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Abstract 

Several industrial processes, such as desalination or neutralization, generate brines defined as 

concentrated solutions of salts in water, usually NaCl, typically discharged in the vicinities of the 

desalination plant or factory.  In order to reduce the environmental impact and promote the 

valorization of the wasted resources, alternatives must be sought.  Among sustainable 

alternatives for the recovery of brines, the possibility of using Electrodialysis with Bipolar 

Membranes (EDBM) is of interest since it allows recovering brines as useful acids and bases. 

This review focuses on the discussion of the technical aspects of the EDBM as a mean to treat 

streams rich in NaCl from reverse osmosis desalination and industrial processes in order to 

complete the direct delivery of chemicals for self-supply.  The main environmental issues 

associated with desalination brine disposal are presented.  The state-of-the-art of valorization of 

brines by EDBM to acids and bases is completed. This work concludes with an in-depth 
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discussion of the technical, techno-economic and economic barriers that prevent the widespread 

use of EDBM technology. 

1. Introduction 

Large volumes of brines, which are concentrated aqueous solutions of salts, are generated by 

different industrial processes, which can be grouped into desalination and other manufacturing 

sectors non-related to fresh water production. 

The desalination industry is one of the most important industries in terms of brine generation.  

Since sea water is used, sodium chloride (NaCl) is the highly concentrated salt in the waste 

stream composition.  The world global desalination capacity in 2010 was around 62.5 million m3 

per day (1).  However conventional desalination technologies, such as Reverse Osmosis (RO) 

and Electrodialysis (ED) operate with a recovery interval between 50 % and 80 % (2).  They 

generate high amounts of brines whose typical compositions can be found elsewhere (3).  The 

most common methods for the disposal of brines generated in desalination are evaporation ponds 

(4), discharge into abandened mines or deep wells (5), coastal discharge (6), concentrate mixing 

(7) and sewer disposal (8).  Nonetheless, while a great amount of disposal methods for brines are 

available, all of them present several limitations related to environmental issues such as the need 

of large amounts of land for evaporation ponds (9, 10), risk of salt leakages to groundwater (10-

12) and modification of physicochemical characteristics of the receiving media (12-14).  Indeed, 

the modification of those very receiving environments and its potential impact upon marine 

communities is the main concern of brine disposal (15).  On the other hand, the disposal of such 
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a large quantity of hyper-saline brines is a problem for inland high capacity desalination plants 

that cannot dispose the brine into an inland body of water.  The disposal of brines is such a 

critical issue for inland desalination plants that it sometimes compromises the economy of the 

desalination process and the viability of the construction of a desalination plant.  In this sense, 

the sustainability of the production of fresh water by means of desalination is compromised as 

long as it has negative direct consequences from the release of brines to the aquatic environment 

and indirect from the utilization of electricity. 

However, the desalination industry is not the only activity producing brines that should be 

treated before disposal.  Other manufacturing sectors, non-related to water production such as the 

textile industry (16), generate important amounts of wastewaters with high salt contents.  Those 

salts should be removed before the disposal to sewage systems. 

The need for efficient water and wastewater treatments, including recovery of resources, has 

become a priority in the development of sustainable processes for the efficient recovery and 

valorization of brines.  This should, lead to the development of new or improved innovative 

water treatment solutions in a real environment.  On the other hand, it contributes to reduce the 

environmental impact of many current industries but at the same time, it promotes an increased 

volume of recovered water. 

Alternative treatments for desalination brines have been extensively reviewed in the literature 

(17-22).  Many innovative studies are focusing on the efficient water and wastewater treatment 

including recovery of resources contained in the discharged brines. 
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Electrodialysis with bipolar membranes (EDBM) is an emerging technology for treatment and 

valorization of desalination brines that generates acids and bases, chemicals of great interest in 

any desalination plants.  Additionally, EDBM is also a promising alternative for the treatment 

and valorization of industrial wastewaters of very different nature: metal processing (23), 

production of rubber (24), wood processing (25), beverage industry (26) and production of 

acetaldehyde (27).  Nevertheless, the present review focuses mainly on the industrial 

wastewaters with high NaCl content.  These brines are similar to desalination brines in both 

nature and obtained products: HCl and NaOH.  This facilitates the in-depth techno-economic 

analysis of the products HCl and NaOH by EDBM, no matter the source of the brine. 

The use of HCl in a desalination plant is a good example of the potential use of the EDBM 

products obtained in the treatment of brines.  The conventional pretreatment steps in a 

desalination plant equipped with RO are related to pH control in order to avoid scaling (28) 

occurring at neutral pH (29).  This pH adjustment requires noticeable quantities of acid solutions 

(even H2SO4) depending on the concentration of CaCO3 in the feed stream (30).  A range of 

dosage from 15 to 97 mg·L-1 of H2SO4 has been reported for commercial RO plants (29).  

According to (31), 16.4 mg·L-1 of H2SO4 were needed to add in the stream of a plant with a 

capacity of 7,000 m3·d-1, making an equivalent acid of 115 kg per day.  To illustrate this point, 

the desalination plant described in (12) was reported to require 9.4 tons per day of H2SO4 

considering its capacity of 312,000 m3·d-1 and a dosage of 30 mg·L-1of H2SO4 (98% wt.).  

Consequently, it makes sense to consider that a RO desalination plant requires a total dosage of 

15-100 mg·L-1 of H2SO4 that may be replaced by 11-73 mg·L-1 of HCl, highlighting the 

potential benefit of the in-situ generation of acids by treating desalination brines by EDBM.  
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Additionally, the transport and storage of these acids are avoided.  This suppresses safety risks 

when the acid production facilities are far away from the desalination plants (32). 

The purchase of these reagents, together with other chemicals used in the pre-treatment and post-

treatment of desalination plants (flocculants, scale inhibitors, biocides, etc. (33)), might have a 

significant contribution to the operation costs of seawater desalination (6 % (34), 4-7 % (35) and 

9 % (36)).  According to (37), the contribution of the purchase of all chemicals could make up to 

78 % of the process cost.  Consequently, the potential benefits in economic terms of brine 

treatment and valorization must be analyzed.  Indeed, the cost of disposal to surface water is 

around US$ 0.03 and 0.3 per cubic meter (0.02-0.02 €·m-3) (11).  It is still much lower than other 

conventional disposal options (0.3-10.04 $·m-3, 0.2-7.5 €·m-3) and even less than emerging brine 

treatments (0.66-26.4 $·m-3, 0.49-19.6 €·m-3) (11).  On the other hand, interesting future options 

to add revenues to the current cost of water are the advanced recovery processes such as selective 

precipitation or membrane crystallization.  Thus the sodium and the chloride, as well as the 

minor metals causing environmental problems later described, are avoided and valorized as 

products. 

EDBM can be integrated with RO when the retentate can be 1.3 to 1.7 times more concentrated 

than the original seawater (12).  This integration allows for brine valorization making possible 

the self-supply of acids and bases for several utility purposes such as cleaning of membranes.  

The benefits in terms of environmental sustainability are then clear because of the diminished 

need of external chemicals. 
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Consequently, the application of EDBM for brine treatment can be potentially cost-effective 

when the purchase of chemical (making between 6 and78 % of operation cost) is avoided.  Also 

the disposal costs are partially diminished and the integration of advanced recovery processes 

may be the source of new incomes. 

In order to put EDBM in operation, an in-depth analysis of the techno-economic barriers that 

prevent this technology to be fully implemented for brine and wastewater valorization should be 

done.  Hence, the aim of this work is the update of the state-of-the-art of EDBM valorization as a 

source of acids and bases, making special emphasis on challenges.  A summary of the main 

environmental concerns about disposal of desalination brines has also been included. 

As a result, this review focuses on the three following aspects: i) environmental issues related to 

desalination brine disposal; ii) state-of-the-art of EDBM for the production of HCl and NaOH 

from desalination brines and industrial salted wastewaters; and iii) summary of the current 

technical and economic barriers that prevent a larger market penetration of EDBM for this 

specific application. 

2. Environmental issues of desalination brines 

In the past, environmental problems caused by brine disposal used to be ignored (38). Now, new 

approaches require special measures before any brines can be discharged. These measures 

include the removal of chemicals (e.g. de-chlorination) in order to reduce environmental impact 

(39).  The environmental research about the impact of desalination focused on the effect of 

brines on the physicochemical characteristics of the receiving media, principally temperature, 
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salinity and introduction of contaminants.  The contamination of underground aquifers and 

freshwater sources is a serious concern in the case of inland desalination plants.  Regarding to 

coastal discharge, the main concern is the effect of these modifications in the marine wild life 

near the outfall and the potential irreparable damage to the marine environment (15).  

Consequences of brine disposal upon the salinity of the media are the most studied 

physicochemical modifications.  

Regarding to the extent of the alteration, it is reported that the spreading of the salinity plume can 

range from tens of meters to several kilometers, but in most  cases a rapid dilution of the plume 

takes place with a maximum increase of 2.0 mg·L-1 in salinity media (13).  Because of their high 

salinity, brines are denser than seawater and remain on the seabed (40).  As marine organisms 

live in osmotic balance with their environment, changes in the salinity of the media may cause 

dehydration of the cells, decrease in the turgor pressure and even death in the case of larvae and 

young specimens (12).  Additionally, the high salinity may lead to an increase of turbidity, which 

disrupts the photosynthesis process and the biogenesis, affecting larvae and young individual of 

benthic communities (41).  The reported impact was found to be variable from no significant 

impacts on benthic communities to wide spread alteration to community structures in seagrass, 

coral reef and soft sediment ecosystems when discharges occurs in poorly flushed environments 

(13).  So, well flushed areas and sandy bottoms without vegetation are the best disposal points 

recommended in order to minimize damages (42, 43).  A concentration threshold has been 

established in order to protect Posidonia oceanica (43). However, the sensitivity related to 

salinity varies among species (12) and it is not possible to provide a global salinity value capable 

of protect the seagrass communities (13). Additionally, even though the majority of organisms 
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can adapt to minor deviations from optimal salinity and temperature conditions, they cannot 

stand a continuous exposure to adverse conditions (28).  To date and with the published data, the 

salinity level at which organisms can tolerate long-term exposures cannot be established (44). 

Regarding the effect of temperature, the discharges of thermal desalination plants are usually 

between 8-15 ºC above ambient temperature of seawater (41).  The reported effect of these warm 

discharges varied from modifications in the media of 0.1-0.5 ºC in 7 km2 surrounding the outfall 

to a minimum impact in the vicinity of the outfall (13).  A change in the temperature of water 

affects numerous properties such as the amount of dissolved oxygen, solubility, viscosity, 

density, surface stress and nitrogen solubility (41).  However, no definitive conclusion can be 

found about the specific impact of a temperature increase on marine communities. 

With respect to the introduction of chemicals in the environment, the type of contaminant that 

can be found in the surroundings of a desalination plant depends on its cleaning and pretreatment 

requirements.  While both thermal and membrane process require treatment against biofouling 

and scaling, thermal plants need specific treatment to combat foaming and corrosion whereas 

membrane processes need careful elimination of suspended solids (28).  The most common 

measure against biofouling is the addition of chlorine in the intake water.  Chlorine is a toxic 

compound that in the marine media can form harmful byproducts such as halogenated organic 

compounds and chlorites (14, 28).  The anti-scalants added in desalination plants, mainly 

polycarbonic acids and phosphonates, have a very low toxicity to the aquatic life but are 

associated with eutrophication and present a low biodegradability (28). Corrosion problems are 

responsible for the release of heavy metal contaminants in desalination brines.  High 
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concentrations of copper, attributable to corrosion in heat exchangers, are usually found in 

thermal brines.  In the case of RO plants, traces of Fe, Ni, Cr and Mo can be recorded (28).  The 

accumulation of heavy metals may take place in the sediments and the surroundings of the 

desalination plant causing damage to the marine communities.  In fact, the disposal of brines 

with high content in Cu was recognized to be the cause of the reduction of plankton, sessile 

invertebrates and echinoderms (13). 

Due to increasing environmental concerns and the deleterious impact of brines on the 

environment, the introduction of environmental tools in the early design stage of desalination 

plants was proposed (45).  Environmental impact assessment (EIA) is recommended in order to 

evaluate the potential impacts of desalination plant discharges and for its best localization 

selection (10).  EIA has already been applied in the creation of desalination plants in Taiwan, 

USA, Australia, Israel and Japan (15).  The methodology should comprehend the plant layout, 

plant emissions, environmental implications, energy consideration, benefits, evaluation of the 

impact upon the environment and proposal of mitigation measures (46).  In Europe, desalination 

plants, as any other public and private projects, should be approved under the Impact Assessment 

Directive (85/337CEE) later codified as Directive 2011/92/EU (47) and amended in 2014 by 

Directive 2014/52/EU. Other tools such as life cycle assessment were also proposed in water 

planning in order to achieve a sustainable water supply (48, 49). 
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3. The state-of-the-art of electrodialysis for acids and 

bases production from brines 

Electrodialysis with bipolar membranes (EDBM) is a variation of ED in which bipolar 

membranes (BM) are used.  In both cases, an electric field is applied as the driving force for the 

separation of ions through ion exchange membranes.  However, while ED uses only cation 

exchange membranes, anion exchanges membranes, and electrodes, EDBM uses bipolar 

membranes as the core of the technology.  These membranes are composed by at least two 

different layers, a cation selective layer and an anion selective layer allowing the splitting of 

water into protons and hydroxyl ions and the consequent selective transport of the products of 

water dissociation (50, 51).  Both ED and EDBM technologies request energy under relatively 

high-efficiency energy consumption figures (50).  Their potential for coupling with renewable 

energies for freshwater supply was recently reviewed in order to promote alternative sustainable 

freshwater desalination (52).  In depth descriptions of electrodialysis and bipolar membranes can 

be found in (53) and (54) respectively.  Figure 1 shows a possible configuration of the EDBM 

stack used in order to produce acids and bases from desalination brines. 

There are several inorganic sodium salts such as Na2CO3, NaNO3, Na2SO4, Na3PO4 and NaCl 

that are reported to generate acids and bases by EDBM, with NaCl as the main pursued salt (55).  

Several publications reported the use of EDBM for the generation of HCl and NaOH from 

desalination brines and industrial wastewaters (56-66).  Some of the treated salty streams were 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
11 

desalination retentates from RO plants producing drinking water (56, 57) or industrial 

wastewaters with a high content of NaCl (58-66). 

In (58), EDBM is used to treat concentrates from RO, ED with reversal polarity and ion 

exchange (IEx) in a desalination plant of surface water.  Acids and bases were obtained with a 

concentration between 1 M and 1.5 M.  It was pointed out that the obtained products were 

suitable for some treatment stages of the desalination plant such as regeneration of ion 

exchangers, neutralization of the EDBM feed and alkaline precipitation.  In this study, 

conventional IEx, conventional RO, and the combination of RO and EDBM processes were 

compared in terms of chemical demand, feed water amount, energy consumption and wastewater 

generation for the same production of freshwater.  The EDBM alternative was reported to need 

less feed water, produce less wastewater and consume fewer chemicals.  However, in this 

particular study, the EDBM energy demand was higher than that in the case of conventional 

desalination processes. 

In the same line, the combination of IEx (desalination and partial hardness removal of brines), 

ED (concentration of the brine and partial hardness removal) and EDBM was proposed for the 

simultaneous production of industrial water, acids and bases from surface water (59).  The 

obtained acids were used in the regeneration of IEx resins.  A significant reduction in current 

efficiency was observed when increasing product concentration.  The concentration of the 

obtained acids was set to 0.9 M only, enough for the regeneration of IEx resins and allowing for 

a relatively high current efficiency (around 47 %).  The feasibility of producing acids and bases 

from a wastewater-RO retentate was described (56).  The products were obtained with a 0.2 N 
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concentration and their qualities were compared to a technical grade and a national formulary 

grade. The presence of heavy metals was similar to the chosen standards but a higher 

concentration of chloride in the produced base was reported when compared to the mentioned 

national formulary grade. Additionally, a preliminary economic assessment was carried out and 

four different types of brine treatments were compared: evaporation ponds, softening plus 

EDBM, electrochlorination and concentration plus crystallization.  The economic analysis 

pointed that the option involving EDBM had the lowest investment cost.  The operational cost 

was also the lowest, estimated in 0.35 US $·m-3 (0.26 €·m-3).  Additionally, using the EDBM 

treatment train, an additional 0.1 US $·m-3 (0.075 € ·m-3) can be recovered due to the sale of 

acids, bases and freshwater.  Reference (65) proposes the in-situ generation of HCl and NaOH 

for ion exchange regeneration as an alternative to the purchase of acids and bases.  HCl and 

NaOH 0.3 M were produced from diluted salt solutions.  A preliminary cost comparison for 

purchasing bulk HCl and NaOH and the in-situ generation of the acid and the base showed a 

significant reduction of cost from 37 $· kmol-1 to 3.5-12.6 $· kmol-1 for HCl and from 21 $· 

kmol-1 to 3.5-12.6 $· kmol-1 for the base. 

In a recent study (57) the authors used synthetic softened solutions with a composition equivalent 

to the brine of a RO treatment plant fed by brackish water.  The maximum concentration 

obtained was 0.8 M for the acid and 1 M for the base.  The quality of the products was compared 

to commercial grade from a facility located in Torrelavega, Spain (Solvay Química).  The 

presence of impurities prevented the products to reach the commercial grade.  However, these 

acids and bases could be used in routine operations not needing pure chemicals such as washing 

stages or pH control.  The treatment of actual brines from a desalination plant fed by seawater 
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using EDBM was also described (32).  The maximum acid concentration was 1.2 M and the 

authors reported the technical feasibility of the EDBM set-up to produce 1 M of mixed acids in a 

continuous mode.  Specific energy consumptions of 7.5-8.3 kWh·kg-1 HCl with faradic current 

efficiencies in the range of 52-74 % were reported for current densities belonging to the range 

340-570 A·m-2.  Here again, the qualities of the obtained acid and base did not achieve industrial 

or higher requirements, thus additional purification stages must be applied if necessary.  The 

obtained HCl was efficient in local pretreatment operations.  The treatment of a glyphosate 

neutralization liquor for a zero liquid discharge approach with simultaneous recovery of 

glyphosate and production of HCl and NaOH was described (60,61)  The two products were used 

in the recovery of the catalyst in the manufacturing process of glyphosate.  A lab-scale treatment 

of simulated glyphosate neutralization liquor obtaining maximum concentrations of 0.45 M for 

HCl and 0.6 M for NaOH was reported (60).  The current efficiencies were 45-75 % in a range of 

current densities 500-1100 A·m-2.  The specific energy consumption of the acid was reported to 

be between 9-18 kWh·kg-1 of HCl as a function of the applied current density.  A preliminary 

economic evaluation was also presented with a whole process cost of 1.22-1.82 $·kg-1 of HCl 

and 106.43-158.77 $·m-3 of treated liquor.  The obtained acid and base could be used for the 

recovery of the catalyst in the industrial process. Reference (61) deals with the pilot-scale 

treatment of a glyphosate neutralization liquor. Maximum concentrations of 1.9 M HCl and 2.4 

M NaOH were obtained.  The energy consumptions for a 2 M NaOH production was 2.3-3 

kWh·kg-1 NaOH with current efficiency of 67.9-87.1% at current densities of 300-600 A·m-2.  

This work also aims to a zero liquid discharge configuration with a 99% NaCl removal and 
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recoveries of 96% of the glyphosate.  An evaluation of process economics showed a total process 

cost of 1.23 $·kg-1 NaOH and 165 $·ton-1 of liquor for a current density of 400 A·m-2. 

A saline water from an integrated mining and metal industry, mainly composed of NaCl and 

KCl, was also treated by EDBM for the generation of HCl and a mixture of NaOH and KOH in 

concentrations around 2 M (62).  Removal of Ca by dosing Na2CO3 in order to avoid 

precipitation of Ca(OH)2 in the base compartment was used as pretreatment.  The desalination 

target of 50% removal of Cl- was easily achieved.  A saline wastewater from an industry of metal 

and metalloid production that mainly contained NaCl and some organic matter was treated by 

EDMB (63).  HCl and NaOH were obtained with a maximum concentration of 1.5 M and 2 M 

respectively.  Two different bipolar membranes were tested: FBM, from Fumasep, and PBM, 

from Polymer-Chemie.  The Fumasep bipolar membrane FBM showed a slightly better electrical 

resistance and current efficiency.  A competition of transport through the anion exchange 

membrane between chlorides and the organic fraction was observed. 

Spent acid solutions from the production of zeolite HZSM-5, mainly composed of HCl and 

NaCl, were treated by EDBM (64).  Maximum HCl and NaOH concentrations of 0.48 M and 

0.18 M were respectively obtained.  The faradic current efficiency for Na+ regeneration was 27-

32% while the energy consumption was in the range of 12-17 kWh·kg-1 of NaOH for current 

densities 350-700 A·m-2.  The regenerated acid could be used to replace the commercial pure 

acid in the zeolite production (64). 

Finally, a combination of nanofiltration and EDBM was used for the treatment of a model textile 

wastewater. An integrated approach for a simultaneous dye extraction, water recovery and salt 
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reuse in the form of HCl and NaOH was proposed (65). Maximum concentrations of 1.19 M HCl 

and 1.28 M NaOH were obtained for an energy consumption of 4.06 kWh·kg-1 of NaOH. The 

high rejection of nanofiltration for dyes (>99.93%) avoided fouling in EDBM. 

A summary of the main experimental conditions and results for the valorization and treatment of 

desalination and industrial brines is presented in Table 1. 

4  Technical and economic barriers hindering EDBM 

development in the production of acids and bases from 

desalination and industrial brine treatment 

The environmental and potential economic benefits of EDBM have been mentioned in previous 

sections.  Nevertheless, some barriers should be overcome before developing the full potential of 

EDBM in valorization of desalination and industrial brines.  Three different kinds of barriers will 

be screened in this study: technical, techno-economic and economic barriers. 

Technical barriers are related to unsolved difficulties that limit the performance of the system 

(there is a need of a new technical solution to achieve the objective or avoid the limitation).  

Techno-economic barriers are associated to process optimization and they are usually connected 

to economic issues (there are difficulties that can be technically solved but adding economic 

costs).  The competitiveness of the technology in the market is linked to the economic barriers 

(barriers that only depend on the cost of the elements in the market).  These three kinds of 
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barriers are usually connected to each other.  A technical limitation generates a techno-economic 

barrier that can be translated into additional operation or investment cost and thus an economic 

barrier or disadvantage for the technology in relation to other technologies. 

Most important technical limiting factors of EDBM in comparison to other acid and bases 

production technologies are related to permselectivity and electro-osmosis. An imperfect 

permselectivity of IEx membranes causes the migration of co-ions and thus a reduction in purity 

of the products.  Additionally, the selectivity of monopolar membranes decreases when 

increasing salt concentration.  The same happens with the permselectivity of the ion exchange 

layer of bipolar membranes that decreases with increasing acid and base concentrations, causing 

high salt contamination of the products at high acid and base concentration (67).  Water leakages 

caused by the electro-osmosis prevent EDBM of producing high concentration of acids or bases 

(55).  Additionally, products have concentration limits due to water electro-osmosis and product 

diffusion (55).  These three technical limitations explain why the acids and bases generated by 

EDBM cannot reach the specification of commercial products shown in Tables 2 and 3.  

Experimentally, the maximum concentrations of HCl and NaOH reported have been 1.9 M and 

2.4 M respectively (≈ 6% w·w-1 and ≈ 8% w·w-1 compared to 35% and 50% for commercial HCl 

and NaOH, respectively).  Regarding to impurities, the SO4
2- concentration in HCl from 

desalination and industrial brines is two orders of magnitude higher than that in commercial 

products as shown in Table 2.  However, these constraints could be overcome introducing 

additional purification stages.  Nanofiltration has been proposed to remove sulfates in 

desalination brines (68) but an economic optimization should be performed anyway.  
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Additionally, it is pointed out that the concentration of impurities in the HCl and NaOH 

generated by EDBM highly depends on the origin of the brine.  The impurities displayed in 

Table 2 refer to the reported values of impurities from conventional NaOH and HCl suppliers.  

The purity of the products obtained from desalination and industrial brines, and the presence of 

one impurity or another, will have a strong dependency on the origin of the brine, so new 

standards of purity might be needed for the commercialization of EDBM produced HCl and 

NaOH.  These new standards would take into account the purity requirements of the different 

applications that use HCl and NaOH and thus, improvements in the quality of the products would 

mean an increase in the number of potential applications for the generated HCl and NaOH. 

An alternative to reach commercial grade products by adding purification stages is the in-situ 

production and consumption of the obtained HCl and NaOH since they are both needed 

chemicals.  According to the range of dosage indicated previously (15 to 100 mg·L-1 of H2SO4, 

or 11 to 74 mg·L-1 of HCl for the equivalent H+ dose) a range of 0.25-1.69 L of HCl 1.2M 

(concentration from (32)) per m3 of stream would be necessary for the treatment of each m3 of 

feed water.  For example, in the cited desalination plant (45% recovery) of 16,000 m3 seawater·d-

1 (31), this corresponds to 4 to 27 m3·d-1 of HCl 1.2 M and the treatment of 8-54 m3 brine·d-1 by 

EDBM (supposing an initial brine concentration of 70 g·L-1 NaCl lowered to 35 g·L-1 once 

treated).  The purchase of commercial HCl (28 % w·w-1, equivalent to 319 g HCl·L-1) at 0.14 

€·L-1 (37) would cost around 77-520 €·d-1.  An important disadvantage of the in-situ 

consumption and production of HCl and NaOH in desalination plants is that only a small fraction 

of the total volume of the brine generated in the desalination plant would be treated. 
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In the case of industrial brines, a very promising scenario is the complete integration of EDBM 

in the fabrication process with a zero liquid discharge approach (60, 61).  This means that the 

treatment of industrial brines is associated with an important consumption of HCl and NaOH.  A 

possible application for the generated NaOH could be the post-combustion absorption of CO2.  

A promising CO2 capture of 530.65 g CO2 ·kg-1 NaOH 1.45 M could be achieved if EDBM is 

powered by renewable energies (69). 

The high salt concentration in brines implies some techno-economic limitations. As brines are 

richer in salts than seawater, scaling of Ca and Mg becomes a critical issue.  Therefore, a 

reduction of the water hardness is advisable before brine treatment ((57), (59)).  IEx resins have 

shown adequate effectiveness in the removal of Ca and Mg from desalination brines (70).  

Besides, scaling caused by silica and fouling produced by organic matter content should also be 

prevented (58) . 

Maintaining energy efficiency at high salt concentration and high current density is other techno-

economic challenge that limits the treatment of brines (32).  From the summary of the state of the 

art presented in Table 1 it can be seen that the energy consumption for the production of HCl and 

NaOH from desalination and industrial brines is between 2.3 and 18 kWh·kg-1 of product.  The 

synthesis of new bipolar membranes based on polysulfone and polyvinyl alcohol polymers have 

shown promising results in terms of current efficiency and energy consumption (71).  Leakages 

of H+ and OH- at high product concentration were also related to low energy efficiencies in the 

production of acids and bases (59).  Additionally, ion exchange membranes are known to have 
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poor stability in strong acids and bases, which leads to a decrease in membrane lifetime and 

affects the economical viability of the process (67). 

Currently, the main economic barrier of EDBM is the high investment cost of both electrodes 

and membranes, and especially bipolar membranes (67, 72).  The price of bipolar membranes is 

a bottleneck that prevents EDBM from large-scale applications.  The cost of bipolar membranes 

can be estimated around 0.1 €·cm-2 (73), which is 3-10 times more expensive than monopolar 

membranes (55).  This cost difference is mainly due to the more complicated manufacturing 

process and smaller scale BM production.  The cost of heterogeneous bipolar membranes is 

reported to be between 2-4 times lower than conventional homogeneous membranes; however, 

the lower selectivity of these membranes might compromise the purity of the obtained products 

(74). 

Another factor is the limited choice of membranes and suppliers for EDBM applications (73).  

This is a disadvantage compared to other technologies in terms of technical support (75).  This 

limited choice of BM suppliers in relation to ion exchange membranes is also seen in the EDBM 

literature.  While for cation and anion exchange membranes the references reviewed in this work 

used a variety of commercially available membranes from different suppliers (for example 

RALEX, Fumatech, Qianqui Environmental protection and water treatment co., Polymer-Chemie 

and Neosepta), there is a single supplier of BM membranes.  The membrane Fumasep from 

Fumatech is the one used in most cases, with only a couple of exceptions that used a bipolar 

membrane from Neosepta (BP-1) and Polymer-Chemie.  This difference of membrane 

availability can also be realized by comparing the list of commercial membranes and suppliers 
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published in several reviews about electrodialysis with bipolar membranes (55) and ion exchange 

membranes (76, 77). 

The investment cost is still relatively high because there is no large-scale production of 

membranes.  This is the main reason explaining why there is such a small number of large-scale 

EDBM plants, despite the technical and economic advantages of the EDBM technology (62, 78).  

In Figure 2, a summary of the main barriers previously described for the production of acids and 

bases by EDBM is presented. 

5. Conclusions 

The vast amount of brines generated in several activities, such as the desalination industry, 

encourages the need of innovative processes aimed not only to reduce the environmental impact 

but also to recover and to valorize resources contained in the brines. 

In this work, a study of the state of the art regarding the use of Electrodialysis with Bipolar 

Membranes (EDBM) in the valorization of brines has been presented.  EDBM is a viable 

technology for obtaining acids (HCl) and bases (NaOH) from the salts contained in the brines 

ready for scale-up.  Although the concentration and quality of the obtained products are strongly 

influenced by the feed water composition, they are acceptable for self-supply in desalination and 

different industrial activities.  The purity and concentration requested by commercial grade 

products remains a challenge.  Regarding to the use of the obtained products, even if a large 

dosage of HCl is used for different applications within a desalination plant, estimations state that 

around only 1 % in terms of the input feed stream to RO treated by EDBM is sufficient for self-
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supply.  This fact together to the mentioned quality promotes that a commercial grade product 

must be pursued.  On the other hand, the integration of EDBM with some industrial processes, 

responsible for the generation of brines and consumption of large quantities of NaOH and HCl, 

such as the production of glyphosate, are a very promising alternative for the in-situ production 

and consumption of HCl and NaOH because much more higher internal demand. 

Regarding the main barriers for a larger penetration of EDBM technology, the main bottlenecks 

to overcome have been identified in this work, pointing the current research areas of interest.  

Significant improvement of the selectivity of ion exchange membranes and limitation of electro-

osmosis phenomena associated with this specific application would lead to higher purity in 

obtained products and would increase the energy efficiency of the recovery process.  

Consequently, products of commercial grade quality could be obtained for further 

commercialization as opposite to the current situation.  Additionally, the HCl and NaOH purity 

improvement combined with the definition of new standards of quality for the obtained products, 

directly related to the purity requirements of each specific use, would lead to an increase in the 

number of applications where these acids and bases could be used.  Finally, the high cost of 

bipolar membranes (around 1,000 €·m-2) makes the investment costs of EDBM still relatively 

high compared to other membrane technologies hindering its development. 

 

 

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
22 

Acknowledgements 

The authors gratefully acknowledge the funding for the projects CTQ2013-48280-C3-1-R-D and 

CTM2014-57833-R. Carolina Fernandez-Gonzalez also thanks the Spanish Ministry of Economy 

and Competitiveness for the FPI grant awarded BES-2012-053461. 

References 

[1] Lior N. Advances in Water Desalination. John Wiley & Sons; 2012. 

[2] Sethi, S., Walker, S, Drewes, J,Xu, P. (2006) Existing and Emerging Concentrate 

Minimization and Disposal Practices for Membrane Systems. Fla Water Resour J, 58: 38-48. 

[3] Greenlee, L.F., Lawler, DF, Freeman, BD, Marrot, B,Moulin, P. (2009) Reverse Osmosis 

Desalination: Water Sources, Technology, and Today's Challenges. Water Res, 43: 2317-2348. 

[4] Ahmed, M., Shayya, WH, Hoey, D, Mahendran, A, Morris, R,Al-Handaly, J. (2000) Use of 

Evaporation Ponds for Brine Disposal in Desalination Plants. Desalination, 130: 155-168. 

[5] Muniz, A.,Skehan, S. (1990) Disposal of Concentrate from Brackish Water Desalting Plants 

by use of Deep Injection Wells. Desalination, 78: 41-47. 

[6] Purnalna, A., Al-Barwani, HH,Al-Lawatia, M. (2003) Modeling Dispersion of Brine Waste 

Discharges from a Coastal Desalination Plant. Desalination, 155: 41-47. 

[7] Bashitialshaaer, R., Flyborg, L,Persson, KM. (2011) Environmental Assessment of Brine 

Discharge and Wastewater in the Arabian Gulf. Desalin Water Treat, 25: 276-285. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
23 

[8] Nghiem, L.D.,Robertson, A. (2011) Treatment of High TDS Liquid Waste: Is Zero Liquid 

Discharge Feasible? Faculty of Engineering-Papers, 1-11. 

[9] Katzir, L., Volkmann, Y, Daltrophe, N, Korngold, E, Mesalem, R, Oren, Y,Gilron, J. (2010) 

WAIV - Wind Aided Intensified Evaporation for Brine Volume Reduction and Generating 

Mineral Byproducts. Desalin Water Treat, 13: 63-73. 

[10] Younos, T. (2005) Environmental Issues of Desalination. J Contemp Water Res Edu, 132: 

11-18. 

[11] Greenlee, L.F., Lawler, DF, Freeman, BD, Marrot, B,Moulin, P. (2009) Reverse Osmosis 

Desalination: Water Sources, Technology, and Today's Challenges. Water Res, 43: 2317-2348. 

[12] Einav, R., Harussi, K,Perry, D. (2003) The Footprint of the Desalination Processes on the 

Environment. Desalination, 152: 141-154. 

[13] Roberts, D.A., Johnston, EL,Knott, NA. (2010) Impacts of Desalination Plant Discharges on 

the Marine Environment: A Critical Review of Published Studies. Water Res, 44: 5117-5128. 

[14] Alharbi, O.A., Phillips, MR, Williams, AT, Gheith, AM, Bantan, RA,Rasul, NM. (2012) 

Desalination Impacts on the Coastal Environment: Ash Shuqayq, Saudi Arabia. Sci Total 

Environ, 421–422: 163-172. 

[15] Liu, T., Sheu, H,Tseng, C. (2013) Environmental Impact Assessment of Seawater 

Desalination Plant Under the Framework of Integrated Coastal Management. Desalination, 326: 

10-18. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
24 

[16] Ning, X.-., Lin, M-, Shen, L-, Zhang, J-, Wang, J-, Wang, Y-, Yang, Z-,Liu, J-. (2014) 

Levels, Composition Profiles and Risk Assessment of Polycyclic Aromatic Hydrocarbons 

(PAHs) in Sludge from Ten Textile Dyeing Plants. Environ. Res., 132: 112-118. 

[17] Pérez-González, A., Urtiaga, AM, Ibáñez, R,Ortiz, I. (2012) State of the Art and Review on 

the Treatment Technologies of Water Reverse Osmosis Concentrates. Water Res, 46: 267-283. 

[18] Morillo, J., Usero, J, Rosado, D, El Bakouri, H, Riaza, A,Bernaola, F. (2014) Comparative 

Study of Brine Management Technologies for Desalination Plants. Desalination, 336: 32-49. 

[19] Kim, D.H. (2011) A Review of Desalting Process Techniques and Economic Analysis of the 

Recovery of Salts from Retentates. Desalination, 270: 1-8. 

[20] Van Der Bruggen, B., Lejon, L,Vandecasteele, C. (2003) Reuse, Treatment, and Discharge 

of the Concentrate of Pressure-Driven Membrane Processes. Environ Sci Technol, 37: 3733-

3738. 

[21] Leong, J., Tan, J, Charrois, J,Ladewig, BP. (2013) Review of High Recovery Concentrate 

Management Options. Desalin Water Treat, 52: 7609-7627. 

[22] Xu, P., Cath, TY, Robertson, AP, Reinhard, M, Leckie, JO,Drewes, JE. (2013) Critical 

Review of Desalination Concentrate Management, Treatment and Beneficial use. Environ. Eng. 

Sci., 30: 502-514. 

[23] Tran, A.T.K., Mondal, P, Lin, J, Meesschaert, B, Pinoy, L,Van der Bruggen, B. (2015) 

Simultaneous Regeneration of Inorganic Acid and Base from a Metal Washing Step Wastewater 

by Bipolar Membrane Electrodialysis After Pretreatment by Crystallization in a Fluidized Pellet 

Reactor. J. Membr. Sci., 473: 118-127. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
25 

[24] Wei, Y., Wang, Y, Zhang, X,Xu, T. (2013) Comparative Study on the Treatment of 

Simulated Brominated Butyl Rubber Wastewater by using Bipolar Membrane Electrodialysis 

(BMED) and Conventional Electrodialysis (ED). Sep. Purif. Technol., 110: 164-169. 

[25] Kumar, H.,Alén, R. (2014) Partial Recovery of Aliphatic Carboxylic Acids and Sodium 

Hydroxide from Hardwood Black Liquor by Electrodialysis. Ind Eng Chem Res, 53: 9464-9470. 

[26] Lameloise, M.-.,Lewandowski, R. (2012) Recovering l-Malic Acid from a Beverage 

Industry Waste Water: Experimental Study of the Conversion Stage using Bipolar Membrane 

Electrodialysis. J. Membr. Sci., 403-404: 196-202. 

[27] Zhang, X., Li, C, Wang, Y, Luo, J,Xu, T. (2011) Recovery of Acetic Acid from Simulated 

Acetaldehyde Wastewaters: Bipolar Membrane Electrodialysis Processes and Membrane 

Selection. J. Membr. Sci., 379: 184-190. 

[28] Lattemann, S.,Höpner, T. (2008) Environmental Impact and Impact Assessment of Seawater 

Desalination. Desalination, 220: 1-15. 

[29] Al-Shammiri, M., Safar, M,Al-Dawas, M. (2000) Evaluation of Two Different Antiscalants 

in Real Operation at the Doha Research Plant. Desalination, 128: 1-16. 

[30] United Nations Environmental Programme (UNEP) (2008) Desalination Resource and 

Guidance Manual for Environmental Impact Assessments, UNEP/ROWA, Manama, and 

WHO/EMRO.  

[31] Sadhwani, J.J., Veza, JM,Santana, C. (2005) Case Studies on Environmental Impact of 

Seawater Desalination. Desalination, 185: 1-8. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
26 

[32] Yang, Y., Gao, X, Fan, A, Fu, L,Gao, C. (2014) An Innovative Beneficial Reuse of 

Seawater Concentrate using Bipolar Membrane Electrodialysis. J Membrane Sci, 449: 119-126. 

[33] Mezher, T., Fath, H, Abbas, Z,Khaled, A. (2011) Techno-Economic Assessment and 

Environmental Impacts of Desalination Technologies. Desalination, 266: 263-273. 

[34] Seawater Desalination Costs. White Paper. (2012) Water Reuse Association,. 

[35] Klaus-Viktor Peinemann and Suzana Pereira Nunes.Membranes for Water Treatment: 

Volume 4.Weinheim:WILEY-VCH. ISBN:978-3-527-31483-6;2010. 

[36] El–Sheikh, R., Shaban, M,Jaber, I. Management of desalination plants and distribution 

options of desalinated water. Available at http://iwtc.info/wp-

content/uploads/2010/09/Management-of-desalination-plants-and-distribution-options-of-

desalinated-water.pdf (Accessed November 16, 2015) 

[37] Zhang, Y., Ghyselbrecht, K, Vanherpe, R, Meesschaert, B, Pinoy, L,Van der Bruggen, B. 

(2012) RO Concentrate Minimization by Electrodialysis: Techno-Economic Analysis and 

Environmental Concerns. J Environ Manage, 107: 28-36. 

[38] Safrai, I.,Zask, A. (2008) Reverse Osmosis Desalination Plants — Marine Environmentalist 

Regulator Point of View. Desalination, 220: 72-84. 

[39] Ghaffour, N., Missimer, TM,Amy, GL. (2013) Technical Review and Evaluation of the 

Economics of Water Desalination: Current and Future Challenges for Better Water Supply 

Sustainability. Desalination, 309: 197-207. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
27 

[40] Del-Pilar-Ruso, Y., De-la-Ossa-Carretero, JA, Giménez-Casalduero, F,Sánchez-Lizaso, JL. 

(2008) Effects of a Brine Discharge Over Soft Bottom Polychaeta Assemblage. Environ Pollut, 

156: 240-250. 

[41] Miri, R.,Chouikhi, A. (2005) Ecotoxicological Marine Impacts from Seawater Desalination 

Plants. Desalination, 182: 403-410. 

[42] Mauguin, G.,Corsin, P. (2005) Concentrate and Other Waste Disposals from SWRO Plants: 

Characterization and Reduction of their Environmental Impact. Desalination, 182: 355-364. 

[43] Sánchez-Lizaso, J.L., Romero, J, Ruiz, J, Gacia, E, Buceta, JL, Invers, O, Fernández 

Torquemada, Y, Mas, J, Ruiz-Mateo, A,Manzanera, M. (2008) Salinity Tolerance of the 

Mediterranean Seagrass Posidonia Oceanica: Recommendations to Minimize the Impact of Brine 

Discharges from Desalination Plants. Desalination, 221: 602-607. 

[44] Elimelech, M.,Phillip, WA. (2011) The Future of Seawater Desalination: Energy, 

Technology, and the Environment. Science, 333: 712-717. 

[45] Abu Qdais, H. (2008) Environmental Impacts of the Mega Desalination Project: The Red–

Dead Sea Conveyor. Desalination, 220: 16-23. 

[46] Tsiourtis, N.X. (2001)Desalination and the Environment. Desalination, 141: 223-236. 

[47] European commision Environment:http://ec.europa.eu/environment/eia/eia-

legalcontext.htm. (Accessed November 16, 2015) 

[48] Stokes, J.,Horvath, A. (2006) Life Cycle Energy Assessment of Alternative Water Supply 

Systems. Int J Life Cycle Ass, 11: 335-343. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
28 

[49] Del Borghi, A., Strazza, C, Gallo, M, Messineo, S,Naso, M. (2013) Water Supply and 

Sustainability: Life Cycle Assessment of Water Collection, Treatment and Distribution Service. 

Int J Life Cycle Ass, 18: 1158-1168. 

[50] Xu, T. (2005) Ion Exchange Membranes: State of their Development and Perspective. J 

Membrane Sci, 263: 1-29. 

[51] Mier, M.P., Ibañez, R,Ortiz, I. (2008) Influence of Ion Concentration on the Kinetics of 

Electrodialysis with Bipolar Membranes. Sep Purif Technol, 59: 197-205. 

[52] Fernandez-Gonzalez, C., Dominguez-Ramos, A, Ibañez, R,Irabien, A. (2015) Sustainability 

Assessment of Electrodialysis Powered by Photovoltaic Solar Energy for Freshwater Production. 

Renew Sust Energ Rev, 47: 604-615. 

[53] Kentish, S.E., Kloester, E, Stevens, GW, Scholes, CA,Dumée, LF. (2015) Electrodialysis in 

Aqueous-Organic Mixtures. Sep Purif Rev, 44: 269-282. 

[54] Kumar, M., Khan, MA, Al-Othman, ZA,Choong, TSY. (2013) Recent Developments in Ion-

Exchange Membranes and their Applications in Electrochemical Processes for in Situ Ion 

Substitutions, Separation and Water Splitting. Sep Purif Rev, 42: 187-261. 

[55] Huang, C.,Xu, T. (2006) Electrodialysis with Bipolar Membranes for Sustainable 

Development. Environ Sci Technol, 40: 5233-5243. 

[56] Badruzzaman, M., Oppenheimer, J, Adham, S,Kumar, M. (2009) Innovative Beneficial 

Reuse of Reverse Osmosis Concentrate using Bipolar Membrane Electrodialysis and 

Electrochlorination Processes. J Membrane Sci, 326: 392-399. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
29 

[57] Ibáñez, R., Pérez-González, A, Gómez, P, Urtiaga, AM,Ortiz, I. (2013) Acid and Base 

Recovery from Softened Reverse Osmosis (RO) Brines. Experimental Assessment using Model 

Concentrates. Desalination, 309: 165-170. 

[58] Mavrov, V., Chmiel, H, Heitele, B,Rögener, F. (1999) Desalination of Surface Water to 

Industrial Water with Lower Impact on the Environment: Part 4: Treatment of Effluents from 

Water Desalination Stages for Reuse and Balance of the New Technological Concept for Water 

Desalination. Desalination, 124: 205-216. 

[59] Wang, M., Wang, K, Jia, Y,Ren, Q. (2014) The Reclamation of Brine Generated from 

Desalination Process by Bipolar Membrane Electrodialysis. J Membrane Sci, 452: 54-61. 

[60] Wang, X.-., Wang, M, Jia, Y-,Yao, T-. (2012) The Feasible Study on the Reclamation of the 

Glyphosate Neutralization Liquor by Bipolar Membrane Electrodialysis. Desalination, 300: 58-

63. 

[61] Shen, J., Huang, J, Liu, L, Ye, W, Lin, J,Van der Bruggen, B. (2013) The use of BMED for 

Glyphosate Recovery from Glyphosate Neutralization Liquor in View of Zero Discharge. J. 

Hazard. Mater., 260: 660-667. 

[62] Ghyselbrecht, K., Huygebaert, M, Van der Bruggen, B, Ballet, R, Meesschaert, B,Pinoy, L. 

(2013) Desalination of an Industrial Saline Water with Conventional and Bipolar Membrane 

Electrodialysis. Desalination, 318: 9-18. 

[63] Ghyselbrecht, K., Silva, A, Van der Bruggen, B, Boussu, K, Meesschaert, B,Pinoy, L. 

(2014) Desalination Feasibility Study of an Industrial NaCl Stream by Bipolar Membrane 

Electrodialysis. J. Environ. Manage., 140: 69-75. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
30 

[64] Gao, X., Yang, Y, Fu, L, Sun, Z, Zheng, Y,Gao, C. (2014) Regenerating Spent Acid 

Produced by HZSM-5 Zeolite Preparation by Bipolar Membrane Electrodialysis. Sep. Purif. 

Technol., 125: 97-102. 

[65] Davis, J.R., Chen, Y, Baygents, JC,Farrell, J. (2015) Production of Acids and Bases for Ion 

Exchange Regeneration from Dilute Salt Solutions using Bipolar Membrane Electrodialysis. 

ACS Sustainable Chem. Eng., 3: 2337-2342. 

[66] Lin, J., Ye, W, Huang, J, Ricard, B, Baltaru, M-, Greydanus, B, Balta, S, Shen, J, Vlad, M, 

Sotto, A, Luis, P,Van Der Bruggen, B. (2015) Toward Resource Recovery from Textile 

Wastewater: Dye Extraction, Water and Base/Acid Regeneration using a Hybrid NF-BMED 

Process. ACS Sustainable Chem. Eng., 3: 1993-2001. 

[67] Strathmann, H. (2010) Electrodialysis, a Mature Technology with a Multitude of New 

Applications. Desalination, 264: 268-288. 

[68] Pérez-González, A., Ibáñez, R, Gómez, P, Urtiaga, AM, Ortiz, I,Irabien, JA. (2015) 

Nanofiltration Separation of Polyvalent and Monovalent Anions in Desalination Brines. J. 

Membr. Sci., 473: 16-27. 

[69] Ye, W., Huang, J, Lin, J, Zhang, X, Shen, J, Luis, P,Van Der Bruggen, B. (2015) 

Environmental Evaluation of Bipolar Membrane Electrodialysis for NaOH Production from 

Wastewater: Conditioning NaOH as a CO2 Absorbent. Sep. Purif. Technol., 144: 206-214. 

[70] Pérez-gonzález, A., Ibáñez, R, Gómez, P, Urtiaga, A, Ortiz, I,Irabien, J. (2014) Recovery of 

Desalination Brines: Separation of Calcium, Magnesium and Sulfate as a Pre-Treatment Step. 

Desalin Water Treat, doi: 10.1080/19443994.2014.973454. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
31 

[71] Venugopal, K.,Dharmalingam, S. (2012) Desalination Efficiency of a Novel Bipolar 

Membrane Based on Functionalized Polysulfone. Desalination, 296: 37-45. 

[72] Xu, T.,Huang, C. (2008) Electrodialysis-Based Separation Technologies: A Critical Review. 

AIChE J., 54: 3147-3159. 

[73] Fumatech:http://www.fumatech.com/EN/.  (Accessed November 16, 2015) 

[74] Zabolotskii, V., Sheldeshov, N,Melnikov, S. (2014) Heterogeneous Bipolar Membranes and 

their Application in Electrodialysis. Desalination, 342: 183-203. 

[75] Burges, K. (2003) Pv Powered Desalination. The Middle East Desalination Research Centre 

(MEDRC),. 

[76] Xu, T. (2005) Ion Exchange Membranes: State of their Development and Perspective. J. 

Membr. Sci., 263: 1-29. 

[77] Kim, D.J., Jeong, MK,Nam, SY. (2015) Research Trends in Ion Exchange Membrane 

Processes and Practical Applications. Appl. Chem. Eng., 26: 1-16. 

[78] Tongwen, X. (2002) Electrodialysis Processes with Bipolar Membranes (EDBM) in 

Environmental Protection - A Review. Resour Conserv Recy, 37: 1-22. 

[79] Technical and food grade hydrochloric acid.PCC Morava Chem:http://www.pccmorava-

chem.cz/ttw/mch.nsf/id/EN_Hydrochloric_acid_%28food_grade,_technical_grade%29 

(Accessed November 16, 2015) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
32 

[80] High purity hydrochloric acid.Hubei 

Sanonda:http://www.sld.chemchina.com/slden/cpyfw/ppysb/chjyzyhxp/webinfo/2012/07/134261

1934400944.htm (Accessed November 16, 2015) 

[81] Muriatic Acid. 

PPG:http://www.ppg.com/chemicals/chloralkali/documents/english/muriaticacid.pdf (Accessed 

November 16, 2015)  

[82] Food grade Hydrochloric acid 20 degree. Reagent 

chemical:http://www.reagentchemical.com/documents/HCL_Food_Grade_20.pdf (Accessed 

November 16, 2015) 

[83] Food grade Hydrochloric acid 22 degree. Reagent 

chemical:http://www.reagentchemical.com/documents/HCL_Food_Grade_22.pdf (Accessed 

November 16, 2015) 

[84] Liquid Caustic soda. Covestro: 

http://www.polyurethanes.covestro.com/Handler/GenericForceDownload.ashx?itemID=C5BD0

BD550D2441DAA28177D1BA4E756&lang=en (Accessed November 16, 2015) 

[85] Commercial grade caustic soda. Colonial Chemical Solutions: 

http://colonialchemicals.com/uploads/Products/Caustic%20Soda%20-

%20Rayon%20Grade/Caustic%20Soda%20RG_Tech.pdf  (Accessed November 16, 2015) 

[86] Membrane Cell Caustic Soda. NPC Chlorochem: 

http://www.ncp.co.za/product/detail/2/caustic-soda-lye-naoh (Accessed November 16, 2015)  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
33 

[87] Diaphragmn cell and membrane cell Caustic Soda. Olin: http://www.olinchloralkali.com/en-

us/ (Accessed November 16, 2015)  

[88] High purity sodium hydroxide. Siping Haohua 

Chemical:http://www.hhsp.chemchina.com/sphhen/cpyfw/ppysb/webinfo/2012/05/13390608949

28029.htm (Accessed November 16, 2015)  

[89] Caustic Soda Liquid. Vinythai: http://www.solvay.com/en/index.html (Accessed November 

16, 2015) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

C
an

ta
br

ia
],

 [
A

nt
on

io
 D

om
in

gu
ez

-R
am

os
] 

at
 0

0:
24

 1
1 

D
ec

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
34 

Figure 1. Operation scheme of EDBM for the production of acids and bases from NaCl. 
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Figure 2. Summary of the main barriers for the production of acids and bases by EDBM. 
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Table 1. Summary of the main results and references dealing with the valorization of brines into 
HCl and NaOH. 
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Table 2. Maximum concentration of impurities allowed in different commercial grades of HCl 
compared to self-supply by EDBM. If not specified, concentration of impurities is expressed in 
mg·L-1. 
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Table 3. Maximum concentration of impurities allowed in different commercial grades of NaOH 
compared to self-supply by EDBM. If not specified, concentration of impurities in %w·w-1. 
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