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1. INTRODUCTION 

The need of the global population for energy, water and food is putting increasing pressure on the resources 

that are used to supply these basic commodities. This is not simply a result of a growing population, but is 

also due to urbanisation, dietary change and other consequences of economic development. This pressure 

is observable through negative impacts such as climate change, ocean acidification and resource scarcity. 

There is also collateral damage – the threat to biodiversity as more land is taken into cultivation and as 

chemical products escape into the environment, for example.  

Water and food are necessary for all human life, and an external source of energy (additional to that 

provided by human muscle-power) is needed to support any society which aspires to more than a bare 

subsistence. The provision of the three commodities is closely linked however. Fresh water is essential to 

agriculture, as is the energy that is needed to produce much fertiliser, and to process, transport and distribute 

food products; energy is needed to desalinate or otherwise treat and then distribute water; water is used in 

the production and conversion of most forms of energy; where land is utilised to grow crops for processing 

into fuel, there is additional demand for water and potential competition with land provision for food crops. 

The supply chains of the three commodities are found to interact at many different points. 

There are many different social, economic and environmental goals and interests in the energy, water and 

food system (E-W-F) conditioning the use of ecosystem services and the development of supply chains of 

goods and services for human well-being and environmental protection. The security of the E-W-F supply 

chains are of primary importance. The United Nations Development Program (UNDP 2000) has described 

energy security as “…continuous availability of energy in varied forms, in sufficient quantities and at 

reasonable prices”.  Water security has been defined in the Global Water Agenda (UNU-UNWEH 2013) 

as “…the capacity of a population to safeguard sustainable access to adequate quantities of acceptable 

quality water for sustainable livelihoods, human well-being and socio-economic development, for ensuring 

protection against water-borne pollution and water related disasters and for preserving ecosystems in a 

climate of peace and political stability”. The world food Summit of 1996 defined food security as existing, 

“when all people at all times have access to sufficient, safe nutritious food to maintain a healthy and active 

life” (FAO 1996; Imhoff et al. 2004). 

The goals of ensuring security in energy, water and food have thus been recognized as crucial to human 

development, yet the links between the commodities mean that the pursuit of security in each commodity 

must take account of the balance of demands for all three commodities. This linkage, and the synergies and 

trade-offs required in meeting demands, is known as the Energy-Water-Food (E-W-F) Nexus (Hoff 2011; 

WEF 2011; FAO 2014). It is the objective of this paper to suggest a framework for a sustainability analysis 

of the E-W-F Nexus, using a simplified model of its operation. This enables the identification of 

sustainability impacts, clarifying the choices and trade-offs that can be made in any particular case.  
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Recent studies describe the design of  food production systems for sustainable value creation (Emec et al. 

2015) and the challenges and opportunities derived from the carbon dioxide utilization ( Qi, Li 2015) and 

new techniques like Life Cycle Assessment have been recommended for the energy-water food nexus (Al-

Ansari et al. 2015) The result is an assessment, based on sustainability indicators, that will support better 

decision-making.  We show how the method is applied to the case study of the  tomato production in 

greenhouse agriculture leading to interesting results for the primary food production in semi-arid land.  The 

application of the carbon footprint, water footprint and chemical footprint as indicators allow a quantitative 

assessment for the system. 

 

2.  THE SUSTAINABILITY OF THE E-W-F SYSTEM 

2.1 System model 

Our basic approach is that of the Process Analysis Method (PAM) proposed by Chee Tahir and Darton 

(2010). In this method, the system under study is described as a set of processes that produce impacts. It is 

the impacts that are important according to a stated definition of sustainability that are then investigated 

further to provide an overall assessment. The first step is the creation of a descriptive model of the system 

that includes all the processes that cause relevant impacts. For a large system this can be a time-consuming 

task, but it remains manageable because the processes do not need to be mathematically modelled, just 

identified and described. As is common with this type of meta-analysis, it is important to have a clear and 

transparent definition of system boundary. 

The FAO specifically designed an assessment approach for the E-W-F Nexus (FAO, 2014) in order to “… 

inform nexus-related responses in terms of strategies, policy measures, planning and institutional set-up or 

interventions”.  Figure 1 summarises the FAO approach, illustrating the main drivers of change, the nature 

of the resource base, and how various goals and interests affect the process of managing the nexus through 

policy responses. 

Fig.1 FAO view of the E-W-F nexus (FAO 2014) 

In our simplified spatial model of the E-W-F Nexus, the three supply chains are each envisaged as operating 

at three scales and also have impacts at these different scales (Figure 2). The three chains (E-W-F) connect 

the ecosystem services that provide energy, water and land (food) resources, to the consumers. In the model 

are included the agents whose decisions and choices determine structure and influence the operation of the 

supply chains. These are institutional agents: government, regulators, etc; market agents: producers and 

consumers; and other stakeholders: NGO´s and other, perhaps not formally organised groups, who 

influence institutional and market agents. 

Fig.2 Multiscale approach to the E-W-F system 

In the E-W-F system we identify the three main scales as: the global scale (planet), the regional scale (based 

on political and social agreement) and the local scale. At the different scales the institutional agents, market 

agents and other stakeholders are different and play different roles. The relationship among scales is based 

on regulations, on trade agreements and/or on market and consumers decisions, using transport and 

information technologies to connect the scales. At the local scale energy, water and food are produced and 

consumed in the same community, and communal conditions and agreements regulate supply chain. 

Consumers and their suppliers are part of the same community. Trade agreements are made directly 

between suppliers and consumers. At the regional scale suppliers and consumers are part of the same 

economic area, but are not part of the same social group. The global scale is multinational and characterised 

by large distances, different rules and regulations and supply chains subject to international agreements. 

Institutional Agents, Market Agents and stakeholders define the requirements to the ecosystem services. 

The supply chains and their connections are organised in space and time in three different subsystems:  the 

agri-food subsystem, the population subsystem and the industrial subsystem, with different decision agents 

and behaviour as shown in Figure 3. 

Fig 3. Organisation of the subsystems in the E-W-F system 
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The soil provides an ecosystem service to the agri-food subsystem, which has to be able in space and time 

to support the human food demand, supplying the chemical energy and other nutritional requirements for 

human well-being. The restrictions of the agri-food subsystem are based on the land, water and primary 

energy availability and access.  

Land, water, energy and materials are also demands of the industrial and population subsystems. In general 

the agri-food subsystem is land and water intensive, the industrial subsystem is energy, materials and water 

intensive. The population subsystem, which is increasingly urban in nature, introduces an increasing 

demand of transport of food, water and energy to the cities which act as sinks for water, energy, materials  

and food, providing services to society and rejecting wastes. 

 In order to analyse the evolution of the system in time, local and global economic, social and natural stores 

of capital have to be taken into account. For sustainability these stores of value must be maintained or 

enhanced. This requires adaptive actions initiated and supported by institutional and market agents and 

other stakeholders as shown in Figure 4.  

Fig.4 Sustainability in time 

To establish a relationship between the land and the E-W-F system, land uses have to be taken into account 

at a global and local scale. The global land cover share is shown in Table 1. The preservation of biological 

integrity and carbon sinks have been identified as the main risks to sustainability of the land cover changes 

now occurring (Rockström et al 2009). As the system evolves in time Global Change signals including 

biodiversity losses, climate change, ocean acidification and the increasing frequency of extreme events like 

flooding and droughts; these have to be managed through adaptive action and mitigation to reduce local 

vulnerability. 

Table 1. Main Land Cover Typesa 

Land Cover Type Percentage 

Tree covered areas 27.7 

Cropland 12.6 

Snow and glaciers+ Antarctica 9.7 

Water bodies/Mangoves 2.7 

Artificial surfaces 0.6 

Grassland/Herbaceous/Sparse 

vegetation 

31.5 

Baresoil 15.2 
a Source: FAO Global Land Cover Share Database 2014 

As the world’s population grows, so too does the demand for food, and thus for agricultural land. UN 

population growth estimates are shown in Table 2, and depend on the evolution of human fertility. It is also 

necessary to consider changes in diet because the specific ingredients of food consumed lead to different 

agri-food demands and demands to the ecosystems for energy, water and land. This has  been discussed for 

meat and plant based diets by Pimentel et al 2008. The main trade-offs are land for agri-food cropland, tree 

covered areas for carbon dioxide sinks and natural landscape for ecosystem services. 

Approximately 16 million square kilometers of earth’s surface are cultivated corresponding approximately 

to 2,200 m2/person Based on a chemical energy demand of 2500 Kcal/person day, this demand can be 

supplied with the cultivation of 800 m2/person, implying that some parts of the world´s cultivated surface 

generate more net primary production than is consumed by the human population (Imhoff et al 2004).   

Table 2. World population (billion) according to different fertility projection modelsa.  

Fertility 

/year 

Low  Medium  High Constant 

2015 7256 7324 7392 7353 

2025 7768 8083 8398 8373 

2050 8341 9550 10868 11089 

2100 6750 10853 16641 28646 
aSource: United Nations, Department of Economic and Social Affairs Population Division Population Estimates and Projections 

Section: The 2012 Revision 
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In the population subsystem, the movement of people from rural to urban environments is an important 

driver of change, because of the consequent change in demands on the agri-food subsystem (generally 

located in a rural environment) and the industrial subsystem. In turn this alters specific fluxes of materials 

and energy among the three subsystems. In general the agri-food subsystem supplies the primary 

ingredients of food based on soil exploitation, the industrial subsystem supplies materials, energy and water 

and the cities receive the services of chemical energy (food), physical energy and clean water generating 

municipal wastewater and solid wastes. 

To develop a quantitative analysis, the supply of the human chemical energy demand per person 

(KcalF/person day) requires primary ingredients according to the individual diet (social/personal decision), 

which plays an important role in the interactions between land, energy and water demands in the supply 

chains. Two main socially undesirable results are evident: undernutrition and obesity due to extreme 

inequalities in the system and unhealthy producer/consumer behaviour respectively. 

The agri-food subsystem applies different cultivation methods. Depending on the soil, water and energy 

and the knowledge, technology and human resources available, the options are generally:  rainfed, irrigation 

and greenhouse production. The choice of agri-food subsystem processes influences the soil and water 

degradation depending on the local vulnerability. Soil degradation is considered a significant human global 

risk (Amundson et al 2015) connected to population growth, food demand and soil overexploitation. Agri-

food productivity has increased using fertilizers and pesticides, which connect the agri-food subsystem to 

the industrial subsystem. 

The agri-food system is a major consumer of fresh water, but the demand from the industrial and population 

sub-systems must also be considered. There is a growing need to tackle water quality degradation through 

accumulation of fertilizers in biochemical cycles (Phosphorous, Nitrogen) and the introduction of novel 

entities in the aquatic media where pesticides and fungicides are emerging pollutants (Rockström et al. 

2009). But waste waters from the industrial sub-system, and from the population sub-system where 

contaminants range from untreated sewage to recalcitrant pharmaceutical residues, also pose a challenge. 

2.2 Defining sustainability 

A convenient start to this sustainability analysis is to work from the Brundtland definition of sustainability, 

deriving specific requirements in order to meet the overall objectives of the definition. Brundtland’s 

definition requires sustainable development “…to meet the needs of the present without compromising the 

ability of future generations to meet their own needs” (Bruntland 1987). For the E-W-F system to be 

sustainable it must be able to provide Availability, Accessibility and Utilisation (AAU) of energy, water 

and food for human well-being, whilst at the same time safeguarding the extent and diversity of the planet’s 

ecosystems in space and time. Broadly this requires sustainable and efficient resource use and fairness in 

distribution of benefits and disbenefits in the economic and social balance. 

Achieving sustainability of the E-W-F system in practice requires the design and adaptation in time of the 

energy, water and food (chemical energy and nutritional value) supply chains for human demands taking 

into account the limitation of the ecosystem services in space and time. The key criteria can be described 

as the Availability, Accessibility and Utilization and the enabling processes to be managed can be identified 

as the Supply Chains as shown in Figure 4. The objective is to design a sustainable supply/demand balance 

considering the evolution of the economic, social and environmental stores of capital. The system must 

facilitate adaptive actions based on decisions of the Institutional Agents, Market Agents and other 

stakeholders leading to greater sustainability. 

According to the different approaches to the problem (Hoff 2011; WEF 2011; FAO 2014) population 

growth, urbanisation and global change (biodiversity, land use change and climate change), are the main 

drivers to be considered in time for the system.  Due to globalisation a constant increase of the transport 

and trade of goods and services among the agri-food, industrial and population subsystems has to be 

expected connecting local to global scenarios. Further, economic and social inequity and inequalities also 

present challenges to a sustainable E-W-F system, which needs to be able to adopt necessary mitigation 

and adaptation strategies. Land use and land use change are connected to global changes mainly due to the 

relationships between land cover, biodiversity and greenhouse gases sinks. Land cover change is related to 

intensive agri-food production and urbanization, which may threaten ecosystems in their genetic and 
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functional diversity, leading to biodiversity extinction (Rockström et al. 2009) if adaptation policies are not 

implemented. Further, land cover change may exacerbate climate change if, as is often the case it involves 

the destruction of carbon dioxide sinks. It means that the first quantitative reference of the analysis has to 

be the area of land used by the three different subsystems. To connect the subsystems, with their widely 

differing population densities, transport is a growing human activity, which demands mainly energy from 

the ecosystem services. 

In the E-W-F system, the three subsystems connect the supply of natural resources from the ecosystem 

services based on the energy/materials, water and soil stores to the human demand of physical energy, water 

and chemical energy. Taking the land (m2) as reference for the supply of Food, Water and Energy, three 

variables describing the Energy Resource-Water Resource-Food Resource (ER-WR-FR) fluxes referred to 

the land area of the ecosystem can be defined to relate the supply with the human demand:  FR (KcalF/m2-

time) being KcalF the human chemical energy supplied by the food, WR Water Supply  (m3/time m2) and 

ER (KJ/m2 time).  

 The multiscale approach to the planet now requires integration of the different local scale ecosystem 

services with different qualities of soil and land use generating flows of chemical energy as food, physical 

energy and water from the local scale to the global scale. This can be transformed into material and energy 

flows in the specific supply areas, adding transport as shown in Figure 5. In this approach the land area of 

the ecosystem services supply (A) is in general different to the land area occupied by the population. The 

relationship to manage the population growth is a supply-demand balance depending on the area supplying 

ecosystem services and the number of persons demanding Energy, Water and Food from the area. 

Fig.5 Relationship between ecosystem services and human well-being 

The relationship between the fluxes of the ecosystem services and the quantitative and qualitative variables 

are shown in Table 3. The flows of ER-WR-FR ecosystem services for human well-being are related to the 

sustainable management of the materials/energy, water and soil stores. They include the appropriate 

maintenance of the ecosystem services to counter the degradation of natural resources and their 

consumption. Transport is included as shown in Figure 6. 

Table 3. Main variables in the E-W-F system: supply and demand 

Supply Chains Ecosystem services supply Human  

demand 

Qualitative variable 

Energy KJ/m2 year (ER) KWh/person year (E) Renewable energy 

Water m3/m2 year (WR) m3/person year  (W) Renewable Water 

Food KgF/m2 time (FR) KcalF/person year (F) Soil quality/Food Quality 

 

Fig.6 Interactions of the supply chains 

 

3. E-W-F SUPPLY CHAIN FRAMEWORK 

Assuming a supply chain view of ecosystem service provision to the final consumers in the Energy-Water-

Food system: materials (including primary energy), water and land (soil) are the ecosystem services 

providing availability, access and utilization. Because energy, water and food follow different 

transformations in the individual supply chains, the material and energy balances depend also on the 

interactions among the three chains. Thus a complex network of supply chains connects with the ecosystem 

services where sources and uses are connected (Gilson 2014). 

Table 4 Energy and binary interactions (IEA 2015; IRENA 2015, FAO 2014) 

Supply Chains ER WR FR 

E E/ER E/WR E/FR 

W W/ER W/WR W/FR 

F F/ER F/WR F/FR 

    

Boundaries ER (Mtoe) E (Mtoe) E/ER 
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OECD 7008 3582 0,51 

 World 18607 8980 0,48 

China 3067 1711 0,56 

    

Binary Parameter Groundwater/ 

River-Lake 

Waste Water  

Treatment/Reuse 

Seawater 

  E/WR (KWh/m3) 0.1-0.5 1-2.5 2.5-8.5 

 

According to Table 4, the efficiency of the relationship between ecosystem services and human demand 

depends on nine factors connecting the availability, accessibility and utilization of natural resources to 

human demands. Three single resource factors: E/ER, W/WR and F/FR describe the way in which the 

demand for energy, water and food (E-W-F) are supplied from the ecosystem services (ER-WR-FR). 

An assessment of the E-W-F system depends not only on the quantity of natural resources involved in the 

specific supply chains, which is a restriction of the ecosystems in time and space, but also on the specific 

interactions among the supply chains, thus on the supply chain design and management. The supply of the 

human demands has an influence in the stores of materials (energy), water and land leading to a quality 

degradation due to its use and to the economic and social development in the human organisation 

subsystems, which has been simplified previously to agri-food, industrial and population subsystems. 

As an example, the ratio E/ER corresponds to the relationship between the final form of the human demand 

of energy for industry, transport and other uses (E)  and the ecosystem services supply of energy  (ER).  

The International Energy Agency presented data of the world primary energy demand and the final energy 

use and Table 4 shows the numbers for the year 2012 with different boundaries.  A qualitative analysis of 

these data shows that the global efficiency is near 50% of the primary resources, according to IEA data 

(IEA 2015). Energy resource is greater than energy delivered  (because of losses in conversion, distribution, 

etc.) and a quality assessment shows a share of 13.5% of renewables at a global scale in 2012, largely due 

to the contribution of biomass. From a global point of view approximately 1/3 of the final consumption of 

energy is related to the industrial subsystem, 1/3 to transportation and the rest to various other uses. The 

population and agri-food subsystems play minor direct roles in the global energy demand, but due to 

globalisation the transport of persons, goods and services plays a growing role in the energy demand from 

the ecosystem services.  

The agri-food subsystem accounts for approximately 70% of the total world fresh water demand. The 

population and industrial subsystems demand different quantities and qualities related to the local 

availability of the ecosystem service. In contrast to the conventional view, it has been noted that 

evapotranspiration from non-irrigated cropland also is a water resource that is beneficial to society. To 

differentiate this resource from conventional resources, evapotranspiration flow is named green water, and 

conventional withdrawal from rivers and groundwater is named blue water. About 3800 km3/year of 

Renewable Fresh Water Resources (RFWR - blue water) is currently withdrawn for human use, and that 

accounts for less than 10% of the maximum available global RFWR. The problem is the high variability of 

water resource availability in time and space. Artificial reservoirs, lakes and ponds are required to balance 

supply and demand fluctuation and most of the major rivers are regulated in some way. Total capacity of 

the artificial storage is estimated to be 7200 km3 , about twice the annual water withdrawal (Oki and Kanae 

2006). The supply refers to the freshwater demand of the ecosystems but different natural water qualities 

can be managed in the water supply chain requiring supplementary energy for the upgrade as indicated in 

Table 4 by the range of E/WR binary interaction parameter.  

Food supplies the chemical energy contained in the primary ingredients of food (F), which demand depends 

on the composition of the diet. The primary ingredients of food are related to the ecosystems services by 

the land use (F/FR), which describes the relationship between the primary ingredients of food (KcalF or Kg 

of the specific food) and the productivity of the land (m2) and agri-food cultivation system during a period 

of time. Table 1 shows the small fraction of surface freshwater in the land cover, W/LR = 2,6% and the 

different properties of the specific land cover, with different functionalities and qualities. F/WR is the 

relationship between food supply and specific water demand which is connected to the agri-food cultivation 

processes and food product manufacture. The cultivation process shows mainly three methods: rainfed, 

irrigation and greenhouse agriculture, and many different possibilities of food processing. 
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Water Resources, WR, can be renewable like rain or rivers and from non-renewable or slowly-renewable 

like groundwater and from upgrading of brackish or seawater. The E-W-F supply chains consume non-

renewable resources and bring about a quality degradation due to the environmental burdens associated 

with the transformations (Gleick 1996). 

 

4. CASE STUDY: TOMATO PRODUCTION IN GREENHOUSE AGRICULTURE 

In order to demonstrate this integrated supply chain approach to the Nexus, we applied the Process Analysis 

Method (Darton 2015) to a case study. The tomato Energy-Water-Food system in the Almeria province of 

Spain has been taken as example because it has been studied previously from different points of view 

(Galdeano-Gomez et al 2013; Chico et al 2010; Chapagain and Orr 2009; Torrellas et al 2012). It shows a 

process of change in the E-W-F system based on the intensification of the agri-food system in a semi-arid 

land to supply tomatoes for a growing European market. The greenhouse production system is based on the  

use of artificial soil and controlled water and energy supplies. Almeria (province of Spain) has now an 

estimated 40,000 hectares of greenhouses in the “Campo de Dalias”, the largest concentration in the world, 

which has changed strongly the landscape in the period 1974-2004 (Geographyfieldwork 2015). 

Over 2.7 million tonnes of produce (aprox 1.2 million ton tomato) are grown on the plain each year. From 

the economic point of view the place has a comparative advantage in the european market with production 

costs less than half of other european countries. Due to the warm weather energy consumption is lower and 

greenhouse construction and workforce is available based on small exploitations (aproximately 1-1.4 

hectares in size) managed by their owners (Galdeano-Gomez et al 2013). The economic activity around 

greenhouses accounted for over 1.2 billion € in 2010, and the employment is seasonal affecting many 

temporary workers in the peaks. The productivity from 1975 to 2010 increased steadily from 100 to 200 

ton/hectare, maintaining the economic sustainability (Galdeano-Gomez et al 2013). The family companies 

generally retain low labour costs and have strong motivation to work, but producers use temporary labour 

and the amount of temporary work appears to be a social risk in the area.   

The crops are grown continuously from October to July with production peaks in December-January when 

the tomato is in season and then again in May-June when another crop, melons, are in season; tomatoes and 

sweet pepper represent the greatest crop area followed by melons. Approximately 90% of the greenhouses 

use an artificial soil called “Enarenado” in order to overcome the extremely poor indigenous soils in the 

region. The synthetic soil is a mix of clay, manure and sand that sits on top of the original soil base. In the 

remaining greenhouses, plants will never touch soil, they grow using a hydroponics system where chemical 

fertilizers are drip-fed to each plant from large computer-controlled vats. Associated with the use of 

artificial soil and greenhouses, fertilizers and pesticides have to be supplied to reach the high productivity. 

The main variables of the tomato production are shown in Table 5 where the land, water, energy and 

chemicals are evaluated in terms of productivity per square meter, water footprint, carbon footprint and 

chemicals footprint respectively. 

Table 5. Relationship between land, water footprint, chemicals footprint and carbon footprint of the tomato 

production (Chico et al 2010; Chapagain and Orr 2009;Torrellas et al 2012)  

Production System Green 

Water 

Footprint 

(m3/ton) 

Blue 

Water 

Footprint 

(m3/ton) 

Grey 

Water 

Footprint 

(m3/ton) 

Productivity  

(Kg/m2 

year) 

Chemical 

Energy  

(Kcal/m2 

year) 

Water 

(m3/ton) 

Rainfed 158 0 808 1-4 0.18-7.2 966 

Irrigated 7 110 149 4-8 7.2-14.6 266 

Greenhouse 0 66 121 10-12 54-72 179 

                      

Greenhouse N P K2O Insecticides Fungicides 

Kg/ha 800 500 1500 3,8 28,5 

        

Carbon 

Footprint 

Structure Climat. Auxiliary 

equipment 

Fertilizers Pesticides Waste TOTAL 

Greenhouse 
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kgCO2/ton 

tomato 

88 15 77 82 2 3.1 250 

 

The water footprint shows volumes but also the type of water use: evaporation of rainwater (green), surface 

water or groundwater (blue) or pollution of water (grey). Table 5 shows the estimated water footprint of 

the different production methods of tomato, considering green, blue and grey water. Greenhouse production 

of tomato has a requirement of 800-1000 m3/m2 water per year in a region that receives just 200 m3/m2 of 

annual rainfall. Water efficiency has improved dramatically, especially with the use of drip irrigation, but 

the availability of renewable water is not sufficient, and use of groundwater and/or brackish water or 

seawater desalination is now necessary. This increases the energy demand. 

The local environmental sustainability keypoint is the trade-off between the vulnerability and sensitivity of 

the local aquatic ecosystems and the energy and economic demands of desalination.  As a consequence, in 

the province of Almeria most of the water bodies are at risk of no compliance with the European Water 

Framework Directive (IMA 2011) and water stress due to the overexploitation of groundwater is common. 

A new seawater desalination plant opened in 2009 supplying 60,000 m3/day of freshwater to the region is 

now in use. 

The transfer of fertilizers and pesticides to the water bodies has to be controlled avoiding the impact of 

nitrogen and phosphorous accumulation and the presence of novel entities in the water bodies (pesticides). 

The change in the production method of tomato includes new physical structures (greenhouses) and  

technology (pumps, temperature control, etc) demanding energy. A detailed Life Cycle Assessment of the 

greenhouse production method in Almeria has been recently published, and the main results are included 

in Table 5, as the contribution to the carbon footprint (Torrellas et al  2012). The carbon footprint of the 

tomato production has been widely studied, and depends on the production process and supply chain 

(especially whether or not the transport of product to a distant market is included) leading to a range 

between 70 to 700 kgCO2/ton tomato (Page et al 2012). 

The supplementary energy required for desalination of seawater and/or for the use of brackish water is in 

the range of 0,4-4 kWh/m3 from brackish water (Fernandez-Gonzalez et als 2015) and 2,5-8,5KWh/m3 for 

seawater  (IRENA 2015) 

 

5. DISCUSSION 

According to the literature in a global analysis of the E-W-F system ten planetary boundaries have been 

suggested corresponding to possible planetary risks: (a-b) Biosphere integrity, based on genetic and 

functional diversity, (c-d) Biochemical flows of nitrogen and phosphorous, (e-f) Land system change and 

climate change, (g-h) stratospheric ozone depletion and freshwater use and (i-j) novel entities and 

atmospheric aerosol loading (Steffen 2015). In the E-W-F system the biosphere integrity has to be mainly 

controlled through managing land use change and soil degradation caused by agriculture. 

The biochemical flows of nitrogen and phosphorous are related to the fertilizers produced in the industrial 

subsystem and used in the agro-food system leading local eutrophication processes, which have to be 

controlled in the nitrogen and phosphorous cycle. Land system change and climate change require an 

equilibrium between the greenhouse gases emissions mainly from the energy sector and the natural sinks 

leading to  ocean water acidification and climate change. 

Stratospheric ozone depletion is now under control, but freshwater use is increasing and attention has to be 

paid to the novel entities involved in the E-W-F system like pesticides in the agri-food system. On the other 

side the continuous soil degradation due to the application of intensive agro-food production methods has 

been suggested in a recent paper as an important risk for the next future (Amundson 2015)) 

From a socio-economic view, it has to be remarked that unequal distribution of food per person in the world 

as a global social concern,  clearly signalled by both undernutrition and obesity. access to clean water and 

sanitation and the economic affordability of energy for human wellbeing are two important objectives  for 

the society, connecting social risks with economic risks. 
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Table 6 shows a general overview of the main risks, which can be identified in the supply chain framework 

of the E-W-F system. 

Table 6. Risks in the Energy-Water-Food System from a supply chain view. 

 

RISKS 

NATURAL  

CAPITAL 

ECONOMIC  

CAPITAL 

SOCIAL  

CAPITAL 

AVAILABILITY Supply of ecosystem 

services. Variability 

and degradation. 

Unsustainable resources 

exploitation. Local 

depletion of resources  

Governance and Conflicts 

ACCESS Climate Change. 

Extreme Events. Local 

Depletion 

Planning, design and 

economic support of 

Infrastructures 

Energy poverty, clean water 

and sanitation and 

undernutrition and obesity 

UTILISATION Local Ecosystems 

irreversible damaged 

Supply Chain Added 

Value. Global Trade. 

Global agreements. Equity 

and efficiency 

 

The supply chain framework in the E-W-F system depends on the local stores of materials/energy, water 

and land and the design of the supply chains. Their evolution has to be planned to support the demands of 

the population and subsystems in both quantity and quality. At a local/regional scale, key roles are played 

by infrastructures, trade and transport in the supply chains, from the economic and social point of view. 

The planning and organisation of the population, agri-food and industrial subsystems is the main way to 

interact with the natural capital and ecosystem services through the E-W-F supply chains. Energy/materials 

use and degradation, water use and quality degradation and land use and soil degradation are  the main 

indicators to connect the natural capital  and the ecosystem  services to the human demands to  design  a 

sustainable evolution based on adaptive economic and social actions in  time and space. Water Footprint, 

Carbon Footprint and Chemicals Footprint are quantitative estimations to compare different alternatives in 

the E-W-F supply chains to assess the scenarios. 

6. CONCLUSIONS 

A Life Cycle Sustainability Assessment (LCSA) of the E-W-F Almeria´s tomato supply chains taking into 

account the local, regional and global scale allows us to identify risks to be considered by the institutional 

agents, market agents and stakeholders involved. 

The socio-economic assessment of the tomato case study shows a sustainable development based on the 

access to the European market and the quality control of the production process, where the water 

availability, access and utilisation is the main risk. In the process of change (1974-2004) the greenhouse 

production has shown an important landscape degradation and a high freshwater demand (Water Footprint) 

which cannot be met from renewable sources due to the low rainfall and river flows in the region. 

The social changes due to the production process referred to the workforce, economic competitiveness in 

the European markets, and the  availability of water and energy  are the main risks  to be addressed in the 

tomato sustainability case study, suggesting that water footprint, carbon footprint and chemicals footprint 

are simple but effective metrics to monitor the system. 
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Table 1. Main Land Cover Typesa 

Land Cover Type Percentage 

Tree covered areas 27.7 

Cropland 12.6 

Snow and glaciers+ Antarctica 9.7 

Water bodies/Mangoves 2.7 

Artificial surfaces 0.6 

Grassland/Herbaceous/Sparse 

vegetation 

31.5 

Baresoil 15.2 
a Source: FAO Global Land Cover Share Database 2014 

 

Table



Table 2. World population according to different fertility projection modelsa.  

Year 

/Billions 

Low  Medium  High Constant 

2015 7256 7324 7392 7353 

2025 7768 8083 8398 8373 

2050 8341 9550 10868 11089 

2100 6750 10853 16641 28646 
aSource: United Nations, Department of Economic and Social Affairs Population Division Population Estimates and Projections 

Section: The 2012 Revision 

 

Table



Table 3. Main variables in the E-W-F system: supply and demand 

Supply Chains Ecosystem services supply Human  

demand 

Qualitative variable 

Energy KJ/m2 year (ER) KWh/person year (E) Renewable energy 

Water m3/m2 year (WR) m3/person year  (W) Renewable Water 

Food KgF/m2 time (FR) KcalF/person year (F) Soil quality/Food Quality 

 

 

Table



Table 4 Energy and binary interactions (IEA 2015; IRENA 2015, FAO 2014) 

Supply Chains ER WR FR 

E E/ER E/WR E/FR 

W W/ER W/WR W/FR 

F F/ER F/WR F/FR 

    

Boundaries ER (Mtoe) E (Mtoe) E/ER 

OECD 7008 3582 0,51 

 World 18607 8980 0,48 

China 3067 1711 0,56 

    

Binary Parameter Groundwater/ 

River-Lake 

Waste Water  

Treatment/Reuse 

Seawater 

  E/WR (KWh/m3 0.1-0.5 1-2.5 2.5-8.5 

 

Table



Table 5. Relationship between land, water footprint, chemicals footprint and carbon footprint of the tomato 

production (Chico et als 2010; Chapagain and Orr 2009;Torrellas et als 2012)  

Production System Green 

Water 

Footprint 

(m3/ton) 

Blue 

Water 

Footprint 

(m3/ton) 

Grey 

Water 

Footprint 

(m3/ton) 

Productivity  

(Kg/m2 

year) 

Chemical 

Energy  

(Kcal/m2 

year) 

Water 

(m3/ton) 

Rainfed 158 ………… 808 1-4 0.18-7.2 966 

Irrigated 7 110 149 4-8 7.2-14.6 266 

Greenhouse ------------- 66 121 10-12 54-72 179 

                      

Greenhouse N P K2O Insecticides Fungicides 

Kg/ha 800 500 1500 3,8 28,5 

        

Carbon 

Footprint 

Structure Climat. Auxiliary 

equipment 

Fertilizers Pesticides Waste TOTAL 

Greenhouse 

kgCO2/ton 

tomato 

88 15 77 82 2 3.1 250 

 

 

Table



Table 6. Risks in the Energy-Water-Food System from a supply chain view. 

 

RISKS 

NATURAL  

CAPITAL 

ECONOMIC  

CAPITAL 

SOCIAL  

CAPITAL 

AVAILABILITY Supply of ecosystem 

services. Variability 

and degradation. 

Unsustainable resources 

exploitation. Local 

depletion of resources  

Governance and Conflicts 

ACCESS Climate Change. 

Extreme Events. Local 

Depletion 

Planning, design and 

economic support of 

Infrastructures 

Energy poverty, clean water 

and sanitation and 

undernutrition and obesity 

UTILISATION Local Ecosystems 

irreversible damaged 

Supply Chain Added 

Value. Global Trade. 

Global agreements. Equity 

and efficiency 

 

Table




