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Abstract. We construct two-term asymptotics λε
k = εm−2(M + εµk + O(ε3/2)) of eigenvalues

of a mixed boundary-value problem in Ω ⊂ R2 with many heavy (m > 2) concentrated masses

near a straight part Γ of the boundary ∂Ω. ε is a small positive parameter related to size and

periodicity of the masses; k ∈ N. The main term M > 0 is common for all eigenvalues but the

correction terms µk, which are eigenvalues of a limit problem with the spectral Steklov boundary

conditions on Γ, exhibit the effect of asymptotic splitting in the eigenvalue sequence enabling the

detection of asymptotic forms of eigenfunctions. The justification scheme implies isolating and

purifying singularities of eigenfunctions and leads to a new spectral problem in weighed spaces

with a “strongly” singular weight.
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1 Introduction and setting of the problem

In this paper we introduce unaccustomed splitting asymptotic procedure for eigenvalues,
purifying singularities of eigenfunctions. The spectral problem under consideration is a
mixed boundary value problem for the Laplace operator in a domain Ω ⊂ R2 with heavy
concentrated masses periodically distributed along a straight part Γ of the boundary. The
density of the concentrated masses is of order ε−m, with m > 2, and the period is ε ≪ 1.
This problem has remained unsolved for a long time and has led to results that are currently
the subject of discussion (cf. Remark 1.1 and Section 1.3). Moreover, numerical compu-
tations also fail: we refer to [4] for instability effects when approaching numerically the
principal mode in close-range problems and for further references. A primary asymptotic
analysis (cf. [37]) shows that all the eigenvalues in the low-frequency range of the spec-
trum have the same main asymptotic term which does not provide a characterization of the
corresponding eigenfunctions. We construct the two-term asymptotics, that is, the main
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term and the first correction term, which gives a much more precise information on the
behavior of the eigenvalues as ε → 0+ and allows us to describe the asymptotic structure
of the corresponding eigenfunctions which exhibit a strongly oscillatory character.

The setting of the problem and some background are outlined in Sections 1.1-1.3 while
Section 1.4 of this introduction summarizes the structure of the paper. We emphasize that
the strong oscillations of the eigenfunctions detected in this paper along with the singu-
larities coming from the boundary conditions make it difficult to obtain the convergence
results. As a consequence, we claim that all the results and proofs that we present are
necessary to show the approach of the eigenvalues, and of the eigenfunctions in the natural
space of the setting of the problem: cf. the simple statements of Theorems 6.1 and 6.4.

1.1 Formulation of the eigenvalue problem

Let Ω be a domain in the plane R2 bounded by three line segments

Γ = {x = (x1, x2) : |x1| ≤ L, x2 = 0}, L > 0,

Γ± = {x : x1 = ±L, x2 ∈ [0, L±]}, L± > 0,

and a piecewise smooth curve Γ0 connecting the points (±L,L±) inside the upper half-
plane R2

+ = {x : x2 > 0} (see figure 1). By rescaling, we set L = 1 and make the cartesian
coordinates xj and all geometric parameters dimensionless. Let N and ε = 2(1 + 2N)−1

be a large integer in N = {1, 2, 3, . . . } and a small positive parameter, respectively. We
divide the base Γ of Ω into small segments, of length ε,

γε
n = {x : x2 = 0, |x1 − εn| ≤ ε/2}, n ∈ Z(N) = {0,±1,±2, . . . ,±N},

and introduce the sets

θεn = {x : ε−1(x1 − εn, x2) ∈ θ}, Θε =
∪

n∈Z(N)

θεn, (1.1)

where θ is a new domain in R2
+ = {ξ : ξ2 > 0} of the same type as Ω, namely, it is bounded

by three line segments

τ = {ξ = (ξ1, ξ2) : |ξ1| ≤ l, ξ2 = 0}, l ∈ (0, 1/2),

τ± = {ξ : ξ1 = ±l, ξ2 ∈ [0, l±]}, l± > 0,
(1.2)

and a piecewise smooth curve τ0 connecting the points (±l, l±) inside R2
+. The lower base

of θεn is denoted by τεn, T
ε is the union of τε−N , . . . , τεN and τ⊓ = τ− ∪ τ0 ∪ τ+. Similarly,

Γε
⊓ denotes a union Γε

⊓ = Γ⊓ ∪ T ε with Γ⊓ = Γ− ∪ Γ0 ∪ Γ+. Also, if no confussion arises,
we set θε = εθ.

In Ω we consider the eigenvalue problem

−∆uε = λε(1 + ε−mχε)uε in Ω, (1.3)

uε = 0 on Γε
⊓, (1.4)

∂νu
ε = 0 on Γ \ T ε, (1.5)

where ∂ν is the directional derivative along the outward normal, ∂ν = − ∂

∂x2
on Γ, and χε

is the characteristic function of the set Θε, see (1.1),

χε(x) = 1 for x ∈ Θε and χε(x) = 0 for x ̸∈ Θε. (1.6)
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Figure 1: Geometrical configuration of the problem.

Finally, m ∈ R is a positive number and in the sequel we assume

m > 2. (1.7)

The singularly perturbed problem (1.3)–(1.5) can be associated with time dependent
harmonic oscillations of a membrane which is fixed over its sides Γ⊓ and is clamped by
a periodic set of small “clips” θεn, n ∈ Z. The flexibility of the clips is the same as that
of the membrane material but, in view of our assumption (1.7), the weight of each θεn is
much greater than that of the whole membrane. In other words, θε−N , . . . , θεN are heavy
concentrated masses distributed periodically at the lower flat part Γ of the boundary ∂Ω
and they are fixed over their sides τεn.

Restriction (1.7) and a special shape of the domains are chosen to reduce the required
technicalities to the necessary minimum while preserving all disclosed effects (cf. Remark
3.5).

1.2 The eigenvalue sequence: what is known and what is expected

The variational formulation of problem (1.3)–(1.5) reads: to find a number λε and a func-
tion uε ∈ H1

0 (Ω; Γ
ε
⊓), u

ε ̸= 0 such that

(∇uε,∇vε)Ω = ε−mλε(uε, vε)Θε + λε(uε, vε)Ω, ∀vε ∈ H1
0 (Ω; Γ

ε
⊓). (1.8)

Here, (·, ·)Ω is the natural inner product in the Lebesgue space L2(Ω), and H1
0 (Ω; Γ

ε
⊓) is the

Sobolev space of functions satisfying the Dirichlet condition (1.4). We supply this space
with the norm

∥uε;H1
0 (Ω)∥ = ∥∇uε;L2(Ω)∥

and observe that, owing to the restriction uε = 0 on Γ⊓, there holds the inequality

∥uε;L2(Ω)∥+ ∥uε;L2(Γ)∥ ≤ c∥∇uε;L2(Ω)∥, uε ∈ H1
0 (Ω; Γ

ε
⊓)

with a constant c independent of ε.
The eigenvalues of problem (1.8) form the unbounded monotone positive sequence

0 < λε
1 < λε

2 ≤ λε
3 ≤ · · · ≤ λε

k ≤ · · · → +∞ (1.9)

3



+-

- +

Figure 2: The periodicity cell and the polar coordinates at the collision points

where eigenvalues are repeated according to their multiplicities, and the corresponding
eigenfunctions in H1

0 (Ω; Γ
ε
⊓) can be subject to the orthogonality and normalization condi-

tions
(∇uε

j ,∇uε
k)Ω = δj,k, j, k ∈ N, (1.10)

where δj,k is the Kronecker symbol. Due to the strong maximum principle, the first eigen-
value λε

1 in (1.9) is simple and the eigenfunction uε
1 can be fixed to be positive in Ω∪

(
Γ \ T ε

)
.

Rewriting the proof in [37] with minor modifications, we obtain that, as ε → 0, the
asymptotics of spectrum (1.9) has a specific feature, namely all rescaled eigenvalues

Λε
k = ε2−mλε

k (1.11)

have the common limit
Λε
k → M as ε → 0 for any k ∈ N, (1.12)

where M is the principal eigenvalue of an auxiliary problem which is posed in the half-strip
ϖ = (−1/2, 1/2)×R+, cf. figure 2, with the size of the rescaled clip θ of the reduced mass
θε of order 1, and with the periodicity conditions at the lateral sides. Namely, the first
eigenvalue of problem

∆ξW = MXW in ϖ, (1.13)

W (ξ1, 0) = 0, |ξ1| < l,
∂W

∂ξ2
(ξ1, 0) = 0, |ξ1| ∈

(
l,
1

2

)
, (1.14)

W
(1
2
, ξ2

)
= W

(
− 1

2
, ξ2

)
,

∂W

∂ξ1

(1
2
, ξ2

)
=

∂W

∂ξ1

(
− 1

2
, ξ2

)
, ξ2 > 0. (1.15)

where X is the characteristic function of the set θ, cf. definition (1.6), and ξ is an auxiliary
variable (actually the rapid variable, cf. (2.1)).

Problem (1.13)-(1.15), the so-called cell problem, admits the variational formulation
(2.2) (cf. [32] for other geometries of the masses and the formal asymptotic analysis). Hav-
ing a common limit M , convergence (1.12) cannot help to specify an asymptotic behavior
of the eigenfunctions uε

k when ε → 0.
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In Section 3, we will construct the two-term asymptotics

Λε
k = M + εµk + . . . (1.16)

of the rescaled eigenvalues (1.11) and demonstrate that the number µk in (1.16) and the
function uk appearing in the asymptotic form for the eigenfunction (cf. Section 3.5)

uε
k(x) = W (ε−1x)uk(x) + . . . (1.17)

are an eigenpair of the Steklov spectral problem

−∆u = 0 in Ω, (1.18)

u = 0 on Γ⊓ = Γ− ∪ Γ0 ∪ Γ+, (1.19)

− ∂u

∂x2
= µbu on Γ, (1.20)

which involves a well determined coefficient b > 0 (cf. (2.11) and (3.15)). In (1.17),
W stands for the normalized eigenfunction associated with the principal eigenvalue M of
(1.13)-(1.15) in the half-strip ϖ that we extend by periodicity in the x1-direction.

The type of asymptotic expansions (1.16) and (1.17) have been announced without
proofs in [32]. This, together with estimates of the asymptotic remainders, which for
simplicity we denote in this section by ellipsis points, will be proved and evaluated further
in Theorems 6.1 and 6.4. In addition, a new focus of the justification scheme provides a
powerful and novel contribution in our paper.

The final estimates for the eigenpairs λε
k, u

ε
k of (1.8) can be summarized as follows: for

any fixed k, and sufficiently small ε,∣∣λε
k − εm−2 (M + εµk)

∣∣ ≤ ckε
m−1/2 ,

and ∥∥∥∥uε
q − ε1/2

k+κk−1∑
j=k

aεqjujW
ε;H1(Ω)

∥∥∥∥ ≤ c♯kε
1/2, q = k, . . . , k + κk − 1,

hold, where W ε(x) = W (ε−1x), κk is the multiplicity of µk (cf. (3.18) and (4.14)), ck and

c♯k are two constants, and (aεqj)q,j=k,...,k+κk−1, is a well determined ε-dependent constant
matrix. See statements of Theorems 6.1 and 6.4 for the precise definitions of the terms in
estimates above, and see Section 1.4 for a short summary of intermediate results. Among
other things, these intermediate results give the approach of the eigenpairs of the refor-
mulate spectral problem (5.2) to the eigenpairs of the Steklov problem (1.18)-(1.20) (cf.
(3.15), (5.55) and Theorem 5.6).

One of the greatest difficulties faced by the authors is in the verification of the uni-
form boundedness for the L2(Ω)-norm of the gradient of the fractional function uε

k(x) =
W (ε−1x)−1uε

k(x),

∇xu
ε
k(x) = W (ξ)−1∇xu

ε
k(x)− ε−1uε

k(x)W (ξ)−2∇ξW (ξ), with ξ = ε−1x, (1.21)

due to the singularities of both eigenfunctions W and uε
k at the collision points. Nev-

ertheless, in Section 2.4 we will prove that uε
k is sufficiently smooth: in particular, it is

continuously differentiable at these points.
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Remark 1.1. Note that we deal with a singular weight W (ε−1x) near the boundary, and
the equivalence of the original (1.3)–(1.5) and limit (5.1),(5.3),(5.4) problems takes up a
voluminous part of the analysis and computations (cf. Sections 2 and 5, and Appendix).
It is remarkable that in the gradient formulas (1.21) and (5.20) the last terms get very
strong weights as well as the big factor ε−1. The verification of the equivalence is of great
importance because there exist many examples (cf., e.g., [33]) when a substitution in a
problem with corner singularities leads to incorrect solutions. It is also of great importance
when dealing with evolution problems (cf., e.g., [19]). In addition, notice that infinitely
many realizations of an elliptic problem as a self-adjoint operator with the discrete spectra
occur in domains with corners (cf. Ch.6 in [31]). All together makes it compulsory a
thorough analysis to show the equivalence of the above-mentioned problems. Such crucial
analysis, with singular weights, is absent in the existing literature on vibrating systems
with concentrated masses (see Section 1.3).

1.3 State-of-the-art in the literature and new challenges

The problem under consideration in this paper belongs to a series of problems known with
the name of “vibrating systems with concentrated masses” in the literature of applied
mathematics (cf. [39, 35, 25, 14] for the first works). Further specifying, we deal with
very many concentrated masses near the boundary and strongly alternating boundary
conditions. In this framework we refer to [16] and [14] for problems in two and three
dimensional domains respectively, the size of the masses being much smaller than the
period of the structure. Different relations between sizes of masses and distance between
them (cf. terms such as critical sizes and extreme relations), and different values of the
parameter m have been considered in [14, 16] where the authors were concerned with the
localization of eigenvalues giving rise to local vibrations of the concentrated masses or global
vibrations of the system; also many questions were formulated in these papers which have
been partially solved in further publications such as [15, 17, 18, 36, 38]: see [18, 38] for a
long list of references on the subject.

The terms light or heavy concentrated masses were introduced in the literature to dis-
tinguish between the different ranges of the parameter m, namely m ∈ (0, 2) or m > 2
since the asymptotic behavior of the eigenvalues is qualitatively different for m in one of
these ranges or m = 2. All the cases have been considered in the above mentioned papers
but the structure of the eigenfunctions associated with the very low frequencies have re-
mained as open questions in the case where m > 2, namely, associated with the eigenvalues
λε
i = O(εm−2), for fixed i = 1, 2, · · · (cf. (1.11) and (1.12)). Even the determination of the

structure of the first eigenmode of vibration was an open problem. The same can be said
for m = 2 and the low frequencies which in this case read λε

i = O(1).
In fact, we note that for the precise distribution of masses (1.1), size of masses O(ε) and

boundary conditions (1.4) and (1.5), the cases where m ≤ 2 have not been considered in
the literature. However, when m < 2 (light concentrated masses), the limit problem for the
eigenpairs of (1.1)-(1.5) is the Dirichlet eigenvalue problem in Ω. This can be easily proved
by standard homogenization techniques: cf. closer results for different problems in [5, 16,
32]. In contrast, when m = 2, to determine the asymptotic forms of the eigenfunctions
remains an open problem to be considered. Now the limit points of the eigenvalues in
the sequence (1.9) can be the eigenvalues the Dirichlet problem in Ω, {βj}∞j=1, and the
eigenvalues of the cell problem in ϖ. For fixed k, the convergence of λε

k, as ε → 0, depends
strongly on the position of M , cf. (1.13)-(1.15), in the sequence

0 < β1 ≤ β2 ≤ β3 ≤ · · · ≤ βj ≤ · · · → ∞, as j → ∞ ,
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and on the possibility for M to coincide with some βj : we refer to [32] for asymptotic
expansions in a close problem. Also the dimension n = 3 remains under examination, cf.
[14] in the case where the size of the masses is much smaller than the period.

Light and heavy concentrated masses with different boundary conditions, and low and
high frequencies, have also been considered in [14, 15, 16, 17, 36, 38] for dimensions 2 and 3
of the space, the boundary of the masses touching ∂Ω. In this respect, we mention [32] for a
different geometry of the masses θε which do not touch ∂Ω and for very different boundary
conditions on ∂Ω. In spite of this, there is a big gap in the research on these kinds of
problems since the structure of the first eigenmode of vibration has only been glimpsed
by means of asymptotic expansions in [32]. However, the existing results in the literature
(cf. [18, 36, 37] and references therein) allow us to obtain information on the structures
of certain eigenfunctions associated with eigenvalues λε

i(ε) = εm−2Mj + · · · , when j > 1

and Mj is an eigenvalue of the cell problem (1.13)-(1.15) in the sequence (2.6), but i(ε)
cannot be fixed, (see (1.16) to compare), it converges towards ∞ as ε → 0. In addition, the
structure of the corresponding eigenfunctions is described by quasimodes which approach
“groups of eigenfunctions” (cf. Lemma 4.1). Obviously, these results deal with the high-
frequency range, and they complement those in this paper, which becomes essential for the
description of asymptotics of eigenpairs in the low-frequency range.

As outlined in previous works (cf., e.g., [13, 17, 18]) when searching for eigenvalues
giving rise to certain kinds of vibrations, the question of the normalization of the corre-
sponding eigenfunctions is crucial. In addition, here we need a reformulation of the problem
in weighted Sobolev spaces and a thorough analysis of solutions near the points where the
strongly alternating boundary conditions change, the so-called collision points (cf. Lemmas
2.1, 2.4 and Proposition A.1). We note that in the asymptotics for eigenfunctions (1.17),
fast and slow variables are involved together, and the function uk (which corresponds to
µk, the second term of the asymptotic expansion of the rescaled eigenvalues (1.16)) act as
an envelope for the fast oscillations of the eigenfunction uε

k of our spectral problem (1.8).
It should also be noted that the factorization principle here used has been detected

in the literature of homogenization problems: we refer to [40] for the first work, related
with perforated media, where weighted Sobolev spaces are also used. However, here we
deal with a very singular “weight” W (ε−1x) near the boundary and we need to obtain
smoothness properties for uε(x)W (ε−1x)−1 in the neighborhoods of the points of ∂Ω where
both functions uε and W vanish. We use a technique of localization for uε(x)W (ε−1x)−1

near the concentrated masses (cf. figure 3) which allows us to derive its convergence
in H1(Ω)-weak, avoiding approaches with norms in the weighted Sovolev spaces. As a
consequence, we obtain sharp bounds for convergence rates of eigenpairs (cf. also Remark
6.2) and, what is very important, this approach is obtained in the norms of the space of
the setting of the original problem (cf. (6.1) and (6.5)).

In this connection, it may be worthy mentioning that [22] considers an eigenvalue prob-
lem in a planar domain of the dense-comb type which differs from our problem (1.3)–(1.5)
both in the geometry and distribution of the heavy masses, and in the boundary condi-
tions, but meets technical difficulties similar to those mentioned in Remark 1.1. However,
an analysis of the singularities of the eigenfunctions at the corner points (cf. [10]) and the
proof of the equivalence of problems outlined in Remark 1.1 are absent.

Also, it is worthy mentioning that other very different problems in the framework of the
vibrating systems with many concentrated masses have been considered in the literature
recently. Let us mention, e.g., [28, 30], where asymptotics for eigenvalues are described by
means of the spectrum of a certain integral (elliptic pseudo-differential) operator on the
torus axis. The geometry and the justification schemes in these papers differ in all aspects
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from the content of our present paper.
Finally, notice that the Steklov problem (1.18)-(1.20) appears here associated with the

second order approach of the eigenvalues. Let us mention references [1, 7, 8, 9, 12, 14]
which make it clear how Steklov type boundary conditions can appear associated with the
first order approach of eigenvalues of singularly perturbed spectral problems which present
a high mass concentration along a part of the boundary or at points along the boundary.
See [6] for further recent bibliography on Steklov problems.

1.4 Structure of the paper

The organization of the paper is marked by the asymptotics (1.16) and (1.17) of the eigen-
pairs of (1.3)-(1.5), and by the tools which we need to justify these asymptotics. We gather
the final results in Theorems 6.1 and 6.4 in a simplified way, while other important results
appear throughout the paper.

Taking into account that the first term M in the asymptotics (1.16) and that the multi-
plying function W in (1.17) turn out to be the dominant eigenpair of the cell problem (2.2),
Section 2 contains the setting of this problem (the first limit problem) along with a detailed
study of the dominant eigenmode: properties which allow us to show that uε

k(x)W (ε−1x)−1

belongs to H1(Ω) (cf. (2.31)). This seems to be consistent with (1.17) (uk ∈ H1(Ω)) but
requires some smoothness results for solutions of boundary value problems near corners
(cf. [10] and Ch. 2 in [31] for the general theory), namely, in our case near the points
where the boundary condition changes from Dirichlet to Neumann or viceversa. Appendix
complements these smoothness results.

Section 3 contains asymptotic expansions for the eigenpairs (λε
k, u

ε
k) of (1.3)-(1.5), and

the Steklov spectral problem (3.17) (the second limit problem ). The compound asymptotic
expansion for the eigenfunctions (3.2) includes terms of the outer expansion and boundary
layer functions whose properties prove essential for these justifications. These expansions
and functions are in Sections 3.1-3.4 (cf. also Remark 3.2).

Sections 4–6 contain justifications of asymptotic expansions providing precise bounds
for convergence rates in terms of the eigenvalue number.

The hard computations in Section 4 rely on results about “near eigenvalues and eigen-
functions” from the spectral perturbation theory (cf. Lemma 4.1). The main result (cf.
Theorem 4.2) establishes that for each eigenvalue µk of (3.17), µk of multiplicity κk, and
for sufficiently small ε, there are at least κk eigenvalues of λε

j satisfying∣∣λε
jε

2−m −M − εµk

∣∣ ≤ ckε
3/2, (1.22)

with a constant ck independent of ε. The result already improves the convergence (1.12).
In addition, in Section 4, a certain approach to the eigenfunctions is stated (cf. (4.29)),
which is provided by the asymptotic expansions constructed in Section 3 (cf. (3.2), (3.6)),
with the boundary layer functions suitably adapted in such a way that the new function
(4.10) belongs to the same space of definition of the eigenfunctions uε

k. Nevertheless, these
approaches do not provide the convergence expected (cf. (1.11) and (1.16)).

To obtain this convergence, which in some way implies k = j in (1.22), we need to
reformulate the original spectral problem (1.8) by introducing a new spectral parameter
and a corresponding eigenfunction as follows:

µε = λεε2−m −M, uε(x) = uε(x)W (ε−1x)−1. (1.23)

These pairs (µε,uε) prove to be eigenpairs of a new spectral problem (5.2) which is formu-
lated in the suitable weighted Sobolev spaces and it turns out to have a dicrete spectrum
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(cf. Proposition 5.1). Theorem 5.6 states the result of convergence of the renormalized
eigenpairs (ε−1µε,uε) towards those of the second limit problem (3.17). The spectral con-
vergence for (5.2) holds with conservation of the multiplicity (see (5.51) and (5.53)), and
to derive the convergence in a space independent of ε we use a technique that allows a
localization of the new eigenfunctions uε in small teeth near the concentrated masses (see
figure 3). This is done in Section 5.2, the main results of this section being summarized in
Proposition 5.5.

Finally, we need to combine the partial results in Sections 4 and 5 to derive the desired
approach for eigenvalues and eigenfunctions of the original problem along with precise
bounds for convergence rates in terms of the eigenvalue number k and the perturbation
parameter ε (cf. (6.1) and (6.5)): j becomes k, k + 1, · · ·κk − 1 in (1.22).

2 The first limit problem in the cell

This section is devoted to the cell problem, namely, the limit problem involved with the
first term M of the asymptotics for the eigenvalues (1.16) and the properties of the corre-
sponding eigenfunction W (cf. Sections 2.2-2.3). Some of these properties deal with the
required smoothness for (1.23) (cf. Section 2.4) that we need in Sections 4-6.

2.1 The eigenvalue problem in the half-strip ϖ

Considering the rapid variables

ξ = (ξ1, ξ2) = ε−1x = (ε−1x1, ε
−1x2), (2.1)

we take into account formulas (1.11), (1.7) and recognize ∆ξ+XΛε as the main asymptotic
part of the differential operator

∆x + λε(1 + ε−mχε) = ε−2(∆ξ +XΛε) + εm−2Λε.

Considering also the ε-periodicity in x1, we formulate the first limit problem in the half-
strip

ϖ = {ξ : ξ1 ∈ (−1/2, 1/2), ξ2 > 0}.

This limit problem is (1.13)–(1.15), where we note that we have used M to denote the
spectral parameter, and X the characteristic function of the set θ.

The variational formulation of problem (1.13)–(1.15) reads: to find a number M and
non-trivial function W ∈ H such that

(∇ξW,∇ξV )ϖ = M(W,V )θ, ∀V ∈ H. (2.2)

The Hilbert space H in the integral identity (2.2) is determined by completing the linear
space C∞

c,per(ϖ, τ) of infinitely differentiable functions, vanishing on τ , with compact sup-
port and 1-periodics in ξ1, with respect to the norm ∥∇ξV ;L2(ϖ)∥. It consists of functions
in H1

loc(ϖ) which have a finite gradient norm and satisfy the stable boundary conditions,
namely the first relations in (1.14) and (1.15). Since the Dirichlet condition on τ is in-
cluded in the space, the classical one-dimensional Hardy inequality proves that the norm
introduced in H is equivalent to the following one:(

∥∇ξV ;L2(ϖ)∥2 + ∥(1 + ξ2)
−1V ;L2(θ)∥2

)1/2
. (2.3)
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Indeed, the above-mentioned Hardy inequality

∞∫
0

t−2|V(t)|2dt ≤ 4

∞∫
0

∣∣∣∣dVdt (t)
∣∣∣∣2dt, (2.4)

in particular, requires V(0) = 0 (to verify (2.4) make the change y 7→ t = 1/y in (5.10)).
To fulfil this condition, we multiply V with the cut-off function ξ 7→ X (ξ2),

X ∈ C∞(R), 0 ≤ X ≤ 1, X (t) = 0 for t ≤ 1/2, X (t) = 1 for t ≥ 1,

and apply the Friedrichs inequality

∥V ;L2((−l, l)× (0, 1))∥ ≤ cl∥∇ξV ;L2((−l, l)× (0, 1))∥ (2.5)

which is valid due to the Dirichlet condition V = 0 on τ . Setting V(t) = X (t)V (ξ1, t)
in (2.4), we integrate the obtained inequality in ξ1 ∈ (−l, l), take into account (2.5) to
estimate the L2-norm of the last term in the formula X∇ξV = ∇ξV − V ∂X/∂ξ2, and
finally observe that ξ−2

2 > (1 + ξ2)
−2 in ϖ. As a result, the weighted Lebesgue norm in

(2.3) is bounded by the gradient norm, and this shows the mentioned equivalence of norms.
Owing to the compact embedding H ⊂ L2(θ), problem (2.2) possesses the unbounded

positive increasing sequence of eigenvalues

0 < M1 < M2 ≤ M3 ≤ · · · ≤ Mk ≤ · · · → +∞, (2.6)

where eigenvalues are repeated according to their multiplicities. We also choose the corre-
sponding eigenfunctions Wk ∈ H satisfying the orthogonality and normalization conditions

(∇ξWj ,∇ξWk)ϖ = M(Wj ,Wk)θ = δj,k, j, k ∈ N. (2.7)

In what follows we address only the principal eigenpair {M1,W1} of the problem and
omit the subscript 1 in the notation. Due to the strong maximum principle, the eigenvalue
M = M1 is simple and the eigenfunction W = W1 can be chosen positive in ϖ \ τ .

2.2 Properties of the principal eigenfunction

The 1-periodic function W is a harmonic function in ϖ \ θ and becomes infinitely differen-
tiable outside the set θ as well as inside θ where X = 1. Hence, the Fourier series

W (ξ) = B +
∞∑
p=1

(Bp1 cos(2πpξ1) +Bp2 sin(2πpξ1)) e
−2πpξ2 (2.8)

converges for ξ2 > h with any fixed h,

h > h0 = max
{
ξ2 : (ξ1, ξ2) ∈ θ

}
. (2.9)

Since

|B|2 +
∞∑
p=1

e−4πph
(
|Bp1|2 + |Bp2|2

)
< ∞,

there are constants cq,h such that there hold the estimates∣∣∣∇q
ξ(W (ξ)−B)

∣∣∣ ≤ cq,he
−2πξ2 , ξ2 > h, q ∈ N0 = N ∪ {0}. (2.10)
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To compute the constant B, we insert the functions W and ξ2 into the Green formula
on the rectangle ϖ(R) = (−1/2, 1/2)× (0, R) (cf. (1.13)), and we take limits as R → +∞,
to obtain

M

∫
θ

ξ2W (ξ) dξ =− lim
R→+∞

∫
ϖ(R)

ξ2∆ξW (ξ) dξ =

1/2∫
−1/2

(
ξ2

∂W

∂ξ2
(ξ)−W (ξ)

)∣∣∣
ξ2=0

dξ1

− lim
R→+∞

1/2∫
−1/2

(
ξ2

∂W

∂ξ2
(ξ)−W (ξ)

)∣∣∣
ξ2=R

dξ1

=−
1/2∫

−1/2

W (ξ1, 0) dξ1 +B.

Thus,

B = M

∫
θ

ξ2W (ξ) dξ +

1/2∫
−1/2

W (ξ1, 0) dξ1 > 0, (2.11)

where the strict inequality is inherited from the positivity of W and the last integral can
be reduced to (−1/2,−l) ∪ (l, 1/2).

2.3 Asymptotics near collision points

As was mentioned in Section 2.2, the eigenfunction W is smooth everywhere, except at
the curve τ⊓, in particular, at the points P± = (±l, 0) where the Dirichlet and Neumann
conditions (1.14) meet each other. Here, we show that the latter brings the worst singularity
O
(
dist (ξ, P±)1/2

)
into W (ξ) and leads W out from the space H2

loc(ϖ). At the same
time, jumps of the second-order derivatives at ∂θ \ τ keep W in H2

loc(ϖ \ (P− ∪ P+)).
Our justification scheme relies upon asymptotic formulas for W near the collision points
P± that are obtained below by means of the Kondratiev theory [10]; also, the necessary
information about behavior of solutions to the Poisson equation near corner and collision
points can be found, e.g., in Ch. 2 in [31].

We need the polar coordinate systems (ρ±, φ±) ∈ R× [0, 2π] centered at P±, see figure
2, and a cut-off function ς ∈ C∞[0,+∞) such that

0 ≤ ς ≤ 1, ς(ρ) = 1 for ρ ≤ 1

2
min

{
l,
1

2
− l
}
, ς(ρ) = 0 for ρ ≥ min

{
l,
1

2
− l
}
. (2.12)

Lemma 2.1. Let W be the principal mode of (2.2). There holds the decomposition

W (ξ) =
∑
±

ς(ρ±)

(
K±ρ

1/2
± cos

φ±

2
+K1

±ρ
3/2
± cos

3φ±

2

)
+ W̃ (ξ), (2.13)

where K± and K1
± are some coefficients, the remainder W̃ satisfies the estimates∣∣∇p

ξW̃ (ξ)
∣∣ ≤ chpρ(ξ)

−p+5/2 (1 + | ln ρ(ξ)|) , p = 0, 1, 2, ξ ∈ ϖ(h), (2.14)

with ρ(ξ) = min{ρ±}, and h > 0 can be taken to be arbitrary but the constants chp depend
on h.
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Proof. The detached terms in (2.13) are obtained by the Fourier method which, owing to
the separation of variables in the Laplace equation, provides the problem (see figure 2 for
the orientation of the angular variables φ±)

−
d2Wκ

±
dφ2

±
− κ2 Wκ

± = 0, φ± ∈ (0, π),
dWκ

±
dφ±

(0) = 0, Wκ
±(π) = 0 (2.15)

for the exponent κ and the angular part Wκ
± in the harmonics

ρκ±Wκ
±(φ±). (2.16)

Solving (2.15), we get

κ = ±
(
j +

1

2

)
, Wκ

±(φ±) = Kj
± cos

((
j +

1

2

)
φ±

)
, j ∈ N0, (2.17)

and include in the asymptotic form (2.13) only functions (2.16) with j = 0 and j = 1.

However, these functions bring a discrepancy O(ρ
1/2
± ) into equation (2.13) because its

right-hand side MX(ξ)W (ξ) has been ignored in the above consideration as a lower-order
term. According to the general procedure in [10], see also § 3.3 in [31] and § 3.5 in [31], the
main part of the discrepancy is compensated by the next term in the decomposition of W ,
which must be searched in the form

ρ
5/2
±

(
K2

± cos
5φ±

2
+ C± ln ρ± cos

5φ±

2
+W5/2

± (φ±)

)
. (2.18)

Inserting (2.18) into problem (1.13), (1.14) and collecting expressions of order ρ
1/2
± yield

the problem

−
d2W5/2

±
dφ2

±
(φ±)−

25

4
W5/2

± (φ±) = 5C± cos
5φ±

2
+ F5/2

± (φ±), φ± ∈ (0, π),

dW5/2
±

dφ±
(0) = 0, W5/2

± (π) = 0,

(2.19)

where

F5/2
± (φ±) =

{
0, φ± ∈ (0, π/2),

MK± cos(φ±/2), φ± ∈ (π/2, π).

Since the homogeneous problem (2.19) has the unique eigenfunction cos(5φ/2) (up to a
multiplicative constant), the Fredholm alternative gives the compatibility condition

1

2
C±

π∫
0

(
cos

5φ

2

)1/2
dφ+MK±

π∫
π/2

cos
5φ

2
cos

φ

2
dφ = 0

which defines the coefficient in (2.18)

C± = − 2

15π
MK±. (2.20)

The formal procedure performed above was worked out and justified in [10] where
estimates of remainders are derived in weighted Sobolev norms. Estimates in weighted
Hölder norms are obtained in [20] (see also § 3.6 in [31]). We apply these estimates and

then join the detected terms (2.18) to the remainder W̃ (ξ). Since we will prove below that
K± ̸= 0 (cf. (2.21)), the coefficients (2.20) do not vanish and, therefore, the bound in
(2.14) is optimal, and this ends the proof of the lemma.
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It should be noted that the results in Lemma 2.1 hold for any eigenfunction of (2.2), and
the coefficients K±, K

1
± in (2.13) and K2

± in (2.18) depend on the whole data in problem
(1.13), (1.14). However, for the principal eigenfunction, a method in [21] (see also Ch. 2 in
[31]) establishes an integral representation of K± which guarantees the above-mentioned
inequality (2.21).

Lemma 2.2. Under the hypotheses of Lemma 2.1, the coefficients in (2.13) satisfy

K± ̸= 0. (2.21)

Proof. We insert the harmonics Z±(ξ) =
(
ρ
−1/2
± − ρ−1

0 ρ
1/2
±
)
cos

φ±

2
and the eigenfunction

W into the Green formula on the semi-annulus

Υδ
± = {ξ ∈ ϖ : δ < ρ± < ρ0},

where ρ0 =
1

2
min

{
l,
1

2
− l
}

and δ ≥ 0 is small. We have

−M

∫
Υ0

±

X(ξ)W (ξ)Z±(ξ) dξ = −M lim
δ→0+

∫
Υδ

±

X(ξ)W (ξ)Z±(ξ) dξ

=− lim
δ→0+

∫
Υδ

±

Z±(ξ)∆W (ξ) dξ = ρ0

π∫
0

(
Z±(ξ)∂ρ±W (ξ)−W (ξ)∂ρ±Z±(ξ)

) ∣∣
ρ±=ρ0

dφ

− lim
δ→0+

δ

π∫
0

(
Z±(ξ)∂ρ±W (ξ)−W (ξ)∂ρ±Z±(ξ)

) ∣∣
ρ±=δ

dφ

= ρ
−1/2
0

π∫
0

W (ξ)
∣∣
ρ±ρ0

cos
φ

2
dφ− 1

2
K±.

In these calculations, we have used the exact formula for Z± and the asymptotic decom-
position (2.13) of W while computing the last limit as δ → 0+. Thus, we can write

K± = 2ρ
−1/2
0

π∫
0

W (ξ)
∣∣
ρ±=ρ0

cos
φ

2
dφ+ 2M

∫
Υ0

±

X(ξ)W (ξ)Z±(ξ) dξ.

Then, inequality (2.21) follows from the relations

W (ξ) > 0 for ξ ∈ ϖ, cos
φ

2
> 0 for φ ∈ (0, π), Z±(ξ) > 0 for ξ ∈ Υ0

±,

and the lemma is proved.

Formulas (2.21), (2.11) together with the consequence of the strong maximum principle,

∂W

∂ξ2
(ξ1, 0) > 0, ξ1 ∈ (−l, l), (2.22)

help us to study the behavior of the eigenfunction W in the whole domain ϖ, obtaining
the following result.
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Corollary 2.3. For W the principal mode of (2.2), the inequalities

C0
1 ≥ W (ξ) ≥ C1 for ξ1 ∈

[
− 1

2
,
1

2

]
, ξ2 ≥ 1, (2.23)

C0
2 ≥ W (ξ) ≥ C2 for |ξ1| ∈

[1 + 2l

4
,
1

2

]
, ξ2 ∈ [0, 1], (2.24)

C0
3ξ2 ≥ W (ξ) ≥ C3ξ2 for ξ1 ∈

[
− l

2
,
l

2

]
, ξ2 ∈ [0, 1], (2.25)

C0
4ρ

1/2
± (π − φ±) ≥ W (ξ) ≥ C4ρ

1/2
± (π − φ±) for ± ξ1 ∈

[ l
2
,
1 + 2l

4

]
, ξ2 ∈ [0, 1], (2.26)

are valid with some positive constants Ci and C0
i , i = 1, 2, 3, 4.

Proof. Since the function W is periodic, positive in ϖ \ τ and continuous in ϖ \ P±,
relation (2.24) is evident. Moreover, decomposition (2.8) with B > 0 asserts the validity
of (2.23). Furthermore, (2.25) follows from (2.22). Finally, formulas (2.26) are based on
representation (2.13) and estimates (2.14) with p = 0, 1, on account of

cos
φ

2
≥

√
2

2
for φ ∈

[
0,

π

2

]
, sin

φ

2
≥

√
2

2
for φ ∈

[π
2
, π
]
,

and
∂

∂ξ2

(
ρ
1/2
± cos

φ±

2

)
=

1

2
ρ
−1/2
± sin

φ±

2
.

Indeed, when ξ1 ∈ [l/2, l] since both functions ρ1/2(π − φ+) and ρ
1/2
± cos(φ±/2) vanish,

we can compare the derivatives with respect to ξ2 and consider the Taylor expansion
of cos(φ+/2) in a neighborhood of φ+ = π to obtain (2.26). In the case where ξ1 ∈
(l, (1 + 2l)/4], we deal with the comparison of two strictly positive smooth functions and
(2.26) also holds for certain constants. Thus, the estimates (2.23)-(2.26) hold true.

Note that, obviously, inequalities (2.24) and (2.25) hold for ξ1 in other larger intervals
which do not contain the collisions points; the constants arising in the inequalities depend
on the endpoints of these intervals.

2.4 Analysis of eigenfunctions in the original problem

The considerations in Section 2.3 can be applied to problem (1.3)–(1.5) for an examination
of its eigenfunctions in the vicinity of the collision points P±

(nε) = (εn ± εl, 0), n ∈ Z(N).

The polar coordinates systems centered at these points are denoted by (rn±, φn±) and we
can state the following result.

Lemma 2.4. Any eigenfunction uε
k of problem (1.8) admits the decomposition

uε
k(x) =

∑
±

∑
n∈Z(N)

ς
(rn±

ε

)(
Kε

kn±ρ
1/2
n± cos

φn±

2
+K1ε

kn±ρ
3/2
n± cos

3φn±

2

)
+ ũ ε

k (x), (2.27)

where ς is the cut-off function (2.12), Kε
kn± and K1ε

kn± are some coefficients and the re-
mainder ũ ε

k satisfies the estimate∣∣ũ ε
k (x)

∣∣ ≤ cεkr(ε, x)
−p+5/2(1 + | ln r(ε, x)|), p = 0, 1, 2, (2.28)

with r(ε, x) = min{rn± : n = 0,±1, . . . ,±N}.
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For further use, in Section 5, we provide with some results on the fractional function

uε
k(x) =

uε
k(x)

W ε(x)
, (2.29)

where the weight multiplier W ε(x) = W (ε−1x) is the principal eigenfunction of problem
(1.13)–(1.15) written in the rapid variables (2.1) and extended periodically over the half-
plane R2

+. Function (2.29) still belongs to H1(Ω) because in the vicinity of each collision
point, the numerator and denominator in (2.29) have very similar asymptotic forms (2.27)
and (2.13), respectively. Indeed, for a small rn±, we obtain

uε
k(x)

W (ε−1x)
=

Kε
kn±r

1/2
n± cos(φn±/2) +K1ε

kn±r
3/2
n± cos(3φn±/2) + ũ ε

k (x)

ε1/2K±r
1/2
n± cos(φn±/2) + ε3/2K1

±r
3/2
n± cos(3φn±/2) + W̃ (ε−1x)

=
1√
ε

Kε
kn± +K1ε

kn±rn±C(φn±) + r
−1/2
n± (cos(φn±/2))

−1ε−1/2ũ ε
k (x)

K± + εK1
±rn±C(φn±) + r

−1/2
n± (cos(φn±/2))−1ε−1/2W̃ (ε−1x)

=
1√
ε

(Kε
kn±
K±

+
K1ε

kn±
K±

− ε
K1

±K
ε
kn±

(K±)2

)
rn±C(φn±)

)
+ ũ ε

k (x)

(2.30)

with the smooth trigonometric function

C(φ) =
cos(3φ/2)

cos(φ/2)
= 4
(
cos

φ

2

)2
− 3

and the remainder ũ ε
k (x) having a faster decay as rn± → 0+. Thus, function (2.29) as well

as its first-order derivatives, are bounded at the collision points.
Inside smooth, actually flat, parts of the base Γ with either Dirichlet (1.4), or Neumann

(1.5) conditions, both uε
k and W are smooth while uε

k(x1, 0) = 0 for |x1 − εn| < l and W
enjoys properties (2.24)–(2.26). These properties, together with (2.30), demonstrate that
uε
k falls into the Hölder class C0,α near the base with any α ∈ (0, 1). At the same time,

according to square-root singularities, cf. (2.27), the function uε
k belongs to the class C0,α

under the restriction α < 1/2 only. In other words, fraction (2.29) achieves much better
differential properties than the eigenfunction uε

k itself.
Consequently, from Lemmas 2.1, 2.2 and 2.4 and Corollary 2.3, we have proved the

following result.

Proposition 2.5. The function uε
k defined by (2.29) belongs to C(Ω), and

uε
k ∈ H1(Ω). (2.31)

It proves useful to comment several points of the above considerations. First, the
function W ε is positive and differentiable outside a neighborhood of ∂θε so that a “bad”
behavior of uε

k at corner points of the arc Γ⊓ is not able to disturb the confirmed inclusion
(2.31).

Second, the factors r
−1/2
n± and (cos(φn±/2))

−1 of ũ ε
k (x) and W̃ (ε−1x) in (2.30) bring into

the calculation singularities at rn± = 0 and φn± = π, respectively. The radial singularity is
readily compensated by infinitesimal bounds in estimates (2.28) and (2.14) but the angular
singularity O(|φn± − π|−1) requires further discussion, see Appendix.

Finally, we emphasize that the coefficients Kε
kn± and K1ε

kn± in (2.27), the bound in
(2.28) and other characteristics of uε

k and uε
k depend on the small parameter ε, and the

derivation in Section 5.2 of the estimate for the norm ∥∇uε
k;L

2(Ω)∥, uniformly in ε ∈ (0, ε0],
turns out to be the most intriguing issue in the paper.
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3 Two scales asymptotic expansion and related issues

In this section, we obtain the first two terms of the asymptotic expansion for the eigenvalues
of problem (1.3)–(1.5) (with variational formulation (1.8)) and the composite asymptotic
expansion for the corresponding eigenfunctions. We determine the terms arising in these
expansions from the eigenpairs of two spectral problems posed either in Ω (cf. problem
(1.18)–(1.20) and Section 3.4) or in the half-strip ϖ (cf. problem (2.2) and Sections 3.2-
3.3). We show that both slow and rapid variables are essential to define the first term of
the asymptotic expansions for eigenfunctions (cf. Section 3.5 for dominant terms). Section
3.6 contains a two-scale convergence result.

3.1 The second limit problem: a problem in Ω

We introduce the following asymptotic ansätze for an eigenpair of the singularly perturbed
problem (1.3)–(1.5)

λε
k = εm−2(M + εµk + . . . ), (3.1)

uε
k(x) = uk(x) + εu′

k(x) + ς0(x)
(
wk(x1, ε

−1x) + εw′
k(x1, ε

−1x)
)
+ . . . (3.2)

where the dots stand for lower-order terms of the approximations , M = M1 is the principal
eigenvalue of the first limit problem (1.13), (1.14), (1.15), and uk, u

′
k are terms of of the

regular asymptotic expansion (see Section 3.4 for regularity results). Moreover, ς0 is a
smooth cut-off function such that

ς0(x) = 1 for x2 ≤ d, ς0(x) = 0 for x2 ≥ 2d, where d :=
1

2
min{x2 : x ∈ Γ0}, (3.3)

and wk, w
′
k are boundary layer terms, namely periodic functions in the half-strip ϖ with

an exponential decay at infinity.
Here, and in Sections 3.2-3.3, we successively determine the asymptotic terms in (3.2)

and derive the second limit problem which reads (1.18)–(1.20), involving a coefficient b > 0
and the correction term µ = µk in (3.1).

Firstly, we note that the Laplace equation (1.18) asymptotically follows from the dif-
ferential equation (1.3) because the parameter (3.1) is infinitesimal and the support of the
function with the big coefficient λεε−mχε is located in the cε-neighborhood of Γ, and hence,
it does not appear disappear in Ω when ε → 0. The Dirichlet condition (1.19) is directly
inherited from the boundary condition (1.4) on Γ⊓. The Steklov spectral condition (1.20)
will be found by examining the natural decay property of the boundary layer terms.

3.2 The first term of the boundary layer

In this and the next section we omit the subscript k in the notation, cf. (1.18)–(1.20).
We insert ansätze (3.2) and (3.1) into problem (1.3)–(1.5), consider the rapid variables

(2.1) and apply the obvious formulas

∂2w

∂x2
1

(
x1,

x

ε

)
=

1

ε2
∂2w

∂ξ21
(x1, ξ) +

2

ε

∂2w

∂x1∂ξ1
(x1, ξ) +

∂2w

∂x2
1

(x1, ξ), ξ = ε−1x,

∂w

∂ν
(x1, ξ1, 0) = −1

ε

∂w

∂ξ2
(x1, ξ1, 0),

u(x) = u(x1, 0) + x2
∂u

∂x2
(x1, 0) +O(x2

2) = u(x1, 0) + εξ2
∂u

∂x2
(x1, 0) +O(ε2ξ22),

(3.4)
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and we gather the coefficients of the same powers of the small parameter ε, then, we arrive
at the problem

−∆ξw(x1, ξ) = MX(ξ)(w(x1, ξ) + u(x1, 0)), ξ ∈ ϖ,

w(x1, ξ1, 0) = −u(x1, 0), |ξ1| < l, − ∂w

∂ξ2
(x1, ξ1, 0) = 0, |ξ1| ∈

(
l,
1

2

)
,

w
(1
2
, ξ2

)
= w

(
− 1

2
, ξ2

)
,

∂w

∂ξ1

(1
2
, ξ2

)
=

∂w

∂ξ1

(
− 1

2
, ξ2

)
, ξ2 > 0.

(3.5)

Notice that the variable x1 ∈ (−1, 1) remains as a parameter in this problem.
Evidently, a solution of (3.5), with the exponential decay as ξ2 → +∞ takes the form

w(x1, ξ) = B−1u(x1, 0)Ŵ (ξ), Ŵ (ξ) = W (ξ)−B, (3.6)

where W = W1 is the principal eigenfunction of the first limit problem (1.13)–(1.15) (cf.
norm (2.7)) and B, the first coefficient of the Fourier series (2.8), is defined by (2.11) in its
representation (2.8).

3.3 The second term of the boundary layer and the Steklov con-
dition on Γ

Taking into account formulas (3.4) for w, w′ and u, u′, we collect terms of orders ε−1 in
(1.3), ε1 in (1.4) and ε0 in (1.5). As a result, we obtain the problem

−∆ξw
′(x1, ξ)−MX(ξ)w′(x1, ξ) = f ′(x1, ξ), ξ ∈ ϖ,

w′(x1, ξ1, 0) = −u′(x1, 0), |ξ1| < l,

−∂w′

∂ξ2
(x1, ξ1, 0) =

∂u

∂x2
(x1, 0), |ξ1| ∈

(
l,
1

2

)
,

(3.7)

with the periodicity conditions (1.15) and the right-hand side

f ′(x1, ξ) =2
∂2w

∂x1∂ξ1
(x1, ξ) +MX(ξ)

(
u′(x1, 0) + ξ2

∂u

∂x2
(x1, 0)

)
+ µX(ξ) (w(x1, ξ) + u(x1, 0))

(3.8)

Below we solve problem (3.7) with both conditions u′(x1, 0) = 0 and u′(x1, 0) ̸= 0. How-
ever, without any restriction, we can assume throughout the paper u′ = 0: see Remark 3.2
when u′ ̸= 0.

Hence, let us assume that u′(x1, 0) = 0 both in (3.7) and (3.8), and therefore we consider
the Dirichlet condition in (3.7) homogeneous. Let also g′ denote the right-hand side of the
Neumann condition in (3.7) imposed on τ ♯ = (−1/2,−l) ∪ (l, 1/2); namely,

g′(x1, ξ1, 0) =
∂u

∂x2
(x1, 0).

Owing to (3.6) and (2.8), the function

∂2w

∂x1∂ξ1
(x1, ξ) =

1

B

∂u

∂x1
(x1, 0)

∂W

∂ξ1
(ξ) (3.9)
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decays exponentially as ξ2 → +∞, and f ′ also does. Consequently, the variational formu-
lation of problem (3.7), (1.15), which reads

(∇ξw
′,∇ξv)ϖ −M(w′, v)θ = (f ′, v)ϖ + (g′, v)τ♯ , v ∈ H, (3.10)

has on the right-hand side a linear continuous functional in the Hilbert space H (cf. (2.2)).
Since M is a simple eigenvalue, the Fredholm alternative brings the only compatibility
condition in problem (3.10)

(f ′,W )ϖ + (g′,W )τ♯ = 0 (3.11)

Assuming that (3.11) is satisfied, one solution w′ ∈ H is defined up to an additive function
C ′(x1)W (ξ). According to the above-mentioned relation f ′(x1, ξ) = O(e−2πξ2), we deduce
that a particular solution w′

0 of (3.10) admits the representation

w′
0(x1, ξ) = B′

0(x1) + w̃ ′
0(x1, ξ)

with an exponentially decaying remainder w̃ ′
0(x1, ξ) and with B′

0(x1) the constant function
in the ξ variable describing the behaviour of w ′

0(x1, ξ) when ξ2 → ∞. Setting C ′(x1) =
−B−1B′

0(x1) yields the unique solution of (3.7) with the exponential decay

w′(x1, ξ) = w′
0(x1, ξ) + C ′(x1)W (ξ) ∈ H1(ϖ) ∩H. (3.12)

Consequently, it suffices to guarantee condition (3.11) for the above defined data f ′

and g′. Let us examine this condition in further detail. First of all, according to the
1-periodicity of W (ξ) in ξ1 and formula (3.9), we have

2

∫
ϖ

W (ξ)
∂2w

∂x1∂ξ1
(x1, ξ) dξ =

1

B

∂u

∂x1
(x1, 0)

∫
ϖ

∂

∂ξ1

(
W (ξ)2

)
dξ = 0. (3.13)

Then, recalling (2.11), we obtain

M

∫
ϖ

W (ξ)X(ξ)ξ2
∂u

∂x2
(x1, 0) dξ +

1/2∫
−1/2

W (ξ1, 0)
∂u

∂x2
(x1, 0) dξ1

=
∂u

∂x2
(x1, 0)

(
M

∫
θ

ξ2W (ξ) dξ +

1/2∫
−1/2

W (ξ1, 0) dξ1

)
= B

∂u

∂x2
(x1, 0).

Finally, the relation (3.6) together with the normalization condition (2.7) yield

µ

∫
ϖ

W (ξ)X(ξ)(w(x1, ξ) + u(x1, 0)) dξ =
µ

B

∫
θ

|W (ξ)|2 dξ u(x1, 0) = B µbu (x1, 0), (3.14)

where
b = M−1B−2 > 0. (3.15)

Thus, formulas (3.13)–(3.14) and (3.8) convert the compatibility condition (3.11) into
the Steklov condition (1.20) with coefficient (3.15) and the spectral parameter µ. Consid-
ering u the solution of (1.18)-(1.20) gives the solution (3.12) of problem (3.7) and (1.15).
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Remark 3.1. As a matter of fact, when the compatibility condition (3.11) is fulfilled,
problem (3.7) with u′(x1, 0) = 0 has a unique decaying solution in the form

w′(x1, ξ) = u(x1, 0)w
′
0(ξ) +

∑
p=1,2

∂u

∂xp
(x1, 0)w

′
p(ξ) (3.16)

where the functions w′
q are certain 1-periodic functions in ξ1 which are smooth everywhere

in ϖ, except at the arc τ⊓ and the collision points P± where, respectively, jumps of second

derivatives and singularities O(ρ
1/2
± ) occur. The assertion on the formula (3.16) is due to

the form of the nonhomogeneus term f ′ (see (3.8) and (3.9)); here u reads uk in the case
where µ = µk in the sequence (3.18).

Remark 3.2. In the general case where u′(x1, 0) ̸= 0 in (3.7), changing w′(x1, ξ)+u′(x1, 0)
gives the solution of (3.7) that we have obtained above (cf. (3.12)) and this completely
solves the problem (3.7). Also, note that we have defined the second term w′(x1, ξ) of the
boundary layer type without imposing any condition on the second term u′(x) of the regular
type; hence, we could put u′ = 0 in ansatz (3.2). Nevertheless, we note that the term u′

together with the replacement w′(x1, ξ) 7→ w′(x1, ξ) + B−1u′(x1, 0)Ŵ (ξ) in the boundary
layer term, are needed to determine lower-order terms which are, however, omitted in our
present study.

3.4 Eigenpairs of the second limit problem: the Steklov problem

The variational formulation of problem (1.18)–(1.20) reads: to find a number µ and a
non-trivial function u ∈ H1

0 (Ω; Γ⊓) such that

(∇u,∇v)Ω = µb(u, v)Γ, v ∈ H1
0 (Ω; Γ⊓). (3.17)

Here, H1
0 (Ω; Γ⊓) is the Sobolev space of functions vanishing at the arc Γ⊓. Since the trace

operator: H1(Ω) → L2(Γ) is compact, the following assertion becomes evident.

Proposition 3.3. The variational problem (3.17) (equivalently, (1.18)–(1.20) in the dif-
ferential form) has the unbounded monotone positive sequence of eigenvalues

0 < µ1 < µ2 ≤ µ3 ≤ · · · ≤ µk ≤ · · · → +∞ (3.18)

which repeat according to their multiplicities. The corresponding eigenfunctions uk ∈
H1

0 (Ω; Γ⊓) can be subject to the orthogonality and normalization conditions

(uk, uj)Γ = δj,k, j, k ∈ N. (3.19)

The eigenfunction uk ∈ H1
0 (Ω; Γ⊓) has additional smoothness near the base Γ in

spite of the corner points Q± = (±L, 0) where the Dirichlet and Steklov conditions meet
each other. Indeed, these corners have the angle π/2, and applying the Kondratiev theory
[10] again and performing a simple calculation (cf. Ch. 2 in [31]), one may verify the
representation

uk(x) =(x1 ± L)
∂uk

∂x1
(±L, 0) +

1

2

(
(x1 ∓ L)2 − x2

2

) ∂2uk

∂x2
1

(±L, 0)

− (x1 ∓ L)x2bµk
∂uk

∂x1
(±L, 0)− 1

2
(x1 ∓ L)2x2bµk

∂2uk

∂2x1
(±L, 0)

+O
(
|x−Q±|4(1 + | ln |x−Q±||)

)
.
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In this way, in a neighborhood of Γ the function uk falls into the classes H4 and C3,α with
any α ∈ (0, 1). At the same time, we have that uk ∈ H4(Γ).

3.5 Transforming the asymptotic expansions of eigenfunctions

Ansatz (3.2) with boundary layer terms proves to be convenient in Section 4 for an esti-
mation of asymptotic remainders in (3.1) and (3.2). However, in order to highlight our
approach in Section 6.2, we rewrite the main asymptotic term of the eigenfunction uε

k in a
different form.

Using formula (3.6) for the boundary layer term wk(x1, ξ) in (3.2), we have

uk(x) + ς0(x)wk(x1, ξ) =uk(x) + ς0(x)B
−1uk(x1, 0)(W (ε−1x)−B)

=B−1uk(x)W (ε−1x)−(1− ς0(x))B
−1uk(x)(W (ε−1x)−B)

−ς0(x)B
−1(uk(x)− uk(x1, 0))(W (ε−1x)−B).

(3.20)

We note that B−1uk(x)W (ε−1x) amounts to the dominant term in the asymptotic
expansion (3.20) as we can show easily in what follows: The difference W (ε−1x) − B
decays as O(e−2πx2/ε) and 1 − ς0(x) = 0 for x2 < d, d > 0, see (3.3). Hence, the next
to last term in (3.20) is exponentially small. Moreover, uk(x) − uk(x1, 0) = O(x2) and,
therefore (see (2.10)), the last product in (3.20) can be bounded by the infinitesimal value
cε everywhere in Ω.

It should be emphasized that representation (3.20) along with the above-estimates was
the main reason to introduce the asymptotic ansatz (1.17) in Section 1.2 and to consider
the quotient function (2.29) in Sections 2.4 and 5.1.

3.6 A two scale convergence result

For convenience, we introduce the following result which provides bounds for convergence
rates of 1-periodic functions when they satisfy a certain exponential decay in the ξ2 direc-
tion.

Proposition 3.4. Assume that z ∈ H1(Ω), and Z ∈ L2(ϖ) is a function which is extended
1-periodically in ξ1 over the half-plane R2

+ and has the exponential decay as ξ2 → +∞,
namely

∥eβξ2Z;L2(ϖ)∥ < ∞ with some β > 0.

Then∣∣∣∣ ∫
Ω

z(x)Z
(x
ε

)
dx−ε

∫
ϖ

Z(ξ) dξ

1∫
−1

z(x1, 0) dx1

∣∣∣∣ ≤ cε3/2 ∥z;H1(Ω)∥ ∥eβξ2Z;L2(ϖ)∥. (3.21)

Proof. Due to the exponential decay of Z, we can restrict the first integral in (3.21) on the
rectangle Ω0 = (−1, 1) × (0, l0) ⊂ Ω with some fixed l0 ∈ (0,min{l±, d}], the committed
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error being exponentially small in ε. We have

∫
Ω0

z(x)Z
(x
ε

)
dx =

∑
n∈Z(N)

ε(n+1/2)∫
ε(n−1/2)

l0∫
0

z(x1, x2)Z
(x1

ε
,
x2

ε

)
dx2dx1

=
∑

n∈Z(N)

ε(n+1/2)∫
ε(n−1/2)

z(x1, 0)

l0∫
0

Z
(x1

ε
,
x2

ε

)
dx2dx1

+

1∫
−1

l0∫
0

(z(x1, x2)− z(x1, 0))Z
(x1

ε
,
x2

ε

)
dx2dx1 =: Iε0 + Iε1

and, furthermore,

Iε0 =
∑

n∈Z(N)

1

ε

ε(n+1/2)∫
ε(n−1/2)

z(ζ, 0) dζ

ε(n+1/2)∫
ε(n−1/2)

l0∫
0

Z
(x1

ε
,
x2

ε

)
dx2dx1

+
∑

n∈Z(N)

1

ε

ε(n+1/2)∫
ε(n−1/2)

ε(n+1/2)∫
ε(n−1/2)

(z(x1, 0)− z(ζ, 0)) dζ

l0∫
0

Z
(x1

ε
,
x2

ε

)
dx2dx1

=:Iε2 + Iε3 .

Making the coordinate change x 7→ ξ, it can be easily seen that the expression Iε2 satisfies

∣∣∣∣Iε2 − ε

∫
ϖ

Z(ξ) dξ

1∫
−1

z(x1, 0) dx1

∣∣∣∣ ≤ cεe−βl0/(2ε)

1/2∫
−1/2

∞∫
l0/ε

eβξ2/2 |Z(ξ)| dξ
1∫

−1

|z(ζ, 0)| dζ

≤ cεe−βl0/(4ε)∥e−βξ2/2;L2(ϖ)∥ ∥eβξ2Z;L2(ϖ)∥ ∥z;L2(Γ)∥
≤ cε3/2∥z;H1(Ω)∥ ∥eβξ2Z;L2(ϖ)∥.

Another expression will be estimated by means of the Cauchy inequality

∑
n∈Z(N)

anbn ≤
( ∑

n∈Z(N)

a2n

)1/2( ∑
n∈Z(N)

b2n

)1/2

.

Indeed, recalling the Slobodetskii norm

∥z;H1/2(Γ)∥ =

(
∥z;L2(Γ)∥2 +

1∫
−1

1∫
−1

|z(x1, 0)− z(ζ, 0)|2

|x1 − ζ|2
dx1dζ

)1/2

(3.22)
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in the trace space H1/2(Γ) for H1(Ω), and applying the Hölder inequality, we obtain

|Iε3 | ≤2
∑

n∈Z(N)

ε(n+1/2)∫
ε(n−1/2)

ε(n+1/2)∫
ε(n−1/2)

|z(x1, 0)− z(ζ, 0)|
|x1 − ζ|+ ε

dζ

l0∫
0

∣∣∣Z(x1

ε
,
x2

ε

)∣∣∣ dx2dx1

≤2

(
ε

1∫
−1

1∫
−1

|z(x1, 0)− z(ζ, 0)|2

(|x1 − ζ|+ ε)2
dx1 dζ

)1/2 (
ε(2N + 1)ε2∥eβξ2 Z;L2(ϖ)∥2

)1/2
≤cε3/2∥z;H1(Ω)∥ ∥eβξ2 Z;L2(ϖ)∥,

(3.23)

where 2N + 1 = O(ε−1) is the number of cells (see Section 1.1). We complete the proof
with the following estimate using the Newton–Leibnitz formula and the integral Hölder
inequality:

|Iε1 | ≤
l0∫
0

1∫
−1

∣∣∣∣
x2∫
0

∂z

∂t
(x1, t) dt

∣∣∣∣ ∣∣∣Z(x1

ε
,
x2

ε

)∣∣∣ dx1 dx2

≤
l0∫
0

1∫
−1

( x2∫
0

∣∣∣∂z
∂t

(x1, t)
∣∣∣2 dt)1/2

x
1/2
2

∣∣∣Z(x1

ε
,
x2

ε

)∣∣∣ dx1 dx2

≤c
∥∥∥ ∂z

∂x2
;L2(Ω0)

∥∥∥( 1∫
−1

( l0∫
0

x2

∣∣∣Z(x1

ε
,
x2

ε

)∣∣∣ dx2

)2

dx1

)1/2

≤c∥∇z;L2(Ω0)∥
( l0∫

0

e−2βx2/εx2 dx2

1∫
−1

l0∫
0

e2βx2/ε
∣∣∣Z(x1

ε
,
x2

ε

)∣∣∣2 dx)1/2

≤c∥z;H1(Ω)∥
(
ε2(2N + 1)ε2

∫
ϖ

e2βξ2 |Z(ξ)|2 dξ
)1/2

≤cε3/2∥z;H1(Ω)∥ ∥eβξ2Z;L2(ϖ)∥.

Thus, gathering the estimates for Iεi , i = 1, 2, 3, the result of the proposition holds.

Remark 3.5. Note that the geometry of the domain chosen (cf. figure 1) provides certain
properties for solutions useful mainly to simplify technical proofs, and avoid introducing
more cut-off functions which bring more cumbersome computations. However, formal
computations hold for a more general geometry of Ω and the proofs can be extended.

4 Estimation of asymptotic remainders

Throughout this section, we justify up to a certain degree asymptotics (3.1) and (3.2) (cf.
(3.20)) for eigenvalues and eigenfunctions.We obtain bounds for discrepancies between the
eigenvalues of the original problem and the first two terms of the asymptotic expansions,
and similarly for the corresponding eigenfunctions. However, this still does not imply the
approach of the k-th eigenvalue in the sequence (1.9) through the k-th eigenvalue in the
sequence (3.18) with the same k. We set some preliminaires in Section 4.1, while we gather
the main results in Section 4.4 (cf. Theorem 4.2 and estimate (4.29)).
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4.1 Abstract formulation of the ε-dependent eigenvalue problem

In the Hilbert space Hε = H1
0 (Ω; Γ

ε
⊓) we introduce the scalar product

⟨uε, vε⟩ε = (∇uε,∇vε)Ω + ε−2(uε, vε)Θε + εm−2(uε, vε)Ω (4.1)

and an operator Kε by the identity

⟨Kεuε, vε⟩ε = ε−2(uε, vε)Θε + εm−2(uε, vε)Ω, ∀uε, vε ∈ Hε. (4.2)

Operator Kε is compact, positive, continuous and symmetric. Therefore, it has a positive
monotone infinitesimal sequence of eigenvalues counted according to their multiplicity

κε
1 ≥ κε

2 ≥ · · · ≥ κε
k ≥ · · · → 0+, (4.3)

while κε = 0 is the only point of the essential spectrum of Kε.
In view of (4.2) and (4.1), the integral identity (1.8) is equivalent to the abstract

equation
Kεuε = κεuε in Hε,

where, in addition, a simple calculation shows that sequences (4.3) and (1.9) satisfy the
relationship

κε
k =

1

1 + Λε
k

=
εm−2

λε
k + εm−2

. (4.4)

In what follows, to show the above mentioned proximity of the asymptotic formulas
(3.1) and (3.2), we use the following simple consequence of the spectral decomposition of
the resolvent, also known as result on “near eigenvalues and eigenvectors”, see, e.g. [42]
and Ch. 6 in [3].

Lemma 4.1. Let Uε ∈ Hε and kε ∈ R possess the properties

∥Uε;Hε∥ = ⟨Uε,Uε⟩1/2ε = 1, ∥KεUε − kεUε;Hε∥ =: δ ∈ (0, kε). (4.5)

Then, there exists an eigenvalue κε
q of the operator Kε such that∣∣κε

q − kε
∣∣ ≤ δ.

Moreover, for any δ• ∈ (δ, kε), one finds some coefficients aεQε , . . . , aεQε+Xε−1 satisfying∥∥∥∥Uε −
Qε+Xε−1∑

q=Qε

aεqV
ε
q;H

ε

∥∥∥∥ ≤ 2
δ

δ•
,

Qε+Xε−1∑
q=Qε

∣∣aεq∣∣2 = 1, (4.6)

where κε
Qε , . . . , κε

Qε+Xε−1 stand for all the eigenvalues of Kε in the segment [kε−δ•, k
ε+δ•]

and Vε
Qε , . . . ,Vε

Qε+Xε−1 are the corresponding eigenvectors subject to the orthogonality and
normalization conditions

⟨Vε
q,V

ε
p⟩ε = δp,q, p, q ∈ N. (4.7)

Comparing (4.7) and (1.10), we recall formulas (4.2) and (1.8) to arrive at the relation

Vε
k =

(
1 + εm−2(λε

k)
−1
)−1/2

uε
k. (4.8)

kε and Uε arising in (4.5) are the so-called near eigenvalue and eigenvector respectively for
the operator Kε; we perform a suitable choice in Section 4.2, and we compute δ in Section
4.3.
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4.2 Choosing near eigenvalues and eigenvectors

According to formulas (3.1), (3.2), (3.6), Proposition 3.3 and Remark 3.2, we set

kεk = (1 +M + εµk)
−1

, Uε
k = ∥uεk;Hε∥−1uεk, (4.9)

with the function uεk being

uεk(x) = uk(x) + ς0(x)
(
B−1uk(x1, 0)Ŵ (ε−1x) + ες ′ε(x1)w

′(x1, ε
−1x)

)
, (4.10)

where w′ is the decaying solution (3.12) of problem (3.7) with u′ = 0. The cut-off functions
ς0 from (3.3) and ς ′ε,

ς1ε ∈ C∞(R), 1 ≤ ς1ε ≤ 1,
∣∣∣∂pς1ε
∂xp

1

(x1)
∣∣∣ ≤ cpε

−p, p ∈ N,

ς1ε (x1) = 1 for |x1| ≤ 1− 2ε

3

(1
2
− l
)
, ς1ε (x1) = 0 for |x1| ≥ 1− ε

3

(1
2
− l
)
,

(4.11)

are introduced into (4.10) in order to fulfil the boundary condition (1.4) on Γε
⊓. Notice

that ς0 = 0 on Γ0, ς ′ε = 0 on Γ± while, owing to the Dirichlet condition in problems
(1.13)–(1.15) and (3.5), (3.7), the function uεk also vanishes at T ε and therefore belongs
to Hε = H1

0 (Ω; Γ
ε
⊓) due to the properties of the functions uk and W mentioned in Sections

3.4 and 2.2, 2.3, respectively.
Let us consider the discrepancy δε = δεk in (4.5), namely

δεk =∥KεUε
k − kεkU

ε
k;H

ε∥ = sup
∣∣∣⟨KεUε

k − kεkU
ε
k, v⟩ε

∣∣∣
=∥uεk;Hε∥−1kεk sup

∣∣∣(1 +M + εµk)
(
ε−2(uεk, v)Θε + εm−2(uεk, v)Ω

)
− (∇uεk,∇v)Ω − ε−2(uεk, v)Θε − εm−2(uεk, v)Ω

∣∣∣
=∥uεk;Hε∥−1kεk sup

∣∣∣(∇uεk,∇v)Ω − ε−2(M + εµk)(u
ε
k, v)Θε − εm−2(M + εµk)(u

ε
k, v)Ω

∣∣∣
=∥uεk;Hε∥−1kεk sup

∣∣∣(∆uεk, v)Ω −
(∂uεk
∂x2

, v
)
Γ\T ε

+ ε−2(M + εµk)(u
ε
k, v)Θε

+ εm−2(M + εµk)(u
ε
k, v)Ω

∣∣∣,
(4.12)

where the supremum is taken over all v ∈ Hε such that ∥v;Hε∥ = 1. We postpone comput-
ing δεk to Section 4.3, although some of the bounds below will be used in this computation.

We proceed by calculating the scalar products

⟨uεk, uεj⟩ε = (∇uεk,∇uεj)Ω + ε−2(uεk, u
ε
j)Θε + εm−2(uεk, u

ε
j)Ω, (4.13)

see (4.1), for the functions uεk and uεj in (4.10) corresponding to the same eigenvalue µk of
multiplicity κk,

µk−1 < µk = · · · = µk+κk−1 < µk+κk
. (4.14)

For κk = 1, we have j = k in (4.13) but in Section 4.4 we will also need to deal with the
case j ̸= k. In fact, our aim in the rest of the section is to show the relationships∣∣⟨uεk, uεj⟩ε − ε−1(M + 1)bδj,k

∣∣ ≤ cj,kε
−1/2, (4.15)
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for certain constants cj,k.
First, we observe that the last term in (4.13) meets the estimate

εm−2
∣∣(uεk, uεj)Ω∣∣ ≤cεm−2

(
∥uε

k;L
2(Ω)∥+ ∥uε

k;L
2(Γ)∥+O(ε)

)
×(

∥uε
j ;L

2(Ω)∥+ ∥uε
j ;L

2(Γ)∥+O(ε)
)
≤ cjkε

m−2.
(4.16)

Second, considering the first two terms on the right-hand side of (4.13), we use Proposi-

tion 3.4 and we proceed by evaluating scalar products for the part uε0k = uk + ς0B
−1uΓ

kŴ
ε

of the expression (4.10) where uΓ
k stands for the trace of uk on Γ. Since

ε−2(uε0k , uε0j )Θε =ε−2B−2(uΓ
kŴ

ε, uΓ
j Ŵ

ε)Θε + ε−2B−1(uk, u
Γ
j Ŵ

ε)Θε

+ ε−2B−1(uΓ
kŴ

ε, uj)Θε + ε−2B−2(uk, uj)Θε ,

for the first term on the right-hand side, we introduce the functions z and Z in Proposition
3.4 as follows: z(x) = uk(x)uj(x) either for x ∈ Ω or x ∈ Γ, and Z(ξ) = (W (ξ)−B)2 when
ξ ∈ Θ, Z(ξ) = 0 outside. We proceed similarly for the rest of the terms, and we derive
that

ε−2(uε0k , uε0j )Θε = ε−1

∫
Γ

uk(x1, 0)uj(x1, 0) dx1

×
(
B−2

∫
θ

(W (ξ))−B)2 dξ + 2B−1

∫
θ

(W (ξ))−B) dξ +

∫
θ

dξ

)
+O(ε−1/2)

=ε−1

∫
Γ

uk(x1, 0)uj(x1, 0) dx1 B
−2∥W ;L2(θ)∥2 +O(ε−1/2)

=ε−1(uk, uj)Γ B
−2M−1 +O(ε−1/2)ε−1bδj,k +O(ε−1/2).

(4.17)

Here, we have used formulas (3.19), (2.7) and (3.15). Taking into account the exponential

decay of the difference Ŵ = W − B and definition (3.3) of the cut-off function ς0, and its
derivative, we obtain

(∇uε0k ,∇uε0j )Ω =ε−2B−2(uΓ
k ς0∇ξW

ε, uΓ
j ς0∇ξW

ε)Ω + ε−1B−1(∇uk, u
Γ
j ς0∇ξW

ε)Ω

+ ε−1B−1(uΓ
k ς0∇ξW

ε,∇uj)Ω + (∇uk,∇uj)Ω+O(1)

=ε−1B−2(uk, uj)Γ∥∇ξW ;L2(ϖ)∥2 +O(ε−1/2)

=ε−1Mbδj,k +O(ε−1/2).

(4.18)

Finally, in view of (4.16), to conclude with the sought-for relationship (4.15), it suffices
to mention that (4.17) and (4.18) lead to the formulas

∥∇uε0k ;L2(Ω)∥ ≤ ckε
−1/2 and ε−1∥uε0k ;L2(Θε)∥ ≤ ckε

−1/2

as can be easily checked, while a similar calculation shows that the rest uε′k = uεk − uε0k =
εζ0ζ

′
εw

′ admits the estimates

∥∇uε′k ;L
2(Ω)∥ ≤ ckε

1/2 and ε−1∥uε′k ;L2(Θε)∥ ≤ ckε
1/2.
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4.3 Estimating discrepancies

Here, we obtain an estimate for δεk given by (4.12), cf. (4.24).
Inequality (4.15), in particular, means that the first factor on the right-hand side of

(4.12) is less than cε1/2 for a certain constant c. Let us evaluate the scalar products under
the sign sup. The last one evidently meets the estimate

εm−2(Mk + εµk)
∣∣(uεk, v)Ω∣∣ ≤ ckε

m−2∥v;L2(Ω)∥.

By definition (4.10), the entry of the first scalar product becomes

∆xu
ε
k =∆xuk + ς0B

−1
(∂2uΓ

k

∂x2
1

Ŵ +
2

ε

∂uΓ
k

∂x1

∂W

∂ξ1
+

1

ε2
uΓ
k∆ξW

)
+ ες0

(∂2w′
k

∂x2
1

+
2

ε

∂2w′
k

∂x1∂ξ1
+

1

ε2
∆ξw

′
k

)
+ [∆, ς0]

(
B−1uΓ

kwk + ες ′εw
′
k

)
−ες0[∆, 1− ς ′ε]w

′
k.

(4.19)

Above, [∆, V ]U denotes the commutator operator [∆, V ]U = ∆(V U)−V∆U = 2∇V.∇U+
U∆V , and the derivatives involve partial derivatives with respect to x and ξ; namely,
∂xi = ∂

∂xi
+ ε−1 ∂

∂ξi
. Clearly, ∆xuk = 0 by virtue of (1.18). According to definitions

(3.3) and (4.11), the commutators [∆, ς0] and [∆, 1 − ς ′ε] = −[∆, ς ′ε] vanish outside the
subdomains Ω(d) = {x ∈ Ω : d < x2 < 2d} and

Ω′
ε =

{
x ∈ Ω : |x1| ∈

(
1− 2ε

3

(1
2
− l
)
, 1− ε

3

(1
2
− l
))}

,

respectively. In the set Ω(d) the functions Ŵ and w′ are exponentially small so that∣∣∣([∆, ς0](B
−1uΓ

kŴ + ες ′εw
′
k, v
)
Ω

∣∣∣ ≤ ce−τ/ε, τ ∈ (0, 2πd)

(see (2.10) and (3.3)). The two thin vertical strips touching the sides Γ± and composing
the set Ω′

ε, do not contain the collision points and therefore w′ is twice differentiable in Ω′
ε.

Hence, on account of the bounds for the derivatives of ς ′ε and the Fourier expansion of w′

similar to (2.8) with B = 0, we have

|ε(ς0[∆, ς ′ε]w
′
k, v)Ω| ≤cε

1

ε2

∫
Ω′

ε

e−2πx2/ε|v(x)| dx

≤c
1

ε

(∫
Ω′

ε

(|x1| − 1)2e−4πx2/ε dx

)1/2(∫
Ω′

ε

(|x1| − 1)−2|v(x)|2 dx
)1/2

≤cε−1
(
εε3
)1/2 ∥(|x1| − 1)−1v;L2(Ω0)∥ ≤ cε∥v;Hε∥ ≤ cε.

Here, we have used the normalization condition ∥v;Hε∥ = 1 in (4.12) as well as the conse-
quence

∥(|x1| − 1)−1v;L2(Ω0)∥ ≤ 4∥∇v;L2(Ω0)∥ (4.20)

of the Hardy inequality (2.4) in the variable t = 1∓x1 together with the Dirichlet condition
v = 0 on Γ±. Also the integral in Ω′

ε of the function e−4πx2/ε has been computed, and Ω0

denotes the set {x ∈ Ω : 0 < x2 < d}.
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Some of the terms in (4.19) can be treated as follows:∣∣∣(ς0B−1Ŵ∂2uΓ
k/∂x

2
1, v)Ω

∣∣∣ ≤ cε∥v;H1(Ω)∥,∣∣ε(ς0∂2w′/∂x2
1, v)Ω

∣∣ ≤ cε∥v;H1(Ω)∥,∣∣(ς0∂2w′/∂x1∂ξ1, v)Ω
∣∣ ≤ cε3/2∥v;H1(Ω)∥.

These estimates are obtained by Proposition 3.4 as a consequence of the following: in
the first two estimates, the subtrahend on the left-hand side of inequality (3.21) has been
considered for the corresponding bound. In the third estimate, similarly to (3.13), the

formula

∫
ϖ

∂w′

∂ξ1
(ξ) dx = 0 for the 1-periodic function has been taken into account. We

emphasize that the function Z in Proposition 3.4 is a product of the test function v with
the trace on Γ of ∂juk/∂x

j
1, with j = 0, . . . , 3 (cf. Remark 3.1), which belongs to H1

0 (Ω; Γ⊓)
according to the differential properties of the eigenfunction uk described in Section 3.4.

With the help of equations (3.5) and (3.7), (3.8), we rewrite the scalar products with
the remaining terms in (4.19) in the form:

ε−2B−1
(
ς0u

Γ
k∆ξW, v

)
Ω
=− ε−2MB−1

(
uΓ
kW, v

)
Θε ,

ε−1

(
ς0∆ξw

′
k + 2B−1ς0

∂uΓ
k

∂x1

∂W

∂ξ1
, v

)
Ω

=− ε−1M
(
w′

k, v)Θε − ε−1M

(
ξ2

(∂uk

∂x2

)Γ
, v

)
Θε

− ε−1µkB
−1
(
uΓ
kW, v

)
Θε .

(4.21)

These scalar products will be considered together with the other term in (4.12)

ε−2(M + εµk)(u
ε
k, v)Θε = ε−2M

(
uk + uΓ

kB
−1(W −B), v

)
Θε

+ ε−1
(
µk

(
uk + uΓ

kB
−1(W −B), v

)
Θε +M(w′

k, v)Θε

)
+ µk(w

′
k, v)Θε .

(4.22)

In (4.21) and (4.22), we have taken into account that, by definitions (3.3) and (4.11), both
the cut-off functions ς0 and ς ′ε equal 1 on the union Θε of the concentrated masses.

The first term on the right-hand side of (4.22) becomes

ε−2MB−1
(
uΓ
kW, v

)
Θε + ε−2M

(
uk − uΓ

k , v
)
Θε = ε−2MB−1

(
uΓ
kW, v

)
Θε

+ε−1M

(
ξ1

(∂uk

∂x2

)Γ
, v

)
Θε

+ ε−2M

(
uk − uΓ

k − x1

(∂uk

∂x2

)Γ
, v

)
Θε

.

The first and second scalar products can be readily found in (4.21) so that all of them
cancel each other under the last sign sup in (4.12). By definition (4.1) and the Taylor
formula, the modulo of the third scalar product does not exceed the expression

cε−2ε2
∫
Θε

|v(x)| dx ≤ cε1/2∥v;L2(Θε)∥ ≤ cε3/2. (4.23)

Furthermore, the coefficient of ε−1 in (4.22) coincides with

ε−1µkB
−1
(
uΓ
kW, v

)
Θε + ε−1µk

(
uk − uΓ

k , v
)
Θε + ε−1M(w′

k, v)Θε
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while the first and third scalar products have also appeared in (4.21) and thus are canceled
in (4.12). Finally, we obtain the estimate

ε−1µk

∣∣(uk − uΓ
k , v
)
Θε

∣∣+ µk

∣∣(w′
k, v)Θε

∣∣ ≤ c

∫
Θε

|v(x) dx ≤ cε

which is quite similar to (4.23).
It remains to consider the scalar product in (4.12) with the derivative ∂x2u

ε
k, namely∣∣∣∣(∂uεk∂x2

, v
)
Γ\T ε

∣∣∣∣ = ∣∣∣∣(∂uk

∂x2
+ ς ′ε

∂w′
k

∂ξ2
, v
)
Γ\T ε

+
1

ε
B−1

(
uΓ
k

∂W

∂ξ2
, v
)
Γ\T ε

∣∣∣∣
=

∣∣∣∣((1− ς ′ε)
∂uk

∂x2
, v
)
Γ\T ε

∣∣∣∣ ≤ c

1∫
1−ε(1−2l)/3

(|v(x1, 0)|+ |v(−x1, 0)|) dx1 ≤ cε3/2.

Here, we took into account that
∂W

∂ξ2

(x1

ε
, 0
)
v(x1, 0) = 0 on Γ \ T ε due to the Neumann

boundary condition (1.14) for W as well as the second formula in (3.7) for w′, and formulas
(4.11) for ς ′ε and (4.20) for v.

Finally, note that all the constants c arising in the bounds throughout the section
depend on k and they are bounded by ckε for some constant ck.

Thus, gathering our calculations through the section, we observe that all the terms of
the expression under the last sign sup in (4.12) are either canceled out, or bounded by
ckε. This together with formula (4.15), which gives the estimate from below of the norm
∥uεk;Hε∥, while kεk from (4.9), lead to the inequality

δεk ≤ ckε
3/2. (4.24)

4.4 The intermediate result on asymptotics

Let us apply Lemma 4.1 with kεk and Uε
k in (4.9) and δε = c0kε

3/2 with c0k a positive constant.
Lemma 4.1 provides us with an eigenvalue κε

p of the operator Kε such that∣∣κε
p − kεk

∣∣ ≤ c0kε
3/2. (4.25)

Now, using (4.4) and (4.9), we obtain∣∣Λε
p −M − εµk

∣∣ ≤ c0kε
3/2(1 + Λε

p)(1 +M + εµk). (4.26)

Choosing εk > 0 to fulfil c0kε
3/2(1 +M + εµk) ≤

1

2
for ε ∈ (0, εk], from (4.26) we derive

the chain of inequalities

Λε
p ≤ M + εµk + c0kε

3/2(1 + Λε
p)(1 +M + εµk),

Λε
p ≤ 2

(
M + εµk + c0kε

3/2(1 +M + εµk)
)
,

∣∣Λε
p −M − εµk

∣∣ ≤ c1kε
3/2 for ε ∈ (0, εk],

(4.27)

where c1k is expressed through c0k, M and εkµk. Note that above we have used that Λε
p is

bounded by a constant depending on k. Thus, we have found a rescaled eigenvalue (1.11)
of problem (1.3)–(1.5) in the c1kε

3/2-neighborhood of the point M + εµk.
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Let us verify that in the case (4.14) a neighborhood of M + εµk contains at least κk

eigenvalues. We take
δε• = Sε3/2 (4.28)

in Lemma 4.1 where S > 0 is a big number to be fixed later. Then, considering µk

of multiplicity κk, for the same kεk in (4.9) we define Uε
j = ∥uεj ;Hε∥−1uεj for each j =

k, . . . , k+κk−1, and obtain (4.12) for δεk = c0kε
3/2. Thus, using Lemma 4.1, we derive that

for each j = k, . . . , k+κk − 1 there is the coefficient column aε(j) =
(
aεjQε , . . . , aεjQε+Xε−1

)
which, according to (4.6), is normalized in RXε

and satisfies∥∥∥∥Uε
j −

Qε+Xε−1∑
q=Qε

aεjqV
ε
q;H

ε

∥∥∥∥ ≤ 2
c•k
S
, (4.29)

where c•k = max{c1k, . . . , c1k+κk−1}. Moreover, according to (4.6) and (4.7) we have∣∣∣∣⟨Uε
j ,U

ε
l

⟩
ε
−
⟨
aε(j), a

ε
(l)

⟩
RXε

∣∣∣∣ = ∣∣∣∣⟨Uε
j ,U

ε
l

⟩
ε
−
⟨∑

aεjqV
ε
q,
∑

aεlmVε
m

⟩
ε

∣∣∣∣
=

∣∣∣∣⟨Uε
j ,U

ε
l −

∑
aεlmVε

m

⟩
ε
+
⟨
Uε
j −

∑
aεjqV

ε
q,
∑

aεlmVε
m

⟩
ε

∣∣∣∣ ≤ 4
c•k
S

with j, l = k, . . . , k + κk − 1 and the summation over q,m = Qε, . . . , Qε + Xε − 1. For
Qε and Xε we use the same notation as in Lemma 4.1, Xε being the total number of
eigenvalues κε

p of Kε in the interval [kεk − δε•, k
ε
k + δε•]. On the other hand, formulas (4.9)

and (4.15) show that, for sufficiently small ε,∣∣∣ ⟨Uε
j ,U

ε
l

⟩
ε
− δj,l

∣∣∣ =∥uεj ;Hε∥−1∥uεl ;Hε∥−1
∣∣∣⟨uεj , uεl ⟩ε − δj,l∥uεj ;Hε∥ ∥uεl ;Hε∥

∣∣∣
≤c♮kε

−1/2
(
ε−1Mb

)−1
= C♮

kε
1/2.

Thus, we obtain the inequality∣∣∣⟨aε(j), aε(l)⟩RXε
− δj,l

∣∣∣ ≤ C♮
kε

1/2 + 4c•kS
−1. (4.30)

In other words, the columns aε(k), . . . , a
ε
(k+κk−1) are normalized and “almost orthogonal”

in RXε

for a small ε and a big S. This may happen for a sufficiently small ε and a
sufficiently large S, only under the restriction Xε ≥ κk, as can be shown by contradiction,
and, again by Lemma 4.1, we detect at least κk eigenvalues of the operator Kε in the
Sε3/2-neighborhood of the point kεk in (4.9). Since we can show that the Λε

p are bounded
by a constant depending on k only, the replacement c0k 7→ S in (4.25) does not affect our
conclusion (4.27) and we formulate the result that we have obtained.

Theorem 4.2. Let µk be an eigenvalue of the limit Steklov problem (1.18)–(1.20) with
multiplicity κk, cf. (4.14). Then there exist positive εk, ck and a rescaled eigenvalue Λε

p(k),

cf. (1.11), of the original problem (1.3)–(1.5) such that the estimate∣∣Λε
j −M − εµk

∣∣ ≤ ckε
3/2 for ε ∈ (0, εk] (4.31)

is valid with j = p(k), . . . , p(k) + κk − 1.

Finally, let us note that the equality p(k) = k will be proved in Section 6.1.
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5 The convergence theorem

In this section, we reformulate the original eigenvalue problem (1.8) in terms of new spec-
tral parameters and eigenfunctions (1.23). The new spectral problem reads (5.2) and we
show that it has a discrete spectrum (cf. Sections 5.1 and 5.2). Its rescaled eigenvalues
{ε−1µε

k}∞k=1 converge towards the eigenvalues {µk}∞k=1 of (3.17) with conservation of mul-
tiplicity; also a certain convergence of the corresponding eigenfunctions holds. In order to
obtain this convergence, we formulate problem (5.2) in weighted Sobolev spaces with the
singular weight W ε which is obtained from the principal eigenmode of the cell problem
(2.2) (cf. Sections 5.2 and 5.3). The main results of the section are stated in Proposi-
tion 5.5 and Theorem 5.6. The above-mentioned convergence, with conservation of the
multiplicity, is derived at the beginning of Section 6.1.

5.1 Reformulation of the ε-dependent eigenvalue problem

Considering the first eigenvalue M and the corresponding eigenfunction W = W1 of prob-
lem (1.13)–(1.15), we recall the weight multiplier W ε(x) = W (ε−1x) in (2.29) is positive
in R2

+ and ε-periodic in x1 (cf. Section 2). In this way, function (2.29) is properly defined
in the domain Ω for any eigenfunction uε = uε

k of the original problem (1.3)–(1.5). Con-
sidering the inclusion (2.31), we reformulate this spectral problem to get a new eigenvalue
problem for the fractional function uε = uε/W ε in (2.29).

Recalling that −∆W ε = ε−2MχεW ε, we have

∆uε = ∆(W εuε) = W ε∆uε + 2∇W ε · ∇uε + uε∆W ε

= W ε∆uε + 2∇W ε · ∇uε − uεε−2MχεW ε.

Hence, function (2.29) verifies the differential equation

−W ε∆uε − 2∇W ε · ∇uε − εm−2MW εuε = εm−2µε(1 + ε−mχε)W εuε in Ω (5.1)

with the new spectral parameter

µε = ε2−mλε −M = Λε −M.

Multiplying (5.1) by the test function W εvε, vε being any smooth function in Ω vanishing
on Γ⊓, we take into account the relation

2(∇W ε · ∇uε,W εvε)Ω = (∇(W ε)2 · ∇uε,vε)Ω

and, integrating by parts, derive the integral identity

(W ε∇uε,W ε∇vε)Ω − εm−2M(W εuε,W εvε)Ω

= εm−2µε(W εuε,W εvε)Ω + ε−2µε(W εuε,W εvε)Θε .
(5.2)

Let us note that, according to (2.29) and (1.4), (1.5), the function uε satisfies the boundary
conditions

uε = 0 on Γ⊓, (5.3)

∂ν (W
εuε) = 0 on Γ \ T ε . (5.4)

This makes null the line integral over ∂Ω \ T ε while the integral over T ε vanishes because
W = 0 on τ and, therefore, W ε = 0 on T ε. In other words, the differential equation
(5.1) equipped with the boundary conditions (5.3) and (5.4), does not need any boundary
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condition on the set T ε where the weight multiplier W ε becomes null. This peculiarity of
differential equations with degenerating coefficients is a subject which has been investigated
in the literature, cf. [41] and [23].

The eigenvalue problem (5.2) must be posed in the space Hε obtained by completing
the space C∞

0 (Ω;Γ⊓) with the weighted norm

∥vε;Hε∥ = ∥W ε∇vε;L2(Ω)∥.

C∞
0 (Ω;Γ⊓) denotes the linear space of C

∞ functions vanishing in a neighborhood of Γ⊓. We
emphasize that, in view of Corollary 2.3, Proposition 2.5 ensures that for the eigenfunctions
uε of the original problem (1.8), the fractional function uε = uε/W ε satisfies uε ∈ C(Ω)
and uε ∈ Hε.

As a consequence, the new spectral problem reads: find µε, uε ∈ Hε, uε ̸= 0, satisfying
(5.2) for any vε ∈ Hε. In addition, we have the following result.

Proposition 5.1. The spectral problem (5.2) in Hε has the monotone unbounded positive
sequence of eigenvalues

0 < µε
1 < µε

2 ≤ µε
3 ≤ · · · ≤ µε

k ≤ · · · → +∞ (5.5)

and the corresponding eigenfunctions uε
k ∈ Hε can be subject to the orthogonality and

normalization conditions

(W ε∇uε
k,W

ε∇uε
j)Ω − εm−2M(W εuε

k,W
εuε

j)Ω = δk,j , k, j ∈ N. (5.6)

Proof. To prove the conclusion of the statement, we need the inequality

∥uε;L2(Ω)∥2 ≤ cΩ∥W ε∇uε;L2(Ω)∥2, uε ∈ Hε, (5.7)

which follows from the classical one-dimensional Hardy inequality, namely, from (5.10).
Indeed, to derive (5.7) from (5.10), we extend uε as null over the half-strip (−1, 1)×R+,

set U(y) = uε(x1, y), integrate in x1 ∈ (−1, 1) and observe that, in view of Corollary 2.3,

W ε(x) ≥ Cmin{1, ε−1x2} ≥ CΩx2, CΩ > 0.

Notice that the constant CΩ and, therefore, cΩ in (5.7) are independent of ε ∈ (0, ε0].
In addition, introducing Lε the weighted Lebesgue space with the norm

∥uε;Lε∥ = ∥W εuε;L2(Ω)∥, (5.8)

we show that the embedding Hε ⊂ Lε is compact. To do this, we consider any sufficiently
small δ > 0 and we represent the embedding operator Iε as the sum Iε(δ) + Iεδ of the
restriction operators onto the sets Ω \ Tε

δ and Tε
δ, respectively. Here, Tε

δ is the union of
the small rectangles

tεnδ = {x : |x1 − εn| ≤ ε(l + δ), x2 ∈ (0, ε(h0 + δ))}, n ∈ Z(N), (5.9)

where W ε(x) ≤ Cδ1/2 according to (2.26) and (2.25). Hence, the operator Iεδ has a small
norm O(δ1/2) due to the weight multiplier W ε in (5.8) while Iε(δ) stays compact because
W ε(x) ≥ c(δ, ε) > 0 on Ω \ Tε

δ and therefore Iε(δ)Hε = H1(Ω \ Tε
δ; Γ⊓). As a matter

of fact, since the function W ε(x) is bounded, it suffices to consider that the embedding
Hε ⊂ H1(Ω\Tε

δ; Γ⊓) holds continuously. This amounts to say that Iε can be approximated
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by compact operators in the operator norm and thus is compact too, and this shows the
compactness of the embedding Hε ⊂ Lε.

Furthermore, inequality (5.7) ensures that

εm−2M∥W εuε;L2(Ω)∥2 ≤ cεm−2∥uε;L2(Ω)∥2 ≤ Cεm−2∥uε;Hε∥2

and, owing to assumption (1.7), on the left hand side of (5.2), the second term is a small
perturbation of the first one. Then, we note that the right-hand side of (5.2) can be written
as

εm−2µε(W εuε(1 + εmχε),W εvε)Ω,

for χε in (1.6), and the scalar product here defines a norm equivalent to that of Lε,
cf.(5.8). Consequently, problem (5.2) is a standard eigenvalue problem in the framework of
sesquilinear, continuous and coercive forms on the couple of Hilbert spaces Hε ⊂ Lε and
the result of the proposition holds.

In the next section, we establish the equivalence between both spectral problems, (1.8)
and (5.2). In order to do it, we show Proposition 5.3 below which provides properties for
eigenfunctions of (5.2) complementing those in Proposition 2.5 for (1.8). Its proof uses the
estimate in the next lemma, which readily follows from the classical Hardy inequality

∞∫
0

|U(y)|2dy ≤ 4

∞∫
0

y2
∣∣∣dU
dy

(y)
∣∣∣2dy, U ∈ C∞

c [0,+∞). (5.10)

Lemma 5.2. For fixed T1 and T2, 0 < T1 < T2, and for any U ∈ C∞[0,+∞), the inequality∫ T1

0

|U(τ)|2dτ ≤ C

(∫ T2

0

τ2
∣∣∣∣dUdτ (τ)

∣∣∣∣2 dτ +

∫ T2

T1

|U(τ)|2dτ

)
(5.11)

holds, with C a constant depending on T1 and T2 but independent of U .

Proof. Introducing the cut-off function

XT ∈ C∞(R), 0 ≤ XT ≤ 1, X (τ) = 1 for τ ≤ T1, XT (τ) = 0 for t ≥ T2,

we take U(τ) = U(τ)XT (τ) and apply (5.10) to obtain (5.11).

Proposition 5.3. Let uε = uε
k be any eigenfunction of (5.2) in Hε. Then, W εuε belongs

to H1(Ω).

Proof. On account of the boundedness of W ε it suffices to show that uε∇W ε ∈ L2(Ω),
which holds due to the inequality

∥uε∇W ε;L2(Ω)∥2 ≤ cε∥W ε∇uε;L2(Ω)∥2 (5.12)

with some ε-dependent constant cε. To prove (5.12), we decompose the domain Ω into
subdomains which (after changing to variables (2.1)) are contained in regions of the plane
where bounds in Corollary 2.3 hold.

Let Ωε denote Ω∩{x2 > ε}. Let 0 < δ1 < min{l, 1
2−l}. For each n ∈ Z(N), we consider

the intervals

Nε
n = {x1 : |x1 − ε(n+

1

2
)| < (

1

2
− l − δ1)ε} and Dε

n = {x1 : |x1 − εn| < (l − δ1)ε}
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which overlap with the regions of Γ where the Neumann and Dirichlet conditions for the
eigenfunction of (1.3)-(1.5) are imposed, repectively. Also, considering polar coordinates
in a neighborhood of the collision point P = ε(n ± l) (cf. Lemma 2.1 and figure 2), we
denote by Eε

n the half-disk

Eε
n = {(ρ±, φ±) : ρ± ∈ (0, εr1), φ± ∈ (0, π)}.

Above, we take δ1 and r1 in such a way that Ω = Ω̃ε ∪
∪

n∈Z(N)

Eε
n ∪ (Dε

n × (0, ϵ]), where Ω̃ε

denotes the subdomain Ω̃ε = Ωε ∪
∪

n∈Z(N)

Nε
n × (0, ε].

Note that Ω̃ε denotes a teeth domain which is nothing but Ω minus small rectangles of
height ε and width 2(l + δ1)ε containing the collision points (cf. similar domains in (5.9)
and figure 3). Let us denote by tεn the larger, but still small, rectangles

tεn = {x : |x1 − εn| ≤ ε(l + δ1), x2 ∈ (0, 2ε)}, n ∈ Z(N).

In Ω̃ε, we take into account that uε vanishes on Γ0 and apply the Friedrichs inequality
to obtain

∥uε;L2(Ω̃ε)∥2 ≤ c∥∇uε;L2(Ω̃ε)∥2.

As a consequence of properties (2.23) and (2.24), we get (5.12) in Ω̃ε, namely,

∥uε∇W ε;L2(Ω̃ε)∥2 ≤ cε∥W ε∇uε;L2(Ω̃ε)∥2 (5.13)

Let us proceed obtaining the desired estimates in the small rectangles dε
n ⊂ tεn, d

ε
n :=

Dε
n × (0, ε), as follows. Let x1 ∈ Dε

n, we apply (5.11) taking U = uε, τ = x2, T1 = ε and
T2 = 2ε, and we deduce∫ ε

0

|uε(x1, x2)|2 dx2 ≤ cε

(∫ 2ε

0

x2
2

∣∣∣∣∂uε

∂x2
(x1, x2)

∣∣∣∣2 dx2 +

∫ 2ε

ε

|uε(x1, x2)|2dx2

)
.

Then, we take the integral over Dε
n, consider the sum for n ∈ Z(N) and, since uε vanishes

at x1 = ±L, apply the Friedrichs inequality in the rectangle (−L,L) × (ε, 2ε). As a
consequence of the boundedness of |∇W ε| and properties (2.23) and (2.25), we can write

∥uε∇W ε;L2
( ∪
n∈Z(N)

dε
n

)
∥2 ≤ cε

(
∥W ε∇uε;L2

( ∪
n∈Z(N)

dε
n

)
∥2 + ∥W ε∇uε;L2(Ω̃ε)∥2

)
.

(5.14)
In order to obtain estimates near the collision points (namely, in subdomains of tεn out of

dε
n and Ω̃ε), we consider the half-disk Eε

n centered at the collision point P = (n+ l)ε, where
the boundary conditions change from Dirichlet to Neumann, obtaining suitable bounds,
and we proceed in the same way with the other collision point (n − l)ε in each half-strip
of width ε.

Let us fix n. If no confusion arises we skip indexes ε and n, and denote by (r, φ)
the polar coordinates. We write the half-disk Eε

n as the union of three sectors which are
contained in SD, S and SN , where

SD = {x : r ∈ (0, εr1), φ ∈ (
π

2
, π)}, SN = {x : r ∈ (0, εr1), φ ∈ (0,

π

2
− φ0)}

and
S = {x : r ∈ (0, εr2), |φ− π

2
| < φ0},
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and the constants φ0 ∈ (0, π
4 ) and 0 < r1 < r2 are chosen to ensure that S ∩ d

ε

n ̸= ∅ and
S ∩ {r ∈ (εr1, εr2)} is contained in γε

n × (ε, 2ε) (cf. Section 1.1 for the definition of γε
n).

These choices restrict those for δ0 and r1 performed above and can be done as follows:
let us fix φ0 < π/4 and choose δ1 such that S ∩ d

ε

n is only the point of polar coordinates
(εr1, φ0), then take r2 such that S∩{r ∈ (εr1, εr2)} ⊂ γε

n×(ε, 2ε). Obviously, by symmetry
S ∩ (N

ε

n × [0, ε]) is the point with the coordinates (εr1,−φ0).

For the half-disk Eε
n, we recall (cf. Lemma 2.1) that |∇W ε| ≤ C̃εr

−1/2, that W ε(x) ≥
c̃εr

1/2 with a constant c̃ε > 0 in S because cos(φ/2) ≥ C > 0 for φ ∈ (π2 −φ0,
π
2 +φ0) and

φ0 ∈ (0, π
4 ). Similarly, W ε(x) ≥ c̃εr

1/2 in SD, while W ε(x) ≥ c̃εr
1/2(π−φ) in SN (cf. also

(2.26)) .
Let us start getting bounds for the integrals of |uε∇W ε|2 over the symmetric sector S.

Taking τ = r, T1 = εr1 and T1 = εr1 in (5.11), we can write∫
S∩Eε

n

|uε∇W ε|2dx ≤ cε

∫ π/2+φ0

π/2−φ0

∫ εr1

0

r−1|uε|2r drdφ

≤cε

(∫ π/2+φ0

π/2−φ0

∫ εr2

0

r

∣∣∣∣∂uε

∂r

∣∣∣∣2 r drdφ+

∫ π/2+φ0

π/2−φ0

∫ εr2

εr1

r−1|uε|2r drdφ

)
,

and consequently,∫
S∩Eε

n

|uε∇W ε|2dx ≤ cε

(∫
S

|W ε∇uε|2dx+

∫
γε
n×(ε,2ε)

|uε(x)|2dx

)
,

where we note that when considering sums for n ∈ Z(N), the second integral on the right-
hand side can be estimated in terms of (5.12), as has been done in (5.14).

As regards the sector SD, we apply (5.11) with τ = π − φ, T1 = π
2 − φ0, T2 = π

2 . We
have∫ εr1

0

∫ π

π/2+φ0

r−1|uε|2r dφdr

≤ cε

(∫ εr1

0

∫ π

π/2

r−1(π − φ)2
∣∣∣∣∂uε

∂φ

∣∣∣∣2 r dφdr + ∫ εr1

0

∫ π/2+φ0

π/2

r−1|uε|2r dφdr

)
.

The second integral on the right-hand side has been estimated in the previous step (cf.
estimates in the sector S), while the first integral can be rewritten and bounded as follows∫ εr1

0

∫ π

π/2

r(π − φ)2
∣∣∣∣1r ∂uε

∂φ

∣∣∣∣2 r dφdr ≤ cε

∫
SD

|W ε∇uε|2dx.

Finally, in the sector SN , we apply the inequality∫ π/2−φ0

0

|uε|2 dφ ≤ cε

(∫ π/2

0

∣∣∣∣∂uε

∂φ

∣∣∣∣2 dφ+

∫ π/2

π/2−φ0

|uε|2dφ

)
and take integrals over r ∈ (0, r1ε). We have∫ εr1

0

∫ π/2−φ0

0

r−1|uε|2r drdφ

≤ cε

(∫ εr1

0

∫ π/2

0

r

∣∣∣∣1r ∂uε

∂φ

∣∣∣∣2 r drdφ+

∫ εr1

0

∫ π/2

π/2−φ0

r−1|uε|2rdrdφ

)
.
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The second integral on the right-hand side has been estimated above (cf. estimates in the
sector S), while the first integral is bounded by cε∥W ε∇uε;L2(Eε

n)∥2.
Gathering the bounds on the three sub-sectors S, SN and SD, we can write

∥uε∇W ε;L2
( ∪
n∈Z(N)

Eε
n

)
∥2 ≤ cε

(
∥W ε∇uε;L2

( ∪
n∈Z(N)

tεn
)
∥2 + ∥W ε∇uε;L2(Ω)∥2

)
.

(5.15)
From (5.13)–(5.15) we derive (5.12), and the proposition is proved.

5.2 The equivalence of the ε-dependent problems and the crucial
estimate for eigenfunctions

Clearly, relations (5.2), (5.6), Proposition 5.3, and properties (2.23)–(2.26) of the weight
function W ε show that any eigenpair {µε

k,u
ε
k} ∈ R+ ×Hε of problem (5.2) gives rise to an

eigenpair
{λε

K , û ε
K} = {εm−2(M + µε

k),W
εuε

k} ∈ R+ ×H1
0 (Ω; Γ

ε
⊓) (5.16)

of problem (1.8), together with the estimate for the eigenfunction

∥û ε
K ;L2(Ω)∥ = ∥W εuε

k;L
2(Ω)∥ ≤ c∥uε

k;L
2(Ω)∥ ≤ C∥uε

k;H
ε∥ (5.17)

(cf. (5.7)) where C does not depend on ε ∈ (0, ε0], and k ∈ N.
The converse follows from the two following observations. First, (2.31) confirms that

function (2.29) lives in H1(Ω; Γ⊓), therefore, in Hε. Second, taking W εvε as a test function
in the integral identity (1.8), the latter turns into (5.2) by a simple algebraic transformation
which involves applying the Green formula to ∆W ε multiplied by W εvεuε

k (see arguments
in Section 5.1). Hence, any eigenpair {λε

k, u
ε
k} of problem (1.8) generates an eigenpair

{µε
K , û ε

K} = {ε2−mλε
k −M, (W ε)−1uε

k} ∈ R+ ×Hε (5.18)

of problem (5.2), that together with (5.16) means that in both cases, numbers k and K
of eigenvalues coincide with each other. In this way, we can assert that the eigenvalue
problems (1.8) and (5.2) are equivalent and

µε
k = ε2−mλε

k −M, k ∈ N. (5.19)

It should be noted that Proposition 5.1 shows that the values defined by (5.19) are
positive. However, we observe that this can also be obtained independently by proving that
ε2−mλε

1 − M > 0, and applying the technique in [36], which uses the minimax principle
and comparison results for eigenvalues in different domains (cf. Lemma 5.4). At the same
time, we note that the eigenfunctions û ε

k in (5.16) and û ε
k in (5.18) are not normalized

according to conditions (1.10) and (5.6), respectively. Besides, although the L2(Ω)-norm
of û ε

k is uniformly bounded in ε ∈ (0, ε0], see (5.17), the gradient norm ∥∇ûε
k;L

2(Ω)∥ grows
unboundedly as ε → 0 because of the last term in the formula

∇(W ε(x)uε
k(x)) = W (ε−1x)∇uε

k(x) + ε−1uε
k(x)∇ξW (ξ), with ξ = ε−1x. (5.20)

Our immediate objective is to show the uniform estimate

∥∇uε
k;L

2(Ω)∥ ≤ ck (5.21)

for the eigenfunctions uε
k normalized by (5.6) (see statement of Proposition 5.5). This

estimate becomes the key point when proving Theorem 5.6 on convergence for eigenpairs
of (5.2) in Section 5.3.
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n

b)a)

Figure 3: Localizing uε
k near the concentrated masses

Since W ε(x) ≥ cδ > 0 for x ∈ Ω \Tε
δ with any δ > 0, see (5.9) and (2.23)–(2.26), and,

by virtue of (5.6) and (5.7), we have

∥W ε∇uε
k;L

2(Ω))∥ ≤ c for ε ∈ (0, ε0] and k ∈ N. (5.22)

Then, it is sufficient to derive an appropriate estimate of the gradient ∇uε
k on the union of

the small rectangles (5.9) with some fixed δ > 0 to be determined. To this end, we localize
the solution uε

k of problem (5.1), (5.3), (5.4) onto a neighborhood of tεnδ with the help of
the cut-off function

ςεn = ς1(ε−1(x1 − εn))ς2(ε−1x2) (5.23)

where

ς1(ξ1) =

 0 for |ξ1| > l + 2
3

(
1
2 − l

)
,

1 for |ξ1| < l + 1
3

(
1
2 − l

)
,

ς2(ξ2) =

{
0 for ξ2 > h0 + 2,
1 for ξ2 < h0 + 1,

with l ∈
(
0, 1

2

)
and h0 > 0 taken from (1.2) and (2.9), respectively. The function |∇ςεn| has

a support in the set Πε
n = Ξ2ε

n \ Ξ1ε
n , see figure 3, a,

Ξpε
n =

{
x : |x1 − εn| < εl + ε

p

3

(1
2
− l
)
, x2 ∈ (0, εh0 + εp)

}
, p = 1, 2, (5.24)

and we define

cεkn = (mes2Π
ε
n)

−1
∫
Πε

n

uε
k(x) dx, (5.25)

Uε
kn(ξ) = ςεn(x) (u

ε
k(x)− cεkn) (5.26)

where ξ = ε−1(x1− εn, x2) are the stretched coordinates (2.1) and Uε
kn is the function uε

k

somehow localized.
From (5.1), we derive the differential equation

−W (ξ)∆ξU
ε
kn(ξ)− 2∇ξW (ξ) · ∇ξU

ε
kn(ξ) = Fε

kn(ξ), ξ ∈ Ξ2, (5.27)

where

Ξp =
{
ξ : |ξ1| < l +

p

3

(1
2
− l
)
, ξ2 ∈ (0, h0 + p)

}
, p = 1, 2, (5.28)

36



cf. (5.24), and

Fε
kn(ξ) =W (ξ) (εm(M + µε

k) + µε
kX(ξ)) ς(ξ) cεkn

+W (ξ) (εm(M + µε
k) + µε

kX(ξ)) Uε
kn(ξ) + F̂ε

kn(ξ).
(5.29)

We emphasize that the factor ε2 comes to the right-hand side of (5.27) from the relationship
W ε(x)∆x = ε−2W (ξ)∆ξ, and the additional term in (5.29), that is,

F̂ε
kn(ξ) =W (ξ) (2ε∇xu

ε
k · ∇ξς(ξ) + (uε

k(x)− cεkn)∆ξς(ξ))

+ 2(uε
k(x)− cεkn)∇ξW (ξ) · ∇ξς(ξ)

(5.30)

involves the commutator (cf. (4.19) for the definition) of the differential operator from the
left hand side of (5.27) with the cut-off function ς(ξ) = ς1(ξ1)ς

2(ξ2) obtained from (5.23).
We finally note that function (5.26) satisfies the boundary conditions

Uε
kn(ξ) = 0, ξ ∈ ∂Ξ2, ξ2 > 0, (5.31)

∂

∂ξ2
(W (ξ)Uε

kn(ξ)) = 0, ξ2 = 0, l < |ξ1| < l +
2

3

(1
2
− l
)
. (5.32)

The Dirichlet condition (5.31) is due to the definition of the cut-off function (5.23) and
the Neumann condition (5.32) is additionally inherited from (1.5) and (1.14). As has
been mentioned previously, there is no need to impose any condition on the segment τ =
(−l, l)× {0}.

Owing to (5.25), the orthogonality condition∫
Πε

n

(uε
k(x)− cεkn) dx = 0

is satisfied. Thus, the Poincaré inequality in Π = Ξ2 \ Ξ1 (before the rescaling) ensures
that ∫

Πε
n

|uε
k(x)− cεkn|

2
dx ≤ cΠε

2

∫
Πε

n

|∇xu
ε
k(x)|

2
dx (5.33)

while the factor ε2 is due to the small size of the set Πε
n in figure 3, a. Function (5.30) has

a support in Π, see figure 3, b, and

∥F̂ε
kn;L

2(Π)∥2 ≤c
(
ε2∥W∇xu

ε
k;L

2(Π)∥2 + ∥uε
k(x)− cεkn;L

2(Π)∥2
)

=c
(
∥W ε∇xu

ε
k;L

2(Πε
n)∥2 + ε−2∥uε

k(x)− cεkn;L
2(Πε

n)∥2
)

≤c
(
∥W ε∇xu

ε
k;L

2(Πε
n)∥2 + ∥∇xu

ε
k(x);L

2(Πε
n)∥2

)
≤c∥W ε∇xu

ε
k;L

2(Πε
n)∥2.

(5.34)

Here, we have applied inequality (5.33) together with the formulas dξ = ε−2dx and
W ε(x) ≥ cΠ > 0, x ∈ Πε

n.
In what follows, we employ the notation

nε
kn = ∥W ε∇xu

ε
k;L

2(Ωε
n)∥2, Ωε

n = {x ∈ Ω : |x1 − εn| ≤ 1/2} (5.35)

so that, according to (5.22) ,∑
n∈Z(N)

nε
kn ≤ c for ε ∈ (0, ε0] and k ∈ N

37



while estimate (5.34) can be simplified as follows:

∥F̂ε
kn;L

2(Π)∥2 ≤ cnε
kn. (5.36)

Let us estimate the constant (5.25). Writing the Newton–Leibnitz formula

|uε
k(x1, x2)|2 =

( +∞∫
x2

∂uε
k

∂y
(x1, y) dy

)2
for the function uε

k extended by zero from Ω onto (−1, 1)×R+ (recall the Dirichlet condition
(5.3) on Γ0), we integrate in x ∈ Ξε

n \ Ξ1ε
n ⊃ Πε

n where

Ξε
n = {x ∈ Ωε

n : x2 < εh0 + 3ε}.

As a result, we obtain

∥uε
k;L

2(Πε
n)∥2 ≤∥uε

k;L
2(Ξε

n \ Ξ1ε
n )∥2 =

∫
Ξε

n\Ξ1ε
n

|uε
k(x)|2 dx

≤cΩ

∫
Ξε

n\Ξ1ε
n

+∞∫
x2

∣∣∣∂uε
k

∂y
(x1, y)

∣∣∣2 dy dx
≤cΩ ε (h0 + 3)

∫
Ωε

n\Ξ1ε
n

∣∣∣∂uε
k

∂y
(x1, y)

∣∣∣2 dy dx ≤ CΩ ε ∥∇xu
ε
k;L

2(Ωε
n \ Ξ1ε

n )∥2

≤CW,Ω ε ∥W ε∇xu
ε
k;L

2(Ωε
n \ Ξ1ε

n )∥2 ≤ CW,Ω εnε
kn.

Thus, taking into account the area mes2 (Π
ε
n) = O(ε2), we conclude that

|cεkn|2 ≤ cε−4mes2 (Π
ε
n) ∥uε

k;L
2(Πε

n)∥2 ≤ cε−1nε
kn. (5.37)

Now, we are in position to evaluate all the terms on the right-hand side of (5.29). First
of all, we notice that for any k ∈ N, there exist positive εk and Ck supporting the inequality

µε
k ≤ Ckε for ε ∈ (0, εk]. (5.38)

This estimate will be proved at the beginning of Section 5.3 (cf. (5.51)) based on results
in Section 4, that is, independent of the results of this section. Thus, there is no prob-
lem assuming for the rest of this section that (5.38) is satisfied, and we observe that the
coefficients in the terms

fεckn := W (εm(M + µε
k) + µε

kX)ςcεkn ∈ H1(Ξ2) (5.39)

of (5.29) admit the estimates:

εm(M + µε
k)|cεkn| ≤ Ckε

m−1/2(nε
kn)

1/2 ≤ Ckε
3/2(nε

kn)
1/2

µε
k|cεkn| ≤ Ckε

1/2(nε
kn)

1/2,

(5.40)

according to (5.37), (5.38) and (1.7). The last two formulas also allow us to consider the
term

fεUkn := Fε
kn − F̂ε

kn − fεckn = W (εm(M + µε
k) + µε

kX)Uε
kn (5.41)
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as a small perturbation of the differential expression on the left hand side of (5.27).
From Section 2.3 we know that Uε

kn ∈ H1(Ξ2), although the corresponding norm is not
estimated yet. We insert into problem (5.27), (5.31), (5.32) the representation formula

Uε
kn(ξ) = W (ξ)−1Uε

kn(ξ), Uε
kn(ξ) = ςεn(ξ) (u

ε
k(x)− cεknW

ε(x)) (5.42)

and after long but simple algebraic computations which involve computing ∇(W−1) and
∆(W−1) we arrive at the differential equation

−∆ξU
ε
kn(ξ)− (M + µε

k)X(ξ)Uε
kn(ξ)− εm(M + µε

k)U
ε
kn(ξ) = fεckn(ξ) + F̂ε

kn(ξ), (5.43)

for ξ ∈ Ξ2, with the boundary conditions

Uε
kn(ξ) = 0, ξ ∈ ∂Ξ2, ξ2 > 0,

Uε
kn(ξ1, 0) = 0, |ξ1| < l,

∂Uε
kn

∂ξ2
(ξ1, 0) = 0, |ξ1| ∈

(
l, l +

2

3

(1
2
− l
))

.
(5.44)

It should be noted that the above-mentioned term fεUkn in (5.41) has moved to the left
hand side in (5.43) and indeed exhibits a small perturbation of the differential operator
∆ξ + MX. The right-hand side (5.39) of (5.43) is a smooth function everywhere in Ξ2,

except at the arc τ⊓, and inherits from W the singularities O(ρ
1/2
± ) at the endpoints P± of

the line segment τ , see (1.2) and (2.13). Moreover, we have bounds (5.40) for coefficients
of the operator involved with fεckn and the result of the following lemma allows us to show
that, for sufficiently small ε, problem (5.43)-(5.44) has a unique solution in H1(Ξ2).

Lemma 5.4. The first eigenvalue M of the differential equation

−∆ξU = MXU in Ξ2, (5.45)

with the mixed boundary conditions (5.44) is strictly bigger than the first entry M = M1

in the eigenvalue sequence (2.6) for problem (1.13)–(1.15).

Proof. The variational formulation of problem (5.45), (5.44) and the discreteness of its
spectrum are clear. Let us revisit problem (1.13)–(1.15). In the Hilbert space H we
introduce the scalar product

⟨W,V ⟩ = (∇ξW,∇ξV )ϖ + (W,V )θ

and a compact positive self-adjoint operator K

⟨KW,V ⟩ = (W,V )θ, W, V ∈ H.

Then the variational problem (2.2) reduces to the abstract spectral equation

KW = κW in H

with the new spectral parameter κ = (1 +M)−1. The operator −K (with minus) is below
semi-bounded and hence the minimum principle (see, e.g., Theorem 10.2.1 in [3]) assures
that

− 1

1 +M1
= inf

V ∈H

−⟨KV, V ⟩
⟨V, V ⟩

= inf
V ∈H

−∥V ;L2(θ)∥2

∥∇ξV ;L2(ϖ)∥2 + ∥V ;L2(θ)∥2
.
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We insert into the Raileigh quotient the principal eigenfunction U1 of problem (5.45), (5.44)
extended by zero from Ξ2 onto the half-strip ϖ, cf. the first condition in (5.44). Then

− 1

1 +M1
<

−∥U1;L
2(θ)∥2

∥∇ξU1;L2(ϖ)∥2 + ∥U1;L2(θ)∥2
= − 1

1 +M1

and the desired relation M1 > M1 follows immediately. The strict inequality is due to
the fact that the principal eigenfunction W1 of (1.13)–(1.15) is positive in ϖ and therefore
cannot coincide with our test function.

Let us return to problem (5.43), (5.44) whose differential operator is a small pertur-
bation of −∆ξ − MX. Then, Lemma 5.4 shows that, for a small ε > 0, this problem is
uniquely solvable and thus, owing to (5.36) and (5.39), (5.40), there holds the estimate

∥Uε
kn;H

1(Ξ2)∥2 ≤ c
(
∥fεckn;L2(Ξ2)∥2 + ∥F̂ε

kn;L
2(Ξ2)∥2

)
≤ cnε

kn. (5.46)

As we have mentioned above, the function fεckn in (5.43) is “good”. At the same time,

the other function (5.30) is supported in Π, that is F̂ε
kn vanishes inside Ξ1 and its L2-norm

has been properly bounded in (5.36). In this way, using local estimates [2] of solutions to
the Neumann problem (compare the last relation in (5.44)) for the Helmholtz equation, we
may restrict our consideration on the smaller rectangle

Ξ1/2 =

{
ξ : |ξ1| < l +

1

6

(1
2
− l
)
, ξ2 ∈

(
0, h0 +

1

2

)}
, (5.47)

cf. (5.28), namely to deal with rectangles of the type (5.9) for a width δ =
1

6

(1
2
− l
)
> 0

after the coordinate compression ξ 7→ x.
Let us review the situation. Inside the bigger rectangle Ξ1 ⊃ Ξ1/2, the function Uε

kn

satisfies the differential equation (5.43) with F̂ε
kn = 0. According to (5.38) and (1.7),

the coefficient M + µε
k in the differential operator is a small perturbation of M and the

other coefficient εm(M + µε
k) is small itself. The remaining right-hand side fεckn takes

the convenient form (5.39) with coefficients estimated in (5.40). Finally, Uε
kn meets the

homogeneous Dirichlet and Neumann conditions (5.44) at the base {ξ ∈ ∂Ξ1 : ξ2 = 0}.
These facts allow us to apply the Kondratiev theory and, based on the theorem on
asymptotics in weighted Sobolev [10] and Hölder [21] classes (see also Section 2.3, Appendix
and, e.g., Ch. 3 in [31]), we conclude that in the smaller rectangle Ξ1/2 there hold the same
asymptotic forms for Uε

kn as we have used in Section 2.3 to examine the fractional function
(2.29).

The most profitable inference of the performed localization of the problem is undoubt-
edly the possibility to estimate all the necessary terms of the function Uε

kn in Ξ1/2 by the
expression

Ck

(
∥Uε

kn;L
2(Ξ2)∥2 + ∥fεckn;L2(Ξ2)∥2 +

(
ε2m(M + µε

k)
2 + |µε

k|2
)
|cεkn|2

)
(5.48)

which is nothing but the sum of the “weak norms” of the solution and the right-hand side
in a “bigger” domain Ξ2 and a “strong norm” of the right-hand side in a “intervening”
domain Ξ1. In this context, the weak norm means the L2(Ξ2)-norm but the strong norm is
a complicated weighted norm which will be minutely explained in the Appendix. Aiming
to estimate a strong norm of the solution in the “small domain” Ξ1/2, we note that Ξ1/2 $
Ξ1 $ Ξ2, cf. (5.28). Moreover, the strong norm of the right-hand side reduces to the sum of
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moduli of coefficients in the linear combination (5.39). The constant Ck is independent of
n ∈ Z(N) and ε ∈ (0, ε0] because of the cell’s identity and the above-mentioned property
of coefficients in the differential operator of the problem. As a result, we obtain the
desired local estimate which shows that the squared norm ∥∇ξ(W

−1Uε
kn);L

2(Ξ1/2∥2 does
not exceed expression (5.48).

According to (5.42) and (5.26), for ξ ∈ Ξ1/2 and therefore x ∈ Ξ
1/2 ε
n (cf. (5.24) for

p = 1/2), we have

∇ξ

(
W (ξ)−1Uε

kn(ξ)
)
= ∇ξU

ε
kn(ξ) = ∇ξ (u

ε
k(x)− cεkn) = ∇ξu

ε
k(x) = ε∇xu

ε
k(x).

Thus, the estimate derived above reads:

∥∇xu
ε
k;L

2(Ξ1/2 ε
n )∥2 = ∥∇ξu

ε
k;L

2(Ξ1/2
n )∥2 = ∥∇ξ(W

−1Uε
kn);L

2(Ξ1/2)∥2

≤ Ck

(
∥Uε

kn;L
2(Ξ2)∥2 + ∥fεckn;L2(Ξ2)∥2 +

(
ε2m(M + µε

k)
2 + |µε

k|2
)
|cεkn|2

)
≤ C1

kn
ε
kn = C1

k∥W ε∇xu
ε
k;L

2(Ωε
n)∥2.

(5.49)

Here, we have used relations (5.46), (5.36), (5.40) and notation (5.35).

Proposition 5.5. Let an eigenvalue µε
k in (5.5) satisfy inequality (5.38). Then the corre-

sponding eigenfunction uε
k of problem (5.2) belongs to H1(Ω; Γ⊓) and admits the estimate

∥∇uε
k;L

2(Ω)∥2 ≤ ck∥W ε∇uε
k;L

2(Ω)∥2, (5.50)

where the constant ck is independent of ε ∈ (0, εk] with some εk > 0. Also, under the
normalization condition (5.6), the estimate (5.21) holds uniformly in ε.

Proof. Summing up inequalities (5.49), n ∈ Z(N), and adding the self-evident inequality

∥∇xu
ε
k;L

2(Ω \Tε
δ)∥2 ≤ cW ∥W ε∇xu

ε
k;L

2(Ω \Tε
δ)∥2

yields (5.50). Here, δ > 0 is chosen δ = (1−2l)/12, namely, to be as it was indicated below
(5.47). In addition, from (5.50), (5.7) and (5.22) it follows (5.21).

5.3 Passing to the limit in the integral identity

According to Theorem 4.2, the ckε
3/2-neighborhood of the point M + εµk with the κk-

multiple eigenvalue µk, cf. (4.14), contains at least κk rescaled eigenvalues Λε
p(k) =

M + µε
p(k), . . . ,Λ

ε
p(k)+κk−1 = M + µε

p(k)+κk−1, see (1.11) and (5.19). Hence, if ε > 0
is sufficiently small, we have detected at least k + κk − 1 different eigenvalues in the
segment

[
0,M + εµk+κk−1 + ckε

3/2
]
and, therefore, we conclude the relations k ≤ p(k)

and
Λε
k+κk−1 = M + µε

k+κk−1 ≤ Λε
p(k)+κk−1 ≤ M + Ckε.

This proves inequality (5.38) used in the previous section. Moreover, we can choose a
positive infinitesimal sequence {ε•j}j∈N, along which there holds

ε−1µε
k → µ•

k, (5.51)

for some µ•
k > 0. Recalling inequalities (5.7) and (5.50), the eigenfunctions

{
u
ε•j
k

}
j∈N

normalized according to (5.6) satisfy the estimates

∥W ε∇uε
k;L

2(Ω)∥+ ∥uε
k;L

2(Ω)∥ ≤ ck (5.52)
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and
∥uε

k;H
1(Ω)∥ ≤ ck∥W εuε

k;L
2(Ω)∥ ≤ ckcW ck.

Thus, along a subsequence (the above notation {ε•j}j∈N is kept) we have

uε
k → u•

k weakly in H1(Ω) and strongly in L2(Ω), (5.53)

for a certain function u•
k ∈ H1(Ω). By the compactness of the trace operator from H1(Ω)

into L2(Γ), we also detect the strong convergence uε
k → u•

k in L2(Γ).
In order to identify the pairs (µ•

k, u
•
k), let the test function v in the integral identity (5.2)

belong to C∞
0

(
Ω;Γ⊓) ⊂ Hε; we take it independent of ε. Clearly, an eigenpair {µε

k,u
ε
k}

satisfies
εm−2(M + µε

k) (W
εuε

k,W
εv)Ω → 0.

In view of the exponential decay W ε(x)−B = O(e−2πx2/ε), see (2.10), we can write

(W ε)2∇v → B2∇v strongly in L2(Ω),

which easily follows from the smoothness of ∇v and from the fact that the function
W 2(ξ)−B2 ∈ L2(ϖ) is periodic in the ξ1 variable (cf. (2.1)).

Proposition 3.4 with Z = XW 2 ∈ L2(ϖ) and z = vuε
k ∈ H1(Ω) shows that∣∣∣∣(W εuε

k,W
εv)Θε − ε

∫
Θ

W (ξ)2dξ (uε
k,v)Γ

∣∣∣∣ ≤cε3/2∥vuε
k;H

1(Ω)∥

≤c(v)ε3/2∥uε
k;H

1(Ω)∥.

(5.54)

Notice that, by virtue of (2.7), the integral over Θ in (5.54) is equal to M−1.
The above-mentioned facts allow us to perform the limit passage as ε•j → 0 in the

integral identity (5.2) with µε = µ
ε•j
k , uε = u

ε•j
k and vε = v. As a result, we get the integral

identity
B2(∇u•

k,∇v)Ω = µ•
kM

−1(u•
k,v)Γ (5.55)

which, in view of (3.15), takes the form (3.17). By a completion argument, we can take
any test function v ∈ H1

0 (Ω; Γ⊓).

Theorem 5.6. For any k ∈ N, the limits µ•
k and u•

k ∈ H1(Ω; Γ⊓) computed by formulas
(5.51) and (5.53) through the eigenpair {µε

k,u
ε
k} of problem (5.2) in Hε (or equivalently

problem (5.1), (5.3), (5.4) in its differential form), are an eigenpair of the limit Steklov
problem (1.18)–(1.20).

Proof. From (5.55), it suffices to verify that the limit u•
k in (5.53) is not trivial. To this

end, cf. (5.55), we will prove the relation

µ•
kM

−1
(
u•
k,u

•
q

)
Γ
= δk,q (5.56)

for any k, q ∈ N bearing in mind the case k = q. This formula also shows that the limits
u•
k and u•

q with k ̸= q are orthogonal in L2(Γ) and therefore differ from each other.
First of all, we write the immediate consequence of formulas (5.2), (5.6)

δk,q = ε−2µε
k

(
W εuε

k,W
εuε

q

)
Θε + εm−2µε

k

(
W εuε

k,W
εuε

q

)
Ω

(5.57)

and we observe that, according to (5.51), (5.52) and (1.7),

εm−2µε
k

∣∣∣(W εuε
k,W

εuε
q

)
Ω

∣∣∣ ≤ ckqε
m−1 → 0.
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Then, obtaining (5.56) follows the idea in Proposition 3.4. We apply the Hardy inequality
(2.4) with t = x2 and V(t) = uε

j(x1, t)−uε
j(x1, 0) in order to obtain the relation (cf. (3.3))

1

ε2

∫
Θε

∣∣uε
j(x)− uεΓ

j (x1)
∣∣2 |W ε|2dx ≤ c

∫
Ω

x−2
2

∣∣ς0(x1)
(
uε
j(x)− uεΓ

j (x1)
)∣∣2 |W ε|2dx

≤ c

∫
Ω

∣∣∇ (ς0(x1)
(
uε
j(x)− uεΓ

j (x1)
))∣∣2 dx ≤ c∥uε

j ;H
1(Ω)∥2 ≤ Cj ,

(5.58)

for the trace uεΓ
j of uε

j on Γ. In addition, from (5.57)–(5.58) we get

ε−2µε
k

(
W εuεΓ

k ,W εuεΓ
q

)
Θε = δk,q + o(1) as ε → 0. (5.59)

Furthermore, recalling formulas (2.7) and (3.22), we proceed similarly to (3.23) using

Z = W 2 and that
∫ ε

0
|W (x1/ε, x2/ε)|2 dx2 ≤ Cε, and obtain

µε
k

∣∣∣∣ 1ε2 ∑
n∈Z(N)

∫
θε
n

W
(x
ε

)2
uε
k(x1, 0)u

ε
q(x1, 0)dx− 1

εM

∑
n∈Z(N)

ε(n+1/2)∫
ε(n−1/2)

uε
k(ζ, 0)u

ε
q(ζ, 0)dζ

∣∣∣∣
=ε−3µε

k

∣∣∣∣ ∑
n∈Z(N)

∫
θε
n

ε(n+1/2)∫
ε(n−1/2)

(
uε
k(x1, 0)u

ε
q(x1, 0)− uε

k(ζ, 0)u
ε
q(ζ, 0)

)
W
(x
ε

)2
dζ dx1

∣∣∣∣
≤ckq

∑
n∈Z(N)

ε(n+1/2)∫
ε(n−1/2)

ε(n+1/2)∫
ε(n−1/2)

∣∣uε
k(x1, 0)u

ε
q(x1, 0)− uε

k(ζ, 0)u
ε
q(ζ, 0)

∣∣
|x1 − ζ|+ ε

dζ dx1

≤ckq
√
ε
(
∥uε

k;H
1/2(Γ)∥+ ∥uε

k;L
2(Γ)∥

)(
∥uε

q;H
1/2(Γ)∥+ ∥uε

q;L
2(Γ)∥

)
≤ Ckq

√
ε.

Consequently, from the above estimates, after subtracting ε−1µε
kM

−1
(
uε
k,u

ε
q

)
Γ
on the

right and left-hand sides of (5.59), it remains to mention that the limit of this subtrahend
equals nothing else but µ•

kM
−1
(
u•
k,u

•
q

)
Γ
. This shows (5.56) and the theorem holds.

6 Asymptotics of eigenvalues and eigenfunctions

This section contains the main results related to the asymptotics of eigenpairs of the original
problem (1.8). We combine results obtained in Section 4 and 5 to conclude the convergence
rates for the discrepancies between the eigenvalues and eigenfunctions and the terms on
the right-hand side of (1.16) and (1.17) respectively (cf. (6.1) and (6.5)).

6.1 Asymptotic splitting of eigenvalues

Let us analyze Theorem 4.2. At the beginning of Section 5.3 we have shown that that
the number p(k) in relation (4.31) satisfies p(k) ≥ k. Actually, p(k) = k. Indeed, by
contradiction, if p(k) > k, we find an eigenvalue µε

P (ε) of problem (5.1), (5.3), (5.4) such
that, for a small ε > 0,

µε
P (ε) ≤ ε

(
µk + ckε

1/2
)
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and

ε−2µε
P (ε)

((
W εuε

P (ε),W
εuε

q

)
Θε

+ εm
(
W εuε

P (ε),W
εuε

q

)
Ω

)
= 0, q = 1, . . . , k + κk − 1,

cf. (4.31), (5.19), (5.6) and (5.2). Theorem 5.6 on convergence, in particular, formulas
(5.55) and (5.56) show that the limits µ•

P = lim ε−1µε
P (ε) and u•

P = lim uε
P (ε) ∈ H1

0 (Ω; Γ⊓)

give an eigenpair of problem (1.18)–(1.20) while

µ•
P ≤ µk and

(
u•
P ,u

•
q

)
Γ
= 0, q = 1, . . . , k + κk − 1.

The latter conclusion contradicts the way in which the eigenvalue sequence (3.18) was
constructed in Proposition 3.3 (cf. (3.19)): the eigenfunction u•

P is orthogonal in L2(Γ) to
k+κk − 1 different eigenfunctions u•

q would imply µ•
P > µk. Thus, p(k) = k in (4.31) and

we can formulate our main result on eigenvalues.

Theorem 6.1. 1) For any k ∈ N, there exist positive εk and ck such that the corresponding
entries of the eigenvalue sequences (1.9) and (3.18) of the original problem (1.3)–(1.5) and
limit problem (1.18)–(1.20) satisfy the relationship∣∣λε

k − εm−2 (M + εµk)
∣∣ ≤ ckε

m−1/2 for ε ∈ (0, εk]. (6.1)

Here M is the first eigenvalue of (1.13)-(1.15).

2) If µk is an eigenvalue of (1.18)–(1.20) of multiplicity κk, as in (4.14), then there
exists ε•k ∈ (0, εk] such that, for ε ∈ (0, ε•k], neither λ

ε
k−1 nor λε

k+κk
falls into the ckε

m−1/2-

neighborhood of the point εm−2(M + εµk).

The proof of the first part of Theorem 6.1 follows from (4.31) for p(k) = k and (1.11)
(see the reasoning above the statement).

The second part of Theorem 6.1, of course, follows from the first part applied simulta-
neously for k − 1, k, k + κk while clearly the relation ε•k ≤ εk occurs.

Notice that estimate (6.1) readily implies convergence (1.12) but also describes how
the eigenvalues in sequence (1.9) deviate from each other by lower-order asymptotic terms.
Such asymptotic splitting of the eigenvalues also helps to describe in the next section
asymptotics of eigenfunctions.

Remark 6.2. In connection with Theorem 6.1 and its proof, we note that a procedure of
the direct and inverse reduction developed in Ch. 7 in [26] and applied, e.g., in [27, 13],
shows that the decay rate of ε•k is much faster than the rate of εk. This procedure proves
assertions similar to Theorem 6.1 but also provides bounds for εk, ε

•
k and ck, for which

an explicit dependence is exhibited on the values of µk, κk and the relative distance dk =
min

{
1− µk−1µ

−1
k , 1− µkµ

−1
k+κk

}
from µk to other points in the spectrum. However, the

procedure is rather complicated and cumbersome and we skip it in this paper.

6.2 Asymptotic forms for eigenfunctions

Considering in Section 4.4 the κk-multiple eigenvalue µk from (4.14), we have found the
coefficient columns aε(k), . . . , a

ε
(k+κk−1) ∈ RXε

such that relations (4.29) are valid for the

approximate eigenfunctions Uε
k, . . . ,U

ε
k+κk−1 defined in (4.9), (4.10). Moreover, by Theo-

rem 6.1, we now know that Qε = k, Xε = κk in (4.29) and the magnitude δε• = Sε can
be taken instead of the lower-order magnitude (4.28) where S is chosen such that both the
eigenvalues κε

k−1 = (1+M+εµk−1)
−1+O(ε3/2) and κε

k+κk
= (1+M+εµk+κk

)−1+O(ε3/2)
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of the operator Kε, cf. (4.4), do not belong to the Ckε-neighborhood of (1 +M + εµk)
−1

containing the eigenvalues κε
j = (1 +M + εµk)

−1 +O(ε3/2), j = k, . . . , k + κk − 1. Such
a constant S depending on k exists since the distance between two consecutive values
(1+M + εµk)

−1, (1+M + εµk−1)
−1 and (1+M + εµk+κk

)−1 is O(ε) and, for sufficiently
small ε, Theorem 6.1 ensures that the eigenvalues of the operator Kε above mentioned are
in intervals of smaller amplitude. Hence, the above-mentioned columns involved in the
specified inequality (4.29) ∥∥∥∥Uε

j −
k+κk−1∑

q=k

aεjqV
ε
q;H

ε

∥∥∥∥ ≤ 2
c1

S
ε1/2, (6.2)

meet the estimate ∣∣∣⟨aε(j), aε(l)⟩Rκk
− δj,l

∣∣∣ ≤ ckε
1/2 (6.3)

which replaces (4.30).
Taking (4.8) into account, we rewrite (6.2) as follows:∥∥∥∥uεj − |⟨uεj , uεj⟩ε|1/2

(
1 + εm−2(λε

k)
−1
)−1/2

k+κk−1∑
q=k

aεjqu
ε
q;H

ε

∥∥∥∥ ≤ ck,

for j = k, . . . , k + κk − 1. Consequently, using (6.1) and (4.15) we obtain:∥∥∥∥uεj − ε−1/2M1/2b1/2
k+κk−1∑

q=k

aεjqu
ε
q;H

ε

∥∥∥∥ ≤ ck, j = k, . . . , k + κk − 1. (6.4)

Recalling definition (4.1) and formula (3.20), we see that the asymptotic expression (4.10)
satisfies (see also (4.15))

∥uεj −B−1ujW
ε;Hε∥ ≤ Cj , ∥ujW

ε;Hε∥ = O(ε−1/2)

and therefore the term uεj can be replaced in (6.4) by B−1ujW
ε, so that

∥∥∥∥ ujW
ε

∥ujW ε; H1(Ω)∥
−

k+κk−1∑
q=k

ãεjqu
ε
q; H

1(Ω)

∥∥∥∥ ≤ ckε
1/2, j = k, . . . , k + κk − 1.

which already provides information on the structure of the eigenfunctions (cf. (3.2) and
(3.20)). Above ãεjq = ε−1/2∥ujW

ε; H1(Ω)∥−1BM1/2b1/2aεjq and the norm in H1(Ω) is that

of the gradient; in particular, ∥ujW
ε; H1(Ω)∥ = ∥∇(ujW ε);L2(Ω)∥ = O(ε−1/2).

Furthermore, we observe that, in view of (6.3), the κk×κk-matrix aε composed from the
above-mentioned coefficient columns, aε =

(
aε(k), . . . , a

ε
(k+κk−1)

)
, is “almost orthogonal”

and this implies an “almost orthogonality” property for the functions

{ujW
ε∥ujW

ε; H1(Ω)∥−1}k+κk−1
j=k .

Then, a simple algebraic lemma (see, e.g., Lemma 7.1.7 in [27]), gives us an orthogonal
κk × κk-matrix aε such that aεaε becomes the unit matrix of size κk × κk and allows
us to write the eigenfunctions uε

p of the original problem in terms of the products of
eigenfunctions of the two limit problems ujW

ε. For the sake of completeness, we introduce
here a variant of this lemma (see Lemma 1.5 in [13]).
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Lemma 6.3. Let y1, . . . , yn ∈ H and Y1, . . . ,YN ∈ H fulfill the relations

⟨yj , yk⟩H = δj,k , ||Yq; H|| = 1,

|⟨Yq , Yp⟩H − δq,p| ≤ τ, ∥Yq −
n∑

j=1

aqjy
j ; H∥ ≤ σ,

for certain constants {aqj}nj=1 and σ and τ positive constants independent of p and q;
p, q = 1, 2, · · ·N . The conditions n = N and n(τ + (2 + σ)σ) < 1 ensure the existence of
the orthogonal n× n-matrix θ = (θjq)q,j=1,2,··· ,n such that

∥yj −
n∑

q=1

θjqYq; H∥ ≤ n(τ + (3 + σ)σ).

It suffices to consider yj = uε
j satisfying (1.10), H = H1

0 (Ω; Γ
ε
⊓) with the gradient

norm, and n = N = κk, Yj = ujW
ε∥ujW

ε; H1(Ω)∥−1
, and τ and σ certain k-dependent

constants multiplied by ε1/2, to apply Lemma 6.3 and to obtain the result stated below.

Theorem 6.4. Let µk be a κk-multiple eigenvalue of (1.18)–(1.20) in (4.14). Then, there

exist positive numbers ε♯k, c
♯
k and an orthogonal matrix akε of size κk × κk such that, for

ε ∈ (0, ε♯k], the inequalities∥∥∥∥uε
q − ε1/2

k+κk−1∑
j=k

aεqjujW
ε;H1(Ω)

∥∥∥∥ ≤ c♯kε
1/2, q = k, . . . , k + κk − 1, (6.5)

are valid, where uε
k, . . . , u

ε
k+κk−1 and uk, . . . , uk+κk−1 are eigenfunctions of the original

problem (1.3)–(1.5) and the limit problem (1.18)–(1.20), repectively, which are orthonor-
malized according to (1.10) and (3.19), respectively. Above, W ε(x) = W (ε−1x) is ε-periodic
in x1, W being the principal eigenmode of problem (1.13)–(1.15), normalized by (2.7).

We underline that ∥∇(ujW ε);L2(Ω)∥ = O(ε−1/2) and, thus, formula (6.5) indeed ex-
hibits an asymptotics of the eigenfunctions.

A Appendix

The material of this appendix complements Section 2 and supports the estimate (5.49)
which lead us to Proposition 5.5.

A.1 The homogeneous Kondratiev norms

Let us consider the model mixed boundary-value problem in the half-plane

−∆v = f in R2
+, (A.1)

v = 0 on {x : x2 = 0, x1 > 0}, ∂v

∂x2
= 0 on {x : x2 = 0, x1 > 0} (A.2)

within the Kondratiev theory [10]. By V l
β(R2

+), with the indexes of smoothness l ∈ N0

and weight β ∈ R, we denote the completion of the linear space C∞
c

(
R2

+ \ O
)

in the

homogeneous weighted norm

∥u;V l
β(R2

+)∥ =

( l∑
j=0

∥∥rβ−l+j∇ju;L2(R2
+)
∥∥2)1/2

,
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where (r, φ) is the polar coordinate system centered at the coordinate origin O, the collision
point, and ∇ju denotes all partial derivatives of u of order j. It is known, see [10] and,
e.g., Ch. 2 in [31], that, for any l ∈ N, the operator

Al
β :
{
v ∈ V l+1

β (R2
+) : v satisfies (A.2)

}
→ V l−1

β (R2
+) (A.3)

of problem (A.1), (A.2) is Fredholm if and only if β − l ̸= β±j := ±(j + 1/2) with j ∈ N0;
otherwise, the range of (A.3) is not closed in V l−1

β (R2
+). The forbidden indexes β±j are

closely connected to exponents (2.17) in harmonics (2.16).
If v ∈ V l+1

β (R2
+) is a solution of problem (A.1), (A.2) with the right-hand side f ∈

V l−1
β−2(R2

+) and

|β − l| < 1

2
, (A.4)

supp f ⊂
{
x ∈ R2

+ : r ≤ 1
}
, (A.5)

then

v(x) = ς(r)
(
Kr1/2 sin

φ

2
+K1r3/2 sin

3φ

2

)
+ ṽ(x) (A.6)

where the coefficients K, K1 and the remainder ũ ∈ V l+1
β−2(R2

+) satisfy the estimate

|K|+ |K1|+ ∥ṽ;V l+1
β−2(R

2
+)∥ ≤ c∥f ;V l−1

β−2(R
2
+)∥. (A.7)

We emphasize that mapping (A.3) becomes an isomorphism under restriction (A.4) and
the inclusion f ∈ V l−1

β−2(R2
+) implies a faster decay rate as r → 0+ than the decay rate

of ∆v ∈ V l−1
β (R2

+) prescribed by the original inclusion v ∈ V l+1
β (R2

+). In the same way,
formula (A.6) gives the asymptotics of the solution v in the radial variable r.

A.2 The multi-scaled weighted norms

Considering the Rayleigh principle for the spectral problem

−Φ′′(t) = ΛΦ(t) for t ∈ (0, π), Φ(0) = 0,Φ′(π) = 0,

and the angular variable t = φ, a function in {v ∈ V 1
β (R2

+) : v(x1, 0) = 0, x1 > 0} satisfies

∫
R2

+

r2β−2 |v(x)|2 dx =

∫
R+

π∫
0

r2β−2 |v(x)|2 rdrdφ

≤4

∫
R+

π∫
0

r2β
∣∣∣1
r

∂v

∂φ
(x)
∣∣∣2rdrdφ ≤ 4

∫
R2

+

r2β |∇v(x)|2 dx.

This apparent observation was suggested in [24] to introduce multi-scaled weighted space

V l,0
β,γ(R2

+) in two-dimensional angular domains with the norm

∥u;V l,0
β,γ(R

2
+)∥ =

( l∑
j=0

∥∥rβ−l+jφγ−l+j∇ju;L2(R2
+)
∥∥2)1/2

(A.8)
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involving two weights, radial and angular, with different weight exponents β and γ. Such
function spaces are convenient in the investigation of different perturbations of the bound-
ary of the angular domain, cf. [24, 29].

If restrictions (A.4) and

γ − l ∈
(
− 1

2
,
1

2

)
(A.9)

are satisfied, the operator

Al
β,γ :

{
v ∈ V l+1,0

β,γ (R2
+) :

∂v

∂x2
(x1, 0)= 0, x1 < 0

}
→ V l−1

β,γ (R
2
+) (A.10)

of problem (A.1), (A.2) is an isomorphism and in the case of the right-hand side f ∈
V l−1
β−2,γ1(R2

+) with the compact support (A.5) and the second weight index γ1 ∈ (0, γ]

the asymptotic representation (A.6) is valid where the remainder ṽ ∈ V l+1,0
β,γ1 (R2

+) and the

coefficients K, K1 satisfy appropriately modified estimate (A.7).
We emphasize that the Dirichlet condition at the semi-axis R+ ∋ x1 does not appear

explicitly in the domain of the operator (A.10) because, by virtue of the restriction γ < 1/2,
the assumption v(r, 0) ̸= 0 leads to the divergent integral

π∫
0

φ2(γ−l−1)|v(r, φ)|2dφ. (A.11)

A.3 Weighted spaces with detached asymptotics

Under condition (A.9) operator (A.10) stays Fredholm for any β ∈ R with the exception
of the forbidden indexes β±j indicated in Section A.1. However, denying (A.9) deprives
the operator of the Fredholm property. For example, in the case γ − l < −1/2 a function

v ∈ V l+1
β,γ (R2

+) has a finite norm only under the two conditions v(x1, 0) = 0 and
∂v

∂x2
(x1, 0) =

0 on the semi-axis R+. The latter is not possible for a non-trivial harmonics due to
the theorem on unique extension. To vary the second weight index γ requires detaching
asymptotics, cf. Ch. 12 in [31], namely to deal with functions in the form

v(x) = K(r)r1/2 sin
φ

2
+K1(r)r3/2 sin

3φ

2
+ ṽ(x). (A.12)

The remainder ṽ must belong to the space V l+1
β,γ (R2

+) with the weighted norm

∥ṽ;V l+1
β,γ (R

2
+)∥ =

( l+1∑
j=0

∥∥rβ−l−1+jφγ−l−1+j(π − φ)γ−l−1+j∇j ṽ;L2(R2
+)
∥∥2)1/2

(A.13)

and the weight indexes

β − l ∈
(
− 1

2
,
1

2

)
, γ − l ∈

(
− 3

2
,−1

2

)
. (A.14)

We emphasize that now, in contrast to (A.8), weights are introduced in (A.13) at both
endpoints of the arc (0, π) while the restriction on γ in (A.14) demands that the remainder
ṽ ∈ V l+1

β,γ (R2
+) satisfies formulas

ṽ(x1, 0) = 0,
∂ṽ

∂x2
(x1, 0) = 0 for x1 ∈ R \ {0};
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otherwise, norm (A.13) cannot be finite because of the divergence of the integral (similar
to (A.11))

π∫
0

φ2(γ−l−1)(π − φ)2(γ−l−1)|ṽ(r, φ)|2dφ.

Hence, according to (A.12), we have

v(r, 0) = 0,
∂v

∂x2
(r, 0) =

1

2
r−1/2K(r) +

3

2
r1/2K1(r) for x1 = r > 0,

v(r, 0) = r1/2K(r)− r3/2K1(r),
∂v

∂x2
(r, 0) = 0 for x1 = −r < 0.

(A.15)

Roughly speaking, to compose from functions (A.12) a weighted space with detached
asymptotics by means of a procedure in Ch. 12 of [31] requires setting the coefficient
functions K(r), K1(r) in a certain weighted Kondratiev space and incorporating their norms
together with norm (A.13) into the norm of the whole function v. Additional difficulties
originate in insufficient smoothness properties of the coefficients: according to (A.15) none

of the traces v
∣∣
R±

and
∂v

∂x2

∣∣∣
R±

and, therefore, none of K and K1 belongs to the proper

space H l+1(R±). The latter requires the introduction of special extension operators into
the asymptotic forms of type (A.12) (cf. [11, 34] and Ch. 12 in [31]). To avoid unnecessary
complications, we consider a particular case with an infinitely differentiable right-hand
side f vanishing near the coordinate origin, we deal with the model differential equation
corresponding to the original problem at collision points

−∆v − µHv = f in B+
R, (A.16)

and we write only an asymptotic formula for a solution of (A.16), (A.2) near the point O.
In (A.16), µ ∈ R+, H = H(x1) is the Heaviside unit step function and B+

R = {x : |x| <
R, x2 > 0} is the upper half-disk of radius R > 0. We have the following result.

Proposition A.1. Let v ∈ H1(B+
R) ∩H2

loc(B
+
R \ O) satisfy equation (A.16) with

f ∈ L2(B+
R) and f(x) = 0 for r < R/2,

and the boundary conditions (A.2) for r ∈ (0, R). Then v falls into V2
1,γ(B

+
2R/3) with any

γ ∈ (1/2, 3/2) and admits the asymptotic form

v(x) = ς(r)

(
K(r)r1/2 sin

φ

2
+K1(r)r3/2 sin

3φ

2

)
+ ṽ(x) for r ≤ 1

3
R, (A.17)

where the remainder ṽ and the coefficients

K(r) = K + K̃(r), K1(r) = K1 + K̃ 1(r)

fulfill the estimate∑
j=0,1

(
r−2+j

∣∣∂j
rK̃(r)

∣∣+ r−1+j
∣∣∂j

rK̃ 1(r)
∣∣+ r−2+jφ−2+j(π − φ)−2+j

∣∣∇j ṽ(x)
∣∣)

+|K|+ |K1| ≤ c
(
∥f ;L2(B+

R \ B+
R/2)∥+ ∥v;H1(B+

R)∥
)

for r ≤ 1

3
R.

(A.18)
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Formulas (A.17) and (A.18) suffice to support all the calculations and estimations for
the quotient function (2.29) in Sections 2.4 and 5.2.
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