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Abstract  25 

A modified pH-dependent leaching test with continuous pH control that employed CO2 26 

to acidify a seawater-sediment mixture is used to address Zn, Pb, Cd, Ni, Cr, Cu and As 27 

release from contaminated estuarine sediments under the influence of acidification 28 
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processes. Long-term (480 h) leaching experiments at pH values of 7.0, 6.5 and 6.0 are 29 

performed. The different evolutionary patterns of the redox potential and Fe release at 30 

pH=6 with respect to the other pH values shows the need to assess the influence of the 31 

initial Fe content in seawater upon elemental release. 32 

 33 

Hence, assays at pH=6.0 are conducted using natural seawater with Fe concentrations 34 

between 9.02 and 153 μg/L. A set of in-series reactions for trace elements, Fe and other 35 

ions associated with Fe is proposed to model a Fe/multi-ion-dependent mechanism for 36 

trace metal release. The maximum concentration of each contaminant that can be 37 

released from the sediment and the kinetic parameters of the proposed model are 38 

completed for the studied pH values, for good consistency between the experimental 39 

and simulated mobilisation of each studied element. 40 

 41 

 42 

1. INTRODUCTION 43 

Carbon capture and storage (CCS) in geological formations is one of the most 44 

promising strategies for curbing global climate change (IPCC, 2014). One of the 45 

primary risks in the case of ocean storage technology is the potential direct leakage of 46 

CO2 gas or CO2 dissolved in seawater, which provokes a decrease in the pH of the 47 

medium. This acidification might mobilise contaminants from marine and estuarine 48 

sediments (Rodríguez-Romero et al., 2014; Ardelan et al., 2009). 49 

 50 

Laboratory leaching tests allow for the assessment of contaminant releases under 51 

different scenarios and conditions. Column leaching tests (Bateman et al., 2005; Frye et 52 

al., 2012; Lawter et al., 2016; Payán et al., 2012a) and batch or semi-batch leaching 53 
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tests (Ardelan and Steinnes, 2010; Ardelan et al., 2009; de Orte et al., 2014; Kirsch et 54 

al., 2014; Little and Jackson, 2010; Lu et al., 2010; Payán et al., 2012b) have been 55 

performed to assess elemental mobilisation from different types of matrices such as 56 

sediments, sandstones or rocks when the addition of CO2 decreases the pH of the 57 

medium. 58 

 59 

The release of experimental contaminants from sediments and rocks by using different 60 

leaching tests to mimic the effects of potential CO2 leakages has been studied before. 61 

Equilibrium conditions have been modelled using geochemical software such as 62 

PHREEQC or Visual MINTEQ (de Orte et al., 2014a; Martín-Torre et al., 2015a), 63 

whereas simulations for the period before equilibrium is achieved have been performed 64 

using reactive transport models as performed with the TOUGHREACT code (Zheng et 65 

al., 2016; Zheng et al., 2009) or PHREEQC (Cahill and Jakobsen, 2015). 66 

 67 

Reactive transport models combine mineral dissolution/precipitation, aqueous 68 

complexation, acid-base, redox, cation exchange and surface complexation processes. 69 

Therefore, the use of this type of models for simulating contaminant mobilisation 70 

implies that the modelled has knowledge of the different characteristics of the solid 71 

matrix under study, such as crystalline phases, that are usually not possible to know in 72 

the case of sediments because of their great complexity and low contaminant 73 

concentrations. Moreover, the need to pre-treat the sediment sample complicates the 74 

determination of element speciation in a sensitive manner. 75 

 76 

The pH is one of the variables that most influences the mobility and availability of 77 

inorganic contaminants from solid matrices (Coz et al., 2007), and thus, pH-dependent 78 
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leaching tests seem to be an appropriate assay for assessing its influence. Standard or 79 

modified pH-dependent leaching tests with continuous pH control such as CEN/TS 80 

14997 (2015) have been widely used to evaluate the release of contaminants from soil 81 

and sediments (Cappuyns and Swennen, 2005; Cappuyns et al 2004a,b; Centioli et al., 82 

2008; Horckmans et al., 2007; Shtiza et al., 2009; Van Herreweghe et al., 2002).  83 

 84 

To study the release of contaminants that occurs when environmental conditions in 85 

marine and estuarine media vary, a modified pH-dependent leaching test with 86 

continuous pH control has been previously performed to assess the contaminants 87 

released from contaminated sediment when a total mixture of sediment-seawater is 88 

acidified by nitric acid (HNO3) (Martín-Torre et al., 2015b). Based on these 89 

experimental results, a kinetic mathematical model has been proposed to obtain the 90 

generalised kinetic constants of the studied elemental release. Owing to the 91 

experimental difficulties involved in characterising the sediment and the many chemical 92 

reactions that occurred during the process, global phenomena rather than specific 93 

reactions have been considered.  94 

 95 

It is known that inorganic contaminants, primarily metals and metalloids, are largely 96 

affected by acidification processes (Basallote et al., 2014), and that their effects on 97 

marine organisms are higher when using CO2 gas than mineral acids (Ishimatsu et al., 98 

2004; Kikkawa et al., 2004). Hence, the performance of a pH-dependent leaching test 99 

with CO2 gas for acidification and the subsequent assessment and modelling of the 100 

triggered contaminant mobilisation from sediment would be useful for a CCS 101 

technology impact assessment. 102 

 103 
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The aim of the present work is to obtain, analyse and simulate the experimental release 104 

of Zn, Pb, Cd, Ni, Cr, Cu and As from contaminated marine sediments during the pH-105 

static leaching test with continuous pH control by using seawater as a leaching liquid 106 

and CO2 gas to acidify the medium. The kinetic behaviour of Zn, Pb, Cd, Ni, Cr, Cu 107 

and As is studied by using long-term experiments lasting 480 hours at pH values of 7.0, 108 

6.5 and 6.0. The influence of the Fe content  of the seawater on the redox potential 109 

evolution and elemental release is highlighted at pH=6.0 because of the different 110 

evolution of these parameters with respect to the experimental data obtained at pH 111 

values of 7.0 and 6.5. 112 

 113 

Starting with the mathematical model by Martín-Torre et al. (2015b) in which HNO3 114 

acidification was initially proposed, a modified kinetic model is proposed here to 115 

explain the behaviour of long-term experimental data at different pH values and 116 

different Fe concentrations in seawater. The generalised kinetic expression and its 117 

kinetic parameters are obtained to fit the experimental and modelled release of the 118 

elements. 119 

 120 

 121 

2. MATERIALS AND METHODS 122 

The selected estuarine sediment samples were collected in the Suances estuary 123 

(Cantabrian region, northern Spain), which is a representative area for a possible CCS 124 

(BOE, 2008). As explained in detail in Martín-Torre et al. (2015b), surface sediment (0-125 

5 cm) and its initial water content was collected using a plastic paddle, and it was sieved 126 

through a 2 mm plastic mesh to remove the gravel fraction. Afterwards, the sediment 127 

was homogenised and frozen in plastic bags until use. 128 
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An X-ray diffraction analysis (Siemens D5000 diffractometer) using Cu Kα radiation 129 

and operating at 30 mA and 50 kV was used to determine the crystalline phases of the 130 

selected sediment (Payán et al. 2012b). The total sediment content was determined by 131 

an external laboratory (Activation Laboratories, Canada). The As and Cr contents were 132 

measured by Instrumental Neutron Activation Analysis (INAA) and the Cd, Cu, Ni, Pb 133 

and Zn contents were analysed by Total Digestion-Inductively Coupled Plasma/ Optical 134 

Emission Spectrometry (TD-ICP/OES) method. 135 

 136 

The results of the sediment characterisation are explained in more detail in Martín-Torre 137 

et al. (2015b), but they are described briefly in Table 1.  138 

Table 1. Principal crystalline phases, redox potential and trace element concentrations of the studied 139 
sediment 140 

Principal crystalline phases   Trace element Content (mg/kg) 

Quartz  Zn 5220 ± 140 
Aluminium oxide  Pb 564 ± 2.22 

Calcite  Cd 12.6 ± 0.732 
Dolomite  Ni 36 ± 1.86 

  Cu 48 ± 3.43 

  Cr 72 ± 5.31 

  As 59 ± 1.39 
        

Redox potential (mV):  -150±37 

 141 

The entire Cantabrian region and the Suances estuary in particular was an important 142 

mining area, with a considerable number of iron ore mines and abandoned landfills 143 

containing solid mining wastes. Therefore, the presence of this metal in rivers and 144 

effluents that lead in the estuary and its accumulation in sediment is appreciable. 145 

Therefore, the concentration of iron in the area from which the seawater is taken should 146 

be influenced by tides and other atmospheric conditions. To prevent large variations in 147 

the concentration determinations, the seawater was chemically analysed by using 148 
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inductively coupled plasma-mass spectrometry (ICP-MS) equipment in helium collision 149 

mode according to the same procedure that was used for the sample leachates, prior to 150 

use. Table 2 lists the average elemental concentrations in the seawater that was used in 151 

the leaching assays at pH=7.0, 6.5 and 6.0. Seawater samples with iron concentrations 152 

([Fe]seawater) of 9.02, 46.1 and 153 µg/L were sampled at the same place that the 153 

sediment was taken from but under different natural conditions of tide, meteorology and 154 

season. 155 

Table 2. Concentration of the studied elements and redox potential in the seawater leachant 156 

 157 

 158 
 159 
The experimental equipment consisted of a glass-made 2-L jacketed vessel, a 160 

temperature controller (Polyscience) and a system for maintaining a constant pH (Fig. 161 

1).  In this study, a pH controller (AT Control systems) with an electrode that was 162 

suitable for samples containing suspended solids was used; it was accurate to 0.01 pH 163 

units and was calibrated against standard solutions. This device was used to monitor the 164 

pH and inject pure CO2 bubbles into the suspension as needed, with a permitted 165 

hysteresis of 0.1 pH units. When the suspension reached the required pH, the gas supply 166 

was automatically stopped. 167 

Element Content (µg/L) 
 As 2.58±0.981 
Cd 0.204±0.0797 
Cr 0.920±0.631 
Cu 2.46±1.49 
Ni 1.21±1.37 
Pb 0.929±0.727 
Zn 11.6±8.21 
Fe 6.45±2.91 

  Redox potential (mV) 160±16.0 
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 168 

Fig. 1. Experimental equipment used in the pH-static leaching test with continuous pH control. 169 

 170 

Seawater and sediment were placed in a reactor with an L/S ratio of 10, considering the 171 

moisture of the sediment (51.26%). To make a homogenised mixture at the beginning of 172 

the assay, the reactor was shaken for 15 minutes at the natural pH before starting the 173 

CO2 addition (CO2 supplied by AL Air Liquide España, S.A., Zamudio, Vizcaya, País 174 

Vasco, Spain). In this work, the studied pH values are 7.0, 6.5 and 6.0. It was not 175 

possible to achieve lower pH values because of the high buffering capacity of the 176 

sediment-seawater system (Martín-Torre et al., 2015a). Additionally, an assay without 177 

pH control was conducted to observe the pH evolution over time. 178 

 179 

The pH-static leaching tests conducted in this work lasted almost 480 hours to achieve 180 

near-equilibrium conditions, which were not obtained over shorter assay durations 181 

(Martín-Torre et al., 2015b). Nevertheless, the assay at pH=7.0 lasts 264 hours, when 182 

the consumption of the buffer capacity of the mixture makes the pH uncontrollable. The 183 

experiments were performed in duplicate. Samples at 0, 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, 184 
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48 h, 72 h, 96 h and afterwards for every 48 hours were taken using a syringe and 185 

without stopping the mixing. The redox potential (Eh) of the leachate was measured 186 

using a Basic 20 pH metre (Crison) with a special electrode for samples containing 187 

suspended solids; each sample was filtered through a 0.45-µm pore size nitrocellulose 188 

filtration membrane and acidified to determine the concentrations of Fe, Zn, Pb, Cd, Ni, 189 

Cr, Cu and As. The corresponding amount of solids was put back in the medium to 190 

maintain a constant L/S ratio during the whole assay. 191 

 192 

The elemental concentrations were determined by an external laboratory (Mass 193 

Spectrometry Unit, University of Oviedo, Spain) using Agilent 7500CE inductively 194 

coupled plasma-mass spectrometry (ICP-MS) equipment in helium-collision mode 195 

(Agilent Technologies, California, EEUU). The samples were diluted (1:20) with HNO3 196 

(VWR International, Fontenay-sous-Bois, France) 1% prior to analysis, and Rh was 197 

added as an internal standard to correct for the eventual signal drift during analysis. The 198 

metal concentrations were calculated using external calibration with internal standard 199 

correction. The certified reference material NASS-5 (Seawater reference material for 200 

trace metals, NRCC (Ontario, Canada)) was spiked with the elements at two different 201 

concentration levels of 1 and 10 µg/L. The certified reference material and the two 202 

spiked concentrations were measured every 6 samples as a quality control. The 203 

detection limits for the elements under study (Fe, Zn, Pb, Cd, Ni, Cr, Cu and As) were 204 

0.79; 0.75; 0.02; 0.06; 0.23; 0.03; 0.21 and 0.16 μg/L, respectively. Prior to the 205 

experiments, all the sampling and laboratory material was precleaned, acid-washed 206 

(10% HNO3), and rinsed with Milli-Q water (Direct-Q 5 UV, Merck Millipore, USA). 207 

 208 
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The modelling of this study and the estimation of the corresponding parameters are 209 

completed using Aspen Custom Modeler software (Bedford, Massachusetts, USA) 210 

which solves rigorous models and simultaneously estimates parameters. The adjustment 211 

of the model parameters was performed using an NL2SOL algorithm for the least-212 

square minimization of the deviation between the experimental and theoretical data.   213 

 214 

3. RESULTS 215 

3.1. Evolution of redox potential and Fe release at pH=7.0, 6.5 and 6.0 216 

The evolution of the redox potential (Eh) over time is followed in all the assays. Similar 217 

to the findings of Cappuyns and Swennen (2005), this evolution is as useful as the exact 218 

values when considering that the measured value is a mixed redox potential. It cannot 219 

be a true equilibrium potential because of the different redox couples in the sediment 220 

and the slow kinetics of redox reactions (Sigg, 2000). 221 

 222 

To compare the evolution of the redox potential at the different pH values under study 223 

better, Fig. 2 shows the evolution of the redox variation (Eh- Eh,0) over time. During the 224 

first 30-60 minutes of the assay there is a rapid increase in the Eh value, possibly 225 

because of the dissolution of major ions from the sediment. After this initial increase, a 226 

common trend is observed for pH=7.0 and 6.5. In these cases, the Eh value increases 227 

from t=1 h until t=50-72 h. Afterwards, the value of this parameter remains almost 228 

constant.  229 

 230 

At pH=6.0 and the Fe concentration in the selected seawater ([Fe]seawater) of 9.02 µg/L, 231 

the Eh value shows an irregular and different time behaviour it decreases from 1 to 12 232 

hours. Afterwards, it remains almost constant until 48 h, when a rapid increase begins. 233 
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After a maximum Eh of 96 h, a decrease occurs. There is a subsequent increase until 234 

192 h, when it remains almost constant until the end of the assay.    235 

 236 

Fig. 2. Evolution of redox variation (mV) over time in pH-static leaching tests. 𝐸𝐸ℎ,0 and 𝐸𝐸ℎ are the redox 237 
potentials at t=0 h and t=t, respectively.  pH=7;  pH=6.5; pH=6.0, [Fe]seawater=9.02 µg/L;  pH=6.0, 238 

[Fe] seawater =46.1 µg/L; and  pH=6.0, [Fe]seawater =153 µg/L. Connecting lines were added for clarity. 239 

 240 

As shown in Fig. 3 a and b, at pH values of 7.0 and 6.5, the dissolved Fe concentration 241 

increases during the first three hours because of the mixing of the wet sediment with the 242 

seawater and possibly because of the oxidation and later release of different iron 243 

compounds. Afterwards, there is a decrease in the dissolved Fe concentration as a 244 

consequence of the Fe(II) to Fe(III) oxidation and the subsequent precipitation of 245 

Fe(III), which is much less soluble than Fe(II). When Fe(III) precipitates, it might form 246 

various compounds such as Fe oxyhydroxides (Appelo et al., 1999; Wang et al., 2016). 247 

A minimum value of approximately 10 µg/L, which remains constant until the end of 248 

the assay, is achieved at t=24 h when the pH is 7.0 and at 96 hours at pH=6.5.  249 

 250 

The release of Fe at pH=6.0 and [Fe]seawater= 9.02 µg/L (Fig. 3 c) is higher than it is at 251 

more neutral pH values because of its higher solubility at lower pH values (Johnston et 252 

al., 2016). Moreover, the experimental results at pH=6.0 indicate that high 253 

concentrations of Fe remain dissolved until 48 hours of the assay has passed, most 254 
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likely because of the slower oxidation of Fe(II) to Fe(III) at pH=6.0. This finding is 255 

completely consistent with previous studies showing that the rate constant of Fe(II) 256 

oxidation increases at higher pH values as well as in the presence of HCO3
-
 ions 257 

(Millero and Izaguirre, 1989; Millero et al., 1987). The concentration of HCO3
- at pH 258 

values of 7.0 and 6.5 (0.90 and 0.82 molar fraction, respectively) is higher than it is at 259 

pH=6.0 (0.6 molar fraction) (Payán et al., 2013). In coinciding with the high increase of 260 

the Eh value from 48 to 96 h, the dissolved Fe concentration decreases because of its 261 

oxidation to Fe(III) and its subsequent precipitation. A low Fe release, from 40 to 60 262 

µg/L, is maintained from t=192 h to the end of the assay. This final dissolved 263 

concentration is higher at pH=6.0 than at more neutral pH values, likely because of the 264 

increase of in the Fe solubility at lower pH values. 265 

 266 

The different behaviour of both parameters (Eh and Fe release) at pH=6.0 leads us to 267 

assess the influence of the initial Fe concentration in the seawater on the elemental 268 

release and to consider it as an important variable in leaching tests at pH=6.0. 269 

 270 
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 271 

Fig. 3. Fe release (µg/L) over time in pH-static leaching tests:  pH=7;  pH=6.5; pH=6.0, 272 
[Fe]seawater=9.02 µg/L;  pH=6.0, [Fe]seawater=46.1 µg/L; and  pH=6.0, [Fe]seawater=153 µg/L. Connecting 273 

lines were added for clarity. 274 

 275 

3.2. Evolution of redox potential and Fe release at pH=6.0 using seawater with 276 

different Fe content  277 

In accounting for the fact that the Fe concentration of the selected seawater from the 278 

studied estuarine area fluctuates because of local tides and atmospheric conditions, 279 

assays at pH=6.0 are conducted using seawater with higher Fe concentrations, namely 280 

46.1 and 153 µg/L, and lower Eh values of 61 and 116 mV, respectively. The 281 

concentrations of the other studied elements do not present as much variation, and they 282 

fall within the concentration range shown in Table 2. 283 
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In Fig. 2, the value of Eh increases in the assays conducted at pH=6.0 when using 285 

seawater with higher concentrations of Fe are also shown. During the first 24 hours of 286 

the assay, the evolution of the Eh of the three assays that were performed at pH=6.0 287 

follows the same pattern: the increase during the first half hour is followed by a slight 288 

decrease and a plateau that lasts until 24 h when the [Fe]seawater=46.1 µg/L or 48 hours in 289 

the other two cases. This difference might be more strongly influenced by the 290 

concentration of the major ions that are present in the seawater and the heterogeneity of 291 

the sediment rather than by the Fe content of the seawater. When the plateau ends, a 292 

rapid increase occurs until 72-96 h, depending on the experiment. At t=72 h and 293 

[Fe]seawater= 46.1 µg/L, the Eh begins to decrease and a plateau is observed until t=168 294 

h. At the lowest and highest [Fe]seawater, the decrease begins at 96 h and it lasts from 96 295 

to 144 h in the case of [Fe]seawater=153 µg/L. Afterwards, there is an increase, which is 296 

less pronounced at higher Fe concentrations in the seawater, which ends in a constant 297 

value that is maintained until the end of the assay. The time at which the redox potential 298 

begins to remain constant seems to depend on the Fe content, because at the higher 299 

seawater Fe concentration, a constant Eh value is achieved later (192 h, 216 h and 432 300 

h).  301 

 302 

In all the assays conducted at pH=6, high Fe concentrations are in dissolution during the 303 

first 24 or 48 hours (Fig. 3 c, d and e). Afterwards, the precipitation of Fe(III) decreases 304 

the dissolved Fe concentration, and a minimum release is observed at 72 h ([Fe]seawater = 305 

46.1 and 153 µg/L) or 96 h when [Fe]seawater=9.02 µg/L. In assays with [Fe]seawater 306 

values of 46.1 and 153 µg/L, an increase in the Fe mobilisation is observed at 168 and 307 

288 h, respectively; it is more pronounced at the highest Fe concentration in the initial 308 

seawater. Once the dissolved Fe concentration decreases after the second peak, likely 309 
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because of the Fe(II) oxidation and later precipitation of Fe(III), similar Fe release 310 

values are obtained at the end of the three assays that were performed at pH=6.0 311 

(36.5±8.5 µg/L).  312 

 313 

The fact that there is a second dissolved Fe concentration peak suggests a mobilisation 314 

that could be induced by different phenomena such as the destabilisation of Fe(III) 315 

oxyhydroxides or ionic competition and displacement reactions.  316 

 317 

The destabilisation of Fe(III) oxyhydroxides could be caused by their reductive 318 

dissolution (Root et al., 2007). In this case, the abiotic reactions promoted by organic 319 

compounds present in the medium and H2S might provoke this reductive dissolution 320 

(Hering and Stumm, 1990; Schwertmann, 1991; Thamdrup, 2000). Luther III et al. 321 

(1992) identify acidification as one of the different impacts that cause iron 322 

oxyhydroxides to become unstable. H2S could be formed when Fe-sulphides are 323 

dissolved, and S2- reacts with protons from the acidification (Cappuyns and Swennen, 324 

2005). In the presence of sulphides, destabilised iron oxyhydroxides are converted into 325 

iron sulphides (Salomons, 1995; Luther III et al., 1992) that might be oxidised and 326 

released into the medium.  327 

 328 

Iron monosulphides are partially soluble in water, with higher solubility at lower pH 329 

values, whereas other metal monosulphides are less soluble than Fe monosulphides. 330 

Hence, the displacement of Fe from monosulphides occurred as well as the inclusion of 331 

other divalent metals in iron monosulphides, as shown in Eqs. 1 and 2 respectively, 332 

could be the cause of an increase in the concentration of dissolved Fe2+ (Di Toro et al., 333 

1990; Morse and Arakaki, 1993; Wong et al., 2013). 334 
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 335 

Fe2S +  Me2+  → Fe(Me)S +  Fe2+ (1) 

FeS +  Me2+  → MeS +  Fe2+ (2) 

 336 

Ionic competition is a phenomenon that might be occurring constantly because of the 337 

huge number of ions present in the medium, because seawater was used as well as the 338 

acidification caused by CO2 gas. In contrast to the assays at pH=6.0 with HNO3 by 339 

Martín-Torre et al. (2015b), in this study the displacement reactions might be an 340 

important phenomenon because CO2 gas was used to acidify the mixture. The use of 341 

this gas instead of HNO3 to acidify  the mixture affects the different equilibria present in 342 

the suspension, and the newly formed ions could highly influence the release of the 343 

studied contaminants (Tokoro et al., 2010). 344 

 345 

3.3. Trace element release 346 

The average value of the experimental results obtained for the release of Zn, Pb, Cd, Ni, 347 

As, Cu and Cr from the pH-static leaching test and the error bars between both 348 

replicates are shown in Fig. 4. The relative error between both replicates under the same 349 

leaching conditions is lower than 20% for any of the studied contaminants. Moreover, 350 

the relative error of more than 85% of the experimental data for Zn, Pb, Cd, Ni and As 351 

is lower than 10%. Most of the experimental data from the Cr and Cu release show 352 

errors between 10% and 20%, likely as a consequence of their low mobilisation from 353 

the sediment in any of the studied conditions. The release of Cr is lower than 2 µg/L and 354 

does not present a clear trend over time. Something similar occurs in the case of Cu in 355 

that its release does not indicate a clear pattern and its dissolved concentration is lower 356 
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than 10 µg/L in all of the studied scenarios with respect to the pH and Fe 357 

concentrations. 358 

 359 

The release of Ni does not present any initial delay in any of the assays. Moreover, after 360 

an initial rapid release, a near-equilibrium condition is reached after 300 h of the assay 361 

at pH values of 7.0 and 6.5. It is necessary to extend the experiment from 432-480 h to 362 

reach this condition in assays that were conducted pH=6.0. As shown here, in 363 

comparing the three assays at this most acidic pH value, lower Fe concentrations in 364 

seawater cause a faster mobilisation of Ni as well as a higher dissolved Ni concentration 365 

under the near-equilibrium condition.  366 

 367 

 368 

 369 
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 370 
Fig. 4. Elemental release over time in all assays.  pH=7.0;  pH=6.5; pH=6.0, [Fe]seawater=9.02 µg/L;  371 
pH=6.0, [Fe]seawater=46.1 µg/L; and  pH=6.0, [Fe]seawater=153 µg/L. Connecting lines were added for 372 
clarity. Error bars are also shown.  373 
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 374 
Regarding Cd, Pb and Zn mobilisation, an initial delay is observed that might be the 375 

consequence of the association of these metals with sulphur and the slow oxidation 376 

kinetics of these metal sulphides during the assay (Cappuyns and Swennen, 2008; Ho et 377 

al., 2012). This finding is supported by the evolution of the pH over time in the assay 378 

without pH control as shown in Fig. 5. Without CO2 addition, the acidification of the 379 

medium that was observed during the first 65 h of assay, might be caused by the H+ 380 

released from the oxidation reactions of reduced compounds such as sulphides 381 

(Cappuyns and Swennen, 2005; Eggleton and Thomas, 2004; Hwang et al., 2011). At 382 

pH=6.0, higher concentrations of Fe in the seawater cause longer delays in the release 383 

of these metals as a consequence of the higher solubility of Fe monosulphides than the 384 

cation monosulphides, which favours the precipitation of dissolved metal ions (Di Toro 385 

et al., 1990; Morse and Arakaki, 1993) at the same time that Fe2+ is released (Eq. 1 and 386 

2). Moreover, the delay caused by the different solubility products might also be 387 

influenced by ionic competition to form compounds with other ions in the medium, 388 

such as CO3
2-, SO4

2- or Cl- (Millero, 2009; Millero et al., 1995; Wong et al., 2013). 389 

 390 

 391 

 392 
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 393 

Fig. 5. pH evolution over time in the leaching test without pH control. 394 

 395 

After an initial rapid release of As from the sediment, which became more pronounced 396 

at more neutral pH values, there is a decrease in the As concentration. The removal of 397 

this element from the solution has been widely believed to be caused by the 398 

coprecipitation and adsorption provoked by the production of iron oxyhydroxides 399 

(Cappuyns et al., 2005; Omoregie et al., 2013; Wallmann et al., 1996; Zhang et al., 400 

2007); therefore, the oxidation rate of Fe(II) highly influences the time over which the 401 

oxyanion As remains in solution. Hence, at the most acidic pH value in the study, the 402 

presence of dissolved As is longer than that of the other two pH values under study. 403 

Moreover, As precipitation as trace metal arsenates represents a potential mechanism 404 

that contributes to this decrease (Vaca-Escobar et al., 2015). In the case of pH=6.0, after 405 

a minimum dissolved concentration of approximately 48-72 h, the mobilisation of As 406 

increases. This mobilisation might be a consequence of the destabilisation of Fe(III) 407 

oxyhydroxides, and the As might be adsorbed. The lower adsorbing capacity of iron 408 

sulphides, which are formed with the destabilisation of Fe(III) oxyhydroxides, causes an 409 

increase in the dissolved As concentration (Salomons, 1995). Moreover, sorbed As 410 

could be released after being displaced by the action of other oxyacids such as 411 
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phosphate, sulphate, carbonate, bicarbonate and silicate (Appelo et al., 2002; Arai et al., 412 

2014; Jain and Loppert, 2000; Meng et al., 2002, 2000). 413 

 414 

4. MODELLING AND DISCUSSION 415 

The pH-static leaching test used here allows for the study of elemental release from 416 

contaminated sediment as a function of pH and time. Modelling the obtained 417 

experimental results is useful for assessing the evolution of contaminant over time at the 418 

pH values of interest.  419 

 420 

Owing to the impossibility of performing a rigorous characterisation of all the species 421 

present in the sediment, the difficulties involved in analysing the major seawater ions 422 

mobilised from the sediment and the high number of chemical reactions that occurred 423 

during elemental release, simplified kinetic models that consider general reaction 424 

schemes to interpret contaminant release from sediments are usually proposed (Martín-425 

Torre et al., 2015b). 426 

 427 

Therefore, generalised mathematical models are useful for studying contaminant release 428 

and for determining the principal processes that influence their mobilisation, without 429 

specifying all the phenomena that occurred within the sediment. The proposed 430 

mathematical model is not applied to the experimental results of Cu and Cr because 431 

their release over time does not present a clear trend, and it is very low, at lower than 10 432 

µg/L in all cases. 433 

 434 

4.1. Generalised kinetic model as applied to Zn, Pb, Cd, Ni, Cr, Cu and As  435 
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The kinetic model proposed in Martín-Torre et al. (2015b) for HNO3 acidification, is 436 

used here. This model considers that the contaminant (M) is associated with an oxidised 437 

fraction (MOx) and with a reduced fraction (MRed) of the sediment that must be 438 

oxidised before the release of the element. Moreover, it includes the adsorption or 439 

precipitation of the released element through a third reaction in series. The reaction 440 

scheme and mass balances, when considering first-order reactions, are shown in Eqs. 3-441 

7. 442 

MRed(s)  
k1,i��  MOx(s)  

k2,i�� M(aq)
k3,i��  MAd(s) (3) 

d[MRed]i
dt

= −k1,i [MRed]i (4) 

d[MOx]i
dt

= k1,i [MRed]i − k2,i [MOx]i (5) 

d[M]i
dt

= k2,i [MOx]i − k3,i [M]i (6) 

d[MAd]i
dt

= k3,i [M]i (7) 

 443 

where [MRed]i, [MOx]i, [M]i and [MAd]i are the concentrations of element i in the 444 

reduced sediment fraction, the oxidised sediment fraction, the aqueous phase and in the 445 

adsorbed or precipitated phase, respectively. The kj,i are the rate coefficients of element 446 

i in reaction j (oxidation, release or adsorption/precipitation), and t is the reaction time.  447 

 448 

The integral equation of the set from Eqs. 4-7 is shown in Eq. 8. 449 
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LS
1000

 [M]i = �
k1,i k2,i [MRed]i,0

�k2,i − k1,i� �k3,i − k1,i� 
� exp�−k1,it�

+�
k1,i k2,i [MRed]i,0

�k1,i − k2,i� �k3,i − k2,i� 

−
k2,i [MOx]i,0
�k2,i − k3,i� 

� exp�−k2,it�

+ �
LS [M]i,0

1000
+  

k2,i [MOx]i,0
�k2,i − k3,i�

+
k2,i k1,i [MRed]i,0

�k1,i − k3,i� �k2,i − k3,i� 
� exp�−k3,it� 

(8) 

   450 

where LS corresponds to the Liquid/Solid ratio of the experiment, [M]i,0, which is 451 

expressed in units of µg/L, is the concentration of element i in the liquid at t = 0 and  452 

[MRed]i,0 and [MOx]i,0 are the maximum concentration as expressed in mg/kg, of 453 

element i that can be released from the reduced and oxidised fractions of the sediment 454 

respectively. 455 

 456 

The resolution of the model implies the estimation of the rate coefficients and the initial 457 

concentrations of each contaminant i in the oxidised and reduced fractions ([MOx]i,0 458 

and [MRed]i,0, respectively) based on the experimental results. The experimental and 459 

simulated results obtained at pH values of 7.0, 6.5 and 6 at [Fe]seawater=9.02 µg/L are 460 

shown in Fig. 6 and 7, and the initial concentrations are listed in Table 3. To better 461 

represent the elemental release, a dimensionless quotient (Eqs. 9-10) is represented over 462 

time.  463 

xi =
[M]i − [M]i,0

[MS]i,0
LS

 (9) 
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[MS]i,0 = [MOx]i,0 +  [MRed]i,0 (10) 

where [M]i is the dissolved concentration of the element i at any time (in units of µg/L), 464 

[M]i,0 is the dissolved concentration of the element i at t = 0 (in units of µg/L), 465 

[MRed]i,0 and [MOx]i,0 are the maximum concentrations of the element i that can be 466 

leached from the reduced and oxidised fractions of the sediment, respectively (in units 467 

of mg/kg), [MS]i,0 is the maximum concentration of element  i that can be released from 468 

the sediment (in units of mg/kg) and LS is the Liquid/Solid ratio of the experiment (in 469 

L/kg). 470 

 471 

Higher concentrations are released from the reduced fraction than from the oxidised 472 

fraction, except in the case of Ni, because of the initial reduced state of the sediment. In 473 

the case of Cd, its concentration in the oxidised fraction is zero.  474 

 475 

Table 4 lists the kinetic rate coefficients of the reactions (kj,i). According to the 476 

experimental results obtained here, the third adsorption or precipitation reaction is only 477 

included in the case of As. For the pH values under study, a good fit between 478 

experimental and simulated release concentrations is indicated by the percentage 479 

variation-explained values (R2) of 99.4 (pH =7.0), 99.6 (pH = 6.5) and 98.3 (pH = 6.0 480 

and [Fe]seawater=9.02 µg/L).  481 

 482 

Using the model published in Martín-Torre et al. (2015b), the simulated results for Zn, 483 

Pb, Cd, Ni and As fit more poorly with the experimental data at pH=6.0 than at the 484 

higher pH values, as shown in Fig. 7 with dashed lines for the three assays at this pH 485 

value. Among the different assays at pH=6.0, the better fit is obtained at the lowest 486 

concentration of seawater Fe (9.02 µg/L), and it seems that the initial concentration of 487 
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Fe in the seawater highly influences the characteristics of the medium, modifying the 488 

release behaviour of the contaminants. The experimental release of Zn, Pb and Cd at 489 

pH=6.0 present a longer delay than that simulated with this model. This delay in the 490 

release could be a consequence of the displacement reactions because of the higher 491 

solubility of the Fe(II) compounds at the most acidic pH value under study. The studied 492 

trace elements, except As, present a rapid release once Fe is removed from the aqueous 493 

phase. Hence, a modified mathematical model that considers the initial Fe 494 

concentration, its release and its precipitation is proposed. 495 

 496 
 497 
 498 
 499 
 500 
 501 
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 502 
Fig. 6. Trace element release xi = {[M]i − [M]i,0}/{[MS]i,0/𝐿𝐿𝐿𝐿]} over time at pH values of 7.0 and 6.5, 503 
where i is the trace element, [M]i is the dissolved concentration of the element i, [M]i,0 is the dissolved 504 
concentration of the element i at t = 0 and [MS]i,0 i is the maximum concentration of the element that can 505 
be released from the sediment. The experimental release (  pH=7;  pH=6.5), error bars and simulated 506 
curves using the model by Martín-Torre et al. (2015b) ( ) are represented. 507 

 508 
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 510 
 511 

Fig. 7. Trace element release (xi = {[M]i − [M]i,0}/{[MS]i,0/𝐿𝐿𝐿𝐿]}) over time at pH=6.0, where i is the 512 
trace element, [M]i is the dissolved concentration of the element i, [M]i,0 is the dissolved concentration of 513 

the element i at t = 0 and [MS]i,0 i is the maximum concentration of the element that can be released 514 
from the sediment. Experimental release ( pH=6.0, [Fe]seawater=9.02 µg/L;  pH=6.0, [Fe]seawater =46.1 515 

µg/L; and  pH=6.0, [Fe]seawater =153 µg/L), error bars and simulated curves are represented:  Martín-516 
Torre et al. (2015b) model; and  modified model 517 
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Table 3. Estimated values of the maximum concentrations that can be released from the reduced and oxidised fractions of the sediment, ([MRed]i,0 and [MOx]i,0 respectively), 518 
as expressed in units of mg/kg. 519 

 520 

Assay Contaminant 

pH [Fe]seawater (µg/L) 
Zn Pb Cd Ni As 

[𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙]𝟎𝟎 [𝐙𝐙𝐙𝐙𝐙𝐙𝐙𝐙]𝟎𝟎 [𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏]𝟎𝟎 [𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏]𝟎𝟎 [𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂]𝟎𝟎 [𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂]𝟎𝟎 [𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍]𝟎𝟎 [𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍]𝟎𝟎 [𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀]𝟎𝟎 [𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀]𝟎𝟎 
Martín-Torre et al. (2015b) model       

7.0 6.80 17.6 2.06 0.280 0.0359 0.0676 0 0.0908 0.280 0.971 0.136 
6.5 3.50 373 10.8 0.390 0.0733 0.178 0 0.635 0.390 0.298 0.0557 

6.0* 9.02 828 0 2.96 0 8.06 0 1.14 2.96 5.01 2.43 
Modified model for pH=6        

6.0 46.1 1150 33.9 3.07 0.012 8.53 0 1.65 3.07 4.37 7.70 
6.0 153 1110 70.6 5.11 0.424 8.71 0 1.082 5.11 4.40 2.37 

 521 

*Estimated concentrations at pH=6 and [Fe]seawater=9.02 µg/L take the same value when using the model by Martín-Torre et al. (2015b) and the modified model at  pH=6. 522 

 523 

 524 

 525 

 526 

 527 

 528 
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Table 4. Estimated kinetic rate coefficients for each contaminant in all the assays. 529 
 530 
 531 

Assay  Contaminant 

pH [Fe]seawater 
(µg/L) 𝐤𝐤𝐣𝐣,𝐢𝐢 (h-1) Zn Pb Cd Ni As 

Martín-Torre et al. (2015b) 
model       

7.0 6.80 
𝐤𝐤𝟏𝟏,𝐢𝐢 3.10 10-3 5.02 10-3 7.77 10-3 9.95 10-3 3.54 10-3 
𝐤𝐤𝟐𝟐,𝐢𝐢 3.30 10-3 6.34 10-3 1.09 10-3 3.06 10-3 3.62 10-3 
𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 2.92 10-2 

6.5 3.50 
𝐤𝐤𝟏𝟏,𝐢𝐢 1.96 10-3 4.64 10-3 6.41 10-3 2.54 10-3 2.08 10-3 
𝐤𝐤𝟐𝟐,𝐢𝐢 1.70 10-3 8.60 10-3 1.04 10-3 2.91 10-1 2.86 10-3 
𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 1.64 10-2 

6.0 9.02 
𝐤𝐤𝟏𝟏,𝐢𝐢 2.30 10-3 1.60 10-3 3.01 10-4 7.69 10-3 2.18 10-3 
𝐤𝐤𝟐𝟐,𝐢𝐢 3.68 10-3 1.09 10-3 3.46 10-4 5.88 10-3 1.74 10-2 
𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 1.15 10-1 

Modified model for pH=6 

6.0 9.02 

𝐤𝐤𝟏𝟏,𝐢𝐢 2.30 10-3 1.60 10-3 3.01 10-4 7.69 10-3 2.18 10-3 

𝐤𝐤𝟐𝟐,𝐢𝐢 
𝐤𝐤𝟐𝟐,𝐢𝐢
𝟎𝟎  5.28 10-4 4.36 10-3 2.57 10-5 0 1.14 10-2 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟏𝟏  1.74 10-5 4.08 10-5 1.65 10-6 4.05 10-5 2.34 10-3 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟐𝟐  --- 0 --- 2.03 10-3 0 

  𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 1.15 10-1 

6.0 46.1 

𝐤𝐤𝟏𝟏,𝐢𝐢 2.30 10-3 1.60 10-3 3.01 10-4 7.69 10-3 2.18 10-3 

𝐤𝐤𝟐𝟐,𝐢𝐢 
𝐤𝐤𝟐𝟐,𝐢𝐢
𝟎𝟎  4.87 10-4 2.46 10-3 4.89 10-5 1.59 10-3 1.25 10-3 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟏𝟏  4.28 10-6 8.91 10-4 6.62 10-7 1.57 10-6 5.29 10-4 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟐𝟐  --- 3.91 10-4 --- 2.47 10-3 5.57 10-3 

𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 1.15 10-1 
6.0 153 𝐤𝐤𝟏𝟏,𝐢𝐢 2.30 10-3 1.60 10-3 3.01 10-4 7.69 10-3 2.18 10-3 

  
𝐤𝐤𝟐𝟐,𝐢𝐢 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟎𝟎  1.19 10-4 8.38 10-6 0 0 1.14 10-2 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟏𝟏  1.01 10-6 1.58 10-6 1.78 10-7 3.50 10-6 4.35 10-3 

𝐤𝐤𝟐𝟐,𝐢𝐢
𝟐𝟐  --- 3.91 10-4 --- 5.41 10-4 0 

𝐤𝐤𝟑𝟑,𝐢𝐢 0 0 0 0 1.15 10-1 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 
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4.2. Kinetic model of Fe release  540 

When using the kinetic model by Martín-Torre et al. (2015b), the good fit between the 541 

experimental and simulated Fe release at pH values of 7.0 and 6.5 is shown in Fig. 8. 542 

Moreover, the Fe concentrations in the reduced and oxidised fractions, or [FeRed]0 and 543 

[FeOx]0, respectively, and the rate coefficients for the simulated Fe release at these pH 544 

values are listed in Table 5.  545 

 546 

However, this model cannot explain the behaviour of Fe at the most acidic pH value 547 

under study. At pH=6.0, the simulated curves that employ this model explain the release 548 

of Fe within short periods but do not explain its decrease, nor is the second peak 549 

observed in Fe mobilisation (dashed curves in Fig. 8). 550 

 551 

More complex kinetic schemes, which always consider first-order reactions with respect 552 

to Fe, have been tested to find a mathematical model that better predicts the behaviour 553 

of this element at pH=6.0. The possibility that Fe is released directly from the reduced 554 

fraction was considered; iron sulphides such as pyrite could be released into the medium 555 

without being oxidised. Another hypothesis was that most of the dissolved Fe 556 

precipitates took the form of Fe(III), whereas the rest of it precipitates as Fe(II) before 557 

being released again to the medium; afterwards, this re-dissolved Fe could precipitate as 558 

Fe(III). These kinetically Fe-dependent schemes do not improve the previous fitting, 559 

and so we propose that there is a dependency between the Fe release and the presence of 560 

other ions in association. Therefore, a model that includes the kinetics of ions associated 561 

with Fe is introduced. The global model of Fe consists of two series of reactions in 562 

parallel (Eqs. 11 and 12) and includes the influence of other ions on the release of Fe. 563 

 564 
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FeRed(s)  
k1,Fe�⎯�  FeOx(s)  

k2,Fe�⎯� Fe2+(aq)
k3,Fe�⎯�  Fe3+(s) (11) 

AC1(aq) 
k1,a��  AS1(s)

k2,a�� AC2(aq)
k3,a��  AS2(s) (12) 

 565 

Eq. 11 considers that reduced Fe should be oxidised before being released from the 566 

sediment into the medium, and that dissolved Fe precipitates as Fe(III) whereas Eq. 12 567 

represents an additional scheme for ions that are associated with to Fe. Ions that are 568 

associated with Fe in solution (AC1) could precipitate with Fe (AS1) and be released 569 

together (AC2) and precipitated (AS2) because of the different solubility of products 570 

from the compounds present in the medium. This scheme is feasible because of the high 571 

concentration of ions dissolved in the seawater-sediment system and the ionic 572 

interactions associated with this situation. 573 

 574 

The association between Fe and these ions is taken into account by assuming that the 575 

release and precipitation rate coefficients, namely k2,Fe and k3,Fe, depend on the 576 

dissolved concentration of these ions through Eqs. 13 and 14. 577 

k2,Fe = k02,Fe + k12,Fe xA (13) 

k3,Fe = k03,Fe + k13,Fe (1− xA) (14) 

 578 

where k02,Fe , k12,Fe , k03,Fe  and k13,Fe are kinetic rate coefficients and xA is the 579 

fraction of ions released from the sediment, as calculated as xA = AC2−AC10
ACmax

 . AC2 refers 580 

to the concentration of ions released with Fe, AC10 is the concentration of seawater ions 581 

associated with Fe and ACmax is the maximum concentration of ions associated with Fe 582 

in the aqueous phase. 583 

 584 
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In Fig. 8, the simulated curves at pH=6.0 are shown using a continuous line. The 585 

proposed model fits well with the experimental data, including the second peak 586 

observed at the higher Fe concentrations in the selected seawater. The good fit is 587 

corroborated by the percentage variation-explained values (R2) (99.3, 95.8 and 96.1 588 

when the Fe concentrations of the seawater are 9.02, 46.1 and 153 µg/L, respectively). 589 

Additionally, Table 5 lists the maximum concentration of Fe that can be released from 590 

each fraction of the sediment and kinetic rate coefficients using the latter model. 591 

 592 

This more complex model has been applied to the Fe release at pH values of 7.0 and 6.5 593 

without obtaining an improvement in the simulated results. The global percentage 594 

variation-explained value of 97.8 and a relative standard deviation of 0.325 could be 595 

concluded for the Fe release model at the pH values and Fe seawater concentrations 596 

under study.  597 

 598 

Fig. 8. Fe release (xFe = [Fe]/[Fe]0) over time at pH values under study, where [Fe] is the dissolved 599 
concentration of Fe and  [FeS]0 is the maximum Fe concentration that can be released from the sediment. 600 
Experimental release (  pH=7;  pH=6.5; pH=6.0, [Fe]seawater=9.02 µg/L;  pH=6.0, [Fe]seawater=46.1 601 
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µg/L; and  pH=6.0, [Fe]seawater=153 µg/L) and simulated curves are represented: most suitable model 602 
for each assay; Martín-Torre et al. (2015b) model applied to assays at pH=6.0. 603 
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Table 5. Estimated values for the maximum concentrations of Fe that can be released from the reduced ( [FeRed]0) and oxidised ( [FeOx]0) sediment fractions and kinetic rate 604 
coefficients in all assays. 605 

 606 
pH [Fe]seawater  [𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅]𝟎𝟎  [𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅]𝟎𝟎 𝐤𝐤𝟏𝟏,𝐅𝐅𝐅𝐅 𝐤𝐤𝟐𝟐,𝐅𝐅𝐅𝐅

𝟎𝟎  𝐤𝐤𝟐𝟐,𝐅𝐅𝐅𝐅
𝟏𝟏  𝐤𝐤𝟑𝟑,𝐅𝐅𝐅𝐅

𝟎𝟎  𝐤𝐤𝟑𝟑,𝐅𝐅𝐅𝐅
𝟏𝟏  𝐤𝐤𝟏𝟏,𝐚𝐚 𝐤𝐤𝟐𝟐,𝐚𝐚 𝐤𝐤𝟑𝟑,𝐚𝐚 

 (µg/L)  (mg/kg)  (h-1)  

7.0 6.80 276 39.0 1.08 10-4 2.74 10-1 --- 2.95 10-1 --- --- --- --- 
6.5 3.50 86.0 623 3.50 10-4 2.01 10-1 --- 2.35 10-1 --- --- --- --- 
6.0 9.02 42.8 8040 1.88 10-3 1.42 10-2 1.11 10-1 9.73 10-2 0 1.16 10-2 1.15 10-2 6.95 10-4 
6.0 46.1 26.1 6620 1.88 10-3 1.09 10-2 1.37 10-1 1.32 10-1 7.61 10-2 1.71 10-2 1.72 10-2 1.62 10-3 
6.0 153 58.6 18400 1.88 10-3 9.90 10-3 4.12 10-2 1.69 10-1 6.80 10-2 1.89 10-2 1.89 10-2 1.52 10-3 

 607 
 608 

 609 

  610 

 611 
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4.3. Trace element modelling at pH=6.0 612 

The contaminant release at pH=6.0 is first simulated according to the kinetic scheme 613 

used at higher pH values (Eq. 3). However, the release reaction is influenced by the 614 

dissolved Fe concentration so the rate coefficient k2,i is modified according to Eq. 15 to 615 

account for this effect. 616 

k2,i = k02,i +
k12,i

xFe
 (15) 

 617 

where i represents the element (Zn, Pb, Ni, Cd, or As), k02,i and k12,i are kinetic rate 618 

coefficients, whereas the fraction of Fe released from the sediment is defined as xFe =619 

[Fe]
[FeS]0

 with [Fe] being the dissolved concentration of Fe and [FeS]0 being the maximum 620 

concentration of Fe that can be released from the sediment. The former coefficient 621 

(k02,i) considers the characteristics of the aqueous medium that might modify the 622 

solubility of the different species present in the sediment whereas k12,i represents the 623 

direct influence of Fe on the release rate. 624 

 625 

Including the influence of Fe, the simulated results of Zn and Cd fit well with their 626 

experimental release. However, the simulated release of Pb, Ni and As (not shown) is 627 

much lower than the experimental one for short periods (t<96 h) so the ionic 628 

competition with other cations should be considered in a similar way as the Fe release.  629 

 630 

To avoid a high increase in the number of parameters, only the influence of Zn, which is 631 

the major trace element in the studied sediment, is also included when simulating the 632 

release of Pb, Ni and As. Hence, a further term is added and the rate coefficient of the 633 
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release reaction of Pb, Ni and As includes the combined influence of Fe and Zn as 634 

shown in Eq. 16. 635 

k2,i = k02,i +
k12,i

xFe
+

k22,i

xZn
 (16) 

 636 

where i represents the element (Pb, Ni and As), k22,i is the rate coefficient which 637 

represents the direct influence of Zn on the release rate and the fraction of Zn released 638 

from the sediment is defined as x𝑍𝑍𝑍𝑍 = [Zn]
[ZnS]0

 with [Zn] being the concentration of 639 

dissolved Zn and [ZnS]0 being the maximum concentration of Zn that can be released 640 

from the sediment. The variables k02,i, k12,i and xFe were previously explained. 641 

 642 

The fit between the simulated and experimental release for the different assays at 643 

pH=6.0 when using this modified model is shown in Fig. 7 with continuous lines. The 644 

percentage variation-explained values values (R2) for the different assays at pH=6.0 are, 645 

from the lowest to the highest concentrations of Fe in the seawater, 99.5, 96.1 and 96.3. 646 

These values are influenced by the simulated release of Fe, leading to higher R2 values 647 

of elemental release for the better Fe fittings. 648 

 649 

The concentrations of each element in the reduced and oxidised sediment fractions are 650 

estimated by using this modified model and are listed in Table 3. At pH=6 and 651 

[Fe]seawater=9.02 µg/L, the estimated concentrations take the same value as they do when 652 

using the model by Martín-Torre et al. (2015b). Similar to what occurred at most neutral 653 

pH values, higher concentrations are released from the reduced fraction than from the 654 

oxidised fraction of the sediment, except the Ni and As in the assay in which the 655 

seawater contains 46.1 µg/L of Fe.  656 
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 657 

Regarding the pH=6 assay with the lowest seawater Fe concentration (9.02 µg/L), a 658 

better fitting is obtained when using the modified model than the previous one. 659 

Percentage variation-explained values (R2) of 99.5, 98.6, 99.7, 98.4 and 81.2 instead of 660 

99.3, 98.4, 98.3, 97.0 and 74.1 are obtained for Zn, Pb, Cd, Ni and As, respectively. 661 

However, a trade-off between the estimated work and the accuracy should be decided 662 

by the user because the use of this modified model implies the estimation of more 663 

parameters. 664 

 665 

Given that ionic competition, based on the different solubility products,  is a process 666 

with a great influence on the contaminant release, the interactions among all of the ions 667 

could be added through additional elemental fractions (xPb, xCd, xNi and xAs). This 668 

approach has been attempted, and despite the increasing the number of estimated 669 

parameters, the results do not present enough sensitivity to better fit the experimental 670 

release. Hence, the dependence of Fe is considered for all the studied trace elements at 671 

pH=6.0, but the influence of Zn is only contemplated for Pb, Ni and As release at this 672 

pH value.  673 

 674 

Something similar occurs when this model, which was proposed for the simulation of 675 

contaminant release at pH=6.0, is used to fit experimental results from assays at pH 676 

values of 7.0 and 6.5  a better fit is obtained when the parameters that are not included 677 

in the initial proposed model employ a value of zero.  678 

 679 

As expected, higher concentrations of the studied trace elements are released from the 680 

sediment ([MS]i,0 = [MOx]i,0 +  [MRed]i,0) at lower pH values because of the greater 681 
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solubility of the studied contaminants at acidic pH values, except for As, which presents 682 

the highest mobilisation at pH=6.5 (Fig. 9 a). In comparing the mobilisation at pH=6.0, 683 

Fig. 9b indicates that the higher Fe concentrations in the selected seawater causes a 684 

slightly higher mobilisation of all the studied contaminants.  685 

 686 

 687 

a)       b) 688 

Fig. 9. a) Maximum concentration of contaminant that can be released from the sediment as a function of 689 
pH; and b) maximum concentration of contaminant that can be released from the sediment at pH=6.0 as a 690 

function of the Fe concentration in the seawater.  Zn;  Pb;  Ni;  Cd; and  As  691 
 692 

As previously stated, the rate coefficients of the different assays are presented in Table 693 

4, in which As is the only element with an adsorption or precipitation reaction (𝑘𝑘3 ≠ 0). 694 

Moreover, at pH=6.0 the oxidation and adsorption/precipitation processes of this 695 

oxyanion do not depend on the initial Fe concentration in the seawater, and thus the rate 696 

coefficients have the same value in the three assays conducted at this pH value.  697 

 698 

Although the model considers the influence of Zn on the release of Pb, Ni and As, it 699 

takes a nonzero value (k22,i ≠ 0) in all the cases for Ni release, for Pb release at the two 700 

highest concentrations of Fe in seawater (153 and 46.1 µg/L) and for As mobilisation at 701 

[Fe]seawater= 46.1 µg/L; this last case likely occurs because the released concentration of 702 

this oxyanion from the oxidised fraction is higher than it was from the reduced fraction 703 
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at this seawater Fe content. However, the obtained rate kinetic parameters (k02,i, k12,i 704 

and k22,i) do not present a clear trend as a function of [Fe]seawater. 705 

 706 

The type of acidification (CO2 or HNO3) used in the pH-static assay influences the rate 707 

coefficients obtained from the Martín-Torre et al. model (2015b). Contrary to what 708 

occurs when the mineral acid is used (Martín-Torre et al., 2015b), rate coefficients 709 

obtained using CO2 do not present a clear trend with respect to the pH and cannot be 710 

fitted to any polynomial equation. HNO3 is a strong oxidising acid that generates 711 

soluble salts in the medium, and it might be completely dissociated. CO2 is a weak 712 

oxidising acid that forms partial insoluble salts, the solubility products of which modify 713 

the characteristics of the medium through ionic competition and therefore influence the 714 

element release rates. 715 

 716 

The maximum concentrations of the elements that can be released from the sediment 717 

might depend on the type of acidification in addition to the oxidation state of the 718 

sediment. Hence, higher values are generally obtained in assays that employ CO2 719 

instead of HNO3 (Martín-Torre et al., 2015b). Exceptions to this trend are Pb 720 

concentration at pH values of 7.0 and 6.5 (similar values are independent of the selected 721 

acid) and As at the most neutral pH values, where higher concentrations are released 722 

from the sediment in assay samples acidified by HNO3. 723 

 724 

The parity plots with the percentage variation-explained values (R2) and relative 725 

standard deviation (RSD) included a consideration of the global modified model of this 726 

work for all the assays performed, as obtained for each contaminant (Fig. 10). Parity 727 

plots are useful for the validation of the model in terms of the released element 728 
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concentration at any time and pH value. In general, at release higher than 25% of the 729 

maximum dissolved concentration, differences between experimental and simulated 730 

mobilisation are lower than 20% although a higher dispersion is observed in the case of 731 

As. Better fittings are obtained at pH values of 7.0 and 6.5 because of a lack of the 732 

influence from the Fe concentration and ionic competition on the elemental release. The 733 

percentage variation-explained values (R2) for each contaminant are higher than 97.8 for 734 

all the elements under study, except for As, in which R2=89.4. The high values of this 735 

statistical parameter show the good fit of the proposed model. 736 
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737 

738 

 739 

 740 

Fig. 10. Parity plots of the element concentrations from the experiment (Cexp) and simulated results 741 
(Csim) of the elements under study. The area inside the dashed square includes concentrations lower than 742 
25% of the maximum dissolved concentration.  pH=7.0;  pH=6.5; pH=6.0, [Fe]seawater=9.02 µg/L;  743 
pH=6.0, [Fe]seawater=46.1 µg/L; and  pH=6.0, [Fe]seawater=153 µg/L. Additionally, the data number (N), 744 

percentage variation-explained value (R2) and relative standard deviation (RSD) are shown. 745 

 746 

5. CONCLUSIONS  747 

This work presents the experimental results of Zn, Pb, Cd, Ni, Cr, Cu and As 748 

mobilisation over time when sediment and seawater are totally mixed and acidified by 749 
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CO2 gas in a pH-static leaching test. Long-term 480-h leaching tests are performed at 750 

pH values of 7.0, 6.5 and 6.0 to assess different levels of acidification. 751 

 752 

The evolution of the redox potential and Fe release over time at pH=6.0 is different than 753 

the evolution at the more neutral pH values under study. Therefore the influence of the 754 

seawater Fe concentration is assessed by conducting assays at pH=6.0 using natural 755 

seawater with different Fe contents: 9.02; 46.1 and 153 μg/L. 756 

 757 

A set of three in-series reactions for trace elements, for Fe and for other ions associated 758 

with Fe is proposed to model a Fe/multi-ion-dependent mechanism for trace metal 759 

release. The model uses global R2 values of 98.9-89.4 and RSD < 0.325 to explain the 760 

release behaviour over time for Zn, Pb, Cd, Ni and As at pH values of 7.0, 6.5 and 6.0, 761 

which mimic the potential CCS acidification, and three seawater iron concentrations, 762 

which represent estuarine seawater in the iron mine areas. 763 

 764 

The model proposed in this work extends the scope of previous models to the 765 

acidification of seawater with CO2, at different iron concentrations; however, a trade-766 

off between estimation and accuracy is made because there are higher numbers of 767 

parameters in the proposed model.  Using the Aspen Custom Modeler, the maximum 768 

concentrations of each element that can be released from the sediment, and the kinetic 769 

rate coefficients are estimated for all the cases.  770 

 771 

Additionally, the kinetic rate coefficients obtained in this work are compared with those 772 

that were obtained previously when HNO3 was used to acidify the medium. Different 773 

trends are observed because of the impact that CO2 has on the ionic competition and 774 
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contaminant release, highlighting that the displacement reactions should be considered 775 

when acidification from CO2 leakages originating from CCS sites is assessed. 776 

 777 

The parity plots of the pH-static leaching test when using CO2 to acidify the medium 778 

show a good fit between the experimental and simulated element release, confirming 779 

that the proposed model can be applied to simulate contaminant mobilisation from 780 

contaminated sediment to seawater under total mixed acidic conditions at pH values of 781 

7.0, 6.5 and 6.0. Hence, a useful, broader generalised kinetic model that explains the 782 

contaminant release over time in sediment-seawater mixtures that were acidified by 783 

HNO3 or CO2 was made to obtain acidic pH values and different concentrations of iron. 784 

The proposed model is flexible enough to work with sediments that have different 785 

contaminant contents through model-fitting parameters such as the oxidised and 786 

reduced fractions and the kinetic rate coefficients. 787 

 788 
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