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Abstract — Advances in the simulation of nonlinear microwave 

circuits of autonomous nature are presented, covering three 
relevant aspects: potential instability of power amplifiers under 
output mismatch effects, design of dual-band frequency dividers, 
with interest in multi-band communication systems, and oscillator 
phase-noise analysis. The instability under mismatch effects is 
predicted through the calculation of a 3-port scattering matrix, at 
three relevant sideband frequencies, which is obtained by 
linearizing the circuit about the large-signal steady-state solution. 
The dual-band divider is based on a parallel configuration, using 
two types of inductor-varactor cells, as well as a simultaneous 
design/optimization of two identical circuits, each operating at one 
of the two frequency bands. Finally, a new phase-noise analysis 
method able to predict the near-carrier spectral density in the 
presence of near-critical poles is described.   

Index Terms —  Power amplifier, frequency divider, oscillator, 
stability, phase noise. 

I. INTRODUCTION 

Advances in critical aspects of the nonlinear simulation of 
circuits of autonomous nature, or capable to exhibit oscillations, 
are presented. This oscillation can be required for the circuit 
intended operation, as in the case of local oscillators and 
frequency dividers, or undesired, as in the case of a power 
amplifier (PA). The three aspects addressed here are the 
stability analysis of PAs under output mismatch effects, the 
design of dual-band frequency dividers and the accurate 
prediction of the oscillator phase noise.  

PAs that are stable under a standard 50  termination may 
become unstable when connected to an antenna, due to 
reflection effects in realistic wireless environments [1]. The 
stability analysis must be carried out under unknown 
termination impedances and must cover all the possible 
combinations of the impedances at the relevant harmonic and 
sideband frequencies. This is done through the calculation of a 
scattering-type matrix, obtained by linearizing the circuit about 
the large-signal steady-state solution, depending on the 
mismatched impedance termination at the fundamental 
frequency fin [2]. The virtual ports of this matrix will correspond 
to the sideband frequencies with impact on the stability 
properties. The potential instability is predicted by plotting a 
global large-signal stability factor on the Smith Chart 
associated with the impedance termination at fin.  

Recently, a frequency-divider topology based on nonlinear 
transmission lines NLTL has been proposed [3], having the 
advantages of zero static-power consumption, no free-running 
oscillation and a low division threshold. The combination of 
two types of L-varactor cells can enable a division in two 
distinct frequency bands [4]. A simulation method based on the 
simultaneous optimization/design of two circuit replicas, each 
operating at one of the two bands, allows presetting the division 
bands and lowering the input-amplitude threshold.  

Oscillator phase noise is the third aspect considered. It is an 
undesired characteristic of local oscillators, which may lead to 
demodulation errors. Various time and frequency domain 
methods have been proposed in the literature [5-6]. However, 
some limitations still exist, such as the prediction of the near 
carrier noisy spectrum in the presence of flicker noise. This will 
be addressed with a new frequency-domain method, based on 
the calculation of the variance of the phase deviation [7] and 
able account for the effect of near-critical poles.   

II. MISMATCH-INDUCED INSTABILITY OF PAS 

The stability analysis under mismatch effects is carried out 
at the PA output reference plane, where it is connected to the 
antenna [Fig. 1(a)]. The impedance terminations at the 
harmonic frequencies kfin, where k is an integer, will have an 
impact on the large-signal periodic solution and those at the 
sideband frequencies will have an impact on the circuit 
linearization with the conversion-matrix approach [2]. In most 
cases, and due to the filtering effects of the output network, the 
only sensitive impedance terminations will correspond to fin, 
fb = f, fl

* =  ̶fin+f and fu = fin+f, where f is the perturbation 
frequency, which mixes with fin. A 3×3 impedance matrix [Z3] 
will be obtained considering 3 virtual ports at fb, fl

* and fu [Fig. 
1(b)]. The rest of frequencies, arbitrarily terminated in 50 , 
are taken into account in an inner tier.  

 
Fig. 1. PA under mismatch effects. (a) Schematic and reference plane. (b) 
Scattering matrix describing the mismatched PA response at 3 sidebands. 

 

The matrix [Z3] is calculated by sequentially exciting the 
circuit with a small-signal current source at fb, fl

* and fu. In this 
calculation, performed in a certain f interval, the circuit is 
linearized about the steady-state solution obtained with the load 
o at fin. The matrix [Z3] is transformed into scattering matrix 
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[S3], which can be reduced to a 2×2 one when considering a 
particular termination sb  at any of the three sidebands. This 

way it is possible to obtain 3 pairs of large-signal stability 
factors, which agree with the large-signal equivalents of the   

factors in [8]. It is easily shown [2] that the most critical 
stability situation corresponds to 1 j

sb e   . When sweeping 
from 0º to 360º, and taking the minima of any of the large-signal 
  factors, the same prediction on the circuit potential 

instability is obtained, as shown in Fig. 2, where the factors ,b u
, ,b l  and ,l u  have been represented versus f, and the 

subindexes refer to the selected ports. For absolute stability at 

o  and f, the factors must be larger than 1. To determine the 

terminations o  giving rise to potential instability, one should 

trace the contour plot  min ( ) min ( , ) 1LS o f LS o f     , where 

LS  refers to any of the large-signal factors. This analysis has 

been carried out in Fig. 3(a) and has been validated 
experimentally using a triple-stub tuner [Fig. 3(b)]. The 
ensemble of spectra corresponding to the stable and unstable 
loads is shown in Fig. 3(c) and 3(d), respectively.   

 
Fig. 2 Variation versus the perturbation frequency f of the minima of the 3 
factors , ( )b u  , 

, ( )b l   and 
, ( )l u   with 1sb  , for o=0.577ej150º. 

 
Fig. 3 (a) Contour plot of min ( )LS o  . (b) Exhaustive experimental validation 

with a triple stub tuner. (b) Ensemble of output spectra obtained for plots 
marked with squares (stable behavior). (c) Ensemble for plots marked with 
circles (unstable behavior).  
 

III. DUAL−BAND FREQUENCY DIVIDER 

The dual-band frequency divider by 2 is based on the 

composition of three L-varactor cells, two of them having the 
varactors in parallel, and the middle one having the varactors in 
series (Fig. 4). Element values in the series-varactor (parallel-
varactor) cell are chosen to have a small impact on the higher 
(lower) frequency band. Thus an initial independent design of 
the cells providing each division band (1.72 GHz and 3.97 
GHz) can be carried out [4]. The band is centred by tuning the 
inductors Ll

  and Lu, and the capacitors lc  and uc  are used to 

reduce the division threshold. Due to coupling effects, one 
cannot center one band without affecting the other, as gathered 
from the sensitivity curves of Fig. 5(a) and (b). This is avoided 
through the simultaneous optimization of two circuit copies, 
with identical element values, and using the results of the 
separate designs as an initial guess. Each copy operates at one 
of the bands, with an auxiliary generator (AG) at the fin/2 [4]. 
Two−tone HB is used with 0 intermodulation order. To preset 
the division threshold, the AG amplitudes are set to a very small 
value  . The optimization conditions are: 
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where , ,,in l in u  are the respective input-source phases. The 

independent simulation of Fig. 5(c) confirms the division-band 
centring. Measurements are superimposed. 
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Fig. 4 Dual-band frequency divider. The circuit is duplicated for the 
simultaneous pre-setting of the two division bands, using two AGs at the 
frequencies / 2AGl inlf f  and / 2AGu inuf f .  

IV. PHASE NOISE ANALYSIS IN OSCILLATOR CIRCUITS 

In the presence of noise sources, the amplitude perturbation 
of a stable oscillator remains small, whereas the phase 
perturbation is unbounded. Thus, the power spectral density 
(PSD) of the noisy state variables about each k-th harmonic 
component is mainly due to the phase perturbation [5]:  

 
 

 

2
,

, , ,

22 2
, , , ,

(| |)
( ) ( ) ,  ( ) exp

2

( , ) ( ) ( ) (| |)

i k
i k i k i k

i k i k i k i k

S f F R R

t t t

 
 

      

 
   

 
   

 (2) 

where F is the Fourier transform operator and f is the frequency 
offset from the carrier at kfo, with fo being the fundamental 
frequency. The process i,k(t) represents the phase 
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perturbation component corresponding to the k-th harmonic of 
the i-th state variable of the oscillator. It can be demonstrated 
[7] that, even in the presence of flicker noise sources, in most 
practical measurement procedures the variance 2

, (| |)i k   can be 

associated to a nearly-stationary process, so the dependence on 
t can be neglected.  
 

 
Fig. 5 Frequency-divider sensitivity curves, with measurements superimposed. 
(a) and (b) Independent designs (c) Simultaneous optimization. 

 
The analysis method is based on the calculation of the phase 

perturbation by means of a semi-analytical formulation of the 
oscillator [9], in which the circuit equations are compacted into 
a first-harmonic admittance equation at one observation node q, 
given by 1( , ) 0Y V X  , which acts like an outer tier. The phase 

and amplitude of the first harmonic X1 of the voltage vq(t) will 
be perturbed by the noise sources. There are two different ways 
to represent these perturbations, leading to the following 
expressions: 
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Expressions (3)(a,b)  correspond to a Conversion Matrix type 
approach [10] and a Carrier Modulation type approach [6], 
respectively. Now, introducing expression (3)(a) or (3)(b) in the 
semi-analytical admittance equation, one obtains the following 
Laplace-domain equation for the first-harmonic phase 
perturbation [4]:  

 
1
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where ,  w cI I  are the current sources, entering the node q, that 

model the white and colored noise [5]. The transfer functions in 
( ),  ( )w cc s c s  depend on the decomposition [(3)(a) or (3)(b)] 

used for the calculation. When using (3)(a), ( )wc s  and ( )cc s  

contain the poles resulting from the stability analysis of the 
oscillatory solution. If these poles, which are transferred to 
Si,1(f) through (2), are close to the imaginary axis, they will have 

an impact on the noise spectrum. When using (3)(b), the 
functions ( ),  ( )w cc s c s  become constant values, not affected by 

the dominant poles. Fig. 6 presents the PSD Si,1( f ) of a BJT-
based oscillator at 1 GHz [11]. The analysis based on (2) is able 
to predict the spectrum flattening near the carrier. There exists 
a pole with small real part 6 110 s   , giving rise to a change 
in the slope at about 30 KHz, only detected when using the 
decomposition (3)(a). 
 

 
Fig. 6. Simulated and measured phase noise of a 1 GHz BJT oscillator. 
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