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Abstract 

Variable loads to which gearboxes are subjected are considered as one of the main sources of non-

stationarity in these transmissions. In order to characterise their dynamic behaviour in such conditions, 

a torsional lumped parameter model of a planetary gear with power recirculation was developed. The 

model included time varying loading conditions and took into account the non-linearity of contact 

between teeth. The meshing stiffness functions were modelled using Finite Element Method and 

Hertzian contact theory in these conditions. Series of numerical simulations was conducted in 

stationary conditions, with different loading conditions. Equation of motion was solved using 

Newmark algorithm. Numerical results agreed with experimental results obtained from a planetary 

gear test bench. This test bench is composed of two similar planetary gears called test planetary gear 

set and reaction planetary gear set which are mounted back-to-back so that the power recirculates 

through the transmission. The external load was applied through an arm attached to the free reaction 

ring. Data Acquisition System acquired signals from accelerometers mounted on the rings and 

tachometer which measured instantaneous angular velocity of the carrier’s shaft. The signal processing 

was achieved using LMS Test.Lab software. Modulation sidebands were obtained from the ring 

acceleration measurements as well as a non-linear behaviour in case of variable loading resulted by a 

transfer of the spectral density from the fundamental mesh stiffness to its second harmonic. 

Keywords back-to-back planetary gears, variable load, dynamic behaviour 
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1. Introduction 

The use of planetary gears in industrial applications is justified by their ability to transmit high 

torques with substantial ranges of speed reduction.  Many industrial applications use this kind of 

transmissions such as aircraft engines, wind turbines, ... 

Several studies were devoted mostly to planetary gears running under constant speed and load i.e. 

in stationary conditions [1-5]. However, it is possible to find industrial applications involving 

planetary gears where both load and speed are time varying. Severe non-stationary conditions may 

lead to excessive vibrations and instability [6]. 

McFadden and Smith [1] focused on the modulating sidebands around meshing frequency and 

harmonics caused by non-stationary conditions. Al-shyyab and Kahraman [2] implemented multi-term 

harmonic balance methodology on a nonlinear torsional model of a single stage planetary gear in order 

to solve the equations of motion. Inalpolat [3] developed a numerical model to predict modulation 

sidebands, he described the mechanisms causing sidebands and he validated experimentally the 

obtained numerical results. He also studied amplitude and frequency modulations caused by 

manufacturing errors of gears and estimated dynamic loads on sun-planet and ring-planet gear meshes 

[4]. Liu et al. [5] took into account in their dynamic model variable transmission path of vibration in 

planetary gears and validated their work experimentally. 

Concerning studies devoted to variable loading conditions, it seems that Randall [7] was the first to 

relate load fluctuation to vibration level. Chaari [8] proposed a bi-dimensional model of a spur 

planetary gear subjected to both time varying load and speed and highlighted corresponding amplitude 

and frequency modulations. Mark [9] was interested in the variability of load transmission from one 

planet to the other caused by imperfections in the transmission. He also focused on vibration spectra 

shapes of signals registered by fixed-accelerometer for the case of a cracked planet-carrier plate that 

caused variability in load transfer through planets. Mark [10] extended his studies to the influence of 

planet–carrier vibration signals modulations on the computed spectra. Feng [11] considered, in his 

dynamic model of planetary gear, the effect of distributed and localized gear faults on amplitude and 

frequency modulation effects observed in vibration signals. Lei [12] implemented the adaptive 

stochastic resonance method for a planetary gearbox having a chipped and missing sun gear tooth. 

Bartelmus and Zimroz [13] showed that planetary gearbox running in bad conditions is more 

susceptible to external load than planetary gearbox running in good conditions. They introduced a new 

diagnostic feature which is used for monitoring the condition of planetary gearboxes under varying 

external load conditions [14]. Kim [15] was interested in the influence of time varying pressure angles 

and contact ratios on the dynamic behaviour of planetary gear. In all these cited woks, the varying 

external load caused a variation of speed in the studied systems. 

Complex planetary gearboxes received great interest by scientists. Ligata et al. [16] studied on a 

back-to-back planetary gear system the influence of manufacturing defects on stresses in the tooth 

roots and on the load sharing between planets. Singh et al. [17] focused on the impact of changing 
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parameters of multistage planetary gearbox on stresses in gear teeth and on load sharing through 

numerical and experimental investigations. Hammami et al. [18] was interested in the modal 

characteristics of back-to-back planetary gear set by computing modal kinetic and strain energy 

distributions. In addition, they [19] achieved a series of experimental tests for run up and run down 

regimes of the same gearbox in order to validate the modal analysis and to study its dynamic 

behaviour in non-stationary conditions. 

This paper is dedicated to the study of the dynamic behaviour of a complex planetary gearbox 

running in another non-stationary operation which is the time varying loading condition with the 

specifications of an imposed constant speed. To achieve this target, a back-to-back planetary gearbox 

with mechanical power recirculation set up was characterized as the load was applied by the external 

arm. First, a dynamic model of planetary gear set with power recirculation will be developed. 

Modulation sidebands will be highlighted in stationary condition in the case of equally-spaced planets 

and sequentially phased gear meshes. Then, different loading conditions will be considered to show 

the non linear behaviour of the studied gearbox and to explain its behaviour in the variable loading 

conditions which is presented in the last section. Simulation and experimental studies for this gear 

system will be presented and correlated in all studied conditions. 

 

2. Material and methods 

The test bench used in this research work is composed of two similar planetary gears mounted 

back-to-back so that the power recirculates through the transmission. This special configuration is 

selected in order to minimize costs and improve energy efficiency. Figure 1 shows a general scheme of 

the studied transmission. 

 

Fig.1: Test bench scheme 

 

The two planetary gear sets are named respectively test gear set and reaction gear set. The main 

planetary gear set is the test gear set where its output power from its carrier is reintroduced to its sun 
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through the reaction planetary gear set. They are connected in back-to-back configuration. Sun gears 

are mounted on the same shaft and the carriers are connected by a hollow shaft. 

In order to introduce external load, mass is added on an arm attached to reaction gear. The test gear 

ring is clamped (Fig.3). The direction of rotation is such that the friction torque always adds to the 

reaction ring gear applied torque. 

The transmission is driven by an asynchronous motor to which a speed controller is added in order 

to impose desired speed evolution and values. Accelerations on rings are measured by two tri-axial 

accelerometers (Fig.2 and Fig.3). 

 

An optical tachometer combined with pulse tapes is mounted on the hollow shaft in order to 

measure instantaneous angular velocity.  

LMS SCADAS 316 Data Acquisition System acquires signals from tachometer and accelerometers 

and the signal processing is achieved using LMS Test.Lab software. 

 

Fig.2: Instrumentation of the test bench 
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Fig.3: Sensors and external load 

 

International standard “ISO 6336” [20- 23] allows to determine the minimum tangential torque on 

the reaction ring that will produce the mechanical failure in case of tooth bending and pitting for the 

different gear components of the system. These limits are presented in table 1. 

Table 1. Minimum torque that produce failure 

Contact Component 

Torque producing 

Bending (N.m) 

Torque producing Pitting 

(N.m) 

Sun-Planet 
Sun 2644 1100 

Planet 3630 1100 

Ring-Planet 
Planet 2411 1650 

Ring 47587 9446 

 

In order to avoid bending and pitting defect, applied torques on the test rig will not exceed             

1100 Nm.  
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3. Numerical model 

In this section, a dynamic model of the back-to-back planetary gear test rig presented in section 2 

will be developed. It is a torsional model based on previous work of Lin and Parker [24].  Figure 4 

shows the main components of this model. 

 

Mesh stiffness for test ring-planet and test sun-planet are represented respectively by the linear 

springs Ktr,i and Kts,i where i=1..n and n is the number of planets (n=3). For the reaction gear set, mesh 

stiffness is represented by the linear springs Krr,i and  Krs,i which are related to reaction ring-planet and 

reaction-sun planet. Since the reaction ring is free, its torsional stiffness Krru is zero, however, the test 

ring is clamped and modelled by a torsional stiffness Ktru with high value. The connecting shafts are 

modelled by torsional stiffness Ks and Kc. Table 2 shows the parameters of the model. 

 

 

 

 

 

Fig.4: Dynamic model of planetary gear with power recirculation 
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Table 2. Parameters of the system 

Planetary gears 
        

Sun Planet Ring Carrier 

Teeth number 16 24 65 - 

Mass (Kg) 0.48  1.2 28 3.6 

Base diameter (mm) 61.3 92.0 249.3 57.5 

Moment of inertia (Kg.m²) 350 × 10
-6 2050 × 10

-6 697770 × 10
-6 21500 × 10

-6 
 

Torsional stiffness Nm/rd 

 (test set) 
 
3 x 10

8
 

Torsional stiffness (Nm/rd) 

(Reaction set) 0 

Shaft stiffness 
        

Sun Planet Ring Carrier 

Torsional (Nm/rad) 9.3 × 10
7 - - 3.7 × 10

8 

 

 

Non floating Suns and planets are considered and only rotational motions of the gear bodies are 

considered [25]. The equation of motion of the system with 3 planets can be written as: 

( )tFXKtKXCXM c =+++ ))((&&&                                  (1) 

Where M is the mass matrix. )(tK is the stiffness matrix, cK is the coupling shaft stiffness matrix  

and ( )tF  is the external force vector applied to the system. 

It is possible to decompose )(tK  into a mean stiffness matrix K
~

 and a time varying matrix )(tk  : 

)(
~

)( tkKtK +=                (2) 

C is the Rayleigh damping matrix expressed by [26]: 

KMC
~

βα +=                                                                                                                              (3) 

Where α  and β  are two constants [26] expressed by s
5

10.5
−=α and 15.410.5 −−= sβ

.
 

All the matrices are defined in the appendix of [19]. 

X is the degree of freedom vector expressed by :
 

{ }Tttttstrtcrrrrsrrrc xxxxxxxxxxxxX 321321 ,,,,,,,,,,,=                                                                (4) 

The rotational coordinates are computed by jrjrjr rx θ= for reaction gear set and by jtjtjt rx θ=  for 

test gear set (j=c,r,s,1,2,3). jrθ and jtθ  are the rotational components; jrr and jtr  are the base radius for 

the sun, ring and planets and the radius of the circle passing through the planets centres for the carrier. 

In order to compute the solution of the problem, implicit Newmark algorithm is used. 
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4. Results and discussion 

Two kinds of simulations and experimental studies will be carried out. In the first one, stationary 

condition will be considered. Then, time varying loading conditions is applied to the system. Results 

from simulations and experiments will be compared. 

 

4.1. Stationary conditions 

Three equally-spaced planets are considered for each planetary gear. They are positioned at 

angles jnψ  (n=1, 2, 3 and j=r, t). The positions of the 3 planets of the reaction gear set measured with 

respect to the rotating frame linked to the carrier are (0,
3

2π ,
3

4π )  whereas the position of the 3 

planets of test gear set are (
3

π ,π ,
3

5π ). Sequentially phased gear meshes are considered for the two 

sets since k
Z jnr

≠
π

ψ

2
 and πψ mZ

N

n
jnr =∑

=1

 where k and m are integer. 

Finite elements modelling and Hertzian contact theory are used to define the meshing stiffness 

functions for all sun-planet and ring-planet meshes following the procedure given by Fernandez et al. 

[27].  

First of all, the tooth geometry is defined using gear parameters which are the gear module, 

the pressure angle, the addendum, the dedendum and the radius of the rounding tip.  

Then, in order to locate the contact points, separation distance between these points is 

computed in the line of action direction. Considering the analytic formulation of the involute- 

involute contact, the location of the contact points was performed and the deflection of 

contact points is computed. To generate involute-involute teeth profiles, Litvin theory is considered 

[28]. 

Two phenomena are considered: the nonlinear local deformations near the contact area and 

the tooth body deflections due to linear bending, shearing and compression. The approach 

used in this work combines an analytical non-linear formulation of Hertzian type for local 

deflections and a two-dimensional finite element model in order to obtain the global ones. 

Finally, the meshing forces are computed. Once the initial separations of the contact points 

are a function of the position of each gear, the gear meshing forces is obtained imposing the 

compatibility condition of the displacements. 

The procedure adopted to obtain the meshing forces allows the evaluation of the meshing 

forces, the transmission error and mesh stiffness [27]. 

Fig.5 and Fig.6 show respectively time varying gear mesh stiffness sun-planet and ring-planet. 
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Fig.5: Sun-planet gear mesh stiffness functions in the test gear set 
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Fig.6: Ring–planet gear mesh stiffness functions in the test gear set 

 

It is clearly noticed the fluctuation of the mesh stiffness values from maximum values 

corresponding to two teeth pairs in contact to minimum values corresponding to one teeth pair in 

contact.  

The periodicity of the passage of each planet close to the accelerometer position is assumed to be 

Tc/N (N=3: number of planets).So, if a planet i approaches the location of the accelerometer placed on 

the outer part of the ring, its influence on the measured vibration will increase and reach maximum 

when the planet is close to the sensor and decrease when it rotates far from it. The same phenomenon 

will be repeated for next planets [3].  

 “Fr(t)” and “Ft(t)” are respectively forces induced by the rotation of carriers on the reaction ring 

and the test ring gear. They are counter-phased. In fact, if a test planet is close to accelerometer 

mounted on the test ring, the vibration level will be higher; however it will be close to zero for the 

reaction gear since there is no reaction planet close to accelerometer mounted on the reaction ring. 
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This fact is induced by the 
3

π
phasing between planets of test and reaction gear sets. 

The external force vector is defined by: 









++= 0,0,0,),(,,0,0,0,),(,)(

ts
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T

r

T
tF

r

T

r

T
tF                        (5) 

Where Trc, Trr, Trs, Ttc, Ttr and Tts are respectively the applied torque on the reaction carrier, 

reaction ring, reaction sun, test carrier, test ring and test sun.  

 
4.1.1. Constant loaded planetary gear 

In this first test, a simulation is achieved for a fixed speed (1500 rpm) and fixed external load     

(100 N.m on the free reaction ring). These parameters are also used for the test rig. Figure 7 shows the 

evolution of acceleration on the fixed ring obtained by simulation and experimental measurements for 

a unique period of carrier rotation (Tc=0.2027 s). 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-20

-15

-10

-5

0

5

10

15

20

Time (s)

A
c
c
e

le
ra

ti
o

n
 (

m
/s

²)

(a) 

6.000.00 s

0.200.00 s

20.00

-20.00

R
e
a
l

m
/s

2

16.60

-12.12

7:FixRingBoard (t):+X

(b) 

Fig.7: Acceleration of fixed ring  

(a) simulation (b) experimental 

 

 Figure 7 shows a clear amplitude modulation [3] which can be explained by the fact that force 

induced by the rotation of carrier at Tc=0.2027 s and fc=4.93 Hz modulates the mesh signal.  

The corresponding spectra (Fig.8) show several peaks (sidebands) close to the mesh frequency               

(320.66 Hz) and its harmonics which are located at 3.n.fc and m.fc  ( n and m integers). 
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Fig.8: Spectra of acceleration on the fixed ring: Theoretical (a) and experimental (b) 
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Sidebands are not symmetric around 1xfm. The highest amplitudes are identified at frequencies       

f = n.N.fc = n×3×4.9 = n×14.7 Hz (n: integer) which corresponds to 325.6 Hz. This result confirms 

what was explained by McFadden and Smith in [1]. 

For 2x fm the highest sideband amplitude is on the left, however, for 3× fm the maximum amplitude is 

right on this mesh frequency harmonic as shown in the different zooms of Fig. 8. 

  

4.1.2. Different loading conditions of the planetary gear 

In this section, different loading conditions are considered: 100N.m, 300N.m, 500N.m, 700N.m 

and 900N.m. Finite elements method is used to define the mesh stiffness functions for each load case 

[27]. Fig.9 and Fig.10 show examples of mesh stiffness functions corresponding to sun-planet1 and 

ring-planet. 
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Fig.9: sun–planet1 mesh stiffness functions for test gear set  
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Fig.10: Ring–planet1 mesh stiffness functions for test gear set 
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In Fig.9 and Fig.10, the period relative to double teeth contact increases as the load level increases, 

this leads also to an increase in the contact ratio. It is also possible to observe the effect of the tip 

rounding in the transition zone, where a sharp increase on the meshing stiffness is found. That effect is 

a consequence of a singularity in the local deformation as the curvature radius of the profile changes 

from a small value for the tip rounding to a higher one corresponding to the involute profile. So, the 

nonlinearity induced by local Hertzian contact model has strong effect on mesh stiffness function 

highlighted by the shift of the stiffness curves if applied torque is changed.  

Fig. 11 shows that as the load increases, the spectral density moves from 1× fm to 2× fm. 
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Fig.11: Spectra of acceleration on fixed ring for different loads (a) simulation (b) experimental 

 

In fact, when the torque is increased, meshing forces values increase for each of the contacting 

points through a meshing period. This causes variation of the pressure angle and therefore an increase 

of the contact ratio (Fig.9 and Fig.10). So, the period of double contact increases as the torque level 

increases. Also, the first coefficient of the Fourier series of this input (at the mesh frequency) 
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decreases whilst the second coefficient increases.  In addition, the inertia of the reaction ring gear 

increases when mass is added and vice-versa. 

4.2. Variable load 

A time varying loading condition is applied to the free ring as shown in figure 12. 
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Fig.12: The external variable torque 

 

The variation of the external load implies a variation of the value of the meshing stiffness and a 

variation of the period of double teeth on contact (Fig.13). 
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Fig.13: Sun–planet1 mesh stiffness function for the test gear set evolution with variable load 
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The speed of motor remains constant as it is controlled by the frequency converter.  

The spectrum of acceleration on the fixed ring plotted on figure 14 shows that the nearest harmonic 

frequency of rotation of carrier to the frequency 2.fm is the dominant and corresponds to an 

intermediate frequency. 
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Fig.14: Response spectrum of the fixed ring with variable load: 
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Although the system starts with 100N.m as an external torque where the fundamental meshing 

frequency is the dominant (Fig.8), the spectrum in figure 14 is likely the same as the spectrum of 

500N.m load which is predicted in Figure 11.  In this is case, the variable loading condition can be 

averaged at this time scale. 
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5. Conclusion 

A back-to-back planetary gear system running under stationary and non-stationary operating 

conditions was investigated. Both numerical and experimental tests were achieved and an agreement 

between simulations and the tests was obtained. The test rig has a back-to-back configuration for 

power recirculation and it allows the modification of the loading torque during test with the aim to 

reproduce non-stationary conditions. A torsional lumped parameter model of the test bench was 

developed. 

In a first study, stationary operating conditions were considered. The passage’s effects of each 

planet close to the accelerometer position mounted on the ring were taken into account and the mesh 

stiffness was modelled through the finite element method and the contact hertzian formulation. The 

dynamic behaviour of planetary gear set in the case of equally-spaced planets and sequentially phased 

gear meshes was approved; an amplitude modulation was observed in the acceleration time evolution 

of the test ring and modulation sidebands of the vibration spectra were highlighted by simulation and 

experiments.  

Then, different loading conditions were considered. By adding masses to the free ring (load 

variation), the inertia of the reaction ring gear changes. Using the finite elements method and the 

contact hertzian formulation of involute-involute teeth profiles, it was shown that the amplitude of 

meshing forces and the period of double contact increase as the torque level increases. This was 

observed in the time evolution of sun-planet and planet-ring mesh stiffness. A transfer of the spectral 

density from the fundamental mesh stiffness to its second harmonic was observed in the waterfall plot 

of the different loading accelerations on the test ring and was explained by the fact that the first 

coefficient of the Fourier series of the mesh stiffness decreases whilst the second coefficient 

increases as the torque level increases. This behaviour was the results of an increase the pressure angle 

and the contact ratio causing an expansion of the period of double contact between teeth.  

In case of variable loading conditions, an increase of the external load implies an increase of the 

amplitude of the meshing stiffness and the period of double teeth on contact and vice-versa. A non-

linearity of the contact between teeth was found in the evolution of the mesh stiffness functions. The 

dynamic behaviour of back-to-back planetary gear changes due to the change of mass and stiffness 

with an amplification of the 2
nd

 harmonic of the meshing frequency despite the system was started 

with a low external torque.  

In future investigations, the influence of time range loading conditions on the dynamic behaviour 

of the system will be focused in the case Involute – Tip rounding contact between teeth. 
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