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ABSTRACT. We study the finite element approximation of an optimal control
problem governed by a semilinear partial differential equation and whose ob-
jective function includes a term promoting space sparsity of the solutions. We
prove existence of solution in the absence of control bound constraints and pro-
vide the adequate second order sufficient conditions to obtain error estimates.
Full discretization of the problem is carried out, and the sparsity properties of
the discrete solutions, as well as error estimates, are obtained.

1. Introduction. Throughout this paper, {2 denotes an open, bounded subset of
R™ 1 <n <3, with boundary I, and 0 < T < +o0 is fixed. We set @ = Q x (0,T)
and ¥ =T x (0,T'). The control problem is defined in the way

P min  J(u),
() min ()

where J(u) = F(u) + pj(u) with g > 0,

F(u):*/(yu—ydydxdt—kz/ u? dx dt,
Q 2 Q

v > 0, and
) T ) 1/2
i) = il @rory = [ u@lomde= [ ([ @@oi)” .
Q Q 0
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For every u € L*®(Q), we denote y,, the solution of

aty+Ay+a(‘Tat7y) =u in Qa
y=0 on X, (1)
y(0) =yo in Q.

Here, A is the linear elliptic operator

Ay == " 0, [aij(z) 0,y

ij=1

Our objective in this work is to study the finite element discretization of the prob-
lem: we describe the sparsity pattern of the discrete solutions, prove convergence
and provide error estimates.

The first application of L!-promoting-sparsity terms to optimal control problems
was done in [17] for control problems governed by linear elliptic equations. Finite
element discretization and error estimates for such a problem were obtained in [18]
also for linear elliptic equations. The semilinear case was treated in [6] for piecewise
constant approximations of the control and in [5] for continuous piecewise linear
approximations. In [3, 2, 15] the case of measure controls for problems governed by
linear elliptic equations is studied.

In [11] directional sparsity is introduced and an application to problems governed
by linear parabolic equations is considered. In a similar framework, measure-valued
controls are considered in [4, 9, 10, 12] for a problem governed by a linear parabolic
equation. The measures used in [12] promote, as in the work at hand, a constant-in-
time sparsity pattern; a finite element approximation is studied and error estimates
for the approximation of the states are provided.

The control of semilinear parabolic equations with measures is quite complicated
due to the possible non-existence of solution of the partial differential equation;
see [8] for a discussion of this topic for semilinear elliptic equations. To avoid this
difficulty, we will use functions to control the nonlinear equation.

The plan of the paper is as follows. At the end of this section the main as-
sumptions are introduced. In Section 2 we recall results about the existence and
uniqueness of solution of the state equation and the differentiability properties of
the control-to-state mapping and cost functional. Next, in Section 3, we prove ex-
istence of solution of the control problem, write the first order necessary optimality
conditions and show the regularity and sparsity properties of the optimal controls.
Since we are not imposing any bound constraints on the control, existence of solu-
tion of problem (P) cannot be deduced by the direct method of calculus of variations
as usual, so we employ a truncation method; see Theorem 3.2.

In Section 4 we investigate second order optimality conditions. First and second
order necessary and sufficient optimality conditions for control problems governed by
semilinear parabolic equations and with a term promoting sparsity in the objective
functional have recently been studied in [7]. Three different cases are described in
that work, promoting each of them a particular case of sparsity: global sparsity,
spatial sparsity whose pattern changes with time and spatial sparsity whose pattern
is constant in time. We are interested in this last case. In [7, Theorem 4.12] the
authors prove that under adequate second order conditions, the critical point is
a strict local minimum in the L*°(Q;L?(0,T)) sense. This result is not enough
to derive error estimates of the numerical estimation of the control problem. The
argument we use in Lemma 5.5 to show the existence of a sequence of local minima
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of the discretized problems converging strongly in L?(Q) to a strict local minimum
of the continuous problem would be incorrect in L*(£2; L2(0,T)). To overcome
this difficulty, we prove in Theorem 4.2 that under the same second order sufficient
conditions, the critical point is also a strict local minimum in the L?(Q) sense.

Finally, in Section 5, we fully discretize the problem using, in space, continuous
piecewise linear elements for the state and piecewise constant approximations for
the control and, in time, piecewise constant functions for both variables. We show
that the discrete optimal controls follow a sparsity pattern alike the one obtained for
the continuous ones and prove convergence and an error estimate in the L?(Q) norm
of the control variable of order O(\/T + h), where 7 denotes the step size in time
and h is the mesh size in space. Finally, two numerical experiments are included in
Section 6. In the first one we investigate the experimental order of convergence and
compare with our theoretical results and in the second one we expose the directional
sparsity properties of the solution of (P).

The study of approximations of the control by means of continuous piecewise
linear functions in space will be done in a forthcoming paper.

We make the following assumptions.
Assumption 1.— The boundary I' is of class CY! or Q is convex. The coefficients
a;; € C%1(Q) and
n
JA >0 such that Y ai;(x)& & > A€ Vo € Q and V¢ € R™ (2)
ij=1

Assumption 2.— The initial datum yo € L>°(Q) N HL(Q), the target state y; €
LP(0,T; L9(Q2)) where p, G € [2,+00] are such that % +3;<lLanda:QxR—R
is a Carathéodory function of class C? with respect to the last variable, satisfying
the following assumptions

a(-,-,0) € LP(0,T; L9(Q2)) and such that

0
a—a(;v,t,y) >0 for a.a. (z,t) € @Q and Vy € R, 3)
Y
VM > 0 3Cps > 0 such that
&a o (4)
ﬁ(:ﬂ,t,y) < Cy for a.a. (z,t) € Q,V|y| < M, with j =1,2
)

Vp >0 and VM > 0 Jepr,, > 0 such that for a.a. (z,t) € Q

0%a 0%a < < < (5)
87y2(x7t7y2) - ayg (‘r?tayl) = p7v|y2| = M7 and |y2 - y1| = EM,p-

Remark 1. We can deal with non-monotone nonlinearities satisfying

Oa
- > _
ay(x,t,y) > =4

for some § > 0 with the change of variable § = e~ %y. Denoting jq = e **y4. In
this way, problem (P) is equivalent to

i 1H (5 — ) + 2 lul + el
min  —|le — —||u u .
weL>(Q) 2 Y= Ya)liLz@) T 5 litlizz(Q) T ML (2;L2(0,T))

subject to
0y + Ay + a(z,t,9) = e %%y in Q,
y=0 on %,
§(0) =yo in Q.
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where a(z,t,7) = 07 + e %a(x, t, %) satisfies assumption 2.

2. Analysis of the state equation and the objective functional. Next we
describe the differentiability properties of the control-to-state mapping and later we
analyze the cost functional. The next results are quoted from [7].

Theorem 2.1. Under the assumptions 1 and 2, for all uw € LP(0,T;Li(Q)) the
equation (1) has a unique solution y, € Y = L>®(Q) N H*Y(Q). Moreover, the
mapping G : LP(0,T; LY(Q)) — Y, defined by G(u) = y., is of class C?. For all
elements u,v,v1 and vy of LP(0,T; LI(Q)), the functions z, = G'(u)v and zy,y, =
G" (u)(v1,v2) are the solutions of the problems

0
% + Az + a—Z(x,t,yu)z =v inQ,
z2=0 onX, (6)
z(0)=0 1inQ,
and ,
0z da 0%a )
@ + Az + @(xvta yu)Z + Tyg(‘rvtvyu)zmzm =0 n Qa
z=0 onX, (7)
2(0) =0 in Q,
respectively.

In [7] it is proved that y,, € L>(Q)NW (0,T), where W (0,T) = L?(0,T; H}(Q))N
HY0,T; H(Q)). From Assumption (A2) and the boundness of y,,, we have that
Oyu + Ay € L*(Q), and hence y, € H>N(Q) = L*(0, T; H*(2)) N H'(0, T; L*());
see e.g. [13, Theorem ITI-6.1].

Theorem 2.2. Under the assumptions 1-2, F : LP(0,T; Li(Q)) — R is of class
C?2. Moreover, for all u,v,vy and vy of LP(0,T; L1(£2)) we have

F'(u)v = / ((yu — ya) 20 + vuv) dodt = / (pu + vu) vdz dt, (8)
Q Q
1 0%a
F (U)('Ul, U2) = o |:<1 - (Puaiyg(xv t, yu)>zvlzv2 + Vvl'UQ] dz dt, (9)
where z,, = G'(u)v;, i = 1,2, and ¢, €Y is the solution of
Op da .
— YA, A* a_ t, Yy, = Yu — P
T <p+6y(x, Yu)P=Yu—Ya inQ
=0 on X, (10)
o(T)=0 in Q,

A* being the adjoint operator of A.

Remark 2. Observe that for every u € LP(0,T; L4(Q)), G'(u) can be extended to
a linear and continuous mapping G’(u) : L*(Q) — H?*1(Q). We also have that
G"(u) admits a continuous bilinear extension G”(u) : L*(Q) x L?*(Q) — Y and
F'(u) and F”(u) can be extended to linear and bilinear continuous forms F’(u) :
L?(Q) — R and F"(u) : L*(Q) x L*(Q) — R.

Proposition 1. Given u € L'(Q; L?(0,T)) the following statements hold.
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1. X € 9j(u) is equivalent to A € L>=(Q; L?(0,T)) and
IA@) L2 0,7y <1 for a.a. x € QY

11
)\(x,t):M for a.a. v €Q, andt € (0,T), (1)
||U($)HL2(0,T)
where
Qu = {.13 € Q: Hu(l‘)”[g(o’T) 7é 0} and Qg =0 \ Qu

2. For every v € LY(Q;L?(0,T)), the directional derivative of j at u in the
direction v is

j/(u;v) = / ||U(x)||L2(O,T) dx + /
Qo Q

1

T
@ Trom /0 wvdtdz. (12)
3. Existence of solution for (P), first order optimality conditions and
regularity of the optimal controls. The absence of control bounds leads to
some difficulties regarding the existence of optimal controls for (P). We cannot
apply the usual direct approach to prove existence of solution of (P), because we
cannot conclude the boundedness in L>°(Q) of a minimizing sequence. Alternatively,
we could have settled the problem in L?(Q), but in this case Theorems 2.1 and 2.2
do not fulfill. Instead, we are going to introduce an auxiliary problem with bound
control constraints to prove existence of a solution of (P).

For M > 0 consider the set

Uy ={uecLl*Q): —M <u(x,t) <M forae. (z,t) € Q}.
Associated to this set, we have the problem
w0 { i, 0

Existence of a solution @y for problem (Pp/) is standard, see [7, Theorem 1.4], and
the following first order optimality conditions are satisfied.

Theorem 3.1. If uy is a local minimum of (Par), then there exist Gar, @ €Y
and Ay € 0j(anr) such that

8th + AZ,_IM + a(x7t7g1\/f) = Um mn Qa
gy = 0 on 3, (13)

QM(O) = Yo mn Q,

_ - Oa o _ .
—Opon + Aoy + @(x’t’ Um) Py = Yum —Ya  in Q,
oy = 0 on X, (14)
/(@M—I—VEM—i-u;\M)(u—ﬂM)dxdtzOVuGUM. (15)
Q

The proof is standard and can be found in [7, Theorem 2.1]. The projection
formula

ap(z,t) = Proji_asan (—11/ [@M(x,t) + MS\M(x,t)]) (16)

follows in a standard way from (15). Next, we prove existence of solution for (P).
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Theorem 3.2. There exists Coo > 0 independent of M such that ||tn|| Lo (q) <
Co. Consequently, for every M > C, any solution tyr of (Pyy) is also a solution

of (P).
Proof. Using the optimality of ay; we have that J(@ys) < J(0), hence
1
[aarllL2@) < \ﬁllﬂ —yallL2(@) (17)
where 3 is the state associated to the control u = 0.

Subtracting a(x,t,0) at both sides of the PDE in (13), multiplying by s and
integrating from 0 to ¢ we have that

1, 1 RS L
S Ol = e+ [ [ ais0n 500 dds
i=1

" /Ot /Q(a(x’ s,ym) — a(z,s,0))gardeds
- /ot /Q(ﬂM —a(x, s,0))ypdrds

Using the monotonicity of a(z,t, ), we obtain by means of the Cauchy-Schwarz and
Friedrichs’ inequalities that there exists Cg > 0 such that

I ! _
SO0+ [ [ Vanfdeds
0 JQ

1 t -
< o+ [ [ 3 000500, gusdods
0 JQ . —
7,7=1
1 _ _
< S0y + (lanllzeay + oo, ,0)l2@y) Ine 2072200y

1 _ _
< §||yo||2Lz<Q) + Ca (laallz2@) + la(z, t,0)l2(0)) 1IVFM 20,7522 0))
1 Ccg . _ 2 A
< §||l/0||i2(9) + ﬁ (laarllz2 @) + llaz,t,0)l|L2q))” + §\|V?JM||2L2(0,T;L2(Q))
where A is the coercitivity constant of the operator, described in (2). Reordering,
we get
_ Ca -
vz ) < lyollz) + 7i (laarll 2@y + lla(z, t,0)ll L2(q))

Using (17) we obtain

Ca 1, .
sl omszzcn < |lvollace +(y—ydm + llaa,t,0)] 12 )}
(0,7:22(0)) @+ Z\ 7 @ @

A
(18)
Now, using the results in [13, Theorem III-7.1], we have that there exists C' > 0
such that

@all (@) < CUlgmllLe=0,1:22(2)) + Yall Lo o,7:L30)))

and from estimate (18), we deduce the existence of C* > 0 independent of M such
that

e llpe= (@) < C™. (19)
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Using the variational inequality (15) and the equality in (11), we have that

/ / (901\/1 + [V+ [t (2 )HL2(0 TJ “M> (u(z, t)—tpr(z,t))dadt > 0Vu € Uypy.

UM

It can be easily checked that this implies that

. —pum(z,t
Up(2,t) = Proji_s,u <V+ wM(# ) ) for a.a. (x,t) € Qg,, x (0,7).
lans (@) L2 0,)

Taking into account that @y; vanishes in QY ~x (0,T), we conclude that

[P, )]
v+ I

Y T E——
unM (x)‘|L2(0,T)

1
[Tpar (2, )| < < ;\(ﬁ m(z,t)| for a.a. (x,t) € Q.

Hence, using (19), we have that the first claim holds for Co, = C* /v.

Finally, we prove that for M > Cu, @ is a solution of (P). Let us take u €
L>(Q) and set M = |Ju| o (qy. If M’ < M, then u € Ups and J(upr) < J(u). If
M’ > M, consider @y, a solutlon of (P /). We have that ||t |1 (Q) < Coo < M,
and hence @y € Uny, so J(tn) < J(tupr) < J(w), and the proof is complete. [

To end this section, we describe the sparsity properties of optimal controls, as
well as their regularity.

Theorem 3.3. If @ is a local solution of (P), then there exist §,@ € Y such that
relations (13) and (14) hold withdrawing the subindex M and there exists X € 0j(u)
such that

@+ vii + pX = 0. (20)
Moreover, g € C(Q) u, X € C(Q) N HY(Q) and the following relations hold for all
(z,1) € Q

la(2) | z2(0,7) = 0 < [|[@(x)l|L200,1) < 145 (21)
1

7*95(‘%375) fo € Q%a
I
u(x,t)

|a(2)||20,1)

Mz, t) = (22)

Furthermore, X is unique for @ given.

Proof. The continuity @ € C(Q) follows from (14) and [13, Theorem III-10.1].
Relation (20) is a direct consequence of theorems 3.1 and 3.2. From (20) and (11)
we get
_ 1% _ .
w(z,t) v+ ,7} = —p(z,t) a.e. in Qg x (0,T). (23)
la(2)|L2(0,1)
Taking the L%(0, T)-norm in (23) we infer

_ L .
la@)l 20,1y = —[I@@) L20.7) — 1] ace. in Qa. (24)

Hence, (24) implies that [|¢(z)||12(0,r) > p if € Qz. On the other hand, if z € QF,
then (20) implies that @(z,t) = —uA(z,t). Then, from (11) we get [|@(x)||r2(0,1) <
win Q2. Thus, (21) is proved. The relations (22) are an immediate consequence of
(20) and (11) as well. Now combining (21) and (24) we deduce that

(@)l 220,y = [Ilw( 2| 200y — 1] Tae. in Q, (25)
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where st = max(s, 0) for every s € R. Since ¢ € C(Q)NH"(Q) we obtain from (25)
that the function @ — [|@(z)| r2(0,1) belongs to C(Q) N H'(Q). Indeed, it is enough
to observe that f : R — R defined by f(s) = (s — u)* /v is Lipschitz continuous,
and g : @ — R given by g(z) = [|¢(x)]|r2(0,r) belongs to C(Q2) N H*(Q2), hence
(fog) € HY(Q).
Additionally, (23) implies that
la(z)|20,m)

u(x,t) = ———
@0 = = ) e + 7

The continuity @ € C(Q) follows from (26), ||[@(z)| 200, € C(Q) and ¢ € C(Q).
Let us check that u € H*(Q). To this end, now we set f : [0,+00) — R with
fls) = s and g+ @ — R given by g(x) = ||u(x)||z2(0,r)- We have that
f € C®[0,0), |f(s)] < 1/v and |f'(s)| < 1/p for all s > 0, g € HY(Q), and

a(z,t) = —(f o g)(x)p(x,t). Therefore, we can apply the chain rule to obtain

Vot(z,t) = = f'(9(2))Vg(@)@(x,t) = f(9(2))Vap(z, 1),
which is in L?(2) since (f o g), (fog) € L=(Q), ¢ € C(Q), Vg € L?*(Q), and
V.@(x,t) € L*(Q).On the other hand, using again relation (26) we deduce

u(x)|| g2 T 1
[ oate,vpazar = [ (0D [ o 12 deat < gl
Q o\l 0 v

u(z)| 20,1y + 1

(z,t) V(z,t) € Q, (26)

Hence, the assertion follows from the regularity ¢ € H HQ). - B
Finally, ¢, 4 € C(Q)NH(Q) and relation (20) imply that A € C(Q)NH(Q). O

4. Second order conditions. In this section, we provide necessary and sufficient
second order optimality conditions. First let us introduce the cone of critical direc-
tions

Ca = {v e L*(Q) : F'(a)v + uj' (@;v) = 0}. (27)
Proposition 2. The set Cy is a closed, convex cone in L*(Q).

The proof of this proposition can be found in [7, Proposition 3.1] and is based
on the observation that

F(w)v + pj' (a;v) > / (@ + v+ pNvdrdt =0 Yo € L*(Q). (28)
Q
We define

7 (us0?) =

1 T T u(z, t)v(z,t) ’
/ _ / 02(x,t)dt— / L dt dzx if u # 0,
Qo |\U(37)||L2(0,T) 0 0 ||u(33)||L2(0,T)

0 if u = 0.
(29)

The expression for j”(u;v?) is just notation, it does not mean that there exists a

second derivative in the direction v. In fact, the integral above could be 400 in

some cases. Observe that the integral is well defined because the integrand in €2,, is

nonnegative, which can be proved easily with the Schwarz inequality. In the sequel

we will denote J'(u;v) = F'(u)v + pj’ (u;v) and J” (u;v?) = F”(u)v? + pj” (u;v?).
Necessary conditions are a consequence of [7, Theorem 3.3, Case I1I].
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Theorem 4.1. Let 4 be a local minimum of (P). Then J"(u;v?) > 0 for every
veCy.

Sufficient conditions are nevertheless different from [7, Theorem 4.12], since in
that reference local optimality is proved in L>(Q; L?(0,T)), whereas we are able to
prove local optimality in L?(Q). This is essential to prove error estimates for finite
dimensional approximations of (P); see Lemma 5.6 below.

Theorem 4.2. Let u satisfy the first order optimality conditions given by Theorem
3.1 and such that J"(u;v?) > 0 Vo € Cgz \ {0}. Then, there exist e > 0 and § > 0
such that

) _ =
J(u) + §||u - u||%2(Q) < J(u) Yu € B.(u), (30)
where B.(u) = {u € L>(Q) : |lu — ul|12(q) < €}

Lemma 4.3. Under the assumptions of Theorem 4.2, if there are no § > 0 and
e > 0 such that (30) holds, then there exist a sequence {up}p>, C L>®(Q) and
measurable subsets of Q, {Q;}7°,, such that

1
|Q\Qk|<% Vk > 1, (31)
_ _ 1
lur — Lo ;22 00,m)) + lur — Ul z2(@) < 0 (32)
_ 1 _
J(ug) < J(a) + ﬁHuk - u||%2(Q). (33)

Proof. TIf (30) does not hold, then for any integer &k > 1 there exists an element
wy € L>(Q) such that

B 1 _ 1 _
|we — |20y < % and J(wg) < J(@) + ﬁﬂwk — u||2L2(Q). (34)

Since [Jwg (@) — @(z)| L2017y — 0 in L*(€2), we can extract a subsequence, denoted
in the same way such that ||wy(x) — ()| z2(0,7) — O for almost all points = € €.
Then, from Egorov’s theorem we deduce the existence of a subsequence {w;, }32,
and a sequence {2 }7°; of measurable subsets of Q such that (31) holds and

~ B 1
|wj,, — @l Lo (,;22(0,7)) = €88 SUP,eq, (W), (2) — u(2)|[L2(0.1) < %

Moreover, j can be chosen so that j, > 2k. Then setting uy = w;, we get with
(34)

lw — Ul Lo (p;z2(0,1)) + luk — tll2(@)

_ _ 1 1 1
= llwi = @llz=(au;z20m) + lws = Allr2@) < 5 + PR
and
~ 1 12 = 1 =112
J(ur) = J(wj,) < J(u) + j;||wjk =72 < J(@)+ ﬂ”uk —ull72¢q)
which proves (32) and (33). O

Proof of Theorem 4.2. We argue by contradiction. If (30) does not hold, then
we get from Lemma 4.3 a sequence {uy}p2, satisfying (31)-(33). Let us define
pr = |Jur — Ul 2@y < 1/k and vy, = (ux — u)/px. Since, |lvg][2(q) = 1 for every k,
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we can extract a subsequence denoted in the same way so that v, — v in L?(Q).
The proof is split into three steps.

Step I. v € Cy. Using that v — j'(@; v) is convex and continuous, we have that

J'(u;v) < hmlnfj (@;vg) < hmlnf](u + pve) = 5(@) = lim inf M
k—00 Pk k— o0 Pk

The last equality is an immediate consequence of the definition of v;. From this
inequality, (32) and (33) we get

P )

< lim inf P+ pivi) — F(@)] + i+ pro) — (@)
—oo Pk

o1 )
= liminf @w (uk) — J(u)]

1 _ <o Pk
< liminf Shon lur — u||%2(Q) = liminf — = 0.

k—oo 2kp k—oo 2k
This inequality and (28) imply that F'(@)v + pj'(a;v) = 0, hence v € Cj.
Step II. v =10. For 8 > 0 small we define
@ = {x € 2 fula)|zzom 2 B} and dsla) = [ u(@) oo do

Qg
and with Lemma 4.3

Qg’k = Qﬁ NQ, and jg’k(u) = / HU(LL‘)||L2(07T) dx.
Qp .k

Since ||a(x)| 20,y > B > 0 for every x € Qp, we have that jg is infinitely
differentiable. Making a Taylor expansion we get

. _ . _ . _ P _ P
Ja.k(t+ prvr) — jpk () = pkjlﬁ,k(u; vk) + ?kj/ﬁ/ k(T v7) + f]%'k(uﬂk,vk)

1 T
= pk/ _7/ u(x,t) vp(z,t) dt do
Qs 182 L20,7) Jo

2
2 T T
P 1 / 2 / a(x,t)
+ == —_— vj (@, t) dt — vy, (z, t) dt dx
2 Jag, la(@)llzz0.m) | Jo K t) ( o lla(@)llz2,m)

3 3 1 r ’
Pk /
+ = wg, (,t) vg(x,t) dt
6 Ja,, ||u19k(37)||?i2(0,:r) ||“19k(37)||%2(0,T) < 0 §

T T
- </o v (z,1)? dt) (/0 g, (T, t) vi(z, t) dt)} dz,

where ug, = @+ kpr v with 0 < 9 (x) < 1. Observe that relation (32) and the
definition of vy lead to

lwg, ()] 2200,7) = B — Drprllvr(@)ll L2 (o, T)

iy

> B — Vil|lux — @l Loe(p;n200,1)) = B — — > 5> 0

for all k& > . Hence, the above integrals are finite for every k > %
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Now, using the convexity of the mapping f — || f||z2(0,1), we get
i@t peo) = i@ = [ on@)lom
Q3

w [ i@t )@l - @} de
Qa\Qs,k

+ [ (@ + pr vr) — Jp.k(W)]

o p? P
> pre (W 0k) + 5P a5, 0F) + 6’“J’g”k(wk,v2)

From (33) we get

Pk

op > Jt pror) = J(@) = prd F' (@) o + p ' (@ 0r)}

4 2L @) o} + (o)
P i
+ l[FN(uek) - FU( )]Uk + uﬁjg/k(uﬁka)

2
where ug, = 4+ Opx(ur — @) with 0 < 6 < 1. We deduce from (28)

3
P P _ P -
Pl B @)+ o)} + 2L () — F )0+ 12 5 0,

Dividing this expression by pz /2 we obtain

g1 1
F"(@) oj + 1 g (@ 07) < [[F” (ug,) — F" (@)]vg| + M*|J§'k(um, vl + 5 (35)
From [7, Lemma 4.2] and the identity ||vx|[z2(g) = 1 we deduce
lim |[F"(ug,) — F"(w)]vi| = 0. (36)

k—o0

Let us estimate the second term of (35). By usmg Holder’s inequality, the expres-

sion of j'y (us,;v3), that [ug, ()] 22(0,1) > 8 5 for every k large enough, (32), and

lvellz2(@) = 1, we obtain

o @)l
i (wa, s o) < 6/ - 0D gy,
s oo Qp,k Huﬁk(x)H%Z(o,T)
24/
S x vk (@)1I72 0,7y
32 Q1 (0,7)
24 9 24
< glveli=@s 020 /QM (@20 dr < 5572
So we get
U;ak(uﬁkykaSW%O as k — oo. (37)

Now, from (35), (36) and (37) the following inequality follows
F"(@) v® + pjg ;%) < lminf{F" (@) vi + pjg (@ 0p)} <0 V8 >0. (38)
—00 ’

Hence, taking the limit as 3 — 0 we conclude that J" (@; v?) = F” (a)v?+p 5" (4;v?) <
0. According to the assumption of the theorem, this is possible only if v = 0.
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Step III. Contradiction. Since v = 0, then z,, — 0 strongly in L?*(Q). Hence,
from the expression of F’ given by (9), and using the identity |lvx||z2(g) = 1, we
have that

lim F"(a)vi =v
k—oo

Using now that jlg,k(ﬂ;vﬁ) > 0, and (38), we deduce

v < liminf{F" () v + pjj , (@3 07)} <0,

k—oc0

which contradicts the assumption v > 0.

5. Numerical approximation. Next, we will study the approximation of (P) us-
ing finite elements. The goal of this section is to show not only convergence of the
solutions of the discrete problems to solutions of (P), but also how the sparsity
structure of an optimal control (cf. (21)) is inherited by the discrete optimal con-
trols. Both the state and the control will be discretized. In both cases, we will use
piecewise constant functions in time, but in space we will use continuous piecewise
linear functions for the state and piecewise constant functions for the control. Fi-
nally, error estimates are derived. The study of approximations of the control by
means of continuous piecewise linear functions will be done in a forthcoming paper.
Along this section we will assume that €2 is a convex set.

We counsider, cf. [1, definition (4.4.13)], a quasi-uniform family of triangulations
{Kn}n>0 of Q and a quasi-uniform family of partitions of size 7 of [0,T], 0 = tg <
t1 <--- <ty =T. We will denote Qp, = int Ugek, K, Np and Ny the number
of nodes and interior nodes of Ky, I; = (tj_1,t;), 7j =t; —t;_1, T = max{7;} and
o = (h,7). We assume that every boundary node of 0, is a point of I'. Additionally
we suppose that the distance D(z,T') < Crh? for every z € I'j, = 09Qy,, which is
always satisfied if n = 2 and T is of class C?; see, for instance, [16, Section 5.2].
Under this assumption we have that

2\ 2] < CR2, (39)

where |- | denotes the Lebesgue measure. In the sequel we denote Qp, = Qp, x (0,7).
Now we consider the finite dimensional spaces

Yh:{zh GC(Q) Zh‘KEPl(K) VKEIC}“ ZhEOinQ\Qh},

Vo ={yo € L*(0,T;Y3) : Yoy1; €Y Vi =1,...,N:}.

The elements of ), can be written as

N, N, Nin
Yo = E Yn,iXj = E E Yi,j€iX;
j=1 =1 i=1

where yp,; € Yy for j=1,..., N, y;; € Rfori =1,...,Nrpand j=1,...,N,,
{ei}?gih is the nodal basis associated to the interior nodes {xl}fi’lh of the triangu-
lation and x; denotes the characteristic function of the interval I; = (¢t;_1,t;). For

every u € L™(Qy), we define its associated discrete state as the unique element
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Yo (u) € Yy such that

/ (Yn,j — Yn,j—1)zndx + Tian(Yn . 2n) + / a(x,t,yn, ;) zpdedt
Qh Ij Qh

:/ / uzpdxdt Vzp € Ypand all j=1,..., N,
1; Ja,

/ Yn,02pdxr = / Yozndx Vzp € Ya, (40)
Qp Qp

where, for all y,z € H'(Qy),

Clh(y,Z) = / Z azjaxzyaa,Jde

Qp ij=1

From a computational point of view, this scheme can be interpreted as an implicit
Euler discretization of the system of ordinary differential equations obtained after
spatial finite element discretization.

By using the monotonicity of the nonlinear term a(z, t,y), the proof of the exis-
tence and uniqueness of a solution for (40) is standard.

Assuming that  C R?, it is proved in the work by I. Neitzel and B. Vexler [14]
that there exist hg > 0 and 79 such that

1y () = yullL2 (@) < C(7 + 1) yull (@) VI < ho, T < 70 (41)

Remark 3. In the afore-mentioned reference, the estimate is obtained for n = 2,
a polygonal domain and quadrilateral elements. The adaptation of the proofs to
convex domains and triangular elements or n = 1 is straightforward. An extension
to n = 3 is also possible and is currently being written by D. Meidner and B. Vexler.

To discretize the controls, we will use piecewise constant functions. Consider
Uy = {Uh S L2(Qh) D Up|K S PO(K) VK € ’Ch}
and
Uy, = {uo € L*(0,T;Un) ¢ upyy, € Up Vi =1,...,N:}.
The elements of U, can be written as

N, N,
Uo = Z“h,ij = Z Z UK FXKEX;= Z UK XK -
j=1

j=1 KEK, KeKs,

We formulate the discrete problem as
p .
(P,) min Iy (ug),

Uo o

where J,(uy) = Fp(ts) + pjo(ue),

1 v
F,(u) = f/ 1Yo (1) = yal* dw dt + S ullZz g,
h

2
and we define j, : U4, — R by
N 1/2
Jo (o) = lusllzrenizzorn= > |Klluxlror = > K| D muk;
KeKy KeKh Jj=1

The existence of a solution of problem (P,) is an obvious consequence of the con-
tinuity and the coercivity of J, in the finite dimensional space U,.
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Under the assumptions 1-2, F, : LP(0,T; LY(Q,)) — R is of class C2. Moreover,
for every u,v € LP(0,T; L(Qy)), we have that

F;(u)v:/ go,,(u)vdxdt—i—u/ uv dx dt
Qn Q

h

where, for every u € LP(0,T; Li(Q4)), ¢o(u) € Y, is its associate discrete adjoint
state, which can be written as

N, N, Nin
Po(W)= PniX; =Y D PijeiX
j=1 =1 i=1

and satisfies the equations

ON,+1,n =0

0
/(%,j*<Pj+1,h)zhd17+Tjah(2h,%,j)+// a*a(x,t,yh,j)%,jzhdxdt
Q I; Jo, 0Y

= / / (Yn,j — Ya)zpdxdt Vzp € Yy forall j = N,, ..., 1L
I]‘ Qp

For every u, € U,, the sets K, and K2 are defined as

N,
Ko(ug) ={K € Ky, : ZT]‘U%{J >0}, Kuy) =K\ Ko (uy).

j=1
Notice that if we define Qp, ,,_ and Q%MU as we did in Proposition 1 using the set
Q, instead of the set 2, we have that that Qp,u, = int Upex_ () K and O , =

UKEICg(uU) K.
We have that A\, € 9j,(u,) C U, if and only if

N- 1/2
(ZTJ-X?},J-) <1 VK €K%(u,)
=t (42)

UK,j

Ak = | VK € Ky(uy) and V1 < j < N,.

luk|lr2(0,1)

The directional derivative of j, at a point u, € U, in the direction v, € U, can
be written as

N,
Z TjUK jUKj

. j=1
Jo(ugive) = Y |Klllvkllzeor + Y |K|W-
KeKY KeK, KllL2(0,1)

In the sequel we denote J! (ug;v,) = Fi(uy)vs + pjl (ue;vs). We also define

7t LYQ) — Uy, by
1
Th2z = Z Iq /Kz(x)da:xK.
KeKn

With P, we denote the space of piecewise constant functions associated with the
temporal grid {to,t1,...tn, }. Then, the projection operator =, : L*(0,T) — P,
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is given by
N 1 t;
U = Z - /t u(t)dty;.
Jj=1 i1
Then we have T, m,u = mpmu € U, for all uw € L1(Q; L2(0,T)). We also have that
7, omp : L?(Q) — U, is the projection operator.

Theorem 5.1. If 4, is a local solution of (Ps), then there evist Jo = Yo (is),
Po = 0o (ly) € Yy and Ay € 05, (ly) such that

Th@Po + Vi + pihg = 0. (43)
Moreover the inequality J. (ty;vs) > 0 holds Yv, € Uy .

Proof. First order optimality conditions follow in a standard way from the convexity
of j,, the definition of subdifferential and the expression for the derivative of Fy,
taking into account that

/ whgbavgdxdt:/ DoVodzdt
h h

for all v, € U,. O

5.1. Sparsity properties. Before proving error estimates, we will show that the
discrete optimal controls show a sparsity pattern alike the solutions of Problem (P).
Let us introduce the following notation

- 1
¢K,‘=7/ Ph,jdx.
PR S T

Observe that

N,
ﬂh@aiz Z K jXKX = Z PKXK-

j=1 Kek, Kek;

Theorem 5.2. If u, is a local solution of (P,), then

1
—;(]5}(7]‘ lfK S ICg(ﬁo)
Ai,j = B (44)
UKD K € Ky ()
||UK||L2(0,T)
K € K)(i) < |éxllrz2om) < 1 (45)

and Ay 1s unique for u, given.

Proof. From (43) and the definition of K2(@,) we have that A\g; = —¢x ;/p if
K € K2(ii,). The expression for K € K, (ii,) follows from (42) and the fact that
Ao € 0y (Tly).
Using this expression for A\, and (43) and we have that for all j = 1,..., N,
o

= | = *d_’K,j it K € ’Ca(ﬂo)- (46)
HUKHL?(O,T)

UK |V +
Multiplying by 7tk ; and making the sum for all j, we get

_ 1, - . _
lts || 22(0,7) = o [l¢xllz0ry — 1] if K € Ko(iio). (47)

From (47) we deduce that K € K, (i) implies [|¢x || r2(0,7) > p.



16 E. CASAS, M. MATEOS AND A. ROSCH

On the other hand, if K € K(@y), we obtain from (44), (43) and (42) that
oxllL20,1) < g O

5.2. Convergence and error estimates. We will show that the solutions of the
discretized problems converge strongly to solutions of Problem (P) in L?(Q). Next,
we show a kind of reciprocal of this result: strict local solutions of (P) can be
approximated by solutions of the discretized problems. Finally, we are able to
show an order of convergence for this approximations. Through this section we
will assume n < 2, since we use several results from [14]. Nevertheless, B. Vexler
has proved recently that the stability results and the error estimates also hold for
Q C R3. A paper with the details of the proof is in preparation. Using his results
we can extend the analysis of this section to the three-dimensional case.

First of all, we need to show boundness of the discrete optimal controls in the
adequate norm.

Lemma 5.3. Let 4, be a local solution of (P,). Then there exists C, > 0 inde-
pendent of o such that

e[| L<0,7522(01)) < Cso

Proof. The result follows from a bootstrapping argument using the stability results
n [14]. First, we have that

v, B 1
5”“’0“%2(@,1) < Jo(tis) < J5(0) = 5”:‘/0(0) - de%Q(Qh) =

where y,(0) is the discrete state related to the control u, = 0. Now, from the
classical stability estimate (see, for instance, the second part of [14, Theorem 4.1])
we have that there exists Co > 0 independent of o such that

%o Loe (0,722 (02)) < Co.

Analogously, from the discrete adjoint state equation we deduce the existence of a
constant C3 > 0 independent of ¢ such that

@0l oo (0,7522(02)) < Cs, (48)

and hence, taking into account that 7, is a projection in L?(Q) and (46), we get

_ 1 _ 1.
||u0||L°°(07T;L2(Qh)) < ;||7Th¢a|\Loo(o,T;L2(Qh)) < ;|\<Pa||L°°(0,T;L2(Qh))

and the result follows for Co, = C3/v. O

Remark 4. If we further suppose that y; € LP(Q) for some p > n, a slight modifica-
tion of the proof of the previous Lemma allows us to conclude using [14, Th 3.1 and
Th 4.1] that there exists some . > 0 independent of h such that ||@s ||z (0,) < te-
Using this, (45), and the the fact that ||7,@s||z(0,) < |PollL=(qn), We can de-
duce the existence of a critical value p. such that @, = 0 for all g > p.. For the
analogous property for the continuous solution, see [7, Remark 2.10].

Lemma 5.4. Let (4,), be a sequence of solutions of (P,) with o — (0,0). Then
there exist subsequences of {ty }o, still denoted in the same way, converging weakly*
in L>(0,T; L?(2)). If u, — @ weakly* in L>=(0,T; L?(SY)), then u is a solution of
(P),

lim J,(4,) = J(a@) = inf (P) and 1 iy — 1 —=0. 49
Jim () = () = nf (P) and_lim [, ~ 120 (49)
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Since u, is not defined on all @), we have to specify what we mean when we say
that u, converges weakly* to u in L°°(0,T; L*(2)). It means that

Yuydzdt — / Yudzdt Y € L0, T; L*(Q))

Qh Q

Notice that since we suppose that [\ €| — 0 this is the same as saying that the
extension to Q \ @, of u, by a function in L*°(Q), converges weakly® to u. In the

following proof, we will consider that the elements of U, are extended, for instance,
by zero to (0,T) x (£2\ Q4).

Proof. From Lemma 5.3 we know that {i,}, is bounded in L>(0,T; L?(£2,)) We
can extract a subsequence, still denoted in the same way, such that 4, — u weakly*
in L°°(0,T; L?(2)). We are going to prove that i is a solution of (P). Let @ be a
solution of (P) and let u, be its projection onto U, in the L?(Q) sense. Denoting
U = ya, we have that i, — @ weak* in L>°(0,T; L*(Q)) implies @i, — 4 weakly in
L?(Q) and yu, — ¥ in L?(Q); see Theorem 2.1. On the other hand, (41) implies
that y, (iiy) — ya, — 0 in L*(Q), so we have that y, (ii,) — yz in L?(Q). This leads
to
J(@) < liminf J,(4,) < limsup J,(4,) < limsup J,(uy) = J(@),

0—(0,0) o—(0,0) o—(0,0)
where we have used the weak lower semicontinuity of the control cost terms in J,.
Let us proof now the strong convergence of the optimal controls in L?(Q). We
have just proved that J,(@,) — J(@). This, together with the strong convergence
Yo — ¥, implies that

. v,_ 2 o V2 -

Jim (Gl + 13(0)) = 5 ll3aq) + (@) (50)

On the other hand, using the convexity of j(u) and the weak convergence i, — 1,
we have that

(@) < liminf (@, ). 51
J(U)_Ulgl((l)%)J(u) (51)

Using (50) and (51) we have

V-2 R [P : Voo 2
§||UHL2(Q) < (171£n>((1)%1; §||Ua||L2(Q) < ET(SO%%)§||UU||L2(Q)
v
< limsup (f Uy ||? + g (s ) — liminf pj(u,
i (1o + ) Hmind )
14 —n2 L Y. v — 12
< Ylalaq) + 1) — (@) = 2l
from where we readily deduce the strong convergence in L?(Q). O

In the following we will extend the elements of U, by @ in @ \ Q, where @ is a
fixed local solution of (P). Notice that using the sparsity property of the control
(21) and the zero boundary condition of the adjoint state equation, we have that
for h > 0 small enough, @ =0 in Q \ Q.

Lemma 5.5. Conversely, let ii be a strict local minimum of (P) in the L*(Q) sense.
Then there exist €9 > 0, hg > 0 and 79 > 0 such that (P,) has a local minimum
iy € B, (), where Bey(u) = {u € L*(Q) : ||u — ul|r2(q) < €0}, for every h < ho,
T < 79 and the convergences (49) hold.
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Proof. Suppose now @ is a strict local minimum of (P). This means that there exist
€o > 0 such that @ is the unique solution of
(Peo min J(u
uw€L>*(Q)N B, (1)
where B, () = {u € L*(Q) : ||u — ul|12(g) < €0}. Associated to this problem, we
consider
(Pe)  min Jo(u).
Ug €EU;NBe (1)

Let u,= 7, m,% be the projection of @ onto U, in the L2(Qp) sense. We extend
Uy to Q by taking u,(z,t) = u(z,t) in Q \ Qn. Since u, — @ in L*(Q), there
exist hy > 0 and 71 > 0 such that wu, € U, N BEU () and hence this set is not
empty for every h < hy, 7 < 71 and therefore (P%°) has a solution u,. Moreover,
from the definition of the projection we infer that ||us|| (@) < ||@] L (g). Now let
us considered a subsequence, still denoted in the same way, converging weakly in
L?(Q) to @. Arguing as in the proof of Lemma 5.4, we have that @ is a solution of
(Pe0), and the convergence is strong. Since @ is the unique solution of this problem,
we have that u = u. Since all the convergent subsequences converge to the same
point, the whole sequence converges to u. Finally, this strong convergence implies
that there exist hg > 0 and 79 > 0 such that 4, € B, (u) for every h < hg, T < T
and therefore %, is also a local solution of (P, ). O

%) >0 for allv € C3 \ {0}

Lemma 5.6. Let u be a solution of (P) such that J"(u;
a 5.5. Then there exist h > 0

and let U, be the solution of (P,) described in Lemm
and T > 0 such that

v
.
6 _ —112 _ _

5”“0 = l|72q) < J(Us) — J(u),
for every h < h, T < 7, where & is given in Theorem J.2.

Proof. The strong convergence (49) @, — @ in L?(Q) shown in Lemma 5.5 implies
that for the £ > 0 given in Theorem 4.2, there exist » > 0 and 7 > 0 such that
s € Be(u) for all h < h, 7 < 7, and the result follows from (30). O

Theorem 5.7. Let i be a solution of (P) such that J" (i;v?) > 0 for allv € Cz\ {0}
and let Uy be the solution of (P,) and 7o and hy be as described in Lemma 5.5. Let
us assume that there exists hy > 0 such that yq € L=(Q \ Qn) Yh < hy. Then, for
every h < min{hy, ho} and every 7 < 19, we have

o
Sliio = ll2a(g) < el +h2).

Proof. Using Lemma 5.6, we have to estimate J(u,) — J(u). We split into the
following parts

J(ﬁo) - J(ﬁ) = J(uy) — Jcr(ﬁa) (52)
+J5 (o) — Jo(tg) (53)
+J5(ug) — J(ug) (54)
+J(ug) — J(a) (55)

We choose u,= 7, mhus, the L?(Qp)-projection of % to the space of piecewise con-
stant functions. We extend u, to @ by taking u,(z,t) = @(z,t) in Q \ Q. We also
recall that [|ue || L (@) < ||@] L= (q). Because of optimality we have for (53)

Jo(ty) — Jo(us) < 0.
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To obtain the estimates for the terms in (52) and (54) we use the assumption yq €
L>(Q \ Qn), the existence of C' > 0 independent of o such that |ya, ||z Q\qQn) +
1Yu, | Lo (@\@n) < C and assumption (39), together with estimate (41) to obtain

J (o) — Jo (o) + Jo(us) — J(ug) < (T + h?).
It remains to estimate term (55).
= 1 2 1 = 2
J(ug) = J(u) = §||yug - yd||L2(Q) - §||y - yd||L2(Q)
5 luelFaig) = 532y
Fplluo || 21 sz 0,m)) — BTl L1 ;2200,7)) (56)

First, using that @ € H'(Q) N L*(0,T; H}(Q)) and ¥, y., € L?(0,T; Hi(Q)), we
get

1 5 1, 9 _
§||yu0 - yd||L2(Q) - 5”2/ - yd”L?(Q) < cllug — U||L2(0,T;H—1(Q))
< C(||7TT(7Thﬂ =) L2051 () + |78 — ﬂ”L?(o,T;H—l(Q)))
< C(||7Thﬂ — 20,711 () + |70 — ﬂ||L2(o,T;H—1(Q)))
< C(h*+ T)(||ﬂ||L2(o,T;H1(Q)) + Ha||H1(O,T;H*1(Q)))7
where we have used the well known approximation property
77w —ullL200,7) < OT||ullgr0,1) Yu € HY(0,T)

and
I7hu = ull 1) < CP?|Jull i (o) Yu € Hy(Q),

which follows using a classical duality argument.
Now, recalling that u, = @ in @ \ @ and that u, is the projection in the
L?(Qp)-sense of u, we infer

14 9 v, _ 2
§Huo||L2(Q) - §||UHL2(Q) <0.

Let us estimate the last part of (56):

[ — /Q ol 20,1 d = / el 2o,y da

h Qp

< [ Imaliand = 3 [ (/ (ixr [otenae) dt)m da

KeKkn

T
- a(s,wdg) dt) 1 ate ) delloo
S - X1 e i
< 3 [ ez dE = ez
KeKy

Since u, was extended by @ in Q \ Qp, we get that

o |l ;2 0,7)) < l8llLr ;L2 0,1))-
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Hence, we finally find with Lemma 5.6

5. _ _
§||ug - u||2LQ(Q)§ J(ty) — J(@) < c(t + h?).

O

Remark 5. It remains an open question whether our error estimate O(y/7 + h) is
sharp. There are several facts that suggest that the order of convergence for the error
should be O(7 +h): the finite element error for the state equation is O(7 + h?); the
H'(Q)-regularity of the optimal controls implies that they can be approximated by
elements of U, with an approximation error O(7 + h) (using L?(Q)-projections, for
instance); the experimental order of convergence found in our numerical experiment
also supports this idea; finally, the available error estimate in [14] for a problem
governed by a semilinear parabolic equation and quadratic differentiable functional
is also O(7 + h).

Nevertheless, we have not been able to prove such an estimate for our problem.
Sharp estimates for problems involving differentiable functionals make use of the
second derivative and the mean value theorem, which are not applicable in our
setting, since we deal with a non-differentiable functional.

6. Numerical experiments. We report on two numerical experiments. In the
first one, we describe an example with known solution and show error estimates
(cf. Theorem 5.7). In the second one, we show how the sparsity properties of the
solution change as u changes; cf. Remark 4 and [7, Remark 2.10].

6.1. Experiment 1. Error estimates for an example with known solution.
Let = (0,1) C R and let T = 1. We are going to describe all the parameters,
data and solution, of a model example for (P) when a(x,t,y) =0 and yo = 0.

Consider two real numbers 0 < a; < az < 1 and a continuous function U (x)
supported in [a1,as]. For instance

U() = X(a1,a2) ( — a1)(az — )
Consider also a continuous function V'(¢) such that V(T) = 0. For simplicity, we
will choose one such that [|V[|z2(0,7) = 1. In our example V(t) = V/2sin(27t). The
optimal control is
w(x,t) = U(x)V(¢).
With an expression for @, we can compute (an approximation of) g.
We have that
Qg = ((11, az)
and also, since U(zx) > 0,

la(@)l|20,m) = U ()] = U(x).
Therefore, we can define the element of the subdifferential and the adjoint state in
Q4 according to Theorem 3.3 as

Az, t) =V () iftx e Qy
olx,t) = —viu(x,t) —pV(t) if x € Qg
We have just to define @(x,t) for x € QY. @ has to satisfy some conditions:

L. g€ C(Q)NHYQ).
2. @(fvat):()ifx:()ormzlort:l.
3. @) < pifaeQf



APPROXIMATION OF SPARSE PARABOLIC CONTROL PROBLEMS 21

FIGURE 1. Desired state (left) and Optimal control (right)

An easy way to achieve all these requirements is to look for an adjoint state that is
also in C*(Q). We will build an adjoint state of the form

(A1x2—|—le—|—Cl) if 0 SIE S aq
oz, t) =V(t) - < (—vU(z) — ) ifa; <z <aqg

(A2$2 + Box + CQ) ifas <x <1

The parameters A;, B;,C;, i = 1,2 are univocally determined by the boundary
conditions and the condition ¢ € C1(Q).

Ay = (va? —agvay + p) /a3

By = —(va? —agva; +2p)/a;

i =0

Ay = (p+aw —asy+adiv —ajasr)/(ay —1)2

By = —(2aap+ a1v — asv + av — a1aiv)/(ag — 1)?

Cy = —(u—2aspu+ a3y —av — ajagv + arazv)/(ag — 1)?

Once this numbers are obtained, the condition ||@¢(z)|| < p if z € Q2 will give us a
lower bound for the values of p that we can select.

w > viag —ay)ay/2

o > viae —ar)(l —az2)/2
Now that we have the adjoint state and (an approximation of) the state, we can

define (an approximation of) the desired target y, using the adjoint state equation.
We get

ya(z,t) = g+ 0p(w,t) + 0, 8(x, 1)
Notice that 92,¢(z,t) is not continuous in z and neither is yg4.

We fix the following parameters. The resulting desired state and the optimal
control are represented in Figure 1.

ay = 0.25, as = 0.75, v =1, = 0.1
We obtain a value for the objective functional of J(@) = 1.3927.
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Theorem 5.7 gives the estimate

[t — g || 22(q) = O(VT + h),
but our experiments apparently show

|t — o | r2(q) = O(T + h).
A similar superconvergence in 7 is observed in the experiments performed in [12,
§5.1]. In that reference, the authors obtain an experimental order of convergence
slightly better than the predicted one, concretely O(7%8). This observation is based
on an experiment with 512 time steps. Motivated by this, we have performed our
experiments using 8192 time steps.

We take two families of uniform partitions in space and time, with h = 27
1t =10 :1,and 7 = 277 j = jo : J for some values of I and J big enough. We
have been able to achieve I = J = 13 in a PC with MATLAB. To solve the discrete
problems, we use a semismooth Newton method as described in [11].

Let us denote o; ; = (h;, 7j). We perform three tests:

1. Oy izio :I. Thisish=r1

2. 04,7, % =19 : I*. This is fix small 7 and refine only in space.

3. o1, J =Jo:J*. And this is fix small h and refine only in time.

To measure the error, we compute

ey = ||ﬁ0 — ﬁ’gﬂHLz(Q)
where 7, % = 7,7,4. The operator 7, is the numerical approximation of the L? (0,7)
projection onto the set of piecewise constant functions given by the midpoint rule:
i f = Zjvgl SF((tj—1 +t5)/2)X(t,_,t;)- The operator 7, is the usual nodal inter-
polation in space for the experiment with continuous piecewise linear functions in
space and 7, is the numerical approximation of the L?(Q) projection onto the set

of piecewise constant functions given by the midpoint rule. The experimental order
of convergence is measured as

IOg(efn‘,i) - log(egi—l,i—l)
log(h;) — log(hi—1)
in the first cases and analogously in the other cases.
For the first test (h = 7), we obtain the results shown in Table 1.

EOC; =

€; E‘OC’z
4.37E -3 -
222E—-3 0.98
1.12E-3  0.99
9 | 5.60E—4 0.99
10 | 2.81E—4 1.00
11| 140E—-4 1.00
12| 703E-5 1.00
13| 3.51E-5 1.00

TABLE 1. Results for h; = 7, = 2%

0~ O =

It looks a lot like
te — @l|2(q) < C(T +h) for T =h
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For the second test (7 fixed and small, refinements only in the space step), we
get the results summarized in Table 2. The error due to 7 = 273 is small, but not

€; E‘OC’z
2.99E -3 -
148E -3 1.01
7.44E -4  1.00
9 |3.7T6E—-4 098 =
10 | 1.94E -4 0.96
11 | 1.03E—-4 091
12| 5. 75E -5 0.84
13|351E—-5 0.71

TABLE 2. Results for fixed 7 = 2713 and decreasing h; = 27¢

00 ~J O .

zero. So the values obtained for the error due to the discretization in space are not
of the form Ch;, but of the form Ch; £ E.,. So it seems reasonable to discard the
results for which the error in time starts to be big enough. For ¢ > 10 it maybe more
than 10% of the error, so we stop at I = 9*. We obtain an order of convergence of
O(h), as expected.

In Table 3 we show the results for the third test (h fixed and small, refinements
in the time step). Since the spatial error is not zero, we discard the results for which

j €; EOC;
6 | 1.71E-3 —

7 |884E -4 0095
8

9

457TE—-4 095 x
240E—-4 0.93
10| 1.30E—-4 0.88
11| 754E-5 0.79
12 [483E -5 0.64
13| 351E-5 0.46

TABLE 3. Results for fixed h = 2712 and Tj = 277,

it is at least the 10% of the global error and stop at J* = 8. We obtain an order of
convergence close to O(7).

6.2. Experiment 2. Directional sparsity properties of the control. Let
Q2 =(0,1) C Rand let T = 1. We have solved the unconstrained version of the
example shown in [7, Remark 2.11]. The data for the example are v = le — 4,
w=po=4e—3 and

ya(z,t) = exp(—20[(z — 0.2)% + (t — 0.2)?]) + exp(—20[(x — 0.7) + (t — 0.9))).

We solve the problem in a rough mesh with h = 7 = 274, In Figure 2, we show the
support of the optimal control for the values p = Mpug, M =0 : 8. For u = 0, we
have no sparsity pattern for the control. Then we see how the control is directionally
sparse for g > 0 and how the support of the control is smaller as p increases. After
a few essays, we find that @ = 0 for pu > 7.4540u. As expected, the value of the
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objective functional increases as p increases. You may find the obtained numerical

values for J,(4,) in Table 4.

=0
1 L 40
08 30
0.6 20
04 10
02 o
o 10
o 0.5 1
X

=3,

1 40
08 30
06 20
04 10
02 0

0 10
0 05 1
x

n=6py

1 40
08 30
06 20
04 10
02 0

0 10
0 05 1
x

=y
1 40 1
08 30 08
06 20 06
04 10 04
02 il 02
0 -0 o
4 05 1
x

=4y

1 40 1
08 30 08
0.6 20 0.6
04 10 0.4
0.2 o 0.2

0 10 0

0 05 1
x

=Ty

1 40 1
08 30 08
0.6 20 0.6
04 10 04
0.2 o 0.2

0 10 b

0 05 1
x

n=2p

w5y

0.5
x
n=8py

40

F1GURE 2. Experiment 2. Support of the optimal control for dif-

ferent values of p

U 0 Lo 2p0 3o 4po
J5(4y) | 0.00935 0.03465 0.04879 0.05738 0.06273
w 5110 6110 Tho 810
J5(4y) | 0.06705 0.06803 0.06896 0.06906

(1]

TABLE 4. Experiment 2. Value of the objective functional as the
parameter p increases
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