonal band and medial septum (Selden et al., 1998). All these 

regions have shown to be considerably affected in MCI patients (Cantero et al., 2017), 

suggesting that the integrity loss of the subgenual cingulum may precede damage of 

their innervated GM regions. Moreover, previous studies have shown that greater 

amyloid load in anterior cingulate regions is associated with lower immediate recall in 

CN elderly subjects (Rosenberg et al., 2013), and those normal individuals with PET 

evidence of brain amyloid deposition have exhibited failures of functional connectivity 
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between the anterior cingulate and the hippocampus. Overall, our results support the 

potential involvement of the cingulum bundle in preclinical AD, and provide evidence 

of regional effects on this limbic structure due to cerebral amyloidosis or SNAP. 

4.3. CSF measures and topological organization of cortical thickness networks in CN 

elderly 

Topological properties of thickness-based cortical networks have provided evidence for 

disrupted structural networks in normal aging (Chen et al., 2011; Wu et al., 2012; 

Romero-Garcia et al., 2014) and different AD stages (He et al., 2008; Romero-Garcia et 

al., 2016). Our study extends this knowledge to CN elderly subjects with abnormal CSF 

measures of Aβ1-42 and p-tau, revealing that intrinsic changes in the topology of 

morphometric cortical networks may be helpful in monitoring AD lesions in 

asymptomatic subjects. We found that individuals with abnormal CSF biomarkers of 

AD showed cortical thickness networks significantly more segregated (i.e., weakened 

interregional relationships in morphometric networks) without alterations in network 

integration. Previous studies have shown that disrupted integration in structural 

networks mainly occurs in clinical AD stages characterized by impaired cognition (He 

et al., 2008; Romero-Garcia et al., 2016), indicating that higher clustering combined 

with longer path lengths in MCI/AD reflect reduced network efficiency likely due to 

synaptic dysfunctions and neuronal loss observed in prodromal and clinical AD stages. 

This does not mean, however, that both isolation and loss of integration occur 

simultaneously. Very likely, increasing segregation progressively leads to integration 

disruption and subsequent cognitive impairment. In line with this hypothesis, our 

asymptomatic elderly subjects with cerebral amyloidosis or incipient neurodegeneration 

showed lobular segregation and preserved network integration. 
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We further showed that pathological levels of CSF Aβ1-42 specifically contributed to the 

isolation of the temporal and cingulate cortices. Both regions suffer a progressive 

reduction in cortical acetylcholinesterase-rich fibers from normal aging to AD (Geula 

and Mesulam, 1989), being targets for the widest range of AD lesions (Brun and 

Englund, 1981), and showing connectivity failures (Sorg et al., 2007; Stam et al., 2007) 

and decreased topological centrality in AD patients (He et al., 2008). Furthermore, 

temporal and cingulate structures are canonical components of the default mode 

network (Buckner et al., 2008), which has shown to be affected in CN elderly subjects 

with positive AD markers (Sheline et al., 2010; Lim et al., 2014; Oh et al., 2014). 

Overall, these results suggest that global effects of incipient AD lesions may also be 

disclosed considering the neocortex as a complex network and studying its topological 

features at different organization levels. 

5. Conclusions 

Asymptomatic older adults presenting abnormal CSF concentrations of either Aβ1-42 or 

p-tau showed similar loss of WM integrity, augmented isolation of cortical regions and 

no changes in network integration, the latter likely accounts for the lack of cognitive 

impairment. Abnormal levels of each CSF biomarker were associated with specific 

patterns of cortical thickness, which is coherent with the idea that different mechanisms 

underlie amyloidosis and neurodegeneration in asymptomatic older adults at risk for 

AD. Future longitudinal studies should determine whether this combination of markers 

is able to detect potential candidates for intervention with disease-modifying therapies 

aimed at slowing or halting the progression of AD.  
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Figure legends 

Figure 1. Changes in cortical thickness in CN elderly subjects with abnormal CSF 

levels of Aβ1-42 or p-tau. A. Significant patterns of cortical changes were represented on 

inflated cortical surfaces. Color bars represent corrected p-values (p<0.05) using a 

hierarchical approach based on sequential statistical thresholding (Bernal-Rusiel et al., 

2010). B. Significant patterns of cortical thickness changes are also displayed on 

flattened cortical surfaces. Squares with colored borders limit the location of significant 

regional changes. C. The surface of the square was zoomed on flattened cortical maps 

displaying cytoarchitectonic delimitation of affected regions. Abbreviations for the left 

middle temporal cortex (squares with yellow borders): TA – primary auditory cortex; 

TAr – rostral auditory cortex; TG – temporopolar area; TAp – polysensory cortex; TE – 

temporal area; TEd – temporal dorsal area; iTC – inferior temporal cortex; FG – 

fusiform gyrus; PG – angular gyrus  (McDonald et al., 2000; Ding et al., 2009). 

Abbreviations for the left medial orbitofrontal cortex (square with blue border): B11 – 

medial portion of ventral frontal lobe; cg – cingulate gyrus; Fp2 – medial frontopolar 

area 2; fms – frontomarginal sulcus; SFG – superior frontal gyrus; (Bludau et al., 2014). 

Abbreviations for the left superior parietal cortex and right precuneus (square with blue 

and green border, respectively): CiS – cingulate sulcus; CPD – cingulate postdorsal; 

CPV – cingulate postventral; PrC – precuneus; SuPS – subparietal sulcus; CS – central 

sulcus; POS – parieto-occipital sulcus; PCL – posterior paracentral lobule (Scheperjans 

et al., 2008); hOc4lp – posterior occipital, area 4; hOc4d – dorsal occipital, area 4 

(Malikovic et al., 2016). 

Figure 2. Patterns of WM atrophy in CN elderly subjects with abnormal CSF levels of 

Aβ1-42 or p-tau. A. Aβ1-42
+ subjects showed lower concentration of WM volume in the 
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left cingulum parahippocampal and right subgenual cingulum. B. p-tau+ subjects 

exhibited lower concentration of WM volume in the left cingulum parahippocampal and 

left uncinate fasciculus. Location of affected WM regions were obtained with the JHU 

white-matter tractography atlas (Hua et al., 2008). 

Figure 3. Disrupted cortical thickness networks in CN elderly subjects with abnormal 

CSF levels of Aβ1-42 or p-tau. A. Group differences in network segregation in the 

whole-cortex (left panel) and at lobular (right panel) level. B. Network segregation in 

those cortical lobes where group differences reached statistical significance. The right 

panel displays the cortical lobe affected after statistical comparisons (see left panel). 

**p corrected<0.005; *pcorrected<0.01 
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Table 1. Demographic, CSF markers and cognitive profile. 

 Controls Aβ1-42
+ p-tau+ 

Aβ1-42 (pg/mL) 855.3 ± 75.9 471.2 ± 74.2** 884.7 ± 236.8 

p-tau (pg/mL) 32.6 ± 4.9 29.4 ± 10.1 79.3 ± 19.1** 

Age 59 ± 6.1 61.2  ± 7.8 63.3 ± 8.8* 

Gender (m/f) 4/16 5/14 4/14 

Education, years 13.3 ± 3.7 13 ± 4.6 12.9 ± 4.5 

ApoE ε4 (yes/no) 2/18 10/9 4/14 

MMSE 29.4 ± 0.7 28.8 ± 1 28.7 ± 1.3 

Boston naming test 53.5 ± 5.1 54.4 ± 3.4 54.7 ± 3.1 

Clock test 9.8 ± 0.3 9.6 ± 0.4 9.8 ± 0.4 

Word list 5.3 ± 0.8 5.2 ± 1 5.1 ± 0.8 

Rey figure 33.6 ± 1.9 33.1 ± 1.6 32.6 ± 1.8 

VOSP 9.2 ± 1.5 9.1 ± 0.8 9.1 ± 1.7 

Results are expressed as mean ± standard deviation. m/f: 
male/female; MMSE: Mini Mental State Examination; VOSP: 
Visual Object and Space Perception Battery. *p=0.001; **p<10-8 
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SD: standard deviation; mm: millimeters; CS: cluster size; P: corrected p-value using the hierarchical 
statistical model (Bernal-Rusiel et al., 2010). 

Table 2. Group differences in cortical thickness 

Cortical region (BA) CS (mm2) Mean ± SD thickness (mm) Change (%) P 

Aβ1-42
+ > Controls  Controls Aβ1-42

+   

Left middle temporal 1512 2.37 ± 0.15 2.42 ± 0.15 3 10-4 

Controls > p-tau+  Controls p-tau+   

Left superior parietal 171 2.43 ± 0.2 2.01 ± 0.21 17 10-5 

Left medial orbitofrontal 406 2.47 ± 0.22 2.1 ± 0.24 15 10-4 

Right precuneus 328 2.44 ± 0.23 2.12 ± 0.27 14 10-3 
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Table 3. Group differences in cerebral WM volume 

WM tract CS (mm3) x y z P 

Controls > Aβ1-42
+      

Left cingulum parahippocampal 1767 -22 -53 1 10-4 

Right subgenual cingulum 451 12 40 31 0.004 

Controls > p-tau+      

Left cingulum parahippocampal 1602 -17 -42 -1 10-5 

Left uncinate fasciculus 574 -33 -3 -18 0.003 

WM: white matter; CS: cluster size; mm: millimeters; P: corrected p-value using the family 
wise error rate (p<0.05). Coordinates (x-y-z) are in the MNI anatomical space, and 
correspond to the voxel of maximum significance within the cluster. Location of affected 
WM regions were obtained with the JHU white-matter tractography atlas (Hua et al., 2008). 
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Table 4. Group differences in the inward/outward 

connectivity metric for each cortical lobe. 

Cortical lobe Controls Aβ1-42
+ p-tau+ 

Left frontal 1.34 1.47 1.04 

Left parietal 1.26 1.46 0.76 

Left temporal 1.64 1.79 1.66 

Left occipital 1.58 2.33 3.32 

Left cingulate 2.17* 6.74* 5.04 

Right frontal 2.15 2.32 1.94 

Right parietal 1.65 1.97 2.14 

Right temporal 1.84* 3.73* 1.87 

Right occipital 3.51 6.15 4.11 

Right cingulate 3.07 3.29 1.33 

Higher values in this metric reflect more lobular 
segregation. The asterisk (*) indicates that group 
differences (Aβ1-42

+ > controls) was statistically 
significant (p < 0.05). 
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Highlights 
 

• CSF Aβ1-42
+ subjects show thickening of the middle temporal cortex. 

• CSF p-tau+ subjects show thinning of the fronto-parietal cortices. 

• Abnormal CSF levels of Aβ1-42 and p-tau are associated with WM atrophies. 

• Abnormal CSF levels of Aβ1-42 and p-tau are associated with cortical 
segregation. 


