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Abstract—Assume we have a set of noisy observations (for
example, images) of different objects, each undergoing a different
geometric deformation, yet all the deformations belong to the
same family. As a result of the action of these deformations,
the set of different observations on each object is generally a
manifold in the ambient space of observations. It has been shown,
[1], that in the absence of noise, in those cases where the set
of deformations admits a finite-dimensional representation, the
universal manifold embedding (UME) provides a mapping from
the space of observations to a low dimensional linear space. The
manifold corresponding to each object is mapped to a distinct
linear subspace of Euclidean space, and the dimension of the
subspace is the same as that of the manifold. In the presence of
noise, different observations are mapped to different subspaces.
In this paper we derive a method for “averaging” the different
subspaces, obtained from different observations made on the
same object, in order to estimate the mean representation of
the object manifold. The mean manifold representation is then
employed to minimize the effects of noise in matched manifold
detectors and to improve the separability of data sets in the
context of object detection and classification.

I. INTRODUCTION

Solutions to many problems in image and signal analysis
have to cope with the effects of the multiplicity of appearances
of objects. For example, in the problem of object recognition
the “same” object may have a huge family of different
appearances, and the first problem one needs to confront, is
the understanding of the set of all possible appearances of
that single object. One of the main reasons for the variability
in the appearance of an object is a change in its underlying
geometry.

In general, we are given a set of observations (for example,
images) of different objects, each undergoing a different
geometric deformation. As a result of the action of the
deformations, the set of different realizations for each object
is generally a manifold in the space of observations. The
problem of finding and analyzing non-linear low-dimensional
structures in high-dimensional data has been attracting con-
siderable interest in recent years, see, e.g., [7] for a recent
collection of papers. The common underlying idea unifying the
existing approaches is that although the data is sampled and
presented in a high-dimensional space, for example because
of the high resolution of the camera sensing the scene, in fact
the intrinsic complexity and dimensionality of the observed
physical phenomenon are very low. One of the dominant
approaches among existing dimensionality reduction methods

is to expand the principles of the linear spectral methods
to more complex low-dimensional structures than a single
subspace, by assuming the existence of a smooth and invertible
isometric mapping from the original manifold to some other
manifold which lies in a lower dimensional space, [2]-[4].
These dimensionality reduction methods make very modest
assumptions on the reasons for the variability in the appear-
ances of the object. The common general assumption is that
the degrees of freedom act continuously on the objects and
therefore the set of appearances of a single object is some
continuous entity – the manifold. As a result of the very mild
assumptions made, the only way to determine the structure
of the manifold generated by a single object is to densely
sample it such that any other appearance of the object can be
approximated locally and linearly by the collected samples. In
many cases this implies the collection of a very large number
of samples. In the presence of noise, i.e., when the observed
data does not lie exactly on the manifold, the performance of
these manifold learning methods degrades significantly. In [17]
a method for manifold denoising using spectral graph wavelets
is presented. The method employs the inherent smoothness of
the manifold.

While there are many cases where no prior knowledge of
the sources of the variability in the appearances of an object is
available, there are many scenarios in which such information
is inherently available, and hence can be efficiently exploited.
We concentrate on the case where the geometric deformations,
and the observation noise, are the major source for the variabil-
ity in the appearances of the object. In this paper we present a
method that exploits this type of a priori knowledge in order
to enable efficient detection and recognition of multiple and
deformable objects.

It has been shown, [1] that, in the absence of noise, in
those cases where the set of deformations admits a finite-
dimensional representation, the universal manifold embedding
provides a mapping from the space of observations to a low
dimensional linear space. The manifold corresponding to each
object is mapped to a distinct linear subspace of Euclidean
space, and the dimension of the subspace is the same as that
of the manifold. In the presence of noise, different observations
will be mapped to different subspaces. In this paper we derive
a method for “averaging” the different subspaces, obtained
from different observations made on the same object, in order
to estimate the mean representation of the object manifold.
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II. THE UME OF AFFINE DEFORMED OBJECTS

The basic problem addressed in this paper is the follow-
ing: Given a sequence of noisy observations of an object
undergoing different geometric deformations, estimate the best
representation of the noise free object manifold in a sense
which we rigorously define in this paper. More specifically,
assume we are given a sequence of observations such that any
two of them, g and h are affine related, bounded, Lebesgue
measurable functions from Rn to R with compact support, i.e.,

h (x) = g (Ax+ c) + n(x) ∀x ∈ Rn (1)

where A ∈ GLn(R) and c ∈ Rn

To simplify the presentation let us first define the problem in
the noise-free setting. Let O be the space of observations, let Φ
be the set of possible geometric deformations with N degrees
of freedom, and let S be a set of known objects, where each
object is modeled as a compactly-supported, bounded, and
Lebesgue measurable (or more simply, integrable) function
from Rn to R. We assume that the observations are constructed
by the following procedure: we first choose an object g ∈ S
and an arbitrary geometric deformation φ ∈ Φ. Next, we
define an operator ψ : S × Φ → O that acts on an object
and a geometric deformation, producing an observation. The
observation is o = ψ(g, φ). For a specific object g ∈ S we
will denote by ψg : Φ → O the restriction of the map to
this object. We assume that the N parameters characterizing
Φ are the coefficients of a linear combination of a priori
known basis functions that completely specify the action of the
group of geometric transformations the object may undergo.
For example, if Φ is the set of functions describing invertible
two-dimensional affine deformations then Φ is of dimension
6, as these 6 parameters define the geometric transformation
along the two-axes. For any object (function) g ∈ S the set of
all possible observations on this particular function is denoted
by Sg. We refer to this subset as the orbit of g under Φ. In
general, ψg is not linear, and hence Sg is a nonlinear manifold,
in the space of functions. We note here, that in the context
of this paper the term “manifold” adopted from the machine
learning and dimensionality reduction literature, refers to the
orbit of g under Φ, i.e., to the set of all possible observations
on g due to the action of the group defined by Φ.

In general O has a very high dimension (e.g., the number of
pixels in an image). It is composed of the union of orbits, Sg,
of the different objects g in S such that each orbit Sg is the
result of the action of the group of coordinate transformations
defined by Φ on the object g.

In [1], it is shown that under the above assumptions and
for some specific choices of Φ (which include the group of
affine transformations considered in this paper) there exists a
linear space H ⊂ RM and a map T : O → H , such that the
restriction of this map to Sg is such that the composed map
T g = T ◦ ψg is a linear and invertible map from the finite-
dimensional representation of Φ to H . These properties hold
for every object g ∈ S and the map T is independent of the
object. The map T , is called universal manifold embedding as

Fig. 1. The Universal Manifold Embedding framework (from left to right):
The physical model that generates the observations - applying the set of
possible deformations to some object g produces Sg which is the set of all
possible observations on g. Sg is a subset of the space of observations O.
The UME - all observations in Sg are nonlinearly mapped by T to a unique
linear subspace Hg = T (Sg).

it universally maps each of the different manifolds, each man-
ifold corresponding to a single object, into a different linear
subspace such that the overall map T ◦ ψg : Φ → H is linear
in the parameterization of Φ. The map ψg : Φ → O maps Φ
nonlinearly and represents the physical relation between the
object and the observations on it. The map T : O → H maps
O nonlinearly such that the overall map T ◦ ψg : Φ → H is
linear. This universal map allows us to represent the (mapped)
observations in a space where the action of Φ is linear. Figure
1 schematically illustrates the concept of the UME in the noise
free case.

We next describe the implementation of the concept of uni-
versal manifold embedding for the case where the geometric
deformations are affine.

Consider the case where h is an observation of g un-
dergoing an affine transformation. Let x,y ∈ Rn , i.e.,
x = [x1, x2, . . . , xn]

T , y = [y1, y2, . . . , yn]
T , such that

y = Ax + c, x = A−1y + b. Let ỹ = [1, y1, . . . , yn]
T .

Thus, x = Dỹ where D is an n × (n + 1) matrix given by
D =

[
b A−1

]
.

Let M ∈ N and let wl l = 1, . . . ,M be a set of bounded,
Lebesgue measurable functions wl : R → R. Let Dk denote
the kth row of the matrix D. Then, [13],

∫
Rn

xkwℓ ◦ h(x)dx =
∣∣A−1

∣∣ ∫
Rn

(Dkỹ)wℓ ◦ g(ỹ)dỹ (2)

Let f be some observation on a deformable object and let

T(f) =
∫
Rn

w1 ◦ f(y)
∫
Rn

y1w1 ◦ f(y) · · ·
∫
Rn

ynw1 ◦ f(y)

...
. . .

...∫
Rn

wM ◦ f(y)
∫
Rn

y1wM ◦ f(y) · · ·
∫
Rn

ynwM ◦ f(y)


Let r = n + 1. Hence T(f) is a rank r matrix. Denote
D̃ = [e1 DT ] where e1 = [1, 0, . . . , 0]T . Then, if h is an
observation of g undergoing an affine deformation represented
by the matrix D, then from (2) we get:

T(g)
∣∣A−1

∣∣ D̃ = T(h) (3)



Since the deformations at hand are invertible, this implies that
the column space of T(g) and the column space of T(h) are
the same subspace. Thus, after applying the mapping T to
the space of observations, the problem of object recognition
becomes a problem of classifying subspaces.

III. CLASSIFICATION USING UME INDUCED SUBSPACE

A. Projection Matrices

Since projection matrices have a one-to-one correspondence
to subspaces, a subspace can be classified using its respec-
tive projection matrix. That is, given two matrices A,B,
we measure the distance between range(A) and range(B),
via the orthogonal projections for both subspaces, PA,PB,
respectively, i.e.,

∥PA −PB∥F (4)

As shown above, (see also, [15]) in the absence of noise,
given two affine related observations on the same object, their
distance should satisfy d(h, g) =

∥∥PT(h) −PT(g)

∥∥
F

= 0.
Since in practice we do not have noise-free observations on
the objects, our goal here is to obtain a statistic representing
the entire manifold, or equivalently, to estimate the mean
manifold from the available observations. Since in the ab-
sence of noise, for any two observations on the same object∥∥PT(h) −PT(g)

∥∥
F
= 0, the choice of the function h or g as

the representative of the equivalence class formed by the set of
all possible observations on the object, which we denoted by
Sg is arbitrary. Hence, in the following we present a method
for “averaging” the noisy projection matrices and employ this
average as a sufficient statistic of the entire object manifold.

B. The Subspace Mean

Intuitively, given a set of projection matrices, it is natural to
estimate the orthogonal projection onto the “mean subspace”
as the average of the realizations: Pavg = 1

L

∑L
m=1 Pm . The

problem with such an estimate is that a sum of projection
matrices is not a projection matrix. Therefore, several other
definitions of the mean have been used, the most commonly
used among them is the Karcher-mean. In [16] a thorough
analysis of different types of subspace means is presented. In
the following we provide a derivation of the extrinsic mean
adapted to the set-up of the above formulation.

Let Pr denote the set of orthogonal projections onto the
same dimension-r subspaces in an M -dimensional ambient
space. Given {Pm}Lm=1 ∈ Pr find P ∈ Pr- the “best
representative” of the set in the following sense: Let ei ∈ RM

be the i -th vector of the standard basis. We wish to find a
matrix P such that

P = arg min
P∈Pr

1

L

M∑
i=1

L∑
m=1

∥(P−Pm)ei∥
2 (5)

= arg min
P∈Pr

1

L

M∑
i=1

L∑
m=1

eTi (P−Pm)T (P−Pm)ei

Let Q = 1
L

∑L
m=1 Pm. Then

P = arg min
P∈Pr

M∑
i=1

eTi (P−QP−PQ+Q)ei

= arg min
P∈Pr

tr(P−QP−PQ+Q)

= arg min
P∈Pr

tr
[
(P−Q)(P−Q) + (Q−Q2)

]
(6)

Since the term (Q−Q2) is not affected by the choice of P,
we obtain an equivalent problem.

P = arg min
P∈Pr

tr [(P−Q)(P−Q)] (7)

Since P is a projection matrix, P = UUT . Since Q is the
sum of projection (and hence normal) matrices, it is normal.
Hence, its SVD decomposition is given by Q = FKFT , K =
diag(ki,i), k1,1 ≥ k2,2 ≥ ... ≥ kM,M , F being a unitary
matrix. Then,

min
P∈Pr

tr [(P−Q)(P−Q)]

= min
P∈Pr

tr
[
(UUT − FKFT )(UUT − FKFT )

]
= min

P∈Pr

tr
[
UUT

]
+ tr

[
FK2FT

]
− 2tr[UTFKFTU]

= min
P∈Pr

tr
[
UTU

]︸ ︷︷ ︸
r

+
M∑
i=1

k2i,i − 2tr[UTFKFTU]

= min
P∈Pr

r +
M∑
i=1

k2i,i − 2tr[UTFKFTU] (8)

In order to minimize the error, we must minimize (8), which
is the same as maximizing tr[UTFKFTU]. Let gi , FTui

and G ,
[
g1 g2 · · · gM

]
. Then,

max
U

tr[UTFKFTU] =

= max
U

GT


k1,1 0 · · · 0

0 k2,2
. . .

...
...

. . . . . . 0
0 · · · 0 kM,M

G =

= max
U

M∑
i=1

ki,i ∥gi∥2 = max
U

M∑
i=1

ki,i
∥∥FTui

∥∥2 =

= max
U

M∑
i=1

ki,iu
T
i FF

T︸ ︷︷ ︸
PF

ui =
M∑
i=1

ki,iu
T
i PFui =

= max
U

M∑
i=1

ki,iu
T
i P

T
FPFui = max

U

M∑
i=1

ki,i ∥PFui∥2

where we define PF = FFT since F is a unitary matrix. Since
the space is r-dimensional, in order to minimize the error, we
must choose U =

[
f1 f2 · · · fr

]
, where fi, i = 1, .., r

are the r eigenvectors of Q that are associated with the r
largest eigenvalues k1,1, ..., kr,r, and P = UUT.

Following this derivation, each object Cj is represented by
a single projection matrix Pj , and its corresponding averaged
UME Uj .



IV. CLASSIFICATION OF NOISY OBSERVATIONS ON
DEFORMED OBJECTS

When using the UME it is necessary to first choose M ,
the dimension of the ambient space, i.e., the number of
w functions. We next show how to empirically choose the
optimal value of M , such that the probability of correctly
classifying the objects of interest is maximized.

To evaluate the performance of the new approach we
compare the performances of two classifiers using the same
training and test sets for both, as a function of both the noise
level and the dimension M of the ambient space. Note, that
since in this problem the objects are 2-D images undergoing
affine transformations, and since in the definition of T(f) only
moments of order zero and one of wℓ ◦ f are employed, we
have that r = 3. The first classifier employs the estimated
mean manifold representation using the corresponding mean
projection matrix Pj for each object j, evaluated from the
observations in the training data set. The second classifier
is based on the nearest neighbor method. Using the mean
manifold based method, we decide that a noisy observation
h belongs to class j if the distance of its corresponding
projection matrix PT(h) to the mean projection matrix Pj

is minimal. In the nearest neighbor method we decide that
the observation belongs to class j if the distance of PT(h)

to any of the projection matrices associated with observations
that belong to object j is minimal. The presented results are
based on 50 independent experiments. For each experiment,
10 images are chosen at random out of a fixed set of 240
different images. All the images are grey scale with values
ranging between 0 and 1 and are 400 × 400 pixels. In each
of the 50 tests, 40 new geometrically deformed images are
synthesized using random affine deformations. To simulate
different SNR’s, WGN is added to each deformed instance.
Figure 2 provides an example of two images from the set, an
example of a deformed instance and a deformed and noisy
instance. 20 of the generated images are used for training and
the other 20 are used for performance evaluation. Since for
each object there are 40 deformed observations, overall there
are 200 images used for training and 200 images are used
for performance evaluation in each test. The classifiers are
evaluated at different SNR’s where 0 ≤ σ ≤ 0.5, and different
choices for the dimensions of the ambient space. Thus, for
each given σ and M , 50 tests are performed. The w functions
used are the following indicators:

wi,M (x) =

{
1, i−1

M < x ≤ i
M

0, else
, i = 1, ...,M (9)

For a given SNR, and for a given dimension of the ambient
space, M , the performance is measured as the ratio of the
number of correct classifications to the number of attempted
classifications, measured jointly for all the objects in the
data set (and not tuned to detect any particular object). In
Figure 3 the classification results are presented. We clearly see
that the classification method based on the subspace means
outperforms the nearest neighbor method in all cases, and

Fig. 2. First row: Examples of images from the data set. Second row from
left to right: A deformed image, a deformed image in the presence of WGN
with σ = 0.3

Fig. 3. The performance of the two classifiers for different SNRs as a
function of the dimension of the ambient space, M . Red: performance of
the classifier based on mean subspaces. Blue: performance of the nearest-
neighbor approach.

that no significant gain performance is obtained by choosing
ambient space dimension larger than 50 .

V. SUMMARY

We have presented a method for estimating the mean
manifold, where the manifold is generated by the set of all
possible affine transformations of the object, from noisy and
geometrically transformed observations on the object. The
universal manifold embedding provides a mapping from the
space of observations to a low dimensional linear space. In
the noise-free case, the manifold corresponding to each object
is mapped to a distinct linear subspace of Euclidean space.
In the presence of noise, different observations are mapped to
different subspaces. We have presented a method for averaging
the UME subspaces, obtained from different observations
made on the same object, in order to estimate the mean
representation of the object manifold. The mean manifold
representation has been employed to estimate the optimal
dimension of the ambient space such that the probability of
correctly classifying noisy and affine deformed observations
on a set of objects is maximized.
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