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Abstract

Random Linear Network Coding (RLNC) has been shown to offer an efficient communication

scheme, leveraging a remarkable robustness against packet losses. However, it suffers from a high

computational complexity, and some novel approaches, which follow the same idea, have been recently

proposed. One of such solutions is Sparse Network Coding (SNC), where only few packets are combined

in each transmission. The amount of data packets to be combined can be set from a density parame-

ter/distribution, which could be eventually adapted. In this work we present an semi-analytical model

that captures the performance of SNC on an accurate way. We exploit an absorbing Markov process

where the states are defined by the number of useful packets received by the decoder, i.e the decoding

matrix rank, and the number of non-zero columns at such matrix. The model is validated by means of a

thorough simulation campaign, and the difference between model and simulation is negligible. We also

include in the comparison some more general bounds that have been recently used, showing that their

accuracy is rather poor. The proposed model would enable a more precise assessment of the behavior

of SNC techniques.
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I. INTRODUCTION

Network Coding (NC) techniques foster a new communication paradigm, where packets are

no longer immutable entities and nodes across the network could retransmit, discard or recode

them. Among these techniques, Random Linear Network Coding (RLNC) stands as one of the

most interesting solutions, since it provides robustness against packet losses. On the other hand,

some questions have been raised about the decoding complexity of RLNC.

In order to reduce such complexity, the authors of [1] promoted Sparse Network Coding (SNC)

techniques. Afterwards, a Tunable Sparse Network Coding (TSNC) scheme was introduced by

Feizi et al. in [2], which, in a nutshell, proposed tuning the density of the coded packets, as

they are being generated by the source during the transmission. There is a trade-off between

the reduction of the computational complexity and the performance degradation induced by the

corresponding overhead. Hence, it would be really helpful if the optimum density configuration

could be found. However, there was not an appropriate model for sparse coding techniques, and

only some approximate bounds have been used. These bounds aimed to be applied in a large

number of cases, and focused on a single dimension: the degrees of freedom, i.e the decoding

matrix rank, as the unique piece of the relevant information. As will be seen later, their accuracy

is quite poor.

In this paper we propose a complete semi-analytical model for SNC techniques. We include

a second dimension, the covered packets, i.e the non-zero columns at the decoding matrix. It

is based on an Absorbing Markov Chain and it precisely mimics the probability of generating

new information when sparse coding schemes are used. To our best knowledge, there is not any

similar proposal in the related literature. We shall later see that the accuracy of the proposed

model is very high.
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The rest of the paper is structured as follows: Section II summarizes the operation principles

of NC techniques and recalls some of the bounds that have been used in previous works to

estimate the performance of SNC. In Section III we describe the proposed model and we exploit

the properties of Absorbing Markov Chains to assess the performance of SNC techniques. Finally,

in Section IV we validate our proposal, by means of an extensive simulation campaign. We also

compare its performance with that exhibited by some of the bounds that have been previously

used in the related literature. We finally conclude the paper in Section V, highlighting its most

relevant contributions and advocating some aspects that will be addressed in our future work,

by exploiting the proposed model.

II. FROM RANDOM LINEAR NETWORK CODING TO TUNABLE SPARSE NETWORK CODING

A. RLNC

NC techniques were originally proposed by Ahlswede et al. in their seminal paper [3], where

the store and forward approach was questioned; they also proved that the use of a coding scheme

yields the maximum multicast capacity. Some subsequent works by Koetter and Medard [4], and

Li et al. [5] broadened that idea, proposing the use of linear codes, and Ho et al. [6] presented

a randomized network coding approach that achieved the maximum multicast capacity with

high probability, advocating the RLNC scheme. Since those initial works, we have witnessed an

increasing interest on potential applications of NC.

Many works have studied the benefits of NC techniques. Katty et al. [7] and Chachulski et

al. [8] were some of the first ones proposing actual protocols, COPE and MAC-independent

Opportunistic Routing & Encoding (MORE), respectively. Each of them represents a different

NC flavor: Inter-flow and Intra-flow. In Inter-flow NC packets belonging to different information

flows are combined. Although this approach has been thoroughly analyzed [7], [9]–[11], it

exhibits some drawbacks if applied over realistic scenarios, as was shown in [12], [13].

On the other hand, Intra-flow NC techniques are based on the combination of packets belonging

December 28, 2016 DRAFT



4

to the same flow; among them, RLNC scheme stands out as the most widespread solution, due to

its simplicity and good performance. Indeed, it hides losses from the upper layers over point-to-

point links [14], [15], reduces signalling overhead over opportunistic networks [8], and leverages

efficient transmissions over wireless mesh networks [16]–[18].

There are also other coding solutions: LT [19] and Raptor Codes [20], which share some of

the advantages of the RLNC scheme: (i) resiliency to packet losses, (ii) low overhead and (iii)

suitability for heterogeneous networks and devices. However, they do not provide (i) on-the-fly

coding/decoding [21], (ii) low delay, and (iii) recoding capabilities, which are considered to

be some of the most relevant advantages of NC. Opposed to fountain codes, the encoder can

generate coded packets as they arrive from the upper layers, and does not need to wait until

the whole generation has been already received. The decoder can also start to decode packets

as they are received, thus reducing the delay of fountain codes. Moreover, recoding has been

shown to offer a more robust behavior over error prone links and for multicast transmissions,

compared to legacy routing approaches, where intermediate nodes just store-and-forward the

received packets. Some of these benefits are discussed in [16], [17].

On the other hand, the main argument questioning the use of RLNC is their decoding com-

plexity, O(k3), where k is the number of packets to decode, which is considerably higher than

other approaches (for instance, LT or Raptor Codes). The coding throughput, defined as the rate

at which coding is carried out, is severely impacted by the coding parameters (Galois Field size,

GF (2q), and generation size, k). In general, greater values of these parameters would lead to

lower coding throughput [22], [23]. Furthermore, network overhead, which is mainly due to the

transmission of useless packets (linear dependent combinations) and the corresponding protocol

header, is also affected by the coding parameters, as Heide et al. analyzed in [24], focusing on

the field and generation sizes, and the code sparsity.

Several works have focused on reducing the coding and decoding complexity proposing

different alternatives. One initial idea to separate the RLNC performance from the amount of
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transmitted data, was to divide the data into generations [25], chunks [26], segments [27] or

groups [28] of k packets. More advanced schemes, advocating the combination of overlapping

generations and sparse coding techniques, were proposed in [21], [29], [30]. Another approach,

which exploits sparse coding scheme to reduce the complexity, was first proposed in [1]. Af-

terwards, Heide et al. presented a sparse coding scheme with a non-random selection [24],

which would allow different recoding mechanisms. Another example was the TSNC scheme,

introduced by Feizi et al. [2], which fosters a dynamic increase of the coding density as long

as the transmission evolves.

Feizi’s work was later broadened in [31], where different recoding approaches and more

complex tuning functions were proposed. Additionally, the authors of [32] presented a practical

implementation of the TSNC approach. They used a lower bound to estimate the impact of the

density on the overall overhead, but as will be seen later, such bound was not very accurate.

A robust TSNC protocol was proposed in [33] for enhancing the reliability and speed of data

gathering in smart grids.

Other alternate approaches to reduce both the complexity and the overhead of RLNC advocate

the use of inner and outer codes, such as Fulcrum Codes [34] or BATS Codes [35]. Fulcrum

Codes, which are suitable for heterogeneous devices, propose using different field sizes to decode

the received packets. On the other hand, BATS Codes reduce the computational complexity by

means of an outer code, based on a fountain coding scheme. An additional coding solution using

inner and outer codes, as well as sparse techniques was presented in [36], which exploits the

Gamma distribution for the code design.

B. Tunable Sparse Network Coding

As already mentioned, Tunable Sparse Network Coding was initially proposed by Feizi et

al. [2], and was later broadened in [31], [32]. The main reasoning was that the complexity

of the decoding process for traditional RLNC solutions is considerably higher than in other
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approaches, for instance LT or Raptor Codes, which exploit sparse coding techniques. LT or

Raptor Codes propose a random distribution of the density, where sparse packets (built by the

combination of a few original packets) are more likely to be sent.

On the other hand, the legacy RLNC scheme generates coded packets by randomly combining

the original packets of the same generation, pi (where i = 1, . . . , k). The corresponding coeffi-

cients, ci, are selected from a Galois Field, GF (2q), and the two required operations (sum and

product) are as well defined over GF (2q):

p′RLNC =
k∑
i=1

ci · pi (1)

Using a Sparse Coding Scheme only a set of w randomly selected packets,

W = {pj1 , pj2 , · · · , pjw |pjk 6= pj′k ,∀jk 6= j′k}, from the same generation, are combined to build a

coded packet:

p′TSNC =
w∑
i=1

ci · pji (2)

in this case the random coefficients, ci, are selected from nonzero elements in the Galois Field

GF (2q). The use of highly sparse coded packets (low w) would increase the throughput of

the decoding operations [31]. On the other hand, it could also lead to a greater probability of

transmitting linear dependent combinations, thus increasing the corresponding network overhead

and jeopardizing the performance. In this sense, based on the observation that the probability of

generating linear dependent packets is higher as the transmissions evolves, TSNC is proposed to

tune the density throughout the transmission. Some works, e.g. [31], [32], have already shown

a high reduction on the computational complexity, with a slight increase of the corresponding

overhead.

Trullols et al. [37] derived, for the RLNC scheme, the exact decoding probability for a

successful decoding event after the reception of a number of coded packets. Zhao et al. proposed
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in [10] a simplified modification, proposing a generalization of the original expression. And

in [38] the model was broaden to include multiple sources transmitting the same information.

All the existing works aiming to analytically characterize sparse coding schemes either lack

accuracy or have some limitations. Li et al. showed in [39] that the singularity probability, i.e

the probability for a random sparse matrix to have a full-rank, can be upper and lower bounded.

However, the analysis was limited to rather large finite fields (q →∞) and results were obtained

for very low generation sizes, k ≤ 5. An extension of this work was presented in [40], where a

more generic coefficient distribution was considered. On the other hand, Blomer et al. highlight

in [41] the complexity of the problem we tackle in this work, establishing upper and lower

bounds for the number of linear dependencies within a random sparse matrix. Although they

do not explicitly exploit this result for coding purposes, their conclusions are still valid for our

sparse coding model.

Regarding the use of such loose bounds for network coding solutions, the authors of [31],

[32], [42] exploit a lower bound to find a trade-off between complexity and overhead. Such

lower bound establishes that the probability of receiving a new linearly independent packet by

the decoder, when it already has r linearly independent packets, is:

ProbTSNC
r+ (k, d) ≥ 1− (1− d)k−r (3)

where k is the generation size and d = w
k

is the corresponding coding density.

Following the approach proposed in [32], the encoder decides the most appropriate density in

order to send packets with the lowest density, keeping the number of packets transmitted below

a defined budget. The information available at the encoder is, in most cases, rather limited; in

this case, the destination reports, with a dedicated control packet, the number of useful packets

that have been already received. Hence, a more precise model for such probability might lead

to the proposal of mechanisms to strongly improve the performance of TSNC.
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Although it is not the main objective through this paper, it is also worth highlighting other

open questions of RLNC and TSNC schemes. First, coding coefficients transmission could cause

a considerable overhead. The authors of [24] evaluated how this overhead is affected by different

coding parameters. In any case, the corresponding overhead is rather limited for the binary case

(q = 1) or/and when coding operations are restricted to a generation of size k. For instance,

the authors of [33] were able to add a reasonable overhead for 4000 data packets coming from

4000 different sources, leveraging an efficient solution, using the identifier of data packets. Note

that the use of sparse coding techniques would as well lead to mode efficient coding vector

representations. We could, for instance, represent each non-zero coefficient by an index-scalar

pair. On the other hand, various proposals for recoding operations at intermediate nodes have

been also published. The authors of [31] analyzed two different solutions (on a theoretical level),

while [33] proposes a practical implementation of sparse coding techniques, with recoding at

intermediate nodes, which is exploited to gather information over smart grid scenarios.

III. MARKOV CHAIN MODEL

In this Section we introduce a Markov Chain Model that mimics the behavior of SNC

techniques. This model is valid from the receiver’s perspective, i.e it is based on the status

of the decoder, and it is therefore independent on the particular network that connects the source

with the destination. We define a set of states (r, c), where r is the current rank of the decoding

matrix and c is the number of non-zero columns. Clearly, r ≤ c. Based on these states, we can

establish a discrete Markov Chain, Sq(w, k). Figure 1 shows an illustrative example for such

chain, with w = 3 and k = 10. As can be seen, S is an absorbing process, since the state (k, k)

is absorbing, and will be eventually reached.
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2,3 2,4 2,5 2,6

3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,4 4,5 4,6 4,7 4,8 4,9 4,10

5,5 5,6 5,7 5,8 5,9 5,10

6,6 6,7 6,8 6,9 6,10

7,7 7,8 7,9 7,10

8,8 8,9 8,10

9,9 9,10

10,10

1,3

Coefficients

R
an

k

Fig. 1. Markov chain for w = 3 and k = 10. We assume that q > 1, otherwise, the states (2, 3) and (3, 3) would not be

feasible.
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Theorem 1. (Transition Probabilities)

The transition probability between states (r, c) and (r + i, c+ j), pr,c(i, j) are as follows:

ϑq(r, c, w)
w−1∏
t=0

c− t
k − t

if


i = 0

j = 0

(4.1)

[1− ϑq(r, c, w)]
w−1∏
t=0

c− t
k − t

if


i = 1

j = 0

(4.2)

(
w

j

)w−j−1∏
t=0

(c− t)
c+j−1∏
t=c

(k − t)

w−1∏
t=0

(k − t)
if


i = 1

j = 1 . . . w

(4.3)

0 otherwise (4.4)

where ϑq(r, c, w) is the probability for a randomly generated sparse vector, with w non-zero

elements, to be linearly dependent with the already received r vectors, from the c-dimensional

space, i.e no new coefficients are used. Hence, c captures the coefficient distribution length for

the already received packets. A Galois Field GF (2q) is assumed.

Proof: We use simple combinatorial mathematics to derive the transition probabilities of

the absorbing Markov chain that was previously discussed.

For any (r, c) state, if the received packet includes any novel coefficient, the rank is always

increased. The number of combinations that would change the state from (r, c) to (r + 1, c +

j), j > 0 are:

C(r,c)(r + 1, c+ j) = Cc
w−j · Ck−c

j =

(
c

w − j

)
·
(
k − c
j

)
(5)

where Cn
t is the combination of n elements taken t at a time without repetition.
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In addition, the overall number of possible vectors are Ck
w. Hence, the corresponding proba-

bility is:

pr,c(1, j > 0) =

(
c

w−j

)
·
(
k−c
j

)(
k
w

) =

c!
(c−w+j)!(w−j)! ·

(k−c)!
(k−c−j)!j!

k!
(k−w)!w!

=

=

(
w

j

)
·

w−j−1∏
t=0

(c− t) ·
c+j−1∏
t=c

(k − t)

w−1∏
t=0

(k − t)
(6)

On the other hand, if the new packet does not include any new coefficient, the corresponding

vector could be either linearly dependent or independent, and this is established by ϑ. The

combinations that do not increase the number of already received coefficients is Cc
w. Hence, the

probability of staying at the current state, (r, c) is:

pr,c(0, 0) = ϑq(r, c, w)

(
c
w

)(
k
w

) = ϑq(r, c, w)

c!
(c−w)!w!

k!
(k−w)!w!

= ϑq(r, c, w)
w−1∏
t=0

c− t
k − t

(7)

While the probability of going to (r + 1, c) can be calculated as follows:

pr,c(1, 0) = [1− ϑq(r, c, w)]

(
c
w

)(
k
w

) = [1− ϑq(r, c, w)]
w−1∏
t=0

c− t
k − t

(8)

Whenever a packet is received the rank can only increase in one single unit, and thus,

pr,c(i, j) = 0, i > 1. Likewise, the number of novel coefficients per packet cannot be larger

than w, so pr,c(i, j) = 0, j > w.

A. Empirical modeling of ϑq(r, c, w)

To the best of our knowledge there is not a closed expression for ϑq(r, c, w), so we conducted

a Montecarlo analysis to empirically obtain it. We start by synthetically reaching every state

of the corresponding Markov chain, and then we generated a new vector, enforcing that the w
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r/c

ϑ
(r
,c
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)

C, γ = {10, 5.74}
C, γ = {20, 11.30}
C, γ = {63, 25.43}

(a) q = 1, w = 3

0.6 0.7 0.8 0.9 1

r/c

C, γ = {15, 9.64}
C, γ = {25, 16.55}
C, γ = {63, 43.02}

(b) q = 1, w = 7

0.8 0.85 0.9 0.95 1

r/c

C, γ = {25, 16.48}
C, γ = {35, 23.44}
C, γ = {63, 42.89}

(c) q = 1, w = 15

0.9 0.92 0.94 0.96 0.98 1

r/c

C, γ = {4530.38}
C, γ = {55, 37.21}
C, γ = {63, 42.95}

(d) q = 1, w = 31

0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

r/c

ϑ
(r
,c
,w

)

C, γ = {10, 17.30}
C, γ = {20, 25.14}
C, γ = {63, 39.13}

(e) q = 3, w = 3

0.8 0.85 0.9 0.95 1

r/c

C, γ = {15, 30.06}
C, γ = {25, 50.63}
C, γ = {63, 129.65}

(f) q = 3, w = 7

0.9 0.92 0.94 0.96 0.98 1

r/c

C, γ = {25, 51.08}
C, γ = {35, 71.23}
C, γ = {63, 129.96}

(g) q = 3, w = 15

0.9 0.92 0.94 0.96 0.98 1

r/c

C, γ = {45, 93.13}
C, γ = {55, 112.70}
C, γ = {63, 130.24}

(h) q = 3, w = 31

Fig. 2. ϑ(r, c) Vs. r
c

. Markers correspond to the values obtained with the Montecarlo analysis, while the solid lines are the

fitting curves
(
r
c

)γ .

components were only selected from the c already received coefficients. Afterwards we calculated

the rank of the corresponding matrix to see whether it had increased; if that was the case

the vector was linearly independent. We estimated the corresponding probability by counting

the number of successes over a total of 100000 independent experiments. Note that ϑ is the

probability for a generated vector to be linearly dependent and thus 1 − ϑ corresponds to the

probability for a generated vector to be linearly independent, in both cases knowing that the

number of received coefficients remains the same, i.e. no novel coefficients are used.

Figure 2 shows how ϑ varies against the ratio r
c

for various combinations of q, w and c. In

all cases we can use a function ϑ̃ =
(
r
c

)γ to approximate the observed behavior. Figure 2 also

shows such fitting functions with a solid line, yielding a rather accurate approximation. This

fitting is valid for all the possible combinations of w ≤ k
2

and q, and for every c value (from 1
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(a) w = 3
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(b) w = 4
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100
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(c
)

(c) wodd > 3

0 10 20 30 40 50 60
0

100

200

300
q = {1, 2, 3, 4, 8}

c

(d) weven > 4

Fig. 3. Fitting of γq(c) function. Markers correspond to the values obtained with the Montecarlo analysis, while the solid lines

are the fitting curves.

to k).

Figure 3 shows the evolution of γ against c for different w and q configurations. As can be

seen on the lower figures, for w > 3, there is a clear linear relationship between γ and c, and the

slope of the corresponding line only depends on the values of w and q. On the other hand, for

w = 3 and w = 4, a different behavior was observed (see upper figures). In order not to increase

the complexity of the model, we have approximated the behavior of w = 3 with two different
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TABLE I

m AND c0 FOR DIFFERENT q VALUES

q 1 2 3 4 8

modd 0.676
1.367 2.055 2.738 4.891

meven 0.337

c0 17 15 12 10 6

m4 0.337 1.101 1.417 1.565 1.491

b4 0 3.817 9.627 17.298 42.634

lines, since it can be seen that, for lager c’s, the slope of the corresponding function does not

depend on q, being all of them parallel. As will be seen later, the results are rather accurate,

despite there is a non-negligible difference between the observed values and the corresponding

fitting.

With all of the above into account, we can use the following functions to estimate the value

of γ:


γ = modd · c c < c0

γ = 0.3 [c− c0 (1−modd)] c ≥ c0

w = 3 (9)

γ = m4 · c+ b4 w = 4 (10)

γ = m · c 4 < w < k/2 (11)

where the value of the slope m depends on q, and c0 is the point where the slope of γ changes

for w = 3. The corresponding values of m and c0 for the different q’s are given in Table I

B. Fundamental Matrix

Once we have established all the transition probabilities, we can build the fundamental matrix

for the Absorbing Markov Chain. According to [43], the canonical form, for t and r transient
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and absorbing states, respectively, of such matrix, can be defined as follows:

P =

Ir×r 0

Rt×r Qt×t

 (12)

Since there is only one absorbing state (k, k), I is an identity matrix of one single element and

R is a column vector with the transition probabilities of all the remaining states to (k, k). Finally

Q is a matrix with the transition probabilities between the transient states. We will assume that

the first row/column of this matrix correspond to the initial state, i.e. (1, w).

Theorem 2. Average number of transitions (Theorem 3.2.4 in [43]). The average number of

transitions before being absorbed, when starting in a transient state i, is the ith element of the

column vector

M = (I −Q)−1 Γ (13)

where I is an identity matrix with the same dimension as Q, and Γ is an all-one column vector.

Furthermore, the matrix N = (I −Q)−1 is called the fundamental matrix for P .

Corollary 3. Average number of transmissions. The average number of transitions defines the

average number of transmissions, since in our case, a transition always corresponds to a packet

transmission, and the first element of M would correspond to the number of transitions that are

required to hit the (k, k) state from the initial one (1, w).

Theorem 4. Probability of being in state j after T transitions (Theorem 3.1.1 in [43]). The

entry p(T )ij of P T is the probability of being in state j after T transitions, provided that the chain

was started in i

Corollary 5. Probability of succesfully decode a generation. Since the chain always starts from

the initial state 1→ (1, w) and there is only one absorbing state, t+ r → (k, k), the probability
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of successfully decode a generation after #TX transmissions is: ξ(#TX) = p
(#TX)
1,t+r

Another parameter of interest would be the probability of increasing the rank of the cor-

responding decoding matrix with every transmission. This would allow establishing dynamic

tuning schemes for the coding density, since lower densities would yield lower coding/decoding

times, but they might as well lead to a higher number of transmissions.

Theorem 6. Transient Probabilities (Theorem 3.5.7 in [43]). The probability of visiting a state

j, when starting a transient state i, is the (i, j) entry of the transient probabilities matrix H:

H = (N − I) ·N−1d (14)

where Nd is a diagonal matrix with the same diagonal of N .

Corollary 7. Probability of receiving a linearly independent packet. We define a set of states s(r)

as all the states from the chain where the rank equals r, s(r) = {(i, j) ∈ S |i = r} . Hence, the

probability of increasing the rank of the matrix when r independent packets have been already

received can be calculated as follows:

δ(r) =
∑

∀j |(r,j)∈S

H(1, nj) · (1− pr,j(0, 0)) (15)

where nj is the index corresponding to the (r, j) state.

C. Impact of errors

So far we have assumed an ideal wireless channel between the transmitter and the receiver.

However the model can be easily broadened so as to consider packet-erasure links. For that we

just need to modify the corresponding transition probabilities as follows:
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p̃r,c(i, j) =


pr,c(i, j) (1− α) (i, j) 6= (0, 0)

pr,c(i, j) (1− α) + α (i, j) = (0, 0)

(16)

where α is the frame error rate of the wireless link.

We can easily see that Q̃ = (1− α)Q+ αI , and hence:

M̃ =
(
I − Q̃

)−1
Γ = [I − ((1− α)Q+ αI)]−1 =

(I −Q)−1

1− α
(17)

IV. SIMULATION AND MODEL VALIDATION

In this Section we assess the validity of the proposed model and all the results that were previ-

ously discussed by means of an extensive simulation campaign. We use the M4RIE library [44]

to transmit (using TSNC) 10000 different generations, in order to ensure statistical tightness of

the corresponding results.

Figure 4 shows the probability of receiving a linearly independent packet against the current

rank at the receiver, (15). As can be seen, the probability is close to 1 until the rank is considerable

large. Afterwards, it decreases quite sharply, especially for low values of q and w. We can also

see the small difference between the simulation results (solid line) and the proposed model

(markers). The model shows a good accuracy, being the mean squared error in the worst case

(k = 128, q = 3) 3.14·10−4. On the other hand, the lower bound that was discussed in Section II,

which has been used in various works until now, yields a much lower probability, exhibiting very

little accuracy. Since the corresponding operations that need to be performed are much faster

if the coding density (w) is low, this result is really interesting, since it shows that there is not

any disadvantage in using a low w until the rank at the receiver is quite high; at that moment

increasing w would probably improve the corresponding performance. It is worth noting that

from now on, all results have been obtained for the binary case, GF (2).
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Fig. 4. Probability of increasing rank Vs. current rank at the decoder for different field sizes (q = 1, 3) and generation sizes

(k = 64, 128). Markers show the values obtained with the proposed model and the solid lines correspond to the simulation

results

Another interesting result would be the average number of transmissions that would be required

to correctly receive a generation. Table II collects such metric for different configurations, in

which we have modified the value of both w and k. The theoretical result (Model) is obtained

using (13). The simulation result (Simul) corresponds to the average of 10000 independent runs

per configuration. We can first highlight that the difference between the two values is almost

negligible (the maximum relative error is less than 0.8%), proving the validity of the proposed

model. Note that for larger densities (≈ 1/2, i.e w = k/2) the average number of additional

transmissions is ≈ 1.6, for all k; this result matches the value that would have been obtained

for the traditional RLNC approach, as it is proved in Appendix A. However, for lower densities,

i.e. w = 3, the number of required transmissions increases considerably, especially for larger k.

In order to complement the average values collected in Table II, Figure 5 shows the probability
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TABLE II

AVERAGE NUMBER OF TRANSMISSIONS REQUIRED TO SUCCESSFULLY DECODE A GENERATION FOR DIFFERENT SNC

CONFIGURATIONS

w = 3 w = 7 w = 15 w = 31 w = 64

k = 32
Model 43.83 33.62 33.58 - -

Simul 44.17 33.64 33.60 - -

k = 64
Model 100.34 65.92 65.62 65.62 -

Simul 101.49 65.91 65.61 65.60 -

k = 128
Model 230.36 131.22 129.85 129.63 129.62

Simul 231.89 131.19 129.84 129.62 129.61

that the successful decoding of the whole generation happened after receiving β additional

packets (i.e k + β). Such probability is defined in Corollary 5, and the simulation results are

obtained after the independent transmission of 10000 generations. Again, the difference between

the results obtained by means of simulation and those using the model is negligible, being the

mean squared error in the worst case (w = 3 and k = 128) rather low, 9.35 · 10−5. Note that

lower densities would yield a worse performance, since the probability of successfully decoding a

complete generation is very small when the number of additional transmissions is low. However,

when w increases, such probability equals almost 1 for just 5 additional transmissions.

Up to now, we have argued that the use of low coding densities would be beneficial since

they would yield shorter decoding times. In order to assess this, Figure 6a shows the number of

operations that have been performed at the decoder, from the first reception, until the packet is

successfully decoded. On the other hand, Figure 6b shows the average number of coded packets

sent by the encoder. We have used the KODO library, which logs the number of operations

that are executed at the receiver. The complexity of an individual operation is alike for any

w value, so the results shown in the figure provide a rather precise idea of the complexity

of the decoding process. We plot the number of accumulated operations and number of total

December 28, 2016 DRAFT



20

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

β

ξ
(k

+
β
)

w = 3
w = 15

(a) k = 64

50 100 150 200

β

w = 3
w = 15

(b) k = 128

Fig. 5. Probability of a successful decoding event after β extra transmissions, q = 1. Markers show the values obtained with

the proposed model and the line corresponds to the simulation results

transmissions versus the current rank at the receiver. The figures show the average value after

10000 independent runs. When the TSNC approach is used we assume that the encoder has

perfect knowledge of the decoder state, and it changes the density when the expected number

of transmissions to increase the rank on one unit at the decoder (δ−1(r)) is higher than 1.1. By

using the proposed model we leverage a remarkable reduction on the complexity. In particular,

the number of required operations is almost the same that those seen for a fixed SNC approach

and w = 3. However, TSNC is able to keep the number of transmissions, which is remarkably

higher for the fixed SNC solution. We can thus conclude that a dynamic tuning of the coding

density would certainly yield relevant improvements. We could keep the density at a low value

until such probability starts to decrease, and then shift to a higher w.

After validating the proposed model over an ideal channel, we broadened the assessment to

include error-prone scenarios. For that we introduce a certain loss probability, α, over the link

between the source and the receiver, so that some packets might get lost during their transmission.

Figure 7 shows the average number of transmissions that are required to successfully decode a

generation (k = 64) as a function of α. As can be seen, there is again a very tight match between
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Fig. 7. Average number of transmissions required to decode a generation Vs. Packet Loss Rate (α), k = 64, q = 1. Markers

show the values obtained with the proposed model and the solid lines correspond to the simulation results

the simulation results and the values obtained with the proposed model, the relative error is less

than 0.8%. The impact of greater α values is more relevant for lower densities, since the number

of required transmissions would increase quite strongly.

The previous results are broadened in Figure 8, which shows the impact of packet erasure
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Fig. 8. Probability of a successful decoding event after β extra transmissions, k = 64 and q = 1. Markers show the values

obtained with the proposed model and the solid lines correspond to the simulation results

channels over the probability of being able to decode a generation after #TX = k + β trans-

missions. We have used a low density, w = 3, since it showed a worse behavior in terms of the

additional transmissions that are required. The impact of the packet-erasure links is again clearly

seen, since α sharply decreases when gets higher. On the other hand, we can see that there is a

slight difference between the simulation results and the values obtained with the model. As was

already discussed, the fitting for w = 3 was less accurate than the ones for larger densities; in

any case, the differences are rather small, and the results clearly show that the proposed model

can also be used over error-prone links. In this case the mean squared error for the worst case

(α = 0.3) is approximately 3.9 · 10−4.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the first complete model to mimic the behavior of sparse

coding techniques. It is based on an Absorbing Markov Chain, where the states are defined as

the combination of the rank and the non-zero columns of the corresponding decoding matrix.

After finding the transition probabilities, we have exploited the properties of Absorbing Markov

Chains to derive some key performance metrics: average number of transmissions, probability

of successfully decoding a generation after #TX transmissions, and probability of receiving a
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linearly independent packet. We have also seen that it can be broadened to consider error-prone

links. The model has been validated by means an extensive simulation campaign, yielding an

almost perfect match, and clearly outperforming some of the bounds that have been used in

previous works.

This model can be easily exploited to select the most appropriate density in sparse coding

techniques. In particular, in a TSNC solution, the encoder decides the optimum density value

as the transmission evolves, for instance taking into account the trade-off between useless

transmissions (linearly dependent combinations) and the reduction on computational complexity.

Hence, the proposed model could provide a better insight to establish optimum configurations of

TSNC solutions. We will also look at the recoding feature of intermediate nodes. In particular,

we will seek solutions that can keep the density of the received packets at a given level. The

proposed model might as well help the intermediate nodes to decide when to start recoding

packets and the best configuration to do so.

APPENDIX A

AVERAGE NUMBER OF TRANSMISSIONS FOR RLNC

Lucani et al. demonstrated in [45] that the average number of transmissions that are required

to successfully decode a complete generation when RLNC is used, could be estimated as the

sum of the generation size (k) and a constant that only depends on the finite field, GF (Q = 2q),

but not on the generation size. In this Appendix we introduce a novel theorem, which extends

such result, by establishing the exact value of such constant.

Theorem 8. Average Number of Transmissions for RLNC.

The average number of packets that need to be transmitted to decode a complete generation

when RLNC is used can be calculated as follows:

#TX =
k−1∑
i=0

1

ProbRLNC
r+ (i)

≈ k + β (18)
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where ProbRLNC
r+ (i) is the probability that a received packet increases the rank of the decoding

matrix when the traditional RLNC scheme is used, which was obtained by Trullols et al. in [37],

ProbRLNC
r+ (i) = 1− Qi

Qk
, and β is a constant that only depends on the finite field used.

Proof: We start with the initial expression, given by the summation in (18), and we apply

the Euler-Maclaurin formula, as can be seen in (19), where B2t are the Bernoulli numbers and

f (n)(x) is the nth derivative of f(x). We assume that the third term of the summation (t = 3)

is much smaller than the previous ones and we thus neglect the subsequent terms, considering

only the initial function f(x) and its first and third derivatives, which are shown in (20).

The result of the integral is given by (21). We also take the following assumptions: f(0) ≈

1, f
′
(0) ≈ 0, f

′′′
(0) ≈ 0, which are indeed sensible, given that k � 1. Finally, (22) shows the

sought result, the average number of transmissions, which can be represented as the sum of the

generation size, k, and a constant, β, that depends on the particular Galois Field.

As can be seen, if we substitute Q with 2, #TX approximately yields k + 1.6, matching

the value empirically observed, or computed by the evaluation of the series, the first expression

in (18), which could be cumbersome for large k.

On the other hand, the behavior of SNC would be quite similar to the one exhibited by RLNC

when the density, defined as d = w
k

, is close to d = 1− 1
2q

. This is due to the fact that in RLNC

all coefficients are used for every coded packet, but some of them might be zero. For GF (2),

for instance, there would be, in average, k
2

zero coefficients per coded packet, i.e. a density of

d ≈ 1
2
. Table III shows the values of β for various q, obtained by (22), comparing them with

the number of transmissions that were obtained by averaging 1000 independent experiments for

different configurations of the TSNC. As can be seen, the simulation-based values match almost

perfectly the analytical ones, assessing the validity of the Theorem’s main result.
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#TX = 1 +
k−1∑
i=1

1

1− Qi

Qk

= 1 +

k−1∫
i=0

1

1− Qi

Qk

di+
f(k − 1)− f(0)

2
+

+
∞∑
t=1

B2t

(2t)!

[
f (2t−1)(k − 1)− f (2t−1)(0)

]
(19)

f(x) =
1

1− Qx

Qk

f ′(x) =
Qx−k logQ

(Qx−k − 1)2
f

′′′
(x) =

Qx+k(logQ)3(Q2k + 4Qx+k +Q2x)

(Qx −Qk)4
(20)

k−1∫
i=0

1

1− Qx

Qk

dx =

[
x− 1

logQ
log

(
1− ex logQ

Qk

)]k−1
0

= k − 1−
log
(

1− 1
Q

)
logQ

(21)

#TX ≈ k −
log
(

1− 1
Q

)
logQ

+
1

2

(
1

Q− 1

)
+

1

12

Q logQ

(Q− 1)2
(22)

TABLE III

AVERAGE NUMBER OF TRANSMISSIONS (k + β) FOR SPARSE CODING TECHNIQUES WHEN d = 1− 1
2q

q = 1 q = 2 q = 3 q = 4 q = 8

β - Eq. (22) 1.60 0.41 0.15 0.07 0.00

k = 16 17.67 16.42 16.16 16.10 16.01

k = 32 33.63 32.43 32.16 32.08 32.00

k = 64 65.61 64.41 64.17 64.07 64.01

k = 128 128.62 128.41 128.16 128.07 128.00

k = 255 256.60 255.42 255.16 255.08 255.00
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