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Abstract  —  In this paper, a new technique is presented for 

the analysis of the transient dynamics of microwave oscillators. 
The technique makes use of a nonlinear admittance function that 
can be identified in commercial Harmonic Balance software. This 
function is included in a time-frequency domain equation 
governing the transient dynamics. The equation provides the 
growth rate function of the first harmonic amplitude, which 
allows an exhaustive analysis of the transient speed from the 
neighborhood of the dc solution to the oscillation establishment, 
with no need for a numerical integration, as in time domain or 
envelope-transient methods. The technique has been applied to 
predict the length of the transient towards the oscillating state of 
a FET oscillator at 5 GHz. 

Index Terms — microwave oscillator, frequency-domain 
analysis. 

I.  INTRODUCTION 

The oscillator start-up time is a key specification in several 
applications. In the case of mobile communication devices, the 
faster the system can be powered up and down the less power 
consumed. Oscillators presenting short transients are also 
required in systems that modulate the oscillation amplitude 
such as ultra-wideband communications (UWB) or radar 
systems. Previous works [1]-[3] analyse the transient to 
oscillation dynamics by means of analytical expressions based 
on simple oscillator models that can fail in more complex 
oscillators. In [4], the transient dynamics is analysed through 
the derivatives of an admittance function, calculated about the 
unstable dc solution from which the oscillation originates, 
with the aid of an auxiliary generator (AG). The stability 
analysis of this complex equation provides the poles 
describing the initial transient speed. 

In this work, a new technique is presented to analyse the 
whole transient dynamics. For this purpose, the AG used in [4] 
will be applied here to extract a two-variable admittance 
complex function. Then, a time-frequency model of the 
oscillator will be derived in terms of this admittance function. 
This model depends nonlinearly on the oscillation amplitude 
variable and, as a difference from [4], is valid along the whole 
transient, from the unstable dc solution to the steady-state 
oscillation. In addition, the formulation can be applied to 
obtain the oscillation amplitude growth rate function. This 
function allows an exhaustive analysis of the transient 
dynamics without the need of solving the oscillator transient 
using time domain or envelope-transient techniques. This 
makes the transient analysis faster and avoids the numerical 
errors inherent to these methods. 

The paper is organized as follows. In Section II, the new 
formulation is presented and the instantaneous pole and 
growth rate concepts are introduced. In Section III, the 

technique is applied to describe the transient dynamics of a 
FET oscillator at 5 GHz. The dependence of the transient 
length on the varactor bias is also analyzed. 

II. TIME-FREQUENCY DOMAIN FORMULATION OF THE 

OSCILLATOR TRANSIENT 

A. Calculation of the admittance function 

The technique will be applied to the microwave oscillator of 
Fig. 1. The model describing the oscillator transient behavior 
will be based on an admittance function that can be calculated 
in commercial HB by means of a voltage auxiliary generator 
(AG), connected in parallel at an observation node q (see Fig. 
1). The AG is constituted by a single tone voltage source 
whose module, phase and frequency are respectively 

 , ,AG AG AGV   , in series with an ideal bandpass filter that 

behaves as an open circuit for the first harmonic component 
and a closed circuit for the rest. 

 

Fig. 1. Schematic of the FET oscillator at 5 GHz. The auxiliary 
generator is connected at the observation node q. 

The total input admittance function describing the oscillator 
response is calculated performing a double sweep in the two 
variables  ,AG AGV   of this independent generator, and 

solving the Harmonic Balance (HB) system at each sweep 
step. This provides an outer-tier function admittance function 

 ,AG AGY V   [5] that can be identified in commercial HB 

software by sweeping the AG values  ,AG AGV  : 
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The function  ,Y V   provides the first harmonic total 

admittance at the observation node, with  ,V   being the 

first harmonic amplitude and frequency. Note that at the 
steady state oscillation values ( , )o oV   the AG does not 

perturb the circuit and the admittance function vanishes: 

 , 0o oY V   . To obtain an envelope-transient formulation 

based on this outer-tier complex function, a modulation at 
much smaller time rate than the carrier frequency will be 
assumed. In this formulation, the instantaneous voltage at the 
observation node in the free-running regime is expressed as: 
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Introducing expression (2) in the HB system in the absence 
of the AG, the total admittance equation at the observation 
node becomes: 

 
 

 

( )
1 1

( )
1 1 1 1

( ), ( )

    ( ), ( ) ( ) ( ) 0

j t
o

j t
o

Y V t V t e

Y V t t V t jV t e








 



    
 

 (3) 

where the subindex  indicates differentiation with respect to 
the frequency. In this preliminary work, only the first 
derivative of the function  1,Y V   has been considered, in a 

manner similar to what is done in previous envelope-transient 
formulation based on piecewise harmonic balance [6]. The 
inclusion of higher order derivatives would increase the 
accuracy of the analysis. The first-order differential equation 
(3), which should be integrated from the initial perturbation of 
the dc regime, at the initial time t0, can be decoupled into two 
real equations for the phase and amplitude variables, 
respectively. Our purpose is to analyze the dynamics of the 
amplitude component, which is governed by the equation: 

 

 

   
   

1 1 12

1 1

1 1

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ), ( ),

( ) ( ), ( ),

i r r i

r i
o o

r i
o o

Y t Y t Y t Y t
V t V t g V t

Y t

Y t Y V t jY V t

Y t Y V t jY V t

 



  

 

 


 

 

 



 (4) 

Note that, in contrast with previous works [4]-[5], equation (4) 
is nonlinear. This implies that the nonlinear function  1( )g V t  

must be evaluated at each time step, interpolating the 
amplitude values in the previously calculated admittance 
function  1, oY V  . This nonlinear procedure allows the 

characterization of the whole transient dynamics, and is not 
restricted to the neighborhood of the steady state solutions as 
the linearized analyses [4]-[5]. Equation (4) can be linearized 
about any arbitrary amplitude value 1 pV V , obtaining: 
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where  pV  will be called the instantaneous pole. The 

function  1g V  is the growth rate of the first harmonic 

amplitude. At the dc and oscillating values V1=0,Vo equation 
(4) provides  1 0g V  , indicating that these are steady state 

values. At these values,  1V  agrees with the pole resulting 

from the stability analysis of each of these solutions. Indeed, 
by making 1 0V V  in (4) it is seen that  0V  agrees with the 

expression for the pole determining the stability of the 
oscillating solution obtained in Kurokawa’s analysis [5],[8].  

III. EXPERIMENTAL AND NUMERICAL VALIDATION 

The technique has been applied to the oscillator of Fig. 1. In 
a first stage, the admittance function  1,Y V   has been 

extracted from HB commercial software by means of the AG. 
This function provides the steady state ( , )o oV  , the growth 

rate  1g V  and the instantaneous pole  1V  (see (4)-(5)). In 

Fig. 2, both the values  0  and  0V  have been 

represented as a function of the voltage bias VDD. As can be 
seen, at VDD =0.62 V a Hopf bifurcation takes place giving rise 
to an autonomous oscillation, which is maintained for VDD 
>0.62 V. The real part of the dc solution poles obtained 
through pole-zero identification [7] has been superimposed. 

 

Fig. 2. Stability analysis in terms of the drain bias voltage VDD. 

At the intermediate values  1 0, oV V , the static functions 

 1g V  and  1V  provide information about the transient 

dynamics at each point. These functions are represented in 
Fig. 3 for VDD= 1 V. As can be seen in this figure, at the dc 
value V1=0,  0  is positive, indicating that the dc solution is 

unstable and an oscillation can take place. The function 

 1g V  keeps positive until V=Vo, where it becomes zero, 

indicating that the first harmonic amplitude grows until this 
value is reached. The transient starts to slow down beyond 
V1=Vm=0.33 V, where   0mV   and  mg V  presents a 

maximum. Finally, the instantaneous pole  0V  agrees with 

the negative pole of the oscillating solution, indicating that 
this solution is stable. 



This analysis has been validated in Fig. 4 through the 
simulation of the oscillator transient to the oscillating state. In 
this figure, the time integration of system (4) is represented 
together with the envelope transient simulation at circuit level 
in commercial software. The initial condition V1(0)=10-12 V 
has been considered. The discrepancy in the transient length is 
due to the fact that the commercial software considers all the 
circuit state variables in a separate manner, while equation (4) 
considers only the variable V1. Note that the amplitude value 
Vm=0.33 V for the maximum growth rate 1( )V t  is well 

predicted in both simulations by the static analysis of Fig. 4. 
This is a key parameter to determine the speed of the oscillator 
response. 

 

Fig. 3. Functions  1V  and  1g V  calculated from the admittance 

function  1, oY V   by equations (4) and (5). 

 

Fig. 4. Simulation of the transient to the oscillating state of the first 
harmonic amplitude. 

In a second example, in Fig. 5 the transient length has been 
analyzed for two values of the varactor bias Vvar. As can be 
seen, the transient length increases with this bias value. This 
qualitative behavior has been experimentally verified by 
means of an Infiniium 9000 Series DSO oscilloscope, with the 
results of Fig. 6. 

IV. CONCLUSION 

This paper presents a new technique to analyze the whole 
transient dynamics of the oscillator start-up. The technique 
provides the amplitude growth rate and the instantaneous pole 
functions, which allow an exhaustive analysis of the transient 
dynamics without the need of solving the oscillator transient 

using time domain or envelope-transient techniques. This 
makes the transient analysis faster and avoids the numerical 
errors inherent to these methods. In addition, this analysis 
provides a clear view of the oscillation growth rate as a 
function of the first harmonic amplitude. The technique has 
been validated in a FET oscillator at 5 GHz using both 
commercial HB and measurements. 

 

Fig. 5. Simulation of the transient to the oscillating state for two 
values of the varactor bias Vvar=1, 1.08 V. 

 

Fig. 6. Measured stabilization time as a function of the varactor bias 
Vvar. The values are normalized representing the time increment from 

the minimum stabilization time. 
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