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Abstract Linear second order differential equations having a large real pa-
rameter and turning point in the complex plane are considered. Classical
asymptotic expansions for solutions involve the Airy function and its deriva-
tive, along with two infinite series, the coefficients of which are usually difficult
to compute. By considering the series as asymptotic expansions for two ex-
plicitly defined analytic functions, Cauchy’s integral formula is employed to
compute the coefficient functions to high order of accuracy. The method em-
ploys a certain exponential form of Liouville-Green expansions for solutions of
the differential equation, as well as for the Airy function. We illustrate the use
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of the method with the high accuracy computation of Airy-type expansions of
Bessel functions of complex argument.
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1 Introduction

In this paper we study linear second order differential equations having a
simple turning point. Specifically, we consider the differential equation

d2w/dz2 =
{

u2f(z) + g(z)
}

w, (1.1)

where u is positive and large, f(z) has a simple zero (turning point) at z = z0
(say), and f(z) and g(z) are analytic in an unbounded domain containing the
turning point.

This is a classical problem, with applications to numerous special functions.
To obtain asymptotic solutions, the Liouville transformation

2

3
ζ3/2 = ±

∫ z

z0

f1/2(t)dt, W = ζ−1/4f1/4(z)w, (1.2)

is applied, where either sign in front of the integral can be chosen. As a result
we transform (1.1) to the form

d2W/dζ2 =
{

u2ζ + ψ(ζ)
}

W, (1.3)

where

ψ(ζ) =
5

16ζ2
+
{

4f(z)f ′′(z)− 5f ′2(z)
} ζ

16f3(z)
+
ζg(z)

f(z)
. (1.4)

The lower integration limit in (1.2) ensures that the turning point z = z0 of
(1.1) is mapped to the turning point ζ = 0 of (1.3). Throughout this paper we
shall assume that this turning point is bounded away from any other turning
points or singularities of (1.1), equivalently ψ(ζ) is analytic for 0 ≤ |ζ| < R
for some positive R which is independent of u.

When the turning point z0 is real and f(z) is real on a real interval around
z0, the sign in (1.2) is usually chosen in such a way that the new variable ζ is
real when z is real and in a neighborhood of the turning point.

From [9, Chap. 11, Theorem 9.1] we obtain solutions having the following
asymptotic expansions in terms of Airy functions

W2n+1,j(u, ζ) = Aij
(

u2/3ζ
)

n
∑

s=0

As(ζ)

u2s

+
Ai′j

(

u2/3ζ
)

u4/3

n−1
∑

s=0

Bs(ζ)

u2s
+ ε2n+1,j(u, ζ),

(1.5)
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Fig. 1 The sectors Sj in the complex plane

for j = 0,±1. Here Aij(u
2/3ζ) = Ai(u2/3ζe−2πij/3), which are the Airy func-

tions that are recessive in the sectors Sj :=
{

ζ : |arg(ζe−2πij/3)| ≤ π/3
}

(Fig.

1); see [10, §9.2(iii)]. Also, note that Ai′j(z) = dAij(z)/dz = e−2πij/3Ai′(ze−2πij/3).
From Olver’s explicit error bounds we have

ε2n+1,j(u, ζ) = env
{

Aij

(

u2/3ζ
)}

O
(

u−2n−1
)

,

as u → ∞, for ζ lying in certain domains described in [9, Chap. 11, §9], and
which we assume to be unbounded. For a definition of the envelope function
env for Airy functions, see [10, §2.8(iii)].

In (1.5) A0(ζ) is an arbitrary non-zero constant (typically taken to be 1),
and for s = 0, 1, 2, · · · , the other coefficients satisfy the recursion relations

Bs(ζ) =
1

2ζ1/2

∫ ζ

0

{ψ(t)As(t)−A′′

s (t)}
dt

t1/2
, (1.6)

and

As+1(ζ) = −1

2
B′

s(ζ) +
1

2

∫

ψ(ζ)Bs(ζ)dζ. (1.7)

We remark that the lower integration limit in (1.6) must be 0 in order for
each Bs(ζ) to be analytic at ζ = 0, whereas in (1.7) there is no restriction in
the choice of integration constant. This will be of significance to us below.

In general, these coefficients are difficult to compute, primarily due to the
requirement of repeated integrations. They also show cancellations near the
turning point. For complex ζ close to 0 one can compute these coefficients in
a numerically stable way by considering power series expansions for the coeffi-
cients, as done in [1,2], where they are expanded in powers of ω =

√
1− z2. For
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other computational approaches to compute the coefficients, and in particular
for real values of ζ, see [12].

The purpose of this paper is to provide a more simple means of computing
a large number of these terms. We shall employ Cauchy’s integral formula to
do so, and our results will be valid for real and complex ζ lying in a bounded
(but not necessarily small) domain containing the turning point ζ = 0. Our
approach can potentially be extended to other situations, including the cases
of simple poles [9, Chap. 12], and coalescing turning points.

We illustrate the use of the method with the high accuracy computation
of Airy-type expansions of Bessel functions of complex argument.

2 General method

We first present Liouville-Green expansions for solutions of (1.1), a certain
form of which will be required for our method. These only involve elementary
(exponential) functions, but are not valid at the turning point. The appropriate
Liouville-Green transformation is given by [9, Chap. 10, §2], namely

ξ =
2

3
ζ3/2, V = f1/4(z)w. (2.1)

With these, equation (1.1) is transformed to equation

d2V/dξ2 =
{

u2 + φ(ξ)
}

V, (2.2)

where

φ(ξ) =
4f(z)f ′′(z)− 5f ′2(z)

16f3(z)
+
g(z)

f(z)
. (2.3)

The branch for the first of (2.1) will be dependent on the solutions under
consideration, as described below. Note, as ζ completes one circuit about the
turning point ζ = 0, the variable ξ correspondingly crosses more than one
Riemann sheet.

It turns out that solutions where asymptotic expansions appear inside ex-
ponentials are more convenient for our purposes. Specifically, from [9, Chap.
10, Ex. 2.1] we have solutions

V ±

n (u, ξ) = exp

{

±uξ +
n−1
∑

s=1

(±1)s
Es(ξ)

us

}

+ ε±n (u, ξ). (2.4)

In these, the coefficients are given by

Es(ξ) =

∫

Fs(ξ)dξ (s = 1, 2, 3, · · · ), (2.5)

where

F1(ξ) =
1

2
φ(ξ), F2(ξ) = −1

4
φ′(ξ), (2.6)
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and

Fs+1(ξ) = −1

2
F ′

s(ξ) −
1

2

s−1
∑

j=1

Fj(ξ)Fs−j(ξ) (s = 2, 3, · · · ). (2.7)

Primes are derivatives with respect to ξ. The integration constants in (2.5)
will be discussed below, and we find that for the odd coefficients E2j+1(ξ)
(j = 0, 1, 2, · · · ) they must be suitably chosen.

Explicit error bounds for ε±n (u, ξ), which verify the asymptotic validity of
the expansions (2.4), are given in [5]. In particular, for arbitrary δ > 0, under
certain conditions on ψ(ξ), we have that ε±n (u, ξ) = e±uξO (u−n) as ξ → ∞ in
certain domains Ξ± as described in [9, Chap. 10, §3]. These are the same as
those for the corresponding asymptotic solutions of the more common form

V ∼ exp{±uξ}
∞
∑

s=0

(±1)sAs(ξ)u
−s. (2.8)

It is the relation (2.7) that is the reason why the expansions (2.4) are nu-
merically advantageous: the coefficients Fs(ξ) can all be determined explicitly
without resorting to integration. Furthermore, from (2.5) we observe that only
one integration is required (numerical or explicit) to evaluate each Es(ξ), as
opposed to repeated integrals for computing the coefficients As(ξ) in (2.8).

Remarkably, it turns out that integration is not required to evaluate the
even terms E2j(ξ) (j = 1, 2, 3, · · · ). To see this, consider the Wronskian of the
solutions V ±

n (u, ξ) given by (2.4). Since this is a constant (by Abel’s theorem)
we infer that







u+

∞
∑

j=0

F2j+1(ξ)

u2j+1







exp







2

∞
∑

j=1

E2j(ξ)

u2j







∼ constant,

which, on taking logarithms, yields

∞
∑

j=1

E2j(ξ)

u2j
∼ −1

2
ln







1 +

∞
∑

j=0

F2j+1(ξ)

u2j+2







+ constant. (2.9)

We then asymptotically expand the RHS of this relation in inverse powers
of u2, and equate the coefficients of both sides. As a result, we find that (to
within an arbitrary additive constant in each instance)

E2(ξ) = −1

2
F1(ξ), E4(ξ) =

1

4
F 2
1 (ξ)−

1

2
F3(ξ), (2.10)

and so on. In particular, the even coefficients E2j(ξ) (j = 1, 2, 3, · · · ) are
explicitly given in terms of F2k+1(ξ) (k = 0, 1, 2, · · · , j − 1) (which in turn are
given by (2.6) and (2.7)).

At this stage we consider Liouville-Green solutions of (1.3). Comparing
(1.2), (2.1) and (2.4) we obtain three asymptotic solutionsWj(u, ζ) (j = 0,±1)
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of (1.3) which are recessive (respectively) for ζ ∈ Sj , possessing the asymptotic
expansions

W0(u, ζ) ∼ ζ−1/4 exp

{

−2

3
uζ3/2 +

∞
∑

s=1

(−1)s
Es(ξ)

us

}

, (2.11)

and

Wj(u, ζ) ∼ ζ−1/4 exp

{

2

3
uζ3/2 +

∞
∑

s=1

Es(ξ)

us

}

(j = ±1), (2.12)

as u → ∞, uniformly for ζ ∈ Ωj (say). For j = 0,±1 the branches are such
that Re

(

e−ijπζ3/2
)

≥ 0 for ζ ∈ Sj , and Re
(

e−ijπζ3/2
)

≤ 0 for ζ /∈ Sj . As is
typically the case in practice, for each j we assume that Ωj ∩Sj is unbounded.

We remark that, on account of the analyticity of ψ(ζ) in the disk 0 ≤
|ζ| < R, the expansions (2.11) and (2.12) certainly hold in the bounded sector
δ ≤ |ζ| < R, |arg(ζe−2πij/3)| ≤ π − δ, where here and elsewhere δ denotes an
arbitrary small positive constant. We also note that the recessive property at
ζ = ∞ in Ωj∩Sj uniquely definesWj(u, ζ) up to a multiplicative constant. In-
deed, we have thatWj(u, ζ) = c2n+1,jW2n+1,j(u, ζ) for some constants c2n+1,j ,
although we shall not use these relations.

Now, since no two from these three solutions are linearly dependent, we
can assume they satisfy a connection formula of the form

λ−1W−1(u, ζ) = iW0(u, ζ) + λ1W1(u, ζ), (2.13)

for certain constants λ−1 and λ1 (which may of course depend on u). The
factor i is for convenience.

We note that eachWj(u, ζ) (j = 0,±1), being a solution of (1.1), is analytic
in a neighborhood of the turning point. Based on (1.5), and following [4,12],
we thus can define functions A(u, z) and B(u, z), analytic at z = z0 (ζ = 0),
implicitly by the pair of equations

1

2π1/2u1/6
W0(u, ζ) = Ai0(u

2/3ζ)A(u, z) + Ai′0(u
2/3ζ)B(u, z), (2.14)

and

eπi/6λ1
2π1/2u1/6

W1(u, ζ) = Ai1(u
2/3ζ)A(u, z) + Ai′1(u

2/3ζ)B(u, z), (2.15)

where (as shown below) the multiplicative constants on the LHS of both equa-
tions have been chosen to yield the appropriate behavior of A(u, z) and B(u, z)
as u→ ∞. We remark that for computational purposes it is more convenient
to consider A(u, z) and B(u, z) as functions of z, although in deriving their
asymptotic expansions we shall regard them as functions of ζ as necessary.

Next, from the connection formula (2.13), and the corresponding well-
known connection formula for the Airy functions

Ai−1

(

u2/3ζ
)

= e−πi/3Ai1

(

u2/3ζ
)

+ eπi/3Ai0

(

u2/3ζ
)

,
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we derive from (2.14) and (2.15) the following Airy function representation for
the solution which is recessive in S−1

e−πi/6λ−1

2π1/2u1/6
W−1(u, ζ) = Ai−1(u

2/3ζ)A(u, z) + Ai′−1(u
2/3ζ)B(u, z). (2.16)

We shall show, using (2.14), (2.15) and (2.16), that A(u, z) and B(u, z)
are slowly varying relative to the fast variation of the Airy functions in a full
neighborhood of turning point. Specifically, on referring to (1.5), A(u, z) and
B(u, z) will admit the following asymptotic expansions as u→ ∞

A(u, z) ∼
∞
∑

s=0

As(ζ)

u2s
, B(u, z) ∼ 1

u4/3

∞
∑

s=0

Bs(ζ)

u2s
, (2.17)

uniformly with respect to ζ lying in a certain unbounded domain which con-
tains the disk 0 ≤ |ζ| < R.

To show the slowly-varying nature of A(u, z) and B(u, z) (for example)
when ζ ∈ {S0 ∩Ω0} ∪ {S−1 ∩Ω−1}, we solve (2.14) and (2.16) for the coeffi-
cients, and using the Wronskian for Airy functions [10, §9.2(iv)], we arrive at
the explicit representations

A(u, z) = π1/2

u1/6
{

eπi/6W0(u, ζ)Ai
′

−1(u
2/3ζ)

−λ−1W−1(u, ζ)Ai
′

0(u
2/3ζ)

}

,
(2.18)

and

B(u, z) = π1/2

u1/6
{

λ−1W−1(u, ζ)Ai0(u
2/3ζ)

−eπi/6W0(u, ζ)Ai−1(u
2/3ζ)

}

.
(2.19)

Then for ζ ∈ {S0 ∩Ω0} ∪ {S−1 ∩Ω−1} each product pair of functions on the
RHS of (2.18) and (2.19) consists of one exponentially small function times an
exponentially large one. Consequently these forms are numerically satisfactory
in that domain.

At this stage the integration constants in (2.5) are arbitrary, and indeed
do not have to be independent of u. Therefore, for notational convenience, in
(2.18) and (2.19) we shall absorb the coefficient λ−1 into the expansion (2.12)
for W−1(u, ζ), by redefining the Liouville-Green coefficients if necessary. For
example,we can redefine E1(ξ) to be E1(ξ) − 1

2u ln (λ−1) and E2(ξ) to be
E2(ξ)− 1

2u
2 ln (λ−1): as a result λ−1W−1(u, ζ) is scaled to become W−1(u, ζ),

whereas from (2.11) we see that W0(u, ζ) is unchanged.
We now use (A.3) and (A.4), along with the corresponding expansions

(which are valid for
∣

∣arg
(

ζe2πi/3
)
∣

∣ ≤ π − δ)

Ai−1

(

u2/3ζ
)

∼ e−πi/6

2π1/2u1/6ζ1/4
exp

{

uξ +

∞
∑

s=1

as
susξs

}

,

and

Ai′−1

(

u2/3ζ
)

∼ e−πi/6u1/6ζ1/4

2π1/2
exp

{

uξ +
∞
∑

s=1

ãs
susξs

}

.



8 T.M. Dunster, A. Gil, J. Segura

Then, from (2.18) and (2.19), along with the defining expansions (2.4), we
obtain our main result, the slowly-varying expansions

A(u, z) ∼ exp







∞
∑

j=1

E2j(ξ) + ã2jξ
−2j/(2j)

u2j







×cosh







∞
∑

j=0

E2j+1(ξ)− ã2j+1ξ
−2j−1/(2j + 1)

u2j+1







,

(2.20)

and

B(u, z) ∼ 1
u1/3ζ1/2

exp







∞
∑

j=1

E2j(ξ) + a2jξ
−2j/(2j)

u2j







×sinh







∞
∑

j=0

E2j+1(ξ) − a2j+1ξ
−2j−1/(2j + 1)

u2j+1







.

(2.21)

These asymptotic expansions certainly hold for (at least)−π+δ ≤ arg(ζ) ≤
1
3π − δ, 0 < |ζ| < R. Similar slowing-varying expansions can be obtained for
all other values of arg(ζ) near the turning point, by solving for A(u, z) and
B(u, z) from a suitably chosen pair from the three equations (2.14), (2.15) and
(2.16). Each of these expansions can be expressed in the same form as above,
except that the coefficients Es(ξ) may differ by the integration constants in
(2.5).

In fact, if these integration constants are arbitrarily chosen, we find that the
RHS of (2.20) and (2.21) generally each has a branch point at ζ = 0 (z = z0).
Hence, being multi-valued (in fact unbounded) for small ζ, the expansions are
generally only valid for restricted arg(ζ) near the turning point. It is only for
specific integration constants in (2.5), at least for the odd coefficients E2j+1(ξ)
(j = 0, 1, 2 · · · ), that the expansions are single-valued, and hence by a continu-
ity argument (2.20) and (2.21) hold for 0 < |ζ| < R, with arg(ζ) unrestricted.
This essentially corresponds to the choice of the lower integration constant in
(1.6), which (as remarked above) ensures that each coefficient Bs(ζ) is analytic
at ζ = 0.

Recalling that ξ = 2
3ζ

3/2, it is straightforward to show that the expansions

(2.20) and (2.21) are single-valued at ζ = 0 if ζ1/2E2j+1(ξ) and E2j(ξ) (j =
0, 1, 2, · · · ) are meromorphic: here and throughout meromorphic means with
respect to ζ, and at ζ = 0. If we assume for the moment that this is true for
ζ1/2E2j+1(ξ) and E2j(ξ), then on re-expanding (2.20) and (2.21) into the forms
(2.17), we deduce that the coefficients As(ζ) and Bs(ζ) in the latter expansions
must be single-valued. By a uniqueness argument these coefficients must satisfy
(1.6) and (1.7), and moreover single-valuedness means the lower integration
limit in the former must indeed be 0. But in this case we know that As(ζ)
and Bs(ζ) are actually analytic at ζ = 0. We deduce that if ζ1/2E2j+1(ξ) and
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E2j(ξ) are meromorphic then (2.20) and (2.21) have a removable singularity
when they are re-expanded into the forms (2.17). With an appropriate choice
of integration constant for each E2j+1(ξ) (j = 0, 1, 2, · · · ) we now show that
this is indeed so.

To this end, we first note from (1.4) and (2.3) that

φ(ξ) =
ψ(ζ)

ζ
− 5

16ζ3
, (2.22)

and hence this function is meromorphic. Therefore, on noting that dξ/dζ =
ζ1/2, we find by induction from (2.5) - (2.7) that ζ1/2F2j(ξ) and F2j+1(ξ) are
also meromorphic.

To establish the desired meromorphicity of ζ1/2E2j+1(ξ) and E2j(ξ), let
us consider these separately. Firstly, from (2.5) we see that ζ1/2E2j+1(ξ) is
meromorphic if and only if the Laurent-type expansion

ζ1/2E2j+1(ξ) = ζ1/2
∫

ζ1/2F2j+1(ξ(ζ))dζ = α2j+1ζ
1/2 +

∞
∑

k=−2j−1

α2j+1,kζ
k,

(2.23)
satisfies α2j+1 = 0. Clearly the integration constants in (2.5) can be selected
in order for this to be so, and we assume this from now on.

Next consider the even terms. Again from (2.5), we observe that

E2j(ξ) =

∫

ζ1/2F2j(ξ(ζ))dζ, (2.24)

must either be meromorphic, or have a logarithmic singularity at ζ = 0. How-
ever, the latter possibility can immediately be discarded by referring to (2.9)
along with the meromorphicity of F2j+1(ξ). We note that the integration con-
stants in (2.24) do not affect the meromorphicity of E2j(ξ), and hence they
can be arbitrarily chosen.

In summary, we have established that α2j+1 = 0 in (2.23) is a necessary
and sufficient condition for the expansions (2.20) and (2.21) to be valid in a
neighborhood of the turning point with arg(ζ) unrestricted.

In practice there are several ways of ensuring the correct choice of E2j+1(ξ).
If each of these functions can be explicitly determined from (2.5), then a
symbolic algebra system could be used to determine the expansion (2.23), and
if α2j+1 6= 0 one can simply subtract this constant from the function given by
the anti-derivative derived from (2.5).

If explicit integration of (2.5) is not possible, and quadrature is required,
then from (2.23) we observe that

α2j+1 =
1

2
{E2j+1(ξ

∗) + E2j+1(ξ)} , (2.25)

where ξ∗ = ξ(ζe2πi). Since the coefficients will be computed numerically on
a loop surrounding ζ = 0, the values on the RHS of (2.25) can also be com-
puted, provided ξ and ξ∗ correspond to the initial and terminal points of the
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loop. Hence, as in the case of the explicitly known coefficients, these numer-
ically computed values can be subtracted from the initial values of E2j+1(ξ)
evaluated from (2.5).

In the common situation where ψ(ζ) is real in some real interval (−a, a)
where a > 0, this numerical method can be simplified somewhat. Specifically,
if we choose the lower limit of integration in (2.5) to be at a real point on our
path of integration, ξ = ξ(ζ0) say, where 0 < ζ0 < a, then we similarly find
from (2.23) that

α2j+1 = Re
{

E2j+1

(

ξ(ζ0e
πi)

)}

, (2.26)

and we can then proceed as above.

We summarize the principal result as follows.

Theorem 2.1 For the differential equation

d2w/dz2 =
{

u2f(z) + g(z)
}

w, (2.27)

assume u is positive and large, f(z) has a simple zero at z = z0, and f(z) and
g(z) are analytic in a domain D containing z0. Further assume that f(z) does
not vanish in the disk D (z0, ρ) := {z : 0 < |z − z0| < ρ} ⊂ D. Define variables
ξ and ζ by

ξ =
2

3
ζ3/2 =

∫ z

z0

f1/2(t)dt, (2.28)

and let Aij(u
2/3ζ) (j = 0,±1) denote the Airy functions Ai(u2/3ζe−2πij/3).

Then there exist three numerically satisfactory solutions of (2.27) given by

wj (u, z) = ζ1/4f−1/4(z)
{

Aij(u
2/3ζ)A(u, z) + Ai′j(u

2/3ζ)B(u, z)
}

. (2.29)

In these, the coefficient functions A(u, z) and B(u, z) are analytic at z = z0,
and possess the asymptotic expansions (2.20) and (2.21) in a domain that
includes D (z0, ρ). Here a1 = a2 = 5

72 , ã1 = ã2 = − 7
72 , and in both cases

subsequent terms are given by (A.2). The coefficients Es(ξ) (s = 1, 2, 3, · · · ) are
given by (2.5) - (2.7), where the integration constants for the odd coefficients
in (2.5) must be selected so that ζ1/2E2j+1(ξ) (j = 0, 1, 2, · · · ) is meromorphic
as a function of ζ at ζ = 0; i.e. ζ1/2E2j+1(ξ) possesses the Laurent expansion
(2.23) with α2j+1 = 0.

Remark 2.1 The even terms E2j(ξ) (j = 1, 2, 3, · · · ) can alternatively be
evaluated by expanding the RHS of (2.9) in inverse powers of u2, and equat-
ing the coefficients of both sides. This avoids integration for evaluating these
terms. We also note that the expansions (2.20) and (2.21) are valid in the same
domains as those for the corresponding asymptotic solutions of [9, Chap. 11,
Theorem 9.1], and can be unbounded provided f(z) and g(z) have the appro-
priate behavior at ∞ (see [9, Chap. 11, Sect. 9.3]).
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Our focus is to utilize the expansions (2.20) and (2.21) to efficiently com-
pute A(u, z) and u4/3B(u, z) to O

(

u−2m
)

for some prescribed m. As we shall
see in the application to Bessel functions below, in general it may be more
convenient to consider scaled functions

A(u, z) = φ(u, z)A(u, z), B(u, z) = φ(u, z)B(u, z), (2.30)

where φ(u, z) is some suitably chosen function which is analytic in a domain
Ω (say) in which the expansion (2.20) is valid.

Our aim is to employ the Cauchy integrals

A(u, z) =
1

2πi

∮

L

φ(u, t)A(u, t)

t− z
dt, B(u, z) = 1

2πi

∮

L

φ(u, t)B(u, t)

t− z
dt, (2.31)

where L is a positively orientated closed loop lying in Ω and surrounding t = z
and t = z0, and therefore (2.20) and (2.21) can be inserted in the respective
integrands. As we showed above, the asymptotic expansions (2.20) and (2.21)
are in theory valid close to the turning point ξ = ζ = 0 (z = z0) as u → ∞.
However, for fixed u the terms in the series become unbounded as ξ → 0, and
therefore these series are numerically unsatisfactory near the turning point.
It is for this reason that we use the Cauchy integral formulas (2.31) for their
numerical approximation.

At this point, it is important to realize that we will needed to compute
the coefficients Es(ξ) in (2.20) and (2.21) at specific fixed points on L. Since
this computation is done once and for all the computational efficiency in the
computation of these coefficients is not so important. And, as noted earlier,
if the integrals in (2.5) cannot be explicitly evaluated, only one numerical
evaluation of an integral is required for each odd coefficient.

For our purposes it will be sufficient to consider a circular path of inte-
gration with center at zc, not necessarily with zc = z0, but which in any case
must contain the turning point z0. For computing the integral, we therefore
use the parametrization t(θ) = zc +Reiθ, θ ∈ [0, 2π] and we have

A(u, z) =
1

2π

∫ 2π

0

F (θ)dθ, F (θ) = A(u, t(θ))
t(θ) − zc
t(θ) − z

, (2.32)

and likewise for B(u, z). The function F (θ) is periodic and we are integrating
over one period. Since the function is infinitely differentiable as a function of
θ we can expect that the trapezoidal rule will give good convergence [8, Thm.
5.6]. We write θj = 2πj/N ( j = 0, 1, . . .N) and we have

∫ 2π

0

F (θ)dθ ≈ 2π

N







1

2
(F (θ0) + F (θN )) +

N−1
∑

j=1

F (θj)







,

and therefore

A(u, z) ≈ 1

N

N
∑

j=1

F (2πj/N). (2.33)
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Numerical experiments show that N does not need to be large and that, for
instance in our application to Bessel equation (see §5.2), N = 500 is enough
for more than 15-digits accuracy in a wide region around the turning point
(namely for zc = 2, R = 1.8); the number can be reduced for smaller regions,
and for zc = 1, R = 0.5, 15 digits accuracy is reached with N = 150. This is
consistent with the expected good performance of the trapezoidal rule.

For the derivatives of solutions wj(u, z) (say) of (1.1), suppose scaled co-
efficient functions A(u, z) and B(u, z) are defined by

λjwj(u, z) = Aij

(

u2/3ζ
)

A(u, z) + Ai′j

(

u2/3ζ
)

B(u, z) (j = ±1), (2.34)

for some appropriate connection coefficients λ±1. We can then proceed simi-
larly as before, by defining corresponding coefficients C(u, z) and D(u, z) by

λjw
′

j(u, z) = Aij

(

u2/3ζ
)

C(u, z) + Ai′j

(

u2/3ζ
)

D(u, z) (j = ±1). (2.35)

Then, solving for these coefficients, we obtain the same expressions as for the
previous coefficients, but with wj (u, z) substituted by their derivatives. Then,
to obtain similar expansions to (2.20) and (2.21), we would also need the
Liouville-Green expansions for the derivatives of these functions, which can be
obtained by differentiation of the corresponding expansions for the functions
themselves.

A preferable way to compute the new coefficients is to differentiate (2.34).
After differentiating with respect to z, using the Airy differential equation
to eliminate the second derivative of the Airy functions, then solving and
comparing to (2.35), we obtain the relations

C(u, z) = A′(u, z) + u4/3ζ(z)ζ′(z)B(u, z), (2.36)

and

D(u, z) = u2/3ζ′(z)A(u, z) + B′(u, z). (2.37)

To compute the derivatives of the coefficients we can also use Cauchy’s
integral formula to write

A′(u, z) =
1

2πi

∮

L

A(u, t)

(t− z)2
dt, B′(u, z) =

1

2πi

∮

L

B(u, t)
(t− z)2

dt. (2.38)

Then, from (2.30), (2.31), and (2.36) - (2.38) we obtain

C(u, z) = 1

2πi

∮

L

A(u, t) + u4/3(t− z)ζ(t)ζ′(t)B(u, t)
(t− z)2

dt, (2.39)

and

D(u, z) =
1

2πi

∮

L

B(u, t) + u2/3(t− z)ζ′(t)A(u, t)

(t− z)2
dt. (2.40)
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We then use the computed values of A(u, t) and B(u, t) on L, and proceed as
above. Again, the trapezoidal rule is a good choice; in fact, it is in some sense
optimal [3].

We remark that it is desirable that (2.36) and (2.37) be numerically stable,
in the sense that, for large u, there is no cancellation in leading order terms in
the two terms in either representation. The choice of scaling function φ(u, z)
in (2.30) should be such that this is indeed the case.

3 Bessel’s equation: preliminary transformations

We illustrate the new technique using the Airy function asymptotic expansions
for Bessel functions. The first step in doing so, is to apply the Liouville trans-
formations described in §§1 and 2 to Bessel’s equation. To this end, we first

note that functions w = z1/2Jν(νz), w = z1/2H
(1)
ν (νz) and w = z1/2H

(2)
ν (νz)

satisfy
d2w

dz2
=

{

ν2
1− z2

z2
− 1

4z2

}

w.

Here ν plays the role of our large positive parameter u, and z is complex.
From (1.2), and taking the negative sign, let

2

3
ζ3/2 = ln

{

1 +
(

1− z2
)1/2

z

}

−
(

1− z2
)1/2

, (3.1)

and

W = ζ−1/4

(

1− z2

z2

)1/4

w.

The transformed variable ζ is real for real z ∈ (0, 1) (ζ ∈ (0,+∞)), and ζ(z)
can be defined by analytic continuation in the whole complex plane cut along
the negative real axis. This transformation, and its correspondence in the z-
plane, is depicted in Fig. 2.

Observe that, if we are assuming that the principal values are taken, the
expression (3.1) should not be used in all the complex plane and, for instance,
for real z > 1 we would have complex values of ζ, when ζ should be real for
real z > 0. This problem is solved by taking the following:

2

3
(−ζ)3/2 =

(

z2 − 1
)1/2 − arctan

{

(

z2 − 1
)1/2

}

, (3.2)

which in fact is an alternative when ℜz > 1 (and in fact a larger region). We
can also write this in terms of logarithms as

ζ(z) =



















(

3
2

)2/3
[

log 1 +
√

1− z2
z −

√
1− z2

]2/3

, ℜ(z) ≤ 1, z /∈ R
−,

−
(

3
2

)2/3
[

i log 1 + i
√

z2 − 1
z +

√
z2 − 1

]2/3

, ℜ(z) > 1.

(3.3)
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Fig. 2 z-domain (left) and ζ-domain (right), with corresponding points. These figures were
taken from http://dlmf.nist.gov/10.20; they are copyrighted by NIST and used with per-
mission.

We get (1.3), with u replaced by ν, and

ψ(ζ) =
5

16ζ2
+
ζz2(z2 + 4)

4(z2 − 1)3
.

From [9, Chap. 11, §10]) we identify the asymptotic solutions by

Jν(νz) =
1

ν1/3

(

4ζ

1− z2

)1/4

W0(ν, ζ), (3.4)

H(1)
ν (νz) =

2e−πi/3

ν1/3

(

4ζ

1− z2

)1/4

W−1(ν, ζ), (3.5)

and

H(2)
ν (νz) =

2eπi/3

ν1/3

(

4ζ

1− z2

)1/4

W1(ν, ζ). (3.6)

For the corresponding Liouville-Green expansions, set

ξ =
2

3
ζ3/2,

and define

V =

(

1− z2

z2

)1/4

w.

For our purposes we only need to consider |arg(z)| ≤ 1
2π, and so arg(ζ) ≤ 0.

Thus, taking arg(ξ) = 0 when arg(ζ) = 0, and letting ξ depend continuously
on ζ in the region corresponding to |arg(z)| ≤ 1

2π, we find that arg(ξ) ≤ 0.

http://dlmf.nist.gov/10.20
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We observe then that ξ → +∞ as z → 0+ (ζ → +∞). Also, |ξ| → ∞
as z → i∞, such that ξ = iz − 1

2 iπ + O
(

z−1
)

(arg(ξ) → −π). In addition,

|ξ| → ∞ as z → −i∞, such that ξ = iz + 1
2 iπ +O

(

z−1
)

(arg(ξ) → −2π).
Then we have the transformed equation (1.3), again with u replaced by ν,

and

φ(ξ) =
z2(z2 + 4)

4(z2 − 1)3
,

Now consider the coefficients given by (2.5) - (2.7). In general, we prefer
to numerically evaluate with respect to z, since ξ is given explicitly in terms
of z, but not vice versa. Thus, on account of

dz

dξ
= − z

(1− z2)1/2
,

we have Es(ξ) = Ês(z) (say), where

Ês(z) =

∫ ∞

z

t−1(1 − t2)1/2F̂s(t)dt (s = 1, 2, 3, · · · ), (3.7)

in which

F̂s(z) = Fs (ξ(z)) (s = 1, 2, 3, · · · ).
Thus

F̂1(z) =
z2(z2 + 4)

8(z2 − 1)3
, F̂2(z) =

z

2(1− z2)1/2
F̂ ′

1(z), (3.8)

and

F̂s+1(z) =
z

2(1− z2)1/2
F̂ ′

s(z)−
1

2

s−1
∑

j=1

F̂j(z)F̂s−j(z) (s = 2, 3, · · · ). (3.9)

For convenience we have chosen the integration constants so that all coefficients
vanish at z = ∞.

In the general case, the coefficients Ês(z) can be computed numerically by
quadrature via (3.7). But for Bessel’s equation it turns out that the coefficients
can be explicitly computed, and in particular they have the expression

Ês(z) =
Ps(z

2)

(1 − z2)3s/2
, (3.10)

where Ps(x) are polynomials of degree s in x.
Before establishing this, we note for the odd terms that

Ê2j+1(z) =
1

(1 − z)1/2

[

P2j+1(z
2)

(1− z2)3j+1(1 + z)1/2

]

(j = 0, 1, 2 · · · ),

where the term in the square brackets is meromorphic at z = 1. Hence, on
expanding around the turning point ζ = 0 (z = 1), we deduce that (2.23)
holds with α2j+1 = 0, as desired.
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In order to establish (3.10), we first show that the coefficients F̂s(z) have
the form

F̂s(z) =
z2Qs(z

2)

(1 − z2)
3

2
(s+1)

, (3.11)

with Qs(t) a polynomial of degree not larger than s in t.
We firstly observe that F̂1(z) has this form. Next, we substitute (3.11) in

(3.9) and then, for (3.11) and (3.9) to hold, we have that the polynomials must
satisfy

Qs+1(t) =

[

1 +
1

2
(3s+ 1)t

]

Qs(t)+t(1−t)Q′

s(t)−
t

2

s−1
∑

j=1

Qj(t)Qs−j(t), (3.12)

which, starting from Q1(t) = (1/2+ t/8), shows that Qn is of degree not larger
than n and that (3.11) holds with polynomials given by (3.12).

Now, the coefficients Ês can be computed from

Ês(z) = −
∫ z

a

F̂s(r)

(

1− r2
)1/2

r
dr = −

∫ z

a

rQs(r
2)

(1− r2)1+3s/2
dr,

where the starting point a is chosen depending on the solution to be matched.
These integrals can be explicitly computed. We have

∫

rQs(r
2)

(1− r2)1+3s/2
dr =

1

2

∫

Qs(t)

(1− t)1+3s/2
dt,

and because Qs is a polynomial of degree not larger than s we are left with
integrals of the form

∫

tk

(1− t)a
dt = H(t) + C, H(t) =

Rk(t)

(1 − t)a−1
, (3.13)

with k < a− 1 and Rk a polynomial of degree not larger than k which can be
computed by differentiating (3.13). Because k < a− 1, we have H(∞) = 0.

The polynomials Ps in (3.10) have the properties:

P2s(0) = 0, P2s+1(0) = C2s+1,

where C2s+1 are the coefficients in the Stirling asymptotic series

log Γ(u) =

(

u− 1

2

)

log(u)− u+
1

2
log(2π) +

∞
∑

j=0

C2j+1

u2j+1
, u→ ∞.

We found that the property P2s+1(0) = C2s+1 holds by comparing (3.4) with
a similar expansion for Jν(νz) but matching the solution at z = 0, using that
Jν(νz) ∼ (νz/2)ν/Γ(ν + 1) as z → 0.
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The first few polynomials are

P1(x) =
1
24 (2 + 3x),

P2(x) = − 1
16x(x+ 4),

P3(x) =
1

5760 (−16 + 1512x+ 3654x2 + 375x3),

P4(x) =
1

128x(32 + 288x+ 232x2 + 13x3).

Next, using

H(1)
ν (νz) ∼

(

2

πνz

)1/2

exp

{

iνz − 1

2
νπi − 1

4
πi

}

,

as z → ∞ we match the solutions that are recessive in the upper half z-plane,
yielding

H(1)
ν (νz) = −i

(

2

πν

)1/2
1

(1− z2)1/4
V−1(ν, ξ), (3.14)

as ν → ∞, uniformly for z lying in a domain which contains the first quadrant
(excluding a neighborhood of the turning point z = 1).

Furthermore, we know

Jν(νz) =
c0(ν)

(1− z2)1/4
V0(ν, ξ),

as ν → ∞ in a domain which contains Re(z) ≥ 0, excluding a neighborhood
of the interval [1,∞). Using ξ = iz − 1

2 iπ +O
(

z−1
)

, (2.11) and

Jν(νz) ∼ −
(

1

2πνz

)1/2

exp

{

−iνz + 1

2
νπi +

1

4
πi

}

,

as z → i∞, we find that c0(ν) = (2πν)−1/2, and hence

Jν(νz) =

(

1

2πν

)1/2
1

(1− z2)
1/4

V0(ν, ξ). (3.15)

We remark that the expansions (3.14) and (3.15) are a reformulation of the
Debye expansions [11, §10.19(ii)] for z ∈ (0, 1), which also holds for certain
complex values. Debye expansions valid for 1 < z < ∞ are also given in this
reference.
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4 Bessel’s equation: turning point coefficient functions

We now define the (scaled) turning point coefficient functions for Bessel’s

equation. Taking w−1(u, z) = H
(1)
ν (z) and w1(u, z) = H

(2)
ν (z) in (2.34) these

are defined by

eπi/3H(1)
ν (νz) = Ai−1

(

ν2/3ζ
)

A(ν, z) + Ai′−1

(

ν2/3ζ
)

B(ν, z), (4.1)

and

e−πi/3H(2)
ν (νz) = Ai1

(

ν2/3ζ
)

A(ν, z) + Ai′1

(

ν2/3ζ
)

B(ν, z). (4.2)

Comparing these two representations with (3.4) and (3.5) we perceive that in
(2.30) the scaling function here is given by

φ(ν, z) =
23/2

ν1/3

(

ζ

1− z2

)1/4

. (4.3)

From (2.14) and (3.15) we also have

2Jν(νz) = Ai
(

ν2/3ζ
)

A(ν, z) + Ai′
(

ν2/3ζ
)

B(ν, z). (4.4)

A similar relation for −2Yν(νz) is obtained by replacing Ai and its derivative
by Bi and its derivative in (4.4).

As described earlier, the idea for computing the slowly varying coefficients
A(ν, z) and B(ν, z) in a region containing the turning point z = 1 1 is to
invoke Cauchy’s integral formula (2.31). In this, the integration is taken along
a positively oriented closed loop containing z in its interior, but not the origin;
additionally, it should not cross the negative real axis in the z-plane; in this
way, we can guarantee that in the ζ plane we stay away from the shaded
region in Fig. 2 (right) and therefore that all the functions appearing in the
integration are analytic in a domain containing the path of integration and
its interior (and therefore Cauchy’s integral formula holds for this integration
path). For our purposes it will be sufficient to consider a circular path of
integration in (2.32), which can be centered or not at z = 1, but which in any
case must contain z = 1, but not z = 0.

From (2.21), (2.30) and (4.3), we have the following expansion which we
use to compute B(ν, z) on the path of integration

B(ν, z) ∼ 2
√
2 exp {α(ν, z)}

ν2/3ζ1/4(1− z2)1/4
sinh

{

1

ν
β(ν, z)

}

,

where, formally,

α(ν, z) =

∞
∑

j=1

Ê2j(z) + d2j(ξ)

ν2j
,

1 Around the turning point z = −1, and in general for ℜ(z) < 0 we can use the continu-
ation formulas in Sect. 10.11 of [11]
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and

β(ν, z) =

∞
∑

j=0

Ê2j+1(z)− d2j+1(ξ)

ν2j
,

in which
ds(ξ) = as/(sξ

s).

where a1 = a2 = 5
72 , and subsequent terms given by (A.2).

We observe that the cancellation of the coefficient as ν → ∞ is located in
the sinh term. In order to avoid loss of accuracy, it is better to write

B(ν, z) ∼ 2
√
2β(ν, z) exp {α(ν, z)}
ν5/3ζ1/4(1− z2)1/4

sinhc

{

β(ν, z)

ν

}

, (4.5)

where the function sinhc(x) = sinh(x)/x can be computed for small x with
the Maclaurin series

sinhc(x) =

∞
∑

k=0

x2k

(2k + 1)!
.

Several properties that could be expected for the coefficient B(ν, z) can be
seen to hold explicitly from (4.5):

1. It is real for real values of z.
2. B(ν, z) = O(ν−5/3) as ν → ∞, more specifically

B(ν, z) = 2
√
2

ν5/3ζ1/4(1− z2)1/4
(Ê1(z)− d1(ξ))F (ν, z)

= 2
√
2

ν5/3ζ1/4(1− z2)1/4

(

2 + 3z2

24(1− z2)3/2
− 5

72ξ

)

F (ν, z),

where F (ν, z) = 1 +O(ν−2).
3. Only even powers of ν−1 appear if F (ν, z) is expanded in powers of ν−1.

Proceeding similarly with the A(ν, z) coefficient, we get

A(ν, z) ∼ 2
√
2ζ1/4 exp {α̃(ν, z)}
ν1/3(1− z2)1/4

cosh

{

1

ν
β̃(ν, z)

}

, (4.6)

where

α̃(ν, z) =

∞
∑

j=1

Ê2j(z) + d̃2j(ξ)

ν2j
,

β̃(ν, z) =

∞
∑

j=0

Ê2j+1(z)− d̃2j+1(ξ)

ν2j
,

and
d̃s(ξ) = ãs/(sξ

s),

in which ã1 = ã2 = − 7
72 , and subsequent terms satisfying the same recursion

formula (A.2) as for the as coefficients.
For the function A(ν, z), we have the expected properties from (4.6):
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1. It is real for real values of z.
2. A(ν, z) = O(ν−1/3) as ν → ∞, more specifically

A(ν, z) =
2
√
2ζ1/4G(ν, z)

ν1/3(1− z2)1/4
, (4.7)

where G(ν, z) = 1 +O(ν−2).
3. Only even powers of ν−1 appear if G(ν, z) is expanded in powers of ν−1.

For the derivatives H
(1)
ν

′

(νz) and H
(2)
ν

′

(νz) we proceed as before and we
express them in the form

eiπ/3νH(1)
ν

′

(νz) = Ai−1(ν
2/3ζ)C(ν, z) + Ai′−1(ν

2/3ζ)D(ν, z), (4.8)

and

e−iπ/3νH(2)
ν

′

(νz) = Ai1(ν
2/3ζ)C(ν, z) + Ai′1(ν

2/3ζ)D(ν, z). (4.9)

Solving (4.8) and (4.9) for C(ν, z) and D(ν, z), and considering the Airy-
type expansions for the derivatives [11, 10.20.9], we find that

C(ν, z) = O(ν−1/3), D(ν, z) = O(ν1/3),

as ν → ∞. From the behavior noted above of A(ν, z) and B(ν, z) for large ν
(which also hold for their derivatives), we see that in the dominant coefficient
D(ν, z) the first term in (2.37) is the largest, which is indeed O(ν1/3), while for
the coefficient C(ν, z) both terms in (2.36) are O(ν−1/3), which is the correct
order of this coefficient. Therefore, once the cancellation for the coefficient
B(ν, z) is avoided, no cancellations occur as ν → ∞, and we expect both
(2.36) and (2.37) to be numerically stable.

There are two possible approaches in numerically evaluating the coeffi-
cients C(ν, z) and D(ν, z). With A(ν, z) and B(ν, z) computed on the path of
integration as described above, the first method is to numerically evaluate the
integrals (2.39) and (2.40).

Alternatively, one can use (2.36) and (2.37), with A(ν, z) and B(ν, z), and
their derivatives, computed via Cauchy integral formulas. Then, ζ and ζ′ can
be evaluated directly from (3.1), (3.2) and (3.3). There is, however, a possible
loss of accuracy as z → 1 in the computation of ζ′(z) but it can be easily
eliminated. We have

ζ′(z) = −
(

1− z2
)1/2

zζ1/2
,

and both the numerator and the denominator tend to 0 as z → 1 which implies
loss of accuracy. In order to avoid this we put δ =

√
1− z2 and when |δ| is

small we consider the Maclaurin series for

f(δ) =
31/3

δ

(

log

(

1 + δ√
1− δ2

)

− δ

)1/3

= 1 +
1

5
d2 +

18

175
d4 + . . .
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and compute

ζ′(z) = − 21/3

zf(δ)
. (4.10)

Returning to A(ν, z) and B(ν, z), we end this section describing a more
direct, but less stable, method for their computation (again, on the path of
integration of (2.31)). From (4.1) and (4.2) we have the exact representations

A(ν, z) = −2πi
{

eiπ/3H
(1)
ν (νz)Ai′1(ν

2/3ζ)

−e−iπ/3H
(2)
ν (νz)Ai′−1(ν

2/3ζ)
}

,
(4.11)

and

B(ν, z) = 2πi
{

eiπ/3H
(1)
ν (νz)Ai1(ν

2/3ζ)

−e−iπ/3H
(2)
ν (νz)Ai−1(ν

2/3ζ)
}

.
(4.12)

Now, because we are assuming that a method to compute the Airy functions is
available (we are precisely considering expansions in terms of Airy functions),
we could compute these coefficients on the Cauchy contour without the need
to substitute the Airy functions by their Liouville-Green expansions, as done
before. For examples of Fortran implementations of complex Airy functions
see [1,6,7].

As before, the integration path is chosen in such a way that the func-
tions appearing in (4.11) and (4.12) can be computed without recourse to
the Airy-type expansion. With respect to the cylinder functions involved in
the computation of the coefficients, we use (3.14) and (3.15), along with

H
(2)
ν (νz) = H

(1)
ν (νz).

In order to compute the coefficients in a numerically stable way along the
contour of integration, we need to verify that the two terms are not suffering
cancellations, which would happen if the two terms are exponentially large and
cancel each order. If both Hankel functions are large, one should be replaced
by the J Bessel function. For example, we see that inside the eye-shaped
curve (Fig 2), the expression for B(ν, z) in (4.12) is unstable because two
exponentially large quantities are subtracting: all terms in this expression are
dominant inside the eye-shaped curve. Outside the eye, this expression is in
principle stable because in each term a dominant function multiples a recessive
function.

Inside the eye we can write a satisfactory expression using H
(2)
ν (νz) =

2Jν(νz)−H
(1)
ν (νz). We obtain

B(ν, z) = 2πi
{

H(1)
ν (νz)Ai0(ν

2/3ζ)− 2e−iπ/3Jν(νz)Ai−1(ν
2/3ζ)

}

. (4.13)

This expression not only can be used inside the eye-shaped region, but also
for the rest of the half plane ℑ(z) ≥ 0; however, close to the real axis when
z > 1 we get higher accuracy from Liouville-Green expansions using (4.12). In
our numerical algorithms we use (4.12) when ℜ (z) > 1 and (4.13) in the rest of
this half plane. But, as described before, if we also expand the Airy functions
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instead of computing them separately, we obtain asymptotic expansions for
the coefficient away from the turning point and switching from one expression
to the other for the coefficients is not needed in this case. See Sect. 4.

Similarly for A(ν, z) we have

A(ν, z) = −2πi
{

H(1)
ν (νz)Ai′0(ν

2/3ζ)− 2e−iπ/3Jν(νz)Ai
′

−1(ν
2/3ζ)

}

.

We could do analogous substitutions to get a satisfactory formula when
ℑz ≤ 0. However this is not really necessary because the coefficients A(ν, z)
and B(ν, z) are real on the real line and, as commented before, analytic in
a domain containing the integration path. Therefore, by Schwarz reflection
principle, in this domain A(ν, z̄) = A(ν, z) and B(ν, z̄) = B(ν, z). From a com-
putational point of view, this reduces by one half the complexity of evaluating
the Cauchy integral, provided we take a symmetric contour with respect to
the real axis, as we will do.

This more direct approach has some disadvantages with respect to the ex-
pansions in terms of stability. First, we notice that, even when the solutions
are chosen adequately, there still remains some cancellation in the B(ν, z) co-
efficient for large orders. Additionally, there is also some accuracy degradation
in the computation of Airy functions for large arguments due to unavoidable
loss of accuracy in the computation of exponentials of large argument, as we
next describe.

5 Numerical results

We now give several numerical illustrations for the performance of both the
Liouville-Green expansions and the approximation around the turning point.
For this purpose, we have coded our algorithms in Fortran 90, and compared
with the values given by Amos’ algorithm (which has typically 13-14 digits
accuracy). Amos’ algorithm uses a variety of methods for computing Bessel
functions, depending on the values of ν and z, and in particular Airy-type
expansions close to the turning point. We have also tested our methods using
MapleTM . The comparison with Amos’ algorithm is used as an exhaustive
testbench of the numerical stability of our approximations in fixed precision
arithmetic; both Amos’ program and our the implementation are fast enough
to provide many thousands of function values in just a second. The tests in
variable precision with MapleTM are much slower and much less exhaustive,
but they will allow us to explore higher accuracies.

5.1 Testing of the new Liouville-Green approximations

Here we numerical evaluate the new expansions (3.14) and (3.15). We notice
that the analytic continuation formulas of [11, §10.11] can be used to compute
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cylinder functions for ℜz < 0 from the values for ℜz > 0. For instance, we
have

Jν(ze
±πi) = e±νπiJν(z).

Therefore, testing for ℜz > 0 is enough. However, we are also considering the
case ℜz < 0 for the case of Jν(z) in order to show the full validity region of
the expansion (3.15).

A test of the performance of the truncated expansion

Jν(νz) ≈
(

1

2πν

)1/2
1

(1− z2)1/4
exp

{

−νξ +
n
∑

s=1

(−1)s
Es(ξ)

νs

}

, (5.1)

can be seen in Fig. 3. The figure shows the comparison of the function values
obtained with n = 14 in (5.1) against those obtained with Amos’ algorithm [1]
for computing Jν(νz) with ν = 100. Fig. 3 shows the comparison for random
values of the variable z generated in the domain −2 < ℜz < 2, −2 < ℑz < 2,
respectively. The points where the relative error is greater than 10−12 are
plotted in the figures. As the figure shows, and as expected, the Liouville-
Green expansion (3.15) loses accuracy close to the turning point and for real
values of z with |z| > 1. It is worth noting than in the neighborhood of
the turning point we can consider our expansions with coefficients computed
via Cauchy integrals that we are discussing next, while for z > 1 we can
compute Jν(νz) using its relation with Hankel functions and the Liouville-
Green expansions for these functions or, alternatively, we can use (4.4) with
coefficients computed from its asymptotic approximation. It appears then that
for ν ≥ 10 it is possible to compute Jν(νz) in the whole complex z-plane with
around 15 digits accuracy only by resorting to asymptotic approximations.

Finally, the performance of the Liouville-Green approximation

H(1)
ν (νz) ≈ −i

(

2

πν

)1/2
1

(1− z2)1/4
exp

{

νξ +

n
∑

s=1

Es(ξ)

νs

}

, (5.2)

for ℑz > 0, with again n = 14, is illustrated in Fig. 4. As expected, the
expansion fails in the proximity of z = 1.

5.2 Airy-type expansions via Cauchy’s integral formula

We now test the accuracy in the computation of the Airy type expansion (4.1)

for H
(1)
ν (νz). We employ two different approaches in the approximation of

the coefficient functions A(ν, z) and B(ν, z), both of which use the Cauchy
integral formulas (2.31). In the first approach, on the Cauchy contour we use
the Liouville-Green expansions only for the cylinder functions, and we assume
an algorithm for computing complex Airy functions is available; we have used
both Amos’ algorithm [1] and our own algorithm [7], with similar results. Thus,
in (4.1) A(ν, z) and B(ν, z) (expressed by the appropriate Airy and cylinder
functions) are approximated by using the Liouville-Green expansions (5.1) and
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Fig. 3 Comparison of the function values obtained with the expansion (3.15) against
those obtained with Amos’ algorithm [1] for computing Jν(νz) with ν = 100 and −2 <
ℜz < 2, −2 < ℑz < 2. The points where the relative error is greater than 10−12 are plotted.

Fig. 4 Comparison of the function values obtained with the expansion (3.14) against those

obtained with Amos’ algorithm [1] for computing H
(1)
ν (νz) with ν = 100 and 0 < ℜz <

2, 0 < ℑz < 2. The points where the relative error is greater than 10−12 are plotted.

(5.2) in the integrands of (2.31), but with the Airy functions computed from
the algorithms cited.

The second approach uses the Liouville-Green approximations for both the
Airy functions and the cylinder functions in approximating A(ν, z) and B(ν, z)
in (4.1) (although again we do use Airy algorithms to compute Ai−1

(

ν2/3ζ
)

and Ai′−1

(

ν2/3ζ
)

when computing H
(1)
ν (νz) with (5.3)). Hence in this case,

from (4.1), (4.5) and (4.6), we have for z inside L

eiπ/3H(1)
ν (νz) ≈ Ai−1

(

ν2/3ζ
)

Am(ν, z) + Ai′−1

(

ν2/3ζ
)

Bm(ν, z), (5.3)
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where

Am(ν, z) =
1

2πi

∮

L

2
√
2ζ1/4 exp {α̃m(ν, t)}

ν1/3(1− t2)1/4(t− z)
cosh

{

1

ν
β̃m(ν, t)

}

dt, (5.4)

Bm(ν, z) =
1

2πi

∮

L

2
√
2βm(ν, t) exp {αm(ν, t)}

ν5/3ζ(t)1/4(1− t2)1/4(t− z)
sinhc

{

βm(ν, t)

ν

}

dt, (5.5)

in which

α̃m(ν, t) =

m
∑

j=1

Ê2j(t) + d̃2j (ξ(t))

ν2j
,

β̃m(ν, t) =
m−1
∑

j=0

Ê2j+1(t)− d̃2j+1 (ξ(t))

ν2j
,

αm(ν, t) =
m
∑

j=1

Ê2j(t) + d2j (ξ(t))

ν2j
,

and

βm(ν, t) =

m−1
∑

j=0

Ê2j+1(t)− d2j+1 (ξ(t))

ν2j
.

Two different tests of the accuracy of the Airy-type asymptotic expansion

for H
(1)
ν (νz) (with coefficients evaluated by Cauchy’s integral formula), for z

fixed or ν fixed, are considered. The results are shown in Fig. 5, for which the
Airy function has been evaluated both using [7] and [1], with similar results. In
all cases we take m = 7, which means we are considering terms up to O(ν−n),
n = 2m = 14. Of course, similar tests can be made for other solutions of the
Bessel equation (for instance Jν(νz) or Yν(νz)), and the accuracy results are
very similar, as can be expected since all solutions are computed with the same
coefficients.

In Fig. 5, the relative error in the comparison of the function values ob-

tained with the Airy-type expansion for H
(1)
ν (ν(1+0.1i)), 2 < ν < 400 against

those obtained with Amos’ algorithm is shown. Several different sources of er-
ror are apparent in the figure: the error for ν small due to the Liouville-Green
approximations for cylinder functions used in the Airy-type expansions, the
small increase in the error due to rounding for ν large caused by the B(ν, z)
coefficient, and the unavoidable loss of accuracy in the computation of Airy
functions for large arguments.

In Fig. 6 we show the same results as in Fig. 5, but using the asymptotic
expansions for the coefficients given in Sect. 4. We observe a clear improvement
over Fig. 5, particularly for low ν. As ν becomes larger, there a slow increase in
accuracy loss (smaller than in the previous case). This is due to the increasing
inaccuracies in the computation of Airy functions as the argument becomes
larger, which give rise to errors in the computation of the Hankel function when
using (4.1). These inaccuracies are unavoidable in finite precision arithmetic
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Fig. 5 Relative errors in the comparison of the function values obtained with the Airy-type

expansion with n terms for H
(1)
ν (ν(1 + 0.1i)) against those obtained with Amos’ algorithm

[1]. In the evaluation of the coefficients the Airy functions are also computed with [1]

Fig. 6 Relative errors in the comparison of the function values obtained with the Airy-

type expansion for H
(1)
ν (ν(1 + 0.1i)) against those obtained with Amos’ algorithm [1]. The

asymptotic expansion of the coefficients is considered over the Cauchy contour. We take
n = 14 = 2m in Eqs. (5.4) and (5.5).

ν
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Fig. 7 Same as Fig. 6 but for smaller ν and four selections of n = 2m: n = 6, 10, 14, 18.
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Fig. 8 Comparison of the function values obtained with the Airy-type expansion for

H
(1)
10 (10z) against those obtained with Amos’ algorithm [1]. The points where the relative

error is greater than 10−13 are plotted. We take n = 2m = 14.

and, as described in [7], can only be removed by considering scaled functions
(with the dominant exponential factor exactly scaled out).

Fig. 7 shows the same tests, but focusing in smaller values of ν and for two
selections in the number of terms for the expansion. We observe two tendencies,
particularly for n = 2m = 18: a decrease of the error as ν increases due to
the fact that the expansion becomes more accurate, and a slow increase of
the error due to the finite precision computation of the Airy functions in the

expression for H
(1)
ν (νz); this error increase is not attributable to our approach.

These tendencies give an optimal accuracy for ν close to 5. As commented,
the accuracy for larger ν in finite precision arithmetic can be improved by
considering scaled functions.

In Fig. 8 we plot the points where the relative error is greater than 10−13 in
the comparison of the function values obtained with the Airy-type expansion

for H
(1)
10 (10z) against those obtained with Amos’ algorithm. The random z

points in the test have been generated inside the semi-circle limited by the in-
tegration contour used to compute the coefficient functions A(ν, z) and B(ν, z)
of the Airy-type asymptotic expansion (a circle of center zc = 2 and radius
R = 1.8). As can be seen in the figure, the accuracy obtained with the ex-
pansion is better than 10−13 in a large portion of the domain although, as
expected, it worsens when approaching the integration contour. This figure
illustrates the accuracy in the discretization of the Cauchy integral in a large
region, but with z not too close to the contour of integration.

Preliminary tests show that the time spent for the computation of the
Liouville-Green expansions in §3 and the Airy-type expansions in §4 is similar
to the time for the implementations of Debye and Airy-type expansions in
Amos’ algorithm [1]. However, as expected, when the Cauchy’s integral for-
mula is used our approach becomes slower for computing a single function
value, because we need to compute the coefficients a number of times over the
contour.

The advantage of the Cauchy approach is that the most costly computa-
tion is the evaluation of the coefficients Ej(ξ) and the numerators in the sums
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Fig. 9 Error in the computation of H
(1)
ν (νz) for z = 1 + 0.1i when the coefficients over

the Cauchy contour are computed with 16 digits and using their LG asymptotic expansion.
The rest of computations are performed with 50 digits using Maple. As before, n = 14.

of Eqs. (2.20) and (2.21), but this computation is done once and for all over
the contour. Our approach permits the selection of a convenient Cauchy con-
tour depending on the application. If many functions values are needed in a
certain z-region, a good approach is to precompute the coefficients in a circuit
containing this region (if it is possible and the shaded regions of Fig. 2 can be
avoided), and then applying the discretized version of Cauchy integral formula
(Eq. (2.33)) as many times as needed (and the recomputation of the sums in
Eqs. (2.20) and (2.21) if ν is also varying).

At this point, it is important to stress that the main interest of the Cauchy
technique lies in the computability more than in the efficiency (although it is
efficient). It provides a new and direct method of computation of the coeffi-
cients of Airy-type expansions with potential applications to more complicated
cases.

In addition to the tests in fixed precision arithmetic, we have performed
additional test in variable precision using MapleTM . Firstly, we have checked
that the coefficients in the Airy-type expansions are computed in a numerically
stable way with our scheme and that the remaining error degradation in Fig. 6
is due to loss of accuracy in the computation of the Airy functions when using
(5.3). For this purpose, we have used MapleTM for computing the coefficients
with a fixed number of digits (we take 16 digits) and then computed the Hankel
function using (5.3) with a sufficiently high number of digits. When we test
the value of the Hankel function with, say 50 digits, we observe that the error
is always close to 16 digits accuracy, which shows that the coefficients have
been consistently computed with that accuracy and without accuracy loss for
high ν. This is illustrated in Fig. 9.

In all the computations, we have used 500 points in the contour of integra-
tion. The error associated with the discretization of the Cauchy integral is so
small that it has no impact on the previous results. For observing this error, a
higher number of digits should be considered. Fig. 10 shows the results when
500 points over the Cauchy contour are considered and the computations are
done with 50 digits.
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Fig. 10 Error in the computation of H
(1)
ν (νz) for z = 1 + 0.1i and various selections of

n = 2m when the coefficients over the Cauchy contour and the rest of computation are
performed with 50 digits using Maple. The limit in the minimal possible error (close to
10−26) is due to the discretization of the Cauchy integral with N = 500 points

n 4 6 8 10 12 14 16 18
Cn+1 0.00015 0.00013 0.00021 0.00051 0.0018 0.0089 0.056 0.46

Table 1 Computational error constants for the computation of H
(1)
ν (νz) close to z = 1.

The relative error is in good approximation given by Cn+1/νn+1

As can be expected, because the integrand is periodic, the trapezoidal rule
has exponential convergence. Indeed, we have checked that smallest reachable
error roughly depends on the number of points over the Cauchy contour as
10−N/20.

We have checked numerically that when the effect of discretization of the
Cauchy integral is negligible, the relative error when n terms in the asymptotic
expansion of the coefficients are considered, the relative error in the computa-

tion of H
(1)
ν (νz) close to the turning point varies as Cn+1/ν

n+1, where Cn+1

does not depend on ν and increases with n. This is the expected behavior for
an asymptotic expansion for large ν. Some estimations of these constants close
to z = 1 are shown in table 1

It would be important to be able to establish strict error bounds and to
compare them with these experimental errors. This should be achievable by
bounding the errors in the Liouville-Green expansions used for the coefficients,
similar to the error bounds given in [5], and again appealing to Cauchy’s
integral formula. This will be considered in a subsequent paper.

A Appendix: Exponential-form expansions for Airy functions

Firstly, the Airy functions Aij
(

u2/3ζ
)

satisfy

d2w/dζ2 = u2ζw. (A.1)
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Letting ξ =
∫

ζ1/2dζ = 2
3ζ

3/2 (as in (2.1)), we then have that the functions

V = ζ1/4Aij
(

u2/3ζ
)

satisfy

d2V

dξ2
=

{

u2 − 5

36ξ2

}

V.

An asymptotic solution of the form (2.4) now applies. In particular, on
identifying solutions of (A.1) that are recessive at ζ = +∞, we have that there
exists a constant c(u) such that

Ai
(

u2/3ζ
)

∼ c(u)ζ−1/4 exp

{

−uξ +
∞
∑

s=1

(−1)s
es(ξ)

us

}

,

as u2/3ζ → ∞ in the sector |arg (ζ)| ≤ π − δ (δ > 0).
The coefficients in this expansion are given by (2.5) - (2.7), with E and F

replaced by e and f , respectively, and φ(ξ) = − 5
36ξ

−2. In particular, es(ξ) =
∫ ξ

∞
fs(t)dt, where

f1(ξ) = − 5

72ξ2
, f2(ξ) = − 5

72ξ3
,

and

fs+1(ξ) = −1

2
f ′

s(ξ) −
1

2

s−1
∑

j=1

fj(ξ)fs−j(ξ) (s ≥ 2).

Thus

fs(ξ) = − as
ξs+1

, es(ξ) =
as
sξs

(s = 1, 2, 3, · · · ),

where a1 = a2 = 5
72 , and

as+1 =
1

2
(s+ 1)as +

1

2

s−1
∑

j=1

ajas−j (s ≥ 2). (A.2)

From the well-known leading term

Ai
(

u2/3ζ
)

∼ e−uξ

2π1/2u1/6ζ1/4

(

u2/3ζ → ∞
)

,

we obtain c(u) = 1/
(

2π1/2u1/6
)

, and hence we deduce that

Ai
(

u2/3ζ
)

∼ 1

2π1/2u1/6ζ1/4
exp

{

−uξ +
∞
∑

s=1

(−1)s
as

susξs

}

, (A.3)

which is uniformly valid for |arg (ζ)| ≤ π−δ (δ > 0). Expansions for Ai±1

(

u2/3ζ
)

can be obtained directly from this.
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Next, from differentiating (A.1) we find that y = ζ−1/2Ai′j
(

u2/3ζ
)

satisfy

d2y

dζ2
=

{

u2ζ +
3

4ζ2

}

y.

Thus, again with ξ = 2
3ζ

3/2, we have that Ṽ = ζ−1/4Ai′j
(

u2/3ζ
)

satisfy

d2Ṽ

dξ2
=

{

u2 +
7

36ξ2

}

Ṽ .

Similarly to (A.3), on using [10, (9.7.6)], we deduce that

Ai′
(

u2/3ζ
)

∼ −u
1/6ζ1/4

2π1/2
exp

{

−uξ +
∞
∑

s=1

(−1)s
ãs

susξs

}

, (A.4)

for |arg(ζ)| ≤ π − δ, where ã1 = ã2 = − 7
72 , and subsequent terms also satisfy

(A.2). Expansions for Ai′±1

(

u2/3ζ
)

can be obtained directly from this.
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