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ABSTRACT

Recent studies show that the spectral behaviour of localized surface plasmon resonances (LPSRs) in metallic
nanoparticles suffer from both a redshift and a broadening in the transition from the far- to the near-field regimes.
An interpretation of this effect was given in terms of the evanescent and propagating components of the angular
spectrum representation of the radiated field. Due to the increasing interest awakened by magnetodielectric
materials as a both low-loss material option for nanotechnology applications, and also for their particular scat-
tering properties, here we study the spectral response of a magnetodielectric nanoparticle as a basic element of a
dielectric nano-antenna. This study is made by analyzing the changes suffered by the scattered electromagnetic
field when propagating from the surface of this dielectric nanostructure to the far-zone in terms of propagating
and evanescent plane wave components of the radiated fields.
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1. INTRODUCTION

Plasmonics is the branch of Nanophotonics which studies the confinement and enhancement of the local electro-
magnetic field produced in metal nanoparticles when electromagnetally irradiated. This effects, produced by the
resonant behaviour of the electronic plasma, are known as localized surface plasmon resonances (LSPRs). This
phenomenon has proven its utility in a wide range of nanotechnological fields such as optical communications,
spectroscopy or medical treatments. In these applications it is critical to have the control of the frequency at
which the LSPRs are produced. Usually, the position of the LSP peaks are obtained in the far-field domain
(kr >> 1) by conventional parameters such as the scattering or extinction spectral efficiencies. However, some
surface spectroscopy techniques like Surface Enhancement Raman Spectroscopy (SERS), requires of the control
of the LSP peak position in the near-field regimes (kr < 1) in order to get their optimum efficiency. In recent
studies it has been shown that for metallic particles under the dipole approximation, there is a clear redshift
and broadening of the nano-antenna plasmon spectral response when it is compared in the near- and far-field.1–3

Analytical expressions for predicting these shifts have been also recently proposed.4

One of the main disadvantages of using metals for plasmonic applications is that their performance is in-
herently accompanied by ohmic losses. This loss mechanism leads to Joule heating of both the nanostructure
and its local environment.5–7 This effect has its advantages in applications in which photothermal effects are
necessary.8 However, for other applications in which matter is analyzed through surface field enhancements, this
local heating can alter, or even destroy the samples. As an alternative, magnetodielectric materials (dielectrics
with refractive index m > 3, like silicon and germanium in the near infrarred (NIR)) have been recently proposed
as a low-loss option at their corresponding spectral range, and also for its particular scattering properties due to
the possible coherent excitations of electric and magnetic dipolar resonances.9,10

In this work, we perform a detailed study of the spectral response of a magnetodielectric nanosphere as a
basic element of a dielectric nano-antenna. This research is performed by studying the changes suffered by the
scattered, or emitted, electromagnetic field on propagation from the surface of nanostructure to the far-zone
in terms of propagating and evanescent plane wave components of the angular spectrum representation of the
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scattered fields. These components are the key concepts for the understanding of the near-field optics versus the
more conventional far-field observations.

The work is organized as follows: in Section 2, we briefly review the theoretical concepts. In Section 3, we
show the main results of this research. Finally, in Section 4 its main conclusions are presented.

2. THEORETICAL BACKGROUND

In general, the emitted field in a scattering process is composed of evanescent and propagating contributions.
The evanescent waves keep attached to the scatterer surface, so their amplitude decreases exponentially as the
distance from the surface increases. This non-radiative contribution was shown to be responsible for the near-field
spectral red-shifts for metallic nanoparticles.2 Whereas in the far field the spectral behaviour of the metallic
dipolar nano-antenna was dominated by the propagating waves (or radiative contribution), in the near-field
regime the non-radiative contribution takes the lead role. The calculations of both radiative and non-radiative
contribution can be achieved by the angular spectrum decomposition method of the radiated fields. For a sphere,
the general solution of this problem in terms of the Mie expansion was solve by Kvien.11

The scattering geometry is shown in Fig. 1. A linearly polarized (parallel to the X axis) electromagnetic
plane wave of wavelength λ and propagating along the Z axis, illuminates a magnetodielectric spherical particle
of radius a placed in the vacuum (εm = 1). Because we are treating with a magnetodielectric particle, its electric
permittivity will be considered to be purely real (ε = εr) such as silicon in the NIR, where the imaginary part of
its electric permittivity can be neglected. The magnetic permeability will be considered to be µ = 1.

Figure 1. Scattering geometry. A magnetodielectric spherical particle is illuminated with a plane wave electromagnetic
field travelling in the Z-direction and linearly polarized in the X-direction. At a point ~r, the contribution of the plane
wave with wave vector ~k(α, β) to the angular spectrum of the scattered field is also represented.

The scattered electric and magnetic fields, ~Es(~r) and ~Hs(~r), at a ~r point outside the particle can be expressed
as an angular spectrum of plane waves

~Es(~r) =
1

2π

∫ 2π

0

dβ

∫ π
2−i∞

0

ei
~k̇~r[S1(cosα)cosβ ~eα − S2(cosα)sinβ ~eβ ] sinβdα (1)

~Hs(~r) =
1

2π

∫ 2π

0

dβ

∫ π
2−i∞

0

ei
~k̇~r[S2(cosα)sinβ ~eα + S1(cosα)cosβ ~eβ ] sinβdα (2)

where ~k is the wave vector whose modulus is given by |~k| = k = 2π
λ . The ~eα and ~eβ are the unitary vectors in

the α direction with respect to the Z-axis, and in the azimuthal direction β on the XY-plane, respectively. The
angular spectra S1(cosα) and S2(cosα) functions in equations (1) and (2) are given by
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S1(cosα) =

∞∑
n=1

2n+ 1

n(n+ 1)
[anπn(cosα) + bnτn(cosα)] (3)

S2(cosα) =

∞∑
n=1

2n+ 1

n(n+ 1)
[anτn(cosα) + bnπn(cosα)] (4)

being πn and τn the angle dependent functions from Mie scattering theory.

In our analysis, the particle’s size is much smaller than the incident wavelength. As a result, only the dipolar
terms in the Mie expansion (n = 1) will be considered. So we are treating magnetodielectric particles weighted
by the Mie coefficients a1 (dipolar electric) and b1 (dipolar magnetic). Under these approximations, equations
1 and 2 can be rewritten as

~Es(~r) =
3a1
4π

∫ 2π

0

dβ

∫ π
2−i∞

0

dα sinα(cosβ ~eα − cosα sinβ ~eβ)ei
~k·~r+

3b1
4π

∫ 2π

0

dβ

∫ π
2−i∞

0

dα sinα(cosα cosβ ~eα − sinβ ~eβ)ei
~k·~r

(5)

~Hs(~r) =
3a1
4π

∫ 2π

0

dβ

∫ π
2−i∞

0

dα sinα(cosα sinβ ~eα + cosβ ~eβ)ei
~k·~r+

3b1
4π

∫ 2π

0

dβ

∫ π
2−i∞

0

dα sinα(sinβ ~eα + cosα cosβ ~eβ)ei
~k·~r

(6)

In our laboratory system, ~k = 2π
λ (sinα cosβ, sinα sinβ, cosα), ~eα = (cosα cosβ, cosα sinβ,− sinβ) and

~eβ = (sinβ, cosβ, 0). The integration interval of the angular coordinate α of equations (5) and (6), [0, π2 − i∞],
can be divided in two parts: [0, π2 ] and [π2 − i0,

π
2 − i∞]. The intregation over the first of the previous intervals

leads to the radiative contribution, ~ERs (~r) and ~HR
s (~r), whereas the integration over second interval corresponds

to the non-radiative contribution, ~EN−Rs (~r) and ~HN−R
s (~r).12 Taking this into account, equations (5) and (6)

can also be expressed as

~Es(~r) = ~ERs (~r) + ~EN−Rs (~r) (7)

~Hs(~r) = ~HR
s (~r) + ~HN−R

s (~r) (8)

The total radiated field can be expressed as those radiated by an electric dipole crossed to a magnetic one.
On the one hand, the electric and magnetic fields radiated by the electric dipole, ~Eelecs (~r) and ~Helec

s (~r), are given
by13

~Eelecs (~r) =
1

4πε0

[
~p

(
k2 − 1

r2
+
ik

r

)
+ ~n(~n · ~p)

(
−k2 +

3

r2
+

3ik

r

)]
eikr

r
(9)

~Helec
s (~r) =

1

4π
√
µ0ε0

[
(~n× ~p)

(
k2 +

ik

r

)]
eikr

r
(10)

On the other, those radiated by the magnetic dipole, ~Emags (~r) and ~Hmag
s (~r), are given by13

~Emags (~r) = − 1

4π

√
µ0

ε0

[
(~n× ~m)

(
k2 +

ik

r

)]
eikr

r
(11)
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~Hmag
s (~r) =

1

4π

[
~m

(
k2 − 1

r2
+
ik

r

)
+ ~n(~n · ~m)

(
−k2 +

3

r2
+

3ik

r

)]
eikr

r
(12)

where r = |~r|, and ~n is the unit vector pointing in the ~r direction. ~p and ~m are the electric and magnetic

dipolar moments induced in the particle by the incident electric field, ~Ei(~r) = ~E0e
i(~kiz−ωt) and are given by

~p = ε0αE ~E0 (13)

~m = αM ~H0 (14)

where αE and αM are the electric and magnetic polarizabilities of the spherical particle. These can be
expressed in terms of the Mie coefficients a1 and b1 as14

αE =
i6πa1
k3

(15)

αM =
i6πb1
k3

(16)

Then, the total electric and magnetic radiated fields by a magnetodielectric sphere can be expressed as

~Es(~r) = ~Eelecs (~r) + ~Emags (~r) (17)

~Hs(~r) = ~Helec
s (~r) + ~Hmag

s (~r) (18)

Eqs. (17) and (18) provide an easy way to separate both the electric and magnetic dipolar contributions.
For instance, by taking b1 = 0, we are only considering the electric dipolar term, and by taking a1 = 0, only
the magnetic dipolar contribution is being considered. The same approach can be done with equations (5) and
(6), which allow us to calculate the radiative and non-radiative contributions of both dipolar terms separately.
Another interesting feature of this representation is that the Mie coefficients a1 and b1, that appear as a factor in
every electromagnetic field contribution (see eqs. (7) and (8)), contains all the information about the morphology
and optical properties of the particle. As a result, by dividing either by a1 or b1 the radiative and non-radiative
contributions, it is possible to obtain a general law for the spectral behaviour of the electric (magnetic) dipolar
terms.

In this work, we are interested in calculating the contribution of the non-radiative part to the total radiated
field. The calculation of this contribution involves the integration over an imaginary interval. However, the
calculation of the total and radiative contribution can be performed in a more straightforward way. Therefore,
~EN−Rs (~r) and ~HN−R

s (~r) can be expressed as

~EN−Rs (~r) = ~Es(~r)− ~ERs (~r) (19)

~HN−R
s (~r) = ~Hs(~r)− ~HR

s (~r) (20)

A magnitude which is experimentally interesting is the scattering intensity. This parameter is directly related
with the square modulus of the electric and magnetic fields, | ~E|2 and | ~H|2. The expression for these two
magnitudes can be obtained from eqs. (7) and (8), and can be written as follows

| ~Es(~r)|2 = | ~EN−Rs (~r)|2 + | ~ERs (~r)|2 + 2 Re( ~EN−Rs (~r)∗ · ~ERs (~r)) (21)

| ~Hs(~r)|2 = | ~HN−R
s (~r)|2 + | ~HR

s (~r)|2 + 2 Re( ~HN−R
s (~r)∗ · ~HR

s (~r)) (22)

As it can be seen, the intensity of the total scattered field is not just the sum of the intensities of both
contributions. A interference term between the radiative and non radiative contribution has to be added too.
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3. RESULTS

The spectral response of a spherical magnetodielectric particle with radius a = 7, 5 mm and ε = 16 is going to
be studied over the spectral interval 40− 70 mm. Although we are treating with a particle of millimeter size, its
behaviour is equivalent to those of a nanoparticle with the same optical properties in the visible spectral range.
This is because of the scaling property of the Maxwell equations. The interest of working with particle sizes of
several millimetres is due to experimental reasons.10

In Fig. 2 we show | ~Es(~r)|2 (red solid line), | ~ERs (~r)|2 (green solid line), | ~ERs (~r)|2 (blue solid line) and the

interference term 2 Re( ~EN−Rs (~r)∗ · ~ERs (~r)) (magenta solid line) at points ~r = (a, 0, 0) and ~r = (0, 0, a), where the
near-field intensity reaches its maximum and minimum value. Both the electric (λelec = 46 mm) and magnetic
(λmag = 62 mm) dipolar resonances can be observed. It can be seen how the non-radiative contribution dominates
over the radiative part in the near-field regime. However, the latter and the interference term are not negligible
as in the case of metallic nanoparticles.2

4.4.3 RADIATIVE AND NON RADIATIVE CONTRIBUTION TO THE ELECTRIC FIELD 
SCATTERED BY HIGH REFRACTIVE INDEX NANOPARTICLES IN NEAR FIELD.
! In this section we will discuss the radiative and non radiative contribution to the total 
scattered electric field in the near field regime. As it has been outlined before, in far field the total 
field is dominated by the radiative contribution. However, as it will be seen now, in near field the 
non radiative contribution takes the lead role.
! In the next figures, an specific case of a HRI index particle of #=16 is studied. The spectral 
evolution of the total scattered electric field (red line), its radiative (green line) and non radiative 
contribution (blue line) and the interference (pink line) between both contributions has been 
calculated at two different points, (a,0,0) and (0,0,a) (see Figure 4.1), for a range of wavelengths 
between 40 and 70 mm.

Figure 4.10. Spectral evolution of the radiative (green line), non radiative (blue line) contribution as well as their 
interference (magenta line) to the electric scattered field. The total electric scattered field is represented by the red solid 
line. All the contributions have been calculated in the points r=(a,0,0) (left), and r=(0,0,a) (right).

Figure 4.11. Intensity of the electric field scattered by an HRI spherical particle of radius a=7.5mm and refractive index 
n=4. The excitation wavelength is $&46.5 mm (left) and $=62 mm (right). This wavelength corresponds with the electric 
dipole excitation wavelength (left) and the magnetic dipole excitation wavelength (right).
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Figure 2. Normalized spectral evolution of | ~Es(~r)|2 (red solid line), | ~ER
s (~r)|2 (green solid line), | ~ER

s (~r)|2 (blue solid line)
and the interference term 2 Re( ~EN−R

s (~r)∗ · ~ER
s (~r)) (magenta solid line) of a magnetodielectric particle with a = 7.5 mm

and ε = 16 at the positions ~r = (a, 0, 0) and ~r = (0, 0, a).

By decomposing the scattered field into the electric and magnetic dipolar terms, it is possible to see how the
total and non-radiative contributions are red-shifted and broadened with respect to the far-field response (see
Fig. 3 and 4). In the case of the magnetic dipole, the red-shift and the broadening are smaller than for the
electric dipolar term. By taking this into account, along with the fact that in the near-field the non-radiative
contribution dominates over the radiative part, the evanescent waves may be responsible for this phenomenon.

An universal formulation of this phenomenon can be achieved by removing the dependence with the particle
parameters (morphology and optical properties) by normalizing to the Mie scattering coefficients in the eqs. (21)
and (22). When we are treating the electric dipolar term, the normalization must be to a1. However, when the
magnetic dipolar term is being studied, the b1 coefficient should be used for the normalization.

We have performed a fitting of | ~Es(~r)/a1|2 and | ~EN−Rs (~r)/a1|2 for the electric dipolar term as a function of
the incident wavelength, λ, to a power law (a + bλn) (see Fig. 5). At the point ~r = (a, 0, 0), both magnitudes

scale to a power law with n ≈ 5.3. However, at the at the point ~r = (0, 0, a), | ~Es(~r)/a1|2 scales with n ≈ 6.3,

and | ~EN−Rs (~r)/a1|2 with n ≈ 5.7 .

The same analysis has been done to the electric field scattered by the magnetic dipolar term (see Fig. 6). In

this case, the fitting has been done of the magnitudes | ~Es(~r)/b1|2 and | ~EN−Rs (~r)/b1|2. On the one hand, at the
point ~r = (a, 0, 0), both magnitudes scales to a power law with n ≈ 3.5. On the other, at the point ~r = (0, 0, a),

| ~Es(~r)/b1|2 follows a power law with n ≈ 3.0, whereas | ~EN−Rs (~r)/b1|2 scales with n ≈ 3.5.
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! Figure 4.10 shows two important features. The first one related to the resonance peaks and 
the other one to the intensity of the different contributions. 
! First, as it was expected since an HRI particle is being considered, there are two resonance 
peaks. The electric dipole resonance is produced at !/46.5 mm  and the magnetic dipole resonance 
produced at !/62 mm. The electric dipole resonance peak at (a,0,0) is much intense than at (0,0,a). 
However, the magnetic dipole resonance peaks have similar intensities at both positions. This can 
be explained taking into account the geometrical configuration (Figure 4.1 left) considered for each 
dipole in the dipole approximation (see section 4.1). The electric dipole is considered along the x-
direction, so in the direction (1,0,0) the intensity of the total scattered electric field is maximum. On 
the contrary, in the perpendicular direction, (0,0,1), it takes its minimum value (see Figure 4.11 
left). The magnetic dipole, chosen along the y-direction, due to its circular symmetry scatters the 
electric field with the same intensity at both points (see Figure 4.11 right).
! Another important thing that Figure 4.10 shows is that the non radiative contribution 
dominates over the radiative contribution. However, the latter is not negligible as in the case of 
metallic nanoparticles. The interference between both contributions for HRI is also not negligible 
unlike for metallic nanoparticles.!
! By decomposing the scattered field into the electric and the magnetic dipolar terms in the 
dipole approximation, it is possible to see how the total and the non radiative contributions are red 
shifted with respect to the radiative contribution (Figure 4.12 and Figure 4.13). Due to the fact that 
the radiative contribution dominates over the non radiative contribution in the far field regime, the 
evanescent waves can be responsible for this red shift.

Figure 4.12. Normalized spectral evolution of the electric scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The electric field is considered to be scattered by the electric dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The calculus has been done in two 
different points:(a,0,0) (left) and (0,0,a) (right).

! In far field, where the radiative contribution dominates, the peaks are narrower than in near 
field (see Figure 4.6 (left) and Figure 4.7 (left)). Due to the fact that in near field the non radiative 
contribution is also broader than the radiative contribution, and it dominates over the latter, the 
evanescent waves could be also responsible of the broadening.
! The red shift of the radiative contribution with respect to the non radiative contribution and 
total electric scattered field by the magnetic dipolar term (figure 4.13), is much smaller than in the 
case of the electric dipolar term (figure 4.12). In addition, no broadening of the peaks can be 
appreciated.
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Figure 3. Normalized spectral evolution of | ~Es(~r)|2 (red dots), | ~ER
s (~r)|2 (green solid line) and | ~EN−R

s (~r)|2 (blue solid
line) at the positions: A) ~r = (a, 0, 0) and B) ~r = (0, 0, a). The electric field is considered to be scattered by the electric
dipolar term.

MAGNETIC DIPOLAR TERM

B)A)

Figure 4.13. Normalized spectral evolution of the electric scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The electric field is considered to be scattered by the magnetic dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The calculus has been done in two 
different points:(a,0,0) (left) and (0,0,a) (right).!
! Although for the electric dipolar term the non radiative contribution does not exactly 
matches the total scattered field, in the case of the magnetic dipolar term they are nearly equal (see 
Figure 4.13). The discrepancy between the non radiative and the total scattered fields can be 
produced by the interference between the radiative and non radiative contribution. This term that 
was negligible for metals it is not for HRI particles.
! Until now the analysis of this phenomena has been done considering an HRI spherical 
nanoparticle of radius a=7.5 mm and #=16. In order to do a more general analysis, the dependence 
with the nanoparticle parameters will be removed by normalizing to the Mie scattering coefficients 
in the equation 3.3.11: a1 in the case of the electric dipolar term and b1 for the magnetic dipolar term 
of the dipole approximation. 

Figure 4.14. Spectral evolution of |Etot/a1|2 (red dots), |Enon rad/a1|2 (blue dots) and |Erad/a1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange and the fair blue solid line represents the numeral fitting of the 
spectral evolution of the total and non radiative contribution to a function a+b$n. In the case of the point (a,0,0) for the 
total scattered field n=5.37 and for the non radiative contribution n=5.36.  In the case of the point (0,0,a) for the total 
scattered field n=6,37 and for the non radiative contribution n=5.77. ! !
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Figure 4. Normalized spectral evolution of | ~Es(~r)|2 (red dots), | ~ER
s (~r)|2 (green solid line) and | ~EN−R

s (~r)|2 (blue solid
line) at the positions: A) ~r = (a, 0, 0) and B) ~r = (0, 0, a). The electric field is considered to be scattered by the magnetic
dipolar term.

These values of n can be compared with the behaviour in the far-field, which is dominated by the radiative
contribution. In this latter case, it scales at λ2 as typical far-field magnitudes like the scattering or extinction
efficiencies. However, in the near-field regime, the dominant contribution scales faster (n > 2). In addition,

the radiative contribution in the near-field, | ~ERs (~r)/a1|2 and | ~ERs (~r)/b1|2, is almost independent of the of the
wavelength.

The same analysis has been done with the magnetic field scattered by a nanoparticle with the same size and
optical properties. The results show the same behaviour as the electric field: a red-shift and broadening of the
LSPR peaks in the transition from far- to the near-field regime.
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Figure 4.13. Normalized spectral evolution of the electric scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The electric field is considered to be scattered by the magnetic dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and ε=16. The calculus has been done in two 
different points:(a,0,0) (left) and (0,0,a) (right).! !
! Although for the electric dipolar term the non radiative contribution does not exactly 
matches the total scattered field, in the case of the magnetic dipolar term they are nearly equal (see 
Figure 4.13). The discrepancy between the non radiative and the total scattered fields can be 
produced by the interference between the radiative and non radiative contribution. This term that 
was negligible for metals it is not for HRI particles.!
! Until now the analysis of this phenomena has been done considering an HRI spherical 
nanoparticle of radius a=7.5 mm and ε=16. In order to do a more general analysis, the dependence 
with the nanoparticle parameters will be removed by normalizing to the Mie scattering coefficients 
in the equation 3.3.11: a1 in the case of the electric dipolar term and b1 for the magnetic dipolar term 
o f t h e d i p o l e approximation. !!

!

Figure 4.14. Spectral evolution of |Etot/a1|2 (red dots), |Enon rad/a1|2 (blue dots) and |Erad/a1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange and the fair blue solid line represents the numeral fitting of the 
spectral evolution of the total and non radiative contribution to a function a+bλn. In the case of the point (a,0,0) for the 
total scattered field n=5.37 and for the non radiative contribution n=5.36. In the case of the point (0,0,a) for the total 
scattered field n=6,37 and for the non radiative contribution n=5.77. ! ! !
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Figure 5. Spectral evolution of | ~Es(~r)/a1|2 (red dots), | ~ER
s (~r)/a1|2 (blue dots) and | ~EN−R

s (~r)/a1|2 (green line) at two
positions: A) ~r = (a, 0, 0) and B) ~r = (a, 0, 0). The orange and the fair blue solid lines represent the numeral fitting of
the spectral evolution of the total and non radiative contribution to a power law (a+ bλn).

Figure 4.15. Spectral evolution of |Etot/b1|2 (red dots), |Enon rad/b1|2 (blue dots) and |Erad/b1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange and the fair blue solid line represents the numeral fitting of the 
spectral evolution of the total and non radiative contribution to a function a+b$n. In the case of the point (a,0,0) for the 
total scattered field n=3.47 and for the non radiative contribution n=3.46.  In the case of the point (0,0,a) for the total 
scattered field n=3.47 and for the non radiative contribution n=3,05. 

! Figure 4.14 and figure 4.15 show two important features. First, in near field, the non 
radiative contribution dominates over the radiative one. This can be seen by comparing the blue 
dots with the green solid line. However, the total scattered field does not match the non radiative 
contribution. This difference is caused by the interference between the radiative and non radiative 
contributions.

! In addition, by the numerical fitting, it can be seen how the total scattered field and its non 
radiative contribution show an universal dependence with the wavelength. In the case of the electric 
field scattered by the electric dipolar term of the dipole approximation (Figure 4.14) at the point (a,
0,0), both the total and non radiative contribution follow a power law a+b!n with n/5. At the point 
(0,0,a) the exponent is n/6. This behavior in near field differs from far field where the total field 
scales at a+b!n with n/2.
! Also, for the electric field scattered by the magnetic dipolar term of the dipole 
approximation (Figure 4.15), an universal dependence with the wavelength can be observed. 
However, in this case it does not matter the point we considered; the total electric field scales at a
+b!n with n/3.5. This was the expected result since the magnetic dipole scatters equally in the (a,
0,0) and (0,0,a) points as it can be seen in  Figure 4.11 (right). Once again the near field behavior 
differs from the far field behavior, where the power law followed by the scattered field is a+b!n 
with n/2. In the case of the non radiative contribution, it also follows a universal dependence with 
the wavelength as a power law. At the point (a,0,0) n/3.5 and at (0,0,a) n/3.
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Figure 6. Spectral evolution of | ~Es(~r)/b1|2 (red dots), | ~ER
s (~r)/b1|2 (blue dots) and | ~EN−R

s (~r)/b1|2 (green line) at two
positions: A) ~r = (a, 0, 0) and B) ~r = (a, 0, 0). The orange and the fair blue solid lines represent the numeral fitting of
the spectral evolution of the total and non radiative contribution to a power law (a+ bλn).

4. CONCLUSIONS

In this research, we have shown that, as for metallic nanoantennas, in the transition from the far- to the near-
field the resonance peaks of dielectric nano-antennas undergo a red-shift and a broadening. This work points
out that this phenomena is caused by the fact that the evanescent waves take the lead role in the near-field
regime over the radiative waves, which dominate in the far-field regime. Furthermore, the results for dielectric
nano-antennas present several differences from the metallic ones. First of all, magnetodielectric particles present
both electric and magnetic resonances. The magnetic one hardly suffers from either a red-shift or broadening, so
far-field magnitudes such as the scattering or extinction efficiencies can be used to predict its spectral position.
On the contrary, the red-shift and broadening of the electric dipolar resonance is noticeable. In fact, the general

Proc. of SPIE Vol. 9756  975628-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



law (a + bλn) followed by | ~Es(~r)/a1|2 and | ~EN−Rs (~r)/a1|2 at ~r = (a, 0, 0) (hot spot) is different for metals and
dielectrics nanoparticles. Whereas for metals it scales with n ≈ 6, magnetodielectric materials follows a power
law with n ≈ 5.

We think that the results of the present research can be practical to interpret and predict accurately the
spectral positions of the resonance when dielectric nanoantennas are used for spectroscopic techniques, such
as SERS, which, on the contrary to what happens with metallic nanosystems, field enhencements and their
corresponding photothermal effects cannot destroy or even alter the sample.
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