

1	The Conjugative Relaxase TrwC Promotes Integration of Foreign
2	DNA in the Human Genome
3	
4	
5	Coral González-Prieto, ^a Richard Gabriel, ^b Christoph Dehio, ^c Manfred Schmidt, ^b
6	and Matxalen Llosa, ^{a#}
7	
8	Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC-SODERCAN),
9	Santander, Spain ^a ; Department of Translational Oncology, National Center for Tumor
10	Diseases and German Cancer Research Center, Heidelberg, Germany ^b , Focal Area
11	Infection Biology, Biozentrum, Universität Basel, Basel, Switzerland
12	
13	
14	Running head: TrwC promotes DNA integration in the human genome
15	
16	# Address correspondence to Matxalen LLosa, <u>llosam@unican.es</u>
17	

18 ABSTRACT

20	Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase
21	TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the
22	oriT, covalently attaches to it and leads the ssDNA into the recipient cell. In addition,
23	TrwC catalyzes site-specific integration of the transferred DNA into its target sequence
24	present in the genome of the recipient bacterium. Here, we report the analysis of the
25	efficiency and specificity of the integrase activity of TrwC in human cells, using the
26	Type IV Secretion System of the human pathogen Bartonella henselae to introduce
27	relaxase-DNA complexes. When compared to Mob relaxase from plasmid pBGR1, we
28	found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to
29	human cells, and a 100-fold increase in the rate of chromosomal integration of the
30	transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to
31	characterize the integration pattern in the human genome. DNA sequence analysis
32	revealed mostly reconstituted oriT sequences, indicating that TrwC is active and
33	recircularizes transferred DNA in human cells. One TrwC-mediated site-specific
34	integration event was detected, proving that TrwC is capable of mediating site-specific
35	integration in the human genome, albeit with very low efficiency compared to the rate
36	of random integration. Our results suggest that TrwC may stabilize the plasmid DNA
37	molecules in the nucleus of the human cell, probably by recircularization of the
38	transferred DNA strand. This stabilization would increase the opportunities for
39	integration of the DNA by the host machinery.

IMPORTANCE

44	Different biotechnological applications, including gene therapy strategies,
45	require permanent modification of target cells. Long-term expression is achieved
46	either by extrachromosomal persistence or by integration of the introduced DNA. Here
47	we study the utility of conjugative relaxase TrwC, a bacterial protein with site-specific
48	integrase activity in bacteria, as integrase in human cells. Although not efficient as site-
49	specific integrase, we found that TrwC is active in human cells and promotes random
50	integration of the transferred DNA in the human genome, probably acting as a DNA
51	chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be
52	delivered to human cells through a Type IV Secretion System involved in pathogenesis.
53	Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate
54	cell and promote its integration. If used in combination with a site-specific nuclease, it
55	could lead to site-specific integration of the incoming DNA by homologous
56	recombination.
57	

INTRODUCTION

61	Bacterial conjugation is an efficient mechanism of horizontal DNA transfer
62	which confers bacteria an elevated level of genomic plasticity (1). DNA is transferred
63	by conjugation from a donor to a recipient bacterium through a protein complex
64	known as conjugative apparatus (2). In gram-negative bacteria, the conjugative
65	machinery is composed of three functional modules (3): i) the relaxosome, a complex
66	formed by the DNA to be transferred - in particular the site known as origin of transfer
67	(oriT) - and the proteins responsible for DNA processing, which include a relaxase and
68	one or more accessory proteins; ii) the Type IV Secretion System (T4SS), a multiprotein
69	complex organized in a transmembranal conduit that spans both inner and outer
70	membranes; and iii) the coupling protein (T4CP), a DNA-dependent ATPase which
71	brings together the two previous components and is believed to play a crucial role in
72	substrate selection. The translocated substrate is the relaxase covalently linked to the
73	transferred DNA strand.
74	R388 is a conjugative plasmid of broad host range that belongs to the IncW
75	incompatibility group (4). The 15 kb transfer region can be separated into an Mpf (for
76	Mating pair formation) region, which encodes the T4SS apparatus, and a Dtr (for DNA
77	transfer and replication) region encoding the T4CP and the relaxosome (5). The latter is
78	composed of an <i>oriT</i> of 330 bp length, the relaxase TrwC, and two accessory proteins,
79	the plasmid-encoded TrwA and the host-encoded integration host-factor (IHF) (6).
80	During conjugation, TrwC binds to the oriT, cleaves the DNA strand to be transferred at
81	the <i>nic</i> site, and makes a covalent bond with its 5´end (7). Then the relaxase-DNA

82	complex is recruited by the T4CP to the T4SS and transported to the recipient cell,
83	where TrwC catalyzes the recircularization of the transferred DNA strand (8, 9).
84	Apart from its role in conjugation, TrwC is able to catalyze site-specific
85	recombination between two <i>oriT</i> copies repeated in tandem (10). The reaction takes
86	place in the absence of conjugation, and thus in the absence of single stranded
87	intermediates, and is favored by the accessory protein TrwA. In contrast, IHF was
88	found to exert a negative regulatory role in TrwC-mediated recombination (11). It was
89	proposed that recombination takes place thanks to the single-stranded endonuclease
90	activity of TrwC coupled to the replication machinery of the host cell (10).
91	Once transferred to the recipient cell during conjugation, TrwC can also
92	catalyze site-specific integration of the transferred DNA strand into an <i>oriT</i> -containing
93	plasmid in the recipient cells (8). In this case, both TrwA and IHF act as enhancers of
94	the reaction. Integration also occurs when the acceptor <i>oriT</i> was located in the
95	chromosomal DNA of the recipient cell (12). A minimal oriT core sequence of 17 bp is
96	enough for TrwC to achieve integration. Two human sequences with one single
97	mismatch to that minimal oriT were tested as acceptors for TrwC-mediated integration
98	and found to be functional with an efficiency only 2-3 times lower than that obtained
99	with the wild-type minimal <i>oriT</i> , indicating that TrwC can act on DNA sequences
100	present in the human genome (12).
101	In addition to the T4SS involved in conjugative DNA transfer, there is another
102	family of T4SS implicated in the secretion of effector proteins during the infection
103	process of several mammalian and plant pathogens (13). Substrate recruitment by
104	T4SS relies on secretion signals present in the protein substrate, and there are several
105	examples of heterologous protein translocation by T4SS upon addition of secretion

106	signals. In particular, conjugative relaxases can be translocated into eukaryotic cells
107	through T4SS of bacterial pathogens, either unmodified due to some similarity in their
108	C-termini with the secretion signal of the specific T4SS - as reported for translocation
109	of MobA of plasmid RSF1010 by the VirB T4SS of Agrobacterium tumefaciens (14) -, or
110	upon addition of the corresponding secretion signal, as done with TraA of plasmid
111	pATC58 and the VirB/D4 T4SS of Bartonella henselae (15). Moreover, two different
112	reports have demonstrated that relaxase-DNA complexes from two conjugative
113	systems can be translocated into human cells through the VirB/D4 T4SS of <i>B. henselae</i> .
114	Those studies reported relaxase-mediated transfer of bacterial plasmids containing the
115	oriT and conjugative genes from Bartonella cryptic plasmid pBGR1 (16) or from
116	conjugative plasmid R388 (17). For both relaxases, the addition of a BID domain, the
117	translocation signal for the Bartonella VirB/D4 T4SS (15), increases DNA transfer (16,
118	18). These reports suggest that trans-kingdom DNA transfer may naturally occur during
119	bacterial infection of human cells.
120	T4SS-mediated DNA transfer to human cells may have biotechnological
121	applications as a tool for in vivo DNA delivery into specific human cells (19). A main
122	concern in genetic modification protocols is the fate of the introduced foreign DNA in
123	the cells. Schröder and co-workers found that the relaxase-driven DNA integrated into
124	the human genome at low frequency, and characterized several integration sites
125	demonstrating that pBGR1 Mob relaxase can protect the 5'end of the mobilizable
126	plasmid, but no preference for specific integration sites could be identified, suggesting
127	random integration of the incoming DNA (16).
128	In contrast to Mob, TrwC has site-specific integrase activity in bacteria,

129 conferring added potential as a tool for genomic engineering (20). In this work, we

130	analyze TrwC integrase activity into human genomic DNA after the mobilization of
131	TrwC-DNA complexes from <i>B. henselae</i> . We show evidence that TrwC is active in the
132	human cell, although the efficiency of site-specific integration is negligible compared
133	to random integration. Interestingly, we find that TrwC promotes a 100-fold increase in
134	the efficiency of integration of the incoming DNA, suggesting it may be protecting DNA
135	from degradation; this feature could be combined with the action of a site-specific
136	nuclease for genomic engineering purposes.
137	

MATERIALS AND METHODS

141	Bacterial strains and growth conditions. Escherichia coli strain D1210 (21) was
142	used for DNA manipulations, while strain β 2163 (22) was used as donor for conjugative
143	matings to <i>B. henselae. E. coli</i> strains were grown at 37°C in Luria-Bertani broth,
144	supplemented with agar for growth on plates. B. henselae strain RSE247 (23) was used
145	for the infection of human cells. <i>B. henselae</i> was grown on Columbia blood agar (CBA)
146	plates at 37°C under 5% CO_2 atmosphere. For selection, antibiotics were added at the
147	indicated concentrations: ampicillin (Ap), 100 μ g/ml; kanamycin monosulphate (Km),
148	50 μg/ml; streptomycin (Sm), 300 μg/ml (<i>E. coli</i>) or 100 μg/ml (<i>B. henselae</i>);
149	gentamicin sulphate (Gm), 10 μ g/ml. When needed, media were supplemented with
150	diaminopimelic acid (DAP) at 0.3 mM.
151	Plasmids. Bacterial plasmids are listed in Table 1. Plasmids were constructed
152	using standard methodological techniques (24). Primers used in plasmid constructions
153	are listed in Table 2 . Plasmids pCOR31, 33, and 35 were constructed by cloning a
154	neomycin resistance cassette amplified from pRS56 with primers adding ClaI restriction
155	sites (Table 2) into the same site of pHP159, pLA24, and pHP181, respectively. Plasmids
156	pMTX708 and 709 were constructed by cloning a Ptac- <i>oriT</i> cassette into the Notl site of
157	pTRE2hyg vector, selecting both orientations; Ptac- <i>oriT</i> was amplified from plasmid
158	pOD1, which carries an EcoRI-HindIII fragment from pSU1186 (25) containing R388 oriT
159	into the same sites of expression vector pKK223-3 (Pharmacia). Restriction enzymes,
160	shrimp alkaline phosphatase, and T4 DNA ligase were purchased from Thermo-Fisher
161	Scientific. Kapa HiFi DNA polymerase was purchased from Kapa Biosystems. Plasmid

162 DNA was extracted using GenElute Plasmid Miniprep Kit (Sigma Aldrich). DNA

163 sequence of all cloned PCR fragments was determined.

185

164 Mating assays. Plasmids were routinely introduced in *B. henselae* by 165 conjugation. E. coli donor strain was grown in LB to stationary phase. 200 µl were 166 collected for each mating and resuspended in 1 ml of PBS. Recipient B. henselae was 167 grown in CBA plates for 3-4 days. After that time, bacteria from half of the plate were 168 collected with a cotton swab and resuspended in 1 ml of PBS. Both donor and recipient 169 aliquots were centrifuged, pellets were resuspended in 20 µl of PBS, mixed, and the 170 mixture was placed on a cellulose acetate filter on a CBA plate supplemented with 171 DAP. The mating plate was incubated at 37° C in a 5 % CO₂ atmosphere during 6 h. 172 Transconjugants were selected by recovering the mating mixture and streaking it on a 173 CBA plate with appropriate antibiotics. The plate was incubated for 6-9 days at 37°C in 174 a 5 % CO_2 atmosphere. 175 **Cell lines and growth conditions.** Human cell lines used in this work were 176 immortalized hybridoma EA.hy926 (ATCC CRL-2922), a fusion cell line of human 177 umbilical vein endothelial cells (HUVEC) and adenocarcinomic human alveolar basal 178 epithelial cells (A549), and HeLa (ATCC CCL-2), epithelial cells of cervix 179 adenocarcinoma. HeLa cells containing an integrated copy of the R388 oriT were 180 created by transfection of plasmids pMTX708/9 (Table 1) and selection of stable 181 transfectants as explained in the next section. 182 Cell lines were routinely grown in DMEM medium (Lonza) supplemented with 183 FBS 10 % (Lonza) at 37^oC under 5 % CO₂. When indicated, antibiotics were added to 184 the medium at the following concentrations: G418 disulfate salt (Sigma Aldrich), 500

 μ g/ml; hygromycin B (Invitrogen), 80 μ g/ml; penicillin-streptomycin 1 % (Lonza).

186	Transfections. HeLa cells were transfected with the cationic JetPei transfection
187	reagent (Polyplus Transfection). The amounts of DNA and JetPei reagent were adjusted
188	depending on the cell culture format used, following the manufacturer's instructions.
189	DNA was quantified using a Nano-Drop Spectrophotometer ND-1000 (Thermo
190	Scientific). To generate stably transfected cell lines, HeLa cells were allowed to grow
191	and to express the drug resistance gene under non-selective conditions for 24-48
192	hours after transfection. Then, cells were cultivated in standard medium
193	supplemented with the appropriate drug during 4-5 weeks, until outgrowth of
194	resistant cells. Medium was changed every 2-3 days to avoid loss of selection pressure.
195	To obtain the integration rate of transfected plasmid DNA, transfections were carried
196	out in 6-well plates. To transfect linearized DNA, plasmid DNA was digested with
197	Alw44I (Thermo Scientific) and purified with GeneJet Gel Extraction kit (Thermo
198	Scientific) prior to transfection.
198 199	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on
198 199 200	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For
198 199 200 201	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of
198 199 200 201 202	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably
 198 199 200 201 202 203 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150
 198 199 200 201 202 203 204 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150 mm tissue culture dishes seeded with 1.2x10 ⁶ cells in 20 ml of medium.
 198 199 200 201 202 203 204 205 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150 mm tissue culture dishes seeded with 1.2x10 ⁶ cells in 20 ml of medium. The day of infection, DMEM was replaced by M199 medium (Gibco)
 198 199 200 201 202 203 204 205 206 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150 mm tissue culture dishes seeded with 1.2x10 ⁶ cells in 20 ml of medium. The day of infection, DMEM was replaced by M199 medium (Gibco) supplemented with FBS 10 % and appropriate antibiotics to select for the <i>B. henselae</i> .
 198 199 200 201 202 203 204 205 206 207 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150 mm tissue culture dishes seeded with 1.2x10 ⁶ cells in 20 ml of medium. The day of infection, DMEM was replaced by M199 medium (Gibco) supplemented with FBS 10 % and appropriate antibiotics to select for the <i>B. henselae</i> strains to be added. The bacteria were recovered from the CBA plate and resuspended
 198 199 200 201 202 203 204 205 206 207 208 	Scientific) prior to transfection. Cell infections. <i>B. henselae</i> containing the appropriate plasmids were grown on CBA plates for 3-4 days. Human cells were seeded the day before the infection. For routine infections, cells were seeded in 6-well plates (80,000 cells per well) in 3 ml of medium. When the purpose of the infection was to select human cells that had stably acquired the plasmid transferred from <i>B. henselae</i> , infections were performed in 150 mm tissue culture dishes seeded with 1.2x10 ⁶ cells in 20 ml of medium. The day of infection, DMEM was replaced by M199 medium (Gibco) supplemented with FBS 10 % and appropriate antibiotics to select for the <i>B. henselae</i> strains to be added. The bacteria were recovered from the CBA plate and resuspended in 1 ml of PBS. The number of bacteria was calculated considering that an OD ₆₀₀ =1

multiplicity of infection (MOI) of 400. The mixture of human cells and bacteria was
incubated for 72 hours at 37°C under 5 % CO₂.

212Detection of GFP-positive cells. At 72 hours post infection (hpi), infected cells213were washed with PBS, trypsinized, and analyzed by flow cytometry using a Cytomics214FC500 flow cytometer (Beckman Coulter). Uninfected cells were always used in parallel215to set the baseline for detection of GFP-positive cells

216 Selection of stable integration events. At 72 hpi, G418 disulfate salt (Sigma

Aldrich) was added to infected cells, and selection was maintained for 4-5 weeks.

218 Resistant colonies were counted on the plates. G418-resistant cell pools were collected

219 for further analysis of GFP expression and PCR analysis. Genomic high molecular

220 weight DNA was extracted using High Pure PCR Template Preparation Kit (Roche).

221 Linear amplification mediated PCR. Amplification of genomic integration sites

by linear amplification mediated PCR (LAM-PCR) was performed as described in (27).

223 Briefly, it consists of an initial linear amplification of genome-plasmid junctions with a

224 plasmid-specific primer. After synthesis of dsDNA, the PCR product is cut with a

restriction enzyme (Bfal or Tsp509I) and a linker cassette of known sequence is ligated.

226 Exponential PCR amplifications are then performed with plasmid- and linker-specific

primers. PCR-obtained bands are then analyzed by gel electrophoresis and high-

throughput sequencing. Human genomic DNA from human blood (buffy coat; Roche)

229 was analyzed in parallel as negative control.

230 LAM-PCR template was genomic DNA from the G418-resistant pools. PCR

- 231 reactions were carried out using Taq DNA polymerase (Genaxxon Bioscience). HPLC-
- 232 purified primers (Table 2) were designed using Primer3Plus software and ordered from

233 Eurofins Genomics. Details on the primers can be found in supplemental Materials

and Methods and Fig. S1.

235 High-throughput sequencing of LAM-PCR products. DNA sequence of purified 236 LAM-PCR products was determined using MiSeq Benchtop next generation sequencing 237 technology (Illumina). The appropriate volumes of different purified samples were 238 mixed together following the manufacturer's recommendations. Primers used in the 239 second exponential amplification contained the adaptor sequences needed for the 240 sequencing reaction (PE-PCR 1.0 and 2.0, see Table 2). LAM-PCR products were 241 sequenced in both directions. From PE-PCR 1.0 (adaptor present in the primer 242 annealing to the plasmid sequence) 400 nt were sequenced, while only 50 nt were 243 sequenced from PE-PCR 2.0 (adaptor present in the primer annealing to the linker). 244 Information from PE-PCR 1.0 was used for sorting the sequences to the different 245 samples and integration site detection, while information obtained from PE-PCR 2.0 246 was used only for sorting. 247 Bioinformatic analysis to obtain the integration sites was performed by high-248 throughput insertion site analysis pipeline (HISAP) (28). Briefly, sequences were 249 trimmed by identification and removal of plasmid- and linker-specific sequences. 250 Genomic sequences were aligned to the human genome using stand-alone BLAT 251 (UCSC), using assembly GRCh37/hg19 as reference. Sequences with identities lower 252 than 95% were discarded. For each remaining sequence, the chromosome, the 253 integration site, and the nearest RefSeq protein-coding gene were recorded. 254 Detection of oriT-specific integration events by PCR. PCR reactions were 255 carried out using Kapa Taq Polymerase (Kapa Biosystems) following manufacturer's 256 recommendations. 25 ng of plasmid DNA or 250 ng of genomic samples were used as

257 template. To detect the expected cointegrate molecule, primers Notl_Ptac and

258 Int_pCOR (Table 2) were used for initial amplification. A 1:50 dilution of the initial PCR

259 products served as template for the secondary PCR, carried out with primers

Notl_Ptac_2 and Int_pCOR_2 (Table 2), annealing approximately 80 bp closer to the

261 expected integration junction. Primers Notl_Ptac and Notl_oriT1 (Table 2) were used

to amplify the chromosomal Ptac-*oriT* cassette.

263 **Recovery of Integrated Plasmids.** 5 µg of genomic DNA from G418-resistant 264 cell pools were digested with XmaJI (Thermo-Fisher Scientific), which does not cleave 265 within the integrated plasmid. Digested DNA was treated with T4 DNA ligase at a DNA 266 concentration of 10 μ g/ml, to favour self-ligation. The reaction was electroporated into 267 ElectroMAX DH10B E. coli cells (Thermo-Fisher Scientific). Plasmid DNA was extracted 268 from gentamicin-resistant E. coli transformants, and analyzed by PCR to narrow down 269 the region of the plasmid where the insert of human origin was located. Primers used 270 for PCR mapping reactions are shown in Table 2. The insert in plasmid pCOR52 was 271 sequenced with primers pCOR33_1641F and pCOR33_12445R (Table 2). 272 Statistical analysis. Unpaired student's t-test was used to determine 273 statistically significant differences between the mean of at least 3 independent results 274 for each experiment when the data followed a normal distribution. Otherwise, a 275 Wilcoxon-rank-sum analysis was performed for each pair of compared data. 276

277

RESULTS

280	Construction of mobilizable plasmids and target cell lines. TrwC-DNA
281	complexes can be introduced in human cell lines through the T4SS of <i>B. henselae</i> . In
282	order to analyze the integration pattern of the transferred DNA upon Bartonella
283	infection of human cells, new mobilizable plasmids and cell lines were constructed.
284	The mobilizable plasmids previously used to test DNA transfer from <i>B. henselae</i> to
285	human cells (17) contained elements of the R388 Dtr region (<i>oriT+trwABC</i>), but not the
286	genes of the T4SS, and a eukaryotic <i>gfp</i> expression cassette. We added a neomycin
287	phosphotransferase eukaryotic expression cassette in order to be able to select for
288	stable chromosomal integration events. Plasmids were constructed coding for either
289	TrwC or TrwC:BID (TrwC with the secretion signal for <i>Bartonella</i> VirB/D4 T4SS fused to
290	its C terminus), and a negative control lacking trwC. Plasmid pRS130 (16) encoding
291	Mob:BID relaxase and its cognate <i>oriT</i> was always tested in parallel.
292	The cell lines used for <i>Bartonella</i> infections were EA.hy926 and HeLa. The
293	former is derived from fusion of A549 lung carcinoma cells with human vascular
294	endothelial cells, the latter representing the natural target for Bartonella, and is
295	efficiently infected by this bacterium (29). HeLa cells represent a cervix-derived
296	epithelial cells line that can be easily manipulated by cell biological and genetic
297	methods and infection by <i>B. henselae</i> was reported to occur with 50% efficiency (30).
298	We previously showed DNA transfer to EA.hy cells, but HeLa cells were not tested.
299	EA.hy926 and HeLa cells were tested in parallel in infections with <i>B. henselae</i> carrying
300	either pHP161 (<i>oriT+trwABC</i>) or pHP181 (<i>oriT+trwAB</i>). DNA transfer efficiency was

301 lower when using HeLa than when using EA.hy926 cells, but it can be detected robustly302 in both cell lines (Fig. 1).

303	In order to compare frequencies of TrwC-mediated integration into natural
304	sequences of the human genome with integration when the TrwC target is present in
305	the recipient cell genome, a cell line containing a full length wild-type oriT was
306	constructed. We transfected both EA.hy926 and HeLa cells with plasmids pMTX708
307	and pMTX709 (Table 1), carrying a hygromycin-resistance gene and the R388 <i>oriT</i> in
308	both orientations. Both plasmids were used to avoid any bias due to eukaryotic
309	promoters present in the vector, since transcription through the oriT has been shown
310	to affect TrwC-mediated recombination (11), and so it could affect integration. Around
311	100 hygromycin-resistant colonies were obtained in transfections of HeLa cells, while
312	no transfectants appeared for EA.hy926 in spite of several attempts with up to 5 μg of
313	plasmid DNA. Consistent with this finding EA.hy926 cell line has been previously
314	reported to be difficult to transfect (30, 31).
315	The hygromycin-resistant HeLa colonies obtained were pooled together to
316	establish a polyclonal HeLa::oriT cell line, in which the oriT is expected to be located in
317	different chromosomal locations and in the two possible orientations with respect to
318	the vector promoter. In this way, we avoid selecting a single clone in which the <i>oriT</i>
319	copy may lie in a chromosomal region that could affect integration of the mobilizable
320	plasmid. The presence of the <i>oriT</i> was tested by PCR on genomic DNA samples from
321	HeLa and HeLa:: <i>oriT</i> cells using primers oriT1 and oriT330 (Table 2). Only one band
322	corresponding to the <i>oriT</i> was present in the sample obtained from HeLa:: <i>oriT</i> cells,
323	while no amplification was detected in the sample obtained from unmodified cells (Fig.
324	S2).

325	Transient and permanent expression of transferred DNA in human cells. In
326	order to measure transfer and integration rates of DNA molecules led by different
327	relaxases into human cells, gfp and neo-resistance gene expression were measured
328	respectively, as outlined in Fig. 2a. EA.hy926, HeLa and HeLa:: <i>oriT</i> cell lines were
329	infected with <i>B. henselae</i> carrying pCOR31 (<i>trwC</i>), pCOR33 (<i>trwC:BID</i>), pCOR35 (⊿trwC)
330	or pRS130 (<i>mob:BID</i>) mobilizable plasmids. Results are shown in Fig. 2 and Table S2 .
331	Three days post infection, gfp expression was measured by flow cytometry (Fig. 2b).
332	DNA transfer occurred to the three different cell lines when a relaxase (TrwC,
333	TrwC:BID, or Mob:BID) was coded in the plasmid, while no DNA transfer was detected
334	when there was no relaxase. The transfer efficiency is higher when using EA.hy926 as
335	host cell, as previously shown (Fig. 1). No significant differences were found in DNA
336	transfer between HeLa and HeLa:: <i>oriT</i> cell lines, as expected. In all cell lines, DNA
337	transfer rate was significantly lower when using Mob:BID relaxase compared to TrwC
338	or TrwC:BID.
339	Integration events of the transferred plasmids into the human genome were
340	selected by antibiotic treatment with G418. The drug was added at 72 hpi and
341	selection was maintained for 4-5 weeks. The resistant colonies obtained for each
342	experimental condition were counted and then pooled together. High molecular
343	weight genomic DNA preparations were analyzed by PCR for the presence of trwA and
344	<i>trwC</i> to confirm the presence of the integrated plasmid (Fig. S3). The resistant cell
345	pools were also analyzed by flow cytometry to detect GFP expression as another
346	evidence of integration of the mobilizable plasmids (Fig. S4).
347	Fig. 2c shows the number of resistant colonies obtained after the antibiotic
348	treatment, normalized to the number of cells at the beginning of the experiment. It

349 was lower when using EA.hy926 than when using HeLa cells, despite the fact that DNA 350 transfer was up to 10-fold higher with EA.hy926. For all cell lines, no resistant colonies 351 were found when using $\Delta trwC$ plasmid, in concordance with the flow cytometry 352 results, which showed no DNA transfer in the absence of relaxase. When plasmids 353 coded for a relaxase, resistant colonies appeared, but at drastically different rates. Thousands of resistant colonies were obtained in each experiment after mobilization 354 355 of trwC- and trwC:BID-carrying plasmids, while only up to 100 resistant colonies were 356 found in infections with *B. henselae* carrying the plasmid coding for Mob:BID (see 357 Table S2).

Fig. 2d shows the ratio between Neo^R colonies and GFP⁺ cells, which gives the 358 359 integration rate, i.e. the proportion of cells receiving the DNA in the nucleus which 360 integrate this DNA into the chromosome. For each cell line, no significant differences 361 were found in the integration rate of TrwC or TrwC:BID plasmids, as expected. No 362 significant differences were found either in the integration rate of each plasmid in 363 HeLa and HeLa::oriT cells. The integration rate was higher than 1 in 20 when the 364 transferred DNA was led by TrwC or TrwC:BID, while it was around 1 in 250 in the case 365 of Mob:BID-driven DNA (Table S2).

With the purpose of having a parallel control of random integration, HeLa and HeLa::*oriT* cells were transfected with plasmid pCOR35 ($\Delta trwC$). Transient vs. stable expression was determined as outlined before. After transfection of plasmid DNA, we obtained an integration rate of around 1 in 800 when transfecting supercoiled DNA and of close to 1 in 300 when transfecting linearized DNA (Table S2), which is in the range of aour data obtained for Mob-BID. Antibiotic resistant colonies were pooled

372 together and analyzed in parallel with those obtained after relaxase-mediated

373 mobilization of plasmid DNA, to compare both plasmid integration patterns.

374 Characterization of genomic integration sites. Relaxases transfer the DNA 375 strand covalently linked to a site known as the *nic* site. In the case of Mob-led DNA, it 376 has been suggested that the relaxase protects the 5'end of this DNA (16). In addition, 377 we know that TrwC acts as a site-specific integrase of the transferred DNA into the 378 genome of recipient bacteria (12), and we observed enhanced integration rate of 379 TrwC-led DNA. Taking together these evidences, we decided to search for integration 380 events occurring at the nic site of the R388 oriT. For this purpose, we used linear 381 amplification-mediated PCR (LAM-PCR) (32, 33) using a primer annealing close to the 382 nic site, as explained in Fig. S1. This strategy would not detect insertions into the full-383 length *oriT* copy of HeLa::*oriT*, as integration would result in a reconstituted *oriT*, but it 384 would allow the identification of integration events in other chromosomal locations, 385 and comparison with the integration pattern obtained when the *oriT* is not present in 386 the genome to be modified. 387 LAM-PCR was performed as explained in Materials and Methods and 388 supplemental Material and Methods sections. Genomic DNA was extracted from pools 389 of several thousands of resistant colonies obtained after mobilization of trwC- or 390 *trwC:BID*-coding plasmids, and this DNA was used as template for the PCR reactions. 391 Genomic DNA was also extracted from resistant colonies obtained by transfection of 392 plasmids pCOR31 (*trwC*) and pCOR33 (*trwC:BID*), which are expected to have a random 393 integration pattern. After LAM-PCR amplification of the integration junctions, two 394 different restriction enzymes were used to avoid any bias due to restriction fragment 395 size. PCR products were checked by electrophoresis in agarose gels (Fig. 3).

396 Fig. 3a-c shows the scheme of the expected band sizes observed in these gels. 397 We expected to see as many bands as different integration sites occurring at the nic 398 site (Fig.3a), depending on the location of the nearest restriction site in the genomic 399 junction. If integration did not occur at the *nic* site, the size of the band would be 400 determined by the nearest recognition site in the integrated plasmid (220 bp when 401 using Bfal and 580 bp when using Tsp509I, since this does not cut in the oriT but in 402 trwA; Fig 3b). In the case of the HeLa::*oriT* cell line, which has an *oriT* copy integrated 403 in the genome, we expected to obtain in all cases a major band of 220 bp (Bfal) or 345 404 bp (Tsp509I) corresponding to the sequence of the *oriT*-carrying integrated plasmid 405 (Fig 3c).

406 As it can be observed in Fig. 3d, a single band was obtained from all samples, 407 obtained either after plasmid transfection or after translocation of TrwC(:BID)-DNA 408 molecules through B. henselae T4SS. The size of the band was in all cases the expected 409 for the full length *oriT* present in the mobilizable plasmids or in the genomic *oriT* copy, 410 as explained above and in Fig 3a-c. For the G418-resistant pools obtained either after 411 transfection or infection of HeLa::*oriT* cells, both 345 bp and 580 bp would be visible 412 when using Tsp509I, as observed in the sample obtained after infection and DNA 413 transfer mediated by TrwC (Fig. 3d bottom gel, line 6). A reason for this not being the 414 case for the other samples could be that the smaller amplicon could be preferentially 415 amplified. 416 These results strongly suggest that the transferred DNA had not become

integrated by the *nic* site at the *oriT*. Rather, they presumably reflect illegitimate
integration events. Since low-frequency site-specific integration events could be
masked by this main band, LAM-PCR products were thus analyzed by high-throughput

420 sequencing, as explained in Materials and Methods. After identification of linker- and 421 plasmid-specific sequences, the flanked sequences were characterized. As expected 422 from the results in Fig. 3d, most of the 2,000,000 reads obtained were found to be 423 plasmid DNA. This confirms that most of the DNA entering the human cell covalently 424 linked to TrwC is not integrated at the *nic* site, implying that this DNA is recircularized 425 prior to integration.

426 There were 11,317 reads which could be mapped to the human genome. To 427 discard false positives, identity to the human genome threshold was raised to 98% and 428 integration events obtained less than 15 times were not considered. The resulting 9 429 integration events (IE) are shown in **Table 3**. IE1 and IE2 were found to occur at the 430 same site of the human genome (the differences in the sequencing reads were 431 assumed to be sequencing errors) so they were considered together as one integration 432 event and named IE2. Most of the integration events showed more than 12 missing 433 base pairs of a total of 41 bp amplified from primer oriTl binding site to the *nic* site, so 434 they were considered as random integration events.

435 There were only two IE which were not missing any oriT sequence 3' to the nic 436 site. When aligned with the human DNA sequence, it was found that integration in IE2 437 had occurred at the position *nic*+1, since this base from the *oriT* sequence was present 438 at the junction and is not present in the UCSC genomic sequence used as reference. 439 We confirmed the genomic sequence of this position in the genome of the HeLa cells 440 used in the experiment, by amplification of the chromosomal region around the 441 integration site (IS) IS2 with primers IS2_Hu11 and Xba_IS2_Hu11 (Table 2) and 442 sequencing the PCR product with the former primer, and this base pair was not 443 present there either. Considering the high specificity of conjugative relaxases for

nicking exactly at their *nic* site, this result suggests that this event was yet another
illegitimate integration event. Finally, IE7 occurred exactly at the *nic* site, and
moreover, the eight nucleotides of the human genome 5' to the integration site are
identical to the eight nucleotides 5' to the *nic* site in R388 *oriT* (Fig. 4). This integration
event took place 1,352,133 bp downstream of the SLITRK1 gene (NM_052910) in
human chromosome 13.

450 As LAM-PCR did not allow the detection of the integration events occurring at 451 the *oriT* copy present in the chromosome of HeLa::*oriT* cells, we tried to detect them 452 by PCR amplification of the expected cointegrate molecule; we used a primer 453 annealing in the Ptac promoter located adjacent to the chromosomal oriT copy, and 454 another one annealing in the mobilizable plasmid (Table 2). As a control, the 455 chromosomal Ptac-oriT cassette was amplified in the same samples analyzed; as 456 expected, the cassette was detected in HeLa::oriT and the G418-resistant pools 457 obtained with this cell line, while no amplification was obtained in HeLa and HeLa-458 derived cell pools. The PCR to amplify the *oriT-oriT* cointegrate was negative (data not 459 shown), even after a second round of PCR amplification. Although we cannot discard 460 *oriT*-specific integration occurring at such low frequency that it is not detectable by 461 PCR, this results indicates that it is not occurring efficiently. 462 LAM-PCR can only be used to map those integration events that occurred by a 463 known sequence of the transferred DNA (the *nic* site in our case), but most of the 464 plasmid molecules became integrated in a *nic*-independent manner. Out of the 8 465 human genomic junctions obtained by LAM-PCR (Table 3), 7 did not occur by the nic 466 site, and so they represent random integration events. However, they provide 467 information on only one of the integration junctions of the plasmid. We attempted to

468	characterize other random integration sites by recovery of the integrated plasmids
469	together with the flanking genomic sequences, as outlined in Materials and Methods.
470	With this strategy, we were able to characterize one integration event and its
471	corresponding plasmid-genomic DNA junctions (Fig. 5). We determined that only a
472	fragment of the plasmid was integrated, which does not include the neomycin
473	resistance gene, so most probably there is another integration event somewhere else
474	in that same cell coding for the <i>neo</i> R gene. We also observed that both genomic-
475	plasmid DNA junctions did not occur at the same position of the human genome.
476	Moreover, near one of the junctions (IJ-B in Fig. 5b), a genomic rearrangement was
477	found, when compared to the reference genome (see coordinates in Fig. 5b). The
478	reason could be that the genomic region of chromosome 15 where integration
479	occurred corresponds to a copy of L1MC2, a long interspersed element (LINE), often
480	associated with genomic rearrangements and deletions (34). We tried to sequence
481	that region from genomic DNA of the HeLa cell line used in the experiment using
482	primer Chr15_88728 (Table 2), to determine if the rearrangement was already present
483	or it was a consequence of the illegitimate integration event, but mixed sequences
484	were always obtained.
485	The genomic integration sites of all random integration events characterized
486	were aligned with the R388 <i>nic</i> region at the <i>oriT</i> (Table 4). No homology with the <i>oriT</i>
487	was detected, supporting the idea of illegitimate integration.

DISCUSSION

491	The ability to deliver DNA into specific human cell types and to promote its
492	integration in the human genome has high potential as biotechnological tool. In
493	particular, gene therapy strategies ideally should grant in vivo access to specific human
494	tissues and permanent expression of the introduced DNA. In this work, we explore the
495	potential of a bacterial system for genomic modification of the human genome. Our
496	previous work showed that the substrate of a conjugative plasmid, the TrwC-DNA
497	complex, was delivered efficiently to human cells through the T4SS of <i>B. henselae</i> (17);
498	the many advantages of such a DNA delivery system in this context have been already
499	discussed (19). We previously showed in a bacterial system that TrwC could catalyze
500	integration of the transferred DNA into DNA sequences of human origin (12), so we
501	aimed to evaluate its potential role as a site-specific integrase in human cells, which
502	would complement the DNA delivery tool. We have analyzed the fate of the DNA in the
503	human cells after translocation as a TrwC-DNA complex through the VirB/D4 T4SS of B.
504	henselae.
505	We measured the efficiency of DNA delivery and integration by the two
506	relaxases previously described to deliver DNA through the T4SS VirB/D4 of <i>B. henselae</i> ,
507	TrwC and Mob:BID. All mobilizable plasmids carried a eukaryotic expression GFP
508	cassette, allowing us to estimate the efficiency of DNA transfer by measuring the
509	percentage of GFP positive cells. This assay probably underestimates the percentage of
510	cells receiving DNA, since this DNA has to get into the nucleus and be converted into
511	double-stranded form so that it can express the GFP gene. Thus, nuclear localization of
512	the relaxase could affect DNA transfer rates. TrwC has been reported to have

513 cytoplasmic localization (35) while a passive entry of the Mob-guided DNA has been
514 suggested (16), so none of the relaxases is expected to have an active role in nuclear
515 import.

516 Our results show that DNA transfer is higher when using TrwC compared to 517 Mob:BID. The differences in DNA transfer rates are probably due to differences in T4SS 518 recruitment efficiency for each relaxase. TrwC could be naturally a better substrate for 519 the *B. henselae* VirB/D4 T4SS than Mob:BID. There is another important factor to take 520 into account: the mobilizable plasmids enconding trwC also code for R388 proteins 521 TrwA and TrwB, which could play a role in substrate recruitment. Deletion of trwB was 522 shown to affect the transfer of TrwC-DNA complexes significantly (17). Thus, it is likely 523 that TrwB enhances recruitment of TrwC by the VirB/D4 T4SS independently of BID, as 524 previously suggested (16, 18).

525 The plasmids mobilized to human cells carried a eukaryotic resistance marker 526 to select for stable integration events by antibiotic treatment. Selection was carried 527 out for four weeks, discarding the possibility of episomal persistence of the transferred 528 plasmid DNA. Each resistant colony was counted as one integration event. Again, this 529 measure is an underestimation of the integration rate. One single colony could harbor 530 more than one integration event; in fact, the only integration event mapped in its 531 extension (the rescued integrated plasmid) did not include the *neo*R region (Fig. 5a), 532 implying this gene must be integrated somewhere else in the genome. In addition, not 533 all cells integrating the plasmid will thrive to render a colony. This phenomenon was 534 particularly evident with Ea.hy926 cells, which have low viability. Consequently, we 535 obtained less resistant colonies when using EA.hy926 than when using sturdy HeLa 536 cells, despite the fact that DNA transfer was up to 10-fold higher with EA.hy926 (Fig.

537 2). Of course, we cannot rule out that the different integration rates observed in both
538 cell lines are due to intrinsic differences affecting host-mediated integration of foreign
539 DNA.

540 The number of integration events obtained for each experiment was 25-158 541 times higher when either TrwC or TrwC:BID were present, compared to Mob:BID 542 (Table S2). When we measured integration rates, as number of resistant colonies 543 normalized to the number of cells expressing the transferred DNA, we observed that 544 the integration rate for TrwC was on average 1 in 20, while for Mob:BID it went down 545 to about 1 in 250, similar to the integration rate obtained for transfected cells (Fig. 2d 546 and Table S2). Thus, we conclude that TrwC facilitates the integration of the 547 mobilizable plasmids, while Mob does not. 548 A plausible explanation for this difference could be the site-specific integration 549 activity of TrwC, which is presumably absent in the Mob relaxase. To test this 550 hypothesis, we analyzed the integration pattern in the human genome, searching for 551 TrwC-mediated site-specific integration events. Their signature would be the precise 552 integration of the R388 nic site into human DNA sequences resembling the natural 553 TrwC target. We analyzed genomic DNA of the resistant cell pools by LAM-PCR, 554 priming from the plasmid DNA into the nic site, and subsequent DNA sequencing. The 555 results showed the presence of intact *oriT* sequences in the vast majority of the 556 sequencing reads. One possible explanation could be the integration of plasmid 557 concatemers, as it happens in the integration of T-DNA mediated by A. tumefaciens 558 (36), but then oriT-host genome junctions would be detected at the end of the 559 concatemer. The DNA extraction kit isolates high molecular weight DNA (30-50 kb) 560 from mammalian cells, while bacterial cells are not lysed, discarding the possibility that

561 plasmid DNA of bacterial origin could be co-isolated. In addition, the absence of 562 transformants when using the same DNA preparations for plasmid rescue (a single 563 transformant was obtained, originated from a rescued integrated plasmid copy) rules 564 out the presence of episomal plasmid molecules. Thus, the most likely possibility is 565 that these reads represent random integration events of the plasmid, which would 566 have been recircularized previously, since it enters the human cell cut at the nic site 567 (where TrwC is covalently bound). Recircularization implies that TrwC is active in the 568 human recipient cell, mimicking its activity in the bacterial recipient cell during 569 conjugation (37).

570 Out of the thousands of different integration events present in the analyzed cell 571 pools, we detected one putative site-specific integration event (IE7). It occurred 572 precisely at the *nic* site and in a region of the genome showing 8 base pairs identity 573 with the *oriT* at the 5' end of the *nic* site (Fig. 4). Since the probability of integration at any position of the human genome is approximately $1/3 \times 10^9$, and the probability of 574 integration occurring by the *nic* site is less than $1/1 \times 10^4$ (the size of the integrated 575 576 plasmids is around 13 kb), the probability that this event occurred randomly is 577 negligible. From our results we infer that TrwC can act as a site-specific integrase in 578 human cells, but host-mediated random integration is at least 3-4 logs more efficient. 579 Thus, after TrwC-mediated recircularization of the DNA (as inferred from the presence 580 of full-length oriTs), most molecules would undergo non-homologous integration 581 events, as observed in the characterized integration sites (Table 4). 582 DNA can also be delivered into human cells by the relaxases Mob and A. 583 tumefaciens VirD2, and it integrates randomly in the genome (16, 38). It was proposed 584 that these relaxases do not play a role in the integration process, which is likely

585 mediated by the host machinery, but do protect the 5[']end of the transferred DNA, 586 based on preservation of the 5'end region of the transferred DNA molecules (16, 38). 587 In our case, we found by LAM-PCR seven integration events occurring within 20 bp 588 from the nic site (Table 3). By chance, we would expect around 30 integration events 589 lying in a 20 nt region, from about 20,000 total integration events analyzed, so TrwC 590 does not seem to protect the 5' end of the transferred DNA, but rather to catalyse its 591 conversion to a circular form. Recircularized plasmid DNA will be a more resistant 592 molecular species, showing long-term presence in the nucleus, which could favour its 593 subsequent random integration by the host machinery.

594 From a biotechnological point of view, our results indicate that TrwC is not 595 useful as a site-specific integrase in human cells. However, with the introduction of 596 precision genome editing using RNA-guided endonucleases, such as Cas9 (39), we have 597 entered a new era of genetic engineering and gene therapy which is leaving obsolete 598 the traditional site-specific recombinases and nucleases used for gene targeting in 599 human cells (40). In this new scenario, an improvement in CRISPR-Cas technology 600 would have an immediate impact in the human gene editing field. An RNA-guided 601 nuclease could be translocated simultaneously with TrwC-DNA through the T4SS of 602 bacteria that infect specific human cell types. Delivery of the nuclease protein instead 603 of transfecting the gene could avoid toxicity and off-target activity. The effect of TrwC 604 as DNA chaperone in combination with a site-specific nuclease would promote 605 integration of the incoming DNA molecule by homologous recombination. In support 606 of this approach, it has been reported that concomitant translocation of I-SceI homing 607 site-specific endonuclease together with VirD2 relaxase-T-DNA complexes through A.

- *tumefaciens* T4SS enhanced T-DNA site-specific integration into the yeast chromosome
- 609 when the I-Scel target site was present (41).

611 **AKNOWLEDGMENTS**

- 612 We are grateful to Anabel Alperi for her assessment on HeLa infection by *B*.
- 613 *henselae*. CGP wants to thank members of the Schmidt lab for their help with LAM-
- 614 PCR.
- 615

616 **FUNDING INFORMATION**

- 617 This work was supported by grant BIO2013-46414-P from the Spanish Ministry
- 618 of Economy and Competitiveness to ML. CGP was a recipient of a predoctoral
- 619 fellowship from the University of Cantabria, Spain. The funders had no role in study
- 620 design, data collection and interpretation, or the decision to submit the work for
- 621 publication.
- 622

623 **REFERENCES**

- 624
- de la Cruz F, Davies J. 2000. Horizontal gene transfer and the origin of species:
 lessons from bacteria. Trends Microbiol 8:128-133.
- 627 2. Zechner EL, de la Cruz F, Eisenbrant R, Grahn AM, Koraimann G, Lanka E,
- 628 Muth G, Pansegrau W, Thomas CM, Wilkins BM, Zatyka M. 2000. The
- horizontal gene pool: Bacterial plasmids and gene spread. Harwood AcademicPublishers, London.
- 631 3. Llosa M, de la Cruz F. 2005. Bacterial conjugation: a potential tool for genomic
 632 engineering. Res Microbiol 156:1-6.
- 633 4. Garcillán-Barcia MP, Francia MV, de la Cruz F. 2009. The diversity of
- 634 conjugative relaxases and its application in plasmid classification. FEMS
- 635 Microbiol Rev **33**:657-687.
- 636 5. Fernandez-Lopez R, Garcillan-Barcia MP, Revilla C, Lazaro M, Vielva L, de la
- 637 **Cruz F.** 2006. Dynamics of the IncW genetic backbone imply general trends in
- 638 conjugative plasmid evolution. FEMS Microbiol Rev **30**:942-966.
- 639 6. Moncalián G, Valle M, Valpuesta JM, de la Cruz F. 1999b. IHF protein inhibits
- 640 cleavage but not assembly of plasmid R388 relaxosomes. Mol Microbiol
- 641 **31:**1643-1652.
- 642 7. Llosa M, Grandoso G, de la Cruz F. 1995. Nicking activity of TrwC directed
- against the origin of transfer of the IncW plasmid R388. J Mol Biol **246:**54-62.
- 644 8. Draper O, Cesar CE, Machon C, de la Cruz F, Llosa M. 2005. Site-specific
- 645 recombinase and integrase activities of a conjugative relaxase in recipient cells.
- 646 Proc Natl Acad Sci U S A **102**:16385-16390.

- 647 9. Gonzalez-Perez B, Lucas M, Cooke LA, Vyle JS, de la Cruz F, Moncalian G. 2007.
- Analysis of DNA processing reactions in bacterial conjugation by using suicide
 oligonucleotides. EMBO J **26**:3847-3857.
- 650 10. César CE, Machón C, de la Cruz F, Llosa M. 2006. A new domain of conjugative
- relaxase TrwC responsible for efficient oriT-specific recombination on minimal
 target sequences. Mol Microbiol 62:984-996.
- 653 11. César CE, Llosa M. 2007. TrwC-mediated site-specific recombination is
- 654 controlled by host factors altering local DNA topology. J Bacteriol **189**:9037-
- 655 **9043**.
- 656 12. Agundez L, Gonzalez-Prieto C, Machon C, Llosa M. 2012. Site-specific
- 657 integration of foreign DNA into minimal bacterial and human target sequences
 658 mediated by a conjugative relaxase. PLoS One **7**:e31047.
- Llosa M, Roy C, Dehio C. 2009. Bacterial type IV secretion systems in human
 disease. Mol Microbiol 73:141-151.
- 14. Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas
- 662 **PJ.** 2005. Positive charge is an important feature of the C-terminal transport
- 663 signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad
- 664 Sci U S A **102**:832-837.
- 15. Schulein R, Guye P, Rhomberg TA, Schmid MC, Schroder G, Vergunst AC,
- 666 **Carena I, Dehio C.** 2005. A bipartite signal mediates the transfer of type IV
- 667 secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci
- 668 U S A **102**:856-861.

- 16. Schroder G, Schuelein R, Quebatte M, Dehio C. 2011. Conjugative DNA transfer
- 670 into human cells by the VirB/VirD4 type IV secretion system of the bacterial
- 671 pathogen Bartonella henselae. Proc Natl Acad Sci U S A **108**:14643-14648.
- 672 17. Fernandez-Gonzalez E, de Paz HD, Alperi A, Agundez L, Faustmann M, Sangari
- 673 **FJ, Dehio C, Llosa M.** 2011. Transfer of R388 derivatives by a pathogenesis-
- associated type IV secretion system into both bacteria and human cells. J

675 Bacteriol **193**:6257-6265.

- 18. Alperi A, Larrea D, Fernandez-Gonzalez E, Dehio C, Zechner EL, Llosa M. 2013.
- 677 A translocation motif in relaxase TrwC specifically affects recruitment by its
- 678 conjugative type IV secretion system. J Bacteriol **195**:4999-5006.
- Llosa M, Schroder G, Dehio C. 2012. New perspectives into bacterial DNA
 transfer to human cells. Trends Microbiol 20:355-359.
- 681 20. Gonzalez-Prieto C, Agundez L, Linden RM, Llosa M. 2013. HUH site-specific
- 682 recombinases for targeted modification of the human genome. Trends
- 683 Biotechnol **31:**305-312.
- Sadler JR, Tecklenburg M, Betz JL. 1980. Plasmids containing many tandem
 copies of a synthetic lactose operator. Gene 8:279-300.
- 686 22. Demarre G, Guerout AM, Matsumoto-Mashimo C, Rowe-Magnus DA,
- 687 Marliere P, Mazel D. 2005. A new family of mobilizable suicide plasmids based
- 688 on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha)
- 689 conjugative machineries and their cognate Escherichia coli host strains. Res
- 690 Microbiol **156**:245-255.
- 691 23. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C. 2004. The
- 692 VirB type IV secretion system of Bartonella henselae mediates invasion,

- 693 proinflammatory activation and antiapoptotic protection of endothelial cells.
 694 Mol Microbiol **52**:81-92.
- 695 24. Sambrook J, Russell DW. 2001. Molecular cloning : a laboratory manual, 3rd
 696 ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- 697 25. Llosa M, Bolland S, de la Cruz F. 1991. Structural and functional analysis of the
- 698 origin of conjugal transfer of the broad-host-range IncW plasmid R388 and
- 699 comparison with the related IncN plasmid R46. Mol Gen Genet **226:**473-483.
- 700 26. Kirby JE, Nekorchuk DM. 2002. Bartonella-associated endothelial proliferation
- 701 depends on inhibition of apoptosis. Proc Natl Acad Sci U S A **99:**4656-4661.
- 702 27. Gabriel R, Kutschera I, Bartholomae CC, von Kalle C, Schmidt M. 2014. Linear
- 703 amplification mediated PCR--localization of genetic elements and
- 704 characterization of unknown flanking DNA. J Vis Exp
- 705 doi:10.3791/51543:e51543.
- 706 28. Arens A, Appelt JU, Bartholomae CC, Gabriel R, Paruzynski A, Gustafson D,
- 707 Cartier N, Aubourg P, Deichmann A, Glimm H, von Kalle C, Schmidt M. 2012.
- 708 Bioinformatic clonality analysis of next-generation sequencing-derived viral
- vector integration sites. Hum Gene Ther Methods **23:**111-118.
- 710 29. Rhomberg TA, Truttmann MC, Guye P, Ellner Y, Dehio C. 2009. A translocated
- 711 protein of Bartonella henselae interferes with endocytic uptake of individual
- 712bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell
- 713 Microbiol **11**:927-945.
- Truttmann MC, Rhomberg TA, Dehio C. 2011. Combined action of the type IV
 secretion effector proteins BepC and BepF promotes invasome formation of

- 716 Bartonella henselae on endothelial and epithelial cells. Cell Microbiol **13**:284-
- 717 299.
- Hunt MA, Currie MJ, Robinson BA, Dachs GU. 2010. Optimizing transfection of
 primary human umbilical vein endothelial cells using commercially available
- 720 chemical transfection reagents. J Biomol Tech **21:**66-72.
- 32. Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A,
- 722 Howe SJ, Recchia A, Cattoglio C, Wang W, Faber K, Schwarzwaelder K, Kirsten
- 723 R, Deichmann A, Ball CR, Balaggan KS, Yanez-Munoz RJ, Ali RR, Gaspar HB,
- 724 Biasco L, Aiuti A, Cesana D, Montini E, Naldini L, Cohen-Haguenauer O,
- 725 Mavilio F, Thrasher AJ, Glimm H, von Kalle C, Saurin W, Schmidt M. 2009.
- 726 Comprehensive genomic access to vector integration in clinical gene therapy.
- 727 Nat Med **15:**1431-1436.
- 728 33. Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I, Braun S,
- 729 Glimm H, von Kalle C. 2007. High-resolution insertion-site analysis by linear
- amplification-mediated PCR (LAM-PCR). Nat Methods **4:**1051-1057.
- 731 34. Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. 2008. L1
- recombination-associated deletions generate human genomic variation. Proc
- 733 Natl Acad Sci U S A **105**:19366-19371.
- 734 35. Agundez L, Machon C, Cesar CE, Rosa-Garrido M, Delgado MD, Llosa M. 2011.
- 735 Nuclear targeting of a bacterial integrase that mediates site-specific
- recombination between bacterial and human target sequences. Appl Environ
- 737 Microbiol **77:**201-210.

- 738 36. Sullivan TD, Rooney PJ, Klein BS. 2002. Agrobacterium tumefaciens integrates
- transfer DNA into single chromosomal sites of dimorphic fungi and yields

homokaryotic progeny from multinucleate yeast. Eukaryot Cell **1**:895-905.

- 741 37. Garcillan-Barcia MP, Jurado P, Gonzalez-Perez B, Moncalian G, Fernandez LA,
- 742 **de la Cruz F.** 2007. Conjugative transfer can be inhibited by blocking relaxase
- 743 activity within recipient cells with intrabodies. Mol Microbiol **63**:404-416.
- 744 38. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. 2001. Genetic
- 745 transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A
- 746 **98:**1871-1876.
- 747 39. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-
- 748 Cas9 for genome engineering. Cell **157**:1262-1278.
- Maggio I, Goncalves MA. 2015. Genome editing at the crossroads of delivery,
 specificity, and fidelity. Trends Biotechnol 33:280-291.
- 751 41. Rolloos M, Hooykaas PJ, van der Zaal BJ. 2015. Enhanced targeted integration
- 752 mediated by translocated I-Scel during the Agrobacterium mediated
- transformation of yeast. Sci Rep **5**:8345.
- 754

FIGURE LEGENDS

758	Fig. 1. DNA transfer to EA.hy926 and HeLa cell lines. The graph shows the
759	percentage of GFP positive cells detected after 3 days of infection. The cell lines
760	indicated in the x axis were infected with <i>B. henselae</i> carrying the mobilizable plasmids
761	pHP181 (containing R388 oriT+trwAB) or pHP161 (coding for R388 oriT+trwABC); this is
762	indicated as AB or ABC, respectively. Data are the mean of at least 5 independent
763	experiments. **, p<0.01.
764	Fig. 2. Transient and permanent expression of the transferred DNA. a) Overview
765	of the experimental design to detect transient expression or stable integration of the
766	transferred DNA. After infection of human cell lines with <i>B. henselae</i> , the DNA
767	transferred through the T4SS will get to the nucleus where genes will be expressed. At
768	3 days post infection, transient expression of <i>gfp</i> can be detected by flow cytometry.
769	Antibiotic treatment was applied for long-term selection of neomycin-resistant
770	colonies, to detect stable integration events. b), c) and d) Graphical representation of
771	the percentage of GFP-positive cells obtained 3 days post infection (b) and the number
772	of G418-resistant colonies normalized for the number of cells at the beginning of the
773	selection (c), as well as the Neo $^{R}/GFP^{+}$ ratio (d). The different bars represented for
774	each cell line correspond to the different relaxases under study, following the color
775	code indicated in the squares at the top right. Data represent the mean of at least 3
776	independent experiments. *, p<0,05.
777	Fig. 3. Analysis of LAM-PCR products. a-c), Scheme of the expected integration

events and the subsequent LAM-PCR products. **a)** If integration takes place by the 5'

779 end of the *nic* site, the size of the LAM-PCR would be determined by the distance to 780 the nearest restriction site in the human genome (in pink). Each integration event 781 occurring in a different locus would generate a band of a different size. The nicked oriT 782 is indicated by a slash. b) If the plasmid becomes integrated at any other region than 783 the *nic* site, the size of the LAM-PCR product would be always the same and would be 784 determined by the distance to the restriction site in the plasmid sequence. c) In 785 HeLa::*oriT* cell line, in addition to the bands generated from the integration events, the 786 oriT copy present in pMTX708/9 plasmid generates a single band of a size determined 787 by the distance to the restriction site in the plasmid sequence. trw has been omitted 788 from trwA, trwB, and trwC for clarity. Bfa, Bfal. Tsp, Tsp509I. d) Gel electrophoresis of 789 LAM-PCR products obtained when using Bfal (top gel) or Tsp509I (bottom gel) 790 restriction enzymes. The cell line is indicated in the top row (EA, EA.hy926; He, HeLa; 791 He:oriT, HeLa::oriT). Inf, samples obtained after Bartonella infection. Tr, samples 792 obtained by transfection of plasmid DNA. LD, 100 bp ladder. T, trwC-coding plasmid 793 (pCOR31). T:B, trwC:BID-coding plasmid (pCOR33). EA, He, and He::oriT, samples from 794 uninfected cell lines. g, Human genomic DNA (Roche), used as negative control. -795 (1,2,3), negative controls (no DNA) of linear, first, and second exponential PCRs, 796 respectively. The arrows indicate the bands of the expected size according to Fig. 3b 797 (black arrows) and 3c (blue arrow). 798 Fig. 4. Characterization of integration event IE7. The genome-plasmid 799 integration junction (IJ) is aligned with the DNA sequence around the nic site (oriT, on 800 top) and the chromosomal integration site (IS, on bottom). DNA of plasmid origin is 801 shown in blue, and genomic DNA is shown in black. The *nic* site and insertion sites are

802 indicated by a dash. Regions of homology between the plasmid and the genomic803 sequences are boxed.

804	Fig. 5. Genomic integration event characterized by recovery of the integrated
805	plasmid. a) Scheme of the mobilizable plasmid coding for trwC:BID, and the structure
806	of the integrant in the genomic DNA of HeLa cells. Plasmid DNA is represented as a
807	blue horizontal line, and HeLa genomic DNA, as a black dashed line. trw is ommited
808	from trwA, trwB and trwC:BID for clarity. The two dashes in the integrant refer to the
809	genomic reorganization shown in b). Both plasmid-genomic DNA integration junctions
810	resulting from the integration event are named IJ-A and -B. The DNA sequence at the
811	junctions is shown below with their respective coordinates, in black (human genome)
812	and blue (plasmid DNA). The junctions are highlighted in a square. Coordinates of
813	human chromosome 15 are indicated as C-number, where the number corresponds to
814	the coordinates of the human genome in UCSC database (assembly GRCh37/hg19).
815	Coordinates of plasmid DNA are indicated as P-number, where the number
816	corresponds to the nucleotide of the open reading frame of <i>gfp</i> (in IJ-A) or <i>trwA</i> (in IJ-
817	B). b) Genomic rearrangement found near IJ-A. The red dash indicates the genomic
818	junction between non-adjacent human DNA sequences.
819	

821 **TABLES**

822 **Table 1. Plasmids used in this work**

823

Plasmid	Description	Reference
pCOR31	pBBR6:: <i>oriT trwABC+gfp+neo</i>	This work
pCOR33	pBBR6::oriT trwABC:BID+gfp+neo	This work
pCOR35	pBBR6::oriT trwAB+gfp+neo	This work
pCOR52	Rescued integrated plasmid	This work
pHP159	pBBR6:: <i>oriT trwABC+gfp</i> ^(a)	(17)
pHP161	pBBR6:: <i>oriT trwABC+gfp</i> ^(a)	(17)
pHP181	pBBR6:: <i>oriT trwAB+gfp</i>	(17)
рКК223-3	Expression vector	Pharmacia
pLA24	pBBR6:: <i>oriT trwABC:BID+gfp</i>	(17)
pMTX708	pTRE2hyg::Ptac- <i>oriT^(b)</i>	This work
pMTX709	pTRE2hyg::Ptac- <i>oriT^(b)</i>	This work
pOD1	pKK223-3:: <i>oriT</i>	This work
pRS56	Cre-lox+ <i>neo</i>	(15)
pRS130	pBGR:: <i>mob:BID+gfp+neo</i>	(16)
pSU1186	pUC8:: <i>oriT</i>	(25)
pTRE2hyg	Mammalian shuttle vector	Clontech

^(a) pHP159 and pHP161 differ only in the orientation of the *gfp* cassette, which is in the same orientation as the Plac promoter in pHP161 and in the opposite in pHP159.

^(b) pMTX708/9 differ only in the orientation of the Ptac-*oriT* cassette. In pMTX708, the

oriT is closer to the hygromycin resistance gene.

824 **Table 2. Oligonucleotides used in this work**

~ /	a (T/L a))
Purpose / name	Sequence (5 to 3)
Construction of pCOR31	, 33, and 35
mCla_SnaBI_CMV_NeoF	CCAAATCGATCTACGTATTAGTCATCGCTATT
Cla_EcoRV_NeoR	CCAAATCGATGATATCCGGATATAGTTCC
Construction of pMTX7(08/9
NotI_Ptac	CCAGCGGCCGCTTATCGACTGCACGG
NotI_oriT1	CCAGCGGCCGCTCATTTTCTGCATCATTGT
Detection of oriT-specif	ic integration events
Int_pCOR	TCAGGGCGTCCGTTTC
Int_pCOR_2	CTGCATCACATTTGCATC
NotI_Ptac	CCAGCGGCCGCTTATCGACTGCACGG
NotI_Ptac_2	CACTGCATAATTCGTGTC
NotI_oriT1	CCAGCGGCCGCTCATTTTCTGCATCATTGT
PCR mapping of inserts	in recovered integrated plasmids
pCOR33_121F	TGGACAACCCTGCTGGAC
pCOR33_644R	TTTCGCCCTATATCTAGTTC
pCOR33_1641F	CTCGACCTGAATGGAAGCC
pCOR33_2158R	AGCTGGCGTAATAGCGAAG
pCOR33_3157F	CGCAACCCCTTGTAAATGC
pCOR33_3664R	TCTGAACGGCGGTAATCC
pCOR33_10431F	CCTGGCTGACCGCCCAA
pCOR33_10940R	GCTTCTAGAGATCTGACGG
pCOR33_11927F	TCAGGTTCAGGGGGGGGGG
pCOR33_12445R	AATACGCAAACCGCCTCTC
Detection of <i>oriT</i> in HeL	a::oriT
oriT1	CTCATTTTCTGCATCATCA

Analysis of G418-resistant cell pools

oriT330

670_TrwC	TGTGTGCTAGGTCGAA
BamHI_TrwA_R	AACAGGATCCTCAATCCTCCTTCCCCTCCC

CCTCTCCCGTAGTGTTA

Hind3_TrwA_F	AACAAAGCTTATGGCACTAGGCGACCCC
Hind3_TrwC_F	AACAAAGCTTATGCTCAGTCACATGGTATT

LAM-PCR and high-throughput sequencing

LC1	GACCCGGGAGATCTGAATTCAGTGGCACAGCAGTTAGG(N) 12CTA(RO) ^(a)
LC2	(RO)TAG(N) ₁₂ CCTAACTGCTGTGCCACTGAATTCAGATC ^(a)
LCI	GACCCGGGAGATCTGAATTC
Mis-LC	(PE-PCR 2.0)AGTGGCACAGCAGTTAGG ^(b)
Mis-TrwC	(PE-PCR 1.0)(N)10CGTCCTTAAAAGCCGGGTTG(c)
oriTI	CGATAACCCAATGCGCATAG
oriTII	TCTTTAGGGTCACGCTGGC
PE-PCR 1.0	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA CGACGCTCTTCCGATCT
PE-PCR 2.0	CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTG CTGAACCGCTCTTCCGATCT

Sequencing of human genomic DNA

Chr15_88728	ATATGAATGTTTGCATTCCTT
IS2_Hu11	AAGAAAGTCAACCTTCATCTT
Xba_IS2_Hu11	CAACTCTAGAGGAAAAGTCAGAAAGACACCAAC

(a) (N)₁₂, barcode sequence of linker cassette. (RO), restriction enzyme overhang.

(b) (PE-PCR 2.0), adaptor sequences for high-throughput sequencing.

(c) (PE-PCR 1.0), adaptor sequences for high-throughput sequencing. (N)₁₀, barcode

sequence introduced in second exponential PCR.

828	Table 3. Integration events chara	cterized by LAM-PCR an	d DNA sequencing
-----	-----------------------------------	------------------------	------------------

IE	Cell line	Relaxase	Number of sequences	Identity	Chr	Integration locus	Missing bp
1	EA.hy926	TrwC	19	99.75	11	35225119	0
2	EA.hy926	TrwC	402	100	11	35225119	0
3	HeLa	TrwC:BID	15	98,25	2	37383046	15
4	HeLa	TrwC:BID	114	100	2	111118923	16
5	HeLa	TrwC:BID	15	100	6	9173423	18
6	HeLa	TrwC:BID	84	99.48	12	28128063	16
7	HeLa	TrwC:BID	21	100	13	83099211	0
8	HeLa	TrwC:BID	95	99.72	16	68832248	16
9	HeLa	TrwC:BID	15	100	19	18303607	14

The information collected for each integration event is shown. Number of sequences indicates the number of times the sequence read was found. Missing base pairs indicates the number of bp that are missed in the read with respect to the plasmid sequence until the *nic* site. IE, integration event. Chr, chromosome.

831 Table 4. Mapped illegitimate integration events

		Integration junction		
IS	Sequence (5'-3')	Chr	Genomic locus	Plasmid
2	AAAATGAGGACAGTT/ATATTTTTTAAATGT	11	35225119	nic+1
3	CCAGATCGTGCCACT/GCATTCCAGCCTGGC	2	37383046	<i>nic</i> -15
4	TGGGAAACAAATGAA/GAAACAACCCTGCTG	2	111118923	<i>nic</i> -16
5	GTTTCCATGGACATT/TGCCACCCCGGCTTC	6	9173423	<i>nic</i> -18
6	CGGGTTAGAAACCAA/GCACCCAAGCCGGCG	12	28128063	<i>nic</i> -16
8	CACTTGCTGGGCTCA/GAGACAACCCAGCCC	16	68832248	<i>nic</i> -16
9	GTTGTAACTGCCTAA/GATTGACCAACCCTA	19	18303607	<i>nic</i> -14
10	GTCACATGATAAAAA/GATTATTTCATTTTG	15	60623276	gfp_73
11	ATTTAATCCAAATAG/AAATAAGTTTCAGAT	15	60724330	trwA_353
oriT	AGGTGCGTATTGTCT/ATAGCCCAGATTTAA			nic

The genomic integration sites are shown aligned with the wild-type target for TrwC, the *oriT*. The dash indicates the integration site (the *nic* site in the *oriT* sequence). The location of the integration site (Chr, chromosome number), as well as the nucleotide of the plasmid by which integration took place, are also displayed. IS, integration site. IS 2-9 were characterized by LAM-PCR. IS 10 and 11 are both integration junctions of the event characterized by recovery of the integrated plasmid. Coordinates of genomic loci correspond to human genome GRCh37/hg19 available in UCSC Genome Browser. Plasmid coordinates refer to the distance from the *nic* site (+ and - indicating 5' or 3' from the *nic* site, respectively) for IS 2-9, or the nucleotide position in the *gfp* and *trwA* ORFs for IS 10-11.

c) Neo^R/cells

d) Neo^R/GFP⁺

b) IJ-A flanking genomic rearrangement
 P-73
 CTAGGA GCACAA (16bp) TAAAA GCCAC
 C-60723491 C-60623303 C-60623276