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Abstract Extreme wave heights are climate-related events. Therefore, special attention should be
given to the large-scale weather patterns responsible for wave generation in order to properly under-
stand wave climate variability. We propose a classification of weather patterns to statistically down-
scale daily significant wave height maxima to a local area of interest. The time-dependent statistical
model obtained here is based on the convolution of the stationary extreme value model associated to
each weather type. The interdaily dependence is treated by a climate-related extremal index. The mod-
el’s ability to reproduce different time scales (daily, seasonal, and interannual) is presented by means
of its application to three locations in the North Atlantic: Mayo (Ireland), La Palma Island, and Coru~na
(Spain).

1. Introduction

The need to understand the frequency and intensity of natural hazards and develop resilient, long-term
infrastructures has promoted extreme value theory as a relevant discipline for engineering and applied sci-
ence over the last century. The ultimate goal of this theory is the estimation of the probability of events
larger than any on record [Coles, 2001].

Traditionally, extreme value theory typically provides a statistical description of the maxima of a stationary
process, where stochastic properties are considered constant in time. However, in the context of environ-
mental variables, nonstationarity (e.g., seasonality, interannual variability, long-term trends, etc.) is often
found at different time scales [e.g., M�endez et al., 2006; Holthuijsen, 2007; Men�endez et al., 2009]. Many
coastal structures have been designed on return levels derived from stationary methods, which assume no
change to the frequency of extremes over time [Klein et al., 2009]. However, the frequency of extremes is
likely to change in response to changes in climate [IPCC, 2007; Milly et al., 2008]. Therefore, statistical meth-
ods that account for the nonstationary behavior of the climate system are needed [e.g., Parey, 2010; Cooley,
2013; Salas and Obeysekera, 2014].

Typically, nonstationary behavior is introduced as a covariate in one or more of the parameters of the
extreme value distribution, which are estimated by maximizing the likelihood function. The parameters of
an extreme distribution are varied to represent nonstationary processes such as seasonal effects (modeled
with harmonic functions, e.g., sine waves), long-term trends (linear and/or exponential terms), and climatic
influence (covariates) such as the ENSO variability [Katz et al., 2002; M�endez et al., 2006]. Other nonstationary
methods use neural networks to model the nonlinear behavior of covariates [Cannon, 2010]. Changes in the
covariates produce changes in the distribution of extremes and thus allow analysis of projected climate
variability.

Extreme events can result from the combination of high values of different components. Statistically,
longer records result in smaller errors, and furthermore, the record should be long enough to encom-
pass the range of variability in extremes [Serafin and Ruggiero, 2014]. This has prompted the develop-
ment of probabilistic methods to simulate thousands of estimates of wave climates [Hawkes et al., 2002;
M�endez et al., 2006; Callaghan et al., 2008; Men�endez et al., 2009; Cannon, 2010; Wahl et al., 2012;
Corbella and Stretch, 2013]. Most probabilistic methods analyze the dependence between variables of
interest without taking into consideration the climate [Hawkes et al., 2002; Wahl et al., 2012; Corbella
and Stretch, 2013] or introduce the climate as a covariate which impose, normally, the use of a single
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variable as main driver due to the complexity involved [M�endez et al., 2006; Callaghan et al., 2008;
Men�endez et al., 2009; Cannon, 2010].

This paper introduces an extreme value model that relates the nonstationary behavior of extremes to the
occurrence probability of associated daily weather patterns. The proposed method is based on the avail-
ability of weather-types approaches to successfully downscale the mean [Camus et al., 2014] or extremes
[Garavaglia et al., 2010] of a local variable of interest via large-scale predictors such as sea level pressure
fields (SLP). The use of a weather-type approach to estimate return values of a variable of interest, in this
case significant wave height, allow analysis of extreme wave climate variability at different time scales such
as seasons or years and it may open the possibility to explore a multivariate analysis.

The paper is organized as follows: section 2 provides a background on weather-typing approaches and
extreme value theory. Section 3 describes the methodology. Section 4 presents the application of the
method to three study sites and analyzes the extreme significant wave height distribution at different time
scales (annual and monthly maxima). Wave climate variability is also characterized at one of the locations
by using a twentieth century hindcast of monthly significant wave height maxima. Finally, section 5 con-
tains the summary and the conclusions.

2. Background

2.1. Weather-Type Statistical Downscaling
Statistical downscaling (SD) approaches are used to relate large-scale predictors to regional-to-local predic-
tands. SD provides a cheap and efficient alternate to dynamical downscaling (i.e., performing a series of
nested simulations). SD has proven to be a useful tool to analyze wave climate at a variety of time scales
[Giorgi et al., 2001]. Among several SD methods described in Camus et al. [2014], we have chosen a
weather-type approach, where a discrete number of weather patterns are classified according to synoptic
similarity. To our knowledge, SD estimation of extreme daily wave events based on weather types has not
been previously explored. In our model, nonstationarity at seasonal and interannual scales is introduced in
the time-dependent occurrence probabilities of the weather types.

2.2. Extreme Value Theory
Basic extreme value theory assumes that realizations of a random variable are independent and identi-
cally distributed. Under the assumptions of independence and stationarity, the Generalized Extreme
Value (GEV) and Generalized Pareto (GP) distributions arise as approximations for block maxima (e.g.,
annual maximum) and for excesses over a high threshold, respectively [Katz, 2013]. For the GEV and GP to
hold as asymptotic approximations to the distribution of extremes, temporal independence is not strictly
necessary, since a wide range of middle dependence conditions could be equally valid [Leadbetter, 1983;
Galambos, 1987].

In studies of wave climate, GEV models are typically based on annual maxima [Coles, 2001; Beirlant et al.,
2004]. However, employing higher sampling frequencies allows larger sample sizes and thus improved
accuracy of the model as long as appropriate treatment of the dependence structure is maintained. Based
on this, we analyze the feasibility of sampling daily and correcting the dependence between consecutive
days by the use of extremal indices. The extremal index is defined as the inverse of the mean cluster dura-
tion [Coles, 2001]. Here each cluster is defined as a weather-type (WT). The WT classification, which groups
the data according to similar wave-generating meteorological processes, improves the homogeneity of sub-
samples and, therefore, the hypothesis of ‘‘identically distributed’’ samples. This approach permits the
downscaling of nonstationary processes taking into consideration nonlinear relationships by means of
changes in the probability of occurrence of the WTs.

3. Methodology

Figure 1 summarizes the daily extreme SD method. The steps of the methodology are:

1. collecting historical data of predictor and predictand and preprocessing the predictor,
2. performing a regression-guided classification following Cannon [2012],
3. defining weather types of the synoptic circulation conditions,
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4. fitting a stationary extreme model (e.g., GEV) on the predictand associated to each weather type,
5. obtaining the extremal index associated to each weather type,
6. performing the convolution of the distribution functions of the weather types to obtain associated return

periods, and
7. applying the model to different temporal periods.

3.1. Predictor and Predictand Definition
The first step is to obtain historical data of both the atmospheric predictor and predictand needed to ascer-
tain the statistical model that relates them. The spatial and temporal coverage of the predictor is one of the
most important consideration of the proposed methodology. Based on previous works [Camus et al., 2014;
Perez et al., 2014] the predictor data must fulfill two main characteristics: (1) the spatial domain should cover
the oceanic region responsible for generation of waves arriving at a location of interest and (2) the temporal
coverage (recent history) should account for the wave travel time from generation to the target location.
The daily predictor is defined as the sea level pressure (SLP) and the square SLP gradients (SLPG), the latter
representing the geostrophic wind conditions that are derived from the SLP fields. To account for recent
atmospheric conditions, responsible of the swell component, the daily predictor is defined as the mean con-
dition of each day and the n previous days.

3.2. Regression-Guided Classification
A higher skill of the statistical downscaling method for multivariate wave climate has been achieved
using a semisupervised clustering algorithm (P. Camus et al., An atmospheric-to-marine synoptic classifi-
cation for statistical downscaling marine climate, submitted to Ocean Dynamics 2015), following the
regression-guided approach proposed by Cannon [2012]. A better grouping of the predictand is obtained
due to a stronger relation of the WTs with the local wave climate. This approach has helped to improve
the classification performance also when the predictand is associated with extreme values. The classifica-
tion is performed as follows: First, the dimensionality of the data is reduced by applying Principal Com-
ponent Analysis (PCA). Next, a multiple linear regression linking the predictand Y (defined by the sea-
state parameter of analysis, the daily maximum significant wave height, Hs) and the predictor X (defined
by the PCs that explain 95% of the variance of daily SLP and SLPG fields) is performed. The linear regres-
sion is formulated as

Figure 1. The proposed methodology to obtain a climate-dependent extreme model.
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Y5X � B1E; (1)

where B is the matrix of the regression coefficient to be estimated and E is the residual error matrix. The pre-
dictions from the fitted model are given by

Ŷ 5X � B: (2)

Once the regression model is fitted, the atmospheric data (X) and the predictions of the local waves from
the regression model (Ŷ ) are concatenated and weighted using the parameter a. Next, a K-means algorithm
is applied to the combined data set

Z5 12að Þ � X 1 a � Ŷ
� �

; (3)

where 0 � a � 1. The two end-members are a 5 0, where only the predictor is classified corresponding to
unsupervised clustering and a 5 1, where the method is driven exclusively by the prediction of the predic-
tand, equivalent to fully supervised clustering. A random initialization of the K-means algorithm is used, but
in order to ensure enough data to compute the extreme analysis, a minimum number of data points are
required in each cluster to accept the classification.

3.3. Weather Types
In the third step, the number of weather types NWT are calculated as the mean of the synoptic circulation
conditions included in each cluster of the regression-guided classification (P. Camus et al., submitted manu-
script). Each cluster of the classification will have an associated empirical probability of occurrence for the
period of study.

3.4. Fitting a GEV for Each WT
In the fourth step, a stationary extreme value model is fit to the sample associated with each WT. GEV
theory provides a description of the probability distribution of block maxima of a sample. Although the GEV
distribution is typically fit to annual maxima, in this case the application is still appropriate as input data (or
local predictand) represent maxima of daily blocks associated with each particular WT. Thus, a stationary
GEV is fit for each cluster. The GEV distribution is given by

F yð Þ5exp 2 11 n
y2 l

w

� �� �21
n

( )
: (4)

The model has three parameters: the location parameter, l; the scale parameter, w; and the shape
parameter, n. The GEV distribution includes three family types corresponding to the different types of
the tail behavior. When n> 0, GEV corresponds to the Frechet distribution that has a heavy tail decaying
polynomially; when n< 0, the GEV corresponds to the Weibull family that is characterized by a bounded
tail; and when n 5 0, the GEV is a Gumbel distribution having an exponentially decaying tail [Coles,
2001].

Special consideration is required in the estimation of the shape parameter both because it is usually cor-
related with the location and scale estimations and because it exhibits a strong influence on the esti-
mate of large (return period) quantiles. Therefore, some analysis is performed to provide a more reliable
fit of the distribution. The first step is to determine the suitability of the fitted distribution based on a
Chi-squared test and finally a weighted average of the shape parameter with the four immediate neigh-
bors in the PCs space is performed. Therefore, the GEV parameters obtained to each WT are based on
the associated historical data, only a smoothing of the shape parameter is performed via its average
within similar WTs.

3.5. Climate-Based Extremal Index
The extremal index � [Coles, 2001] is used to approximately account for the dependence between
records of the same sample. In this approach, we have defined a finite number of samples corresponding
with the number of WTs. Persistent circulation patterns or WTs may have an interdaily dependence
which can be overcome with the climate-based extremal index {�i, i 5 1,.,NWT}. The extremal index is esti-
mated by calculating the mean duration �di of persistent conditions at each WT, so that the larger the
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duration of the WT, the larger the depend-
ence among successive observations and
smaller the extremal index.

3.6. Monthly and Annual Distributions
The statistical relationship between the pre-
dictor and the predictand is established in
the sixth step. The cumulative distribution

function (CDF) at a monthly or annual scale of the peak sea-state parameter, y, for the whole study period
can be inferred as

Fmax yð Þ5
YNWT

i51

Fi y; li;wi; nið ÞN�pi �hi ; (5)

where Fi(y;mi,wi,ni) is the cumulative distribution function for the corresponding predictand of WTi, pi is the
probability (monthly or annual) of the ith cluster in the studied period, N is the number of block maxima
per month (N 5 30 days/month) or per year (N 5 365 days/year), and hi is the extremal index associated to
WTi. Assuming a constant extremal index associated to each WT imposes a mean persistence of each WT.
Although with this simplification, certain natural variability is probably not being modeled, it simplifies the
simulation and still provides accurate estimates. This methodology bears similarities to the procedure pro-
posed by Challenor [1982] using twelve distributions for monthly maxima and by Morton et al. [1997] using
four seasonal distributions. However, in our method, each weather type has its own occurrence probability
pi, which must be considered when combining the corresponding distributions.

3.7. Using the Model in Different Time Periods
Extreme wave height distributions for different time periods are estimated based on the new probabilities
of the clusters p’i; i51; . . . ; NWTf g and the corresponding distribution function of the predictand obtained
previously with equation (4) for each weather type (or cluster). The model is presented by calculating return
levels for annual and monthly maxima and a reconstruction of significant wave maxima over the twentieth
century. Since the method presented here is a nonstationary model, the quantiles are time-dependent.

4. Application

The methodology is applied to three regions of the North Atlantic with different wave climates: Coru~na,
Spain [98W, 43.58N], La Palma, Canary island, Spain [188W, 298N], and Mayo, Ireland [10.58W, 54.58N]. Differ-
ent wave climates are found among these sites despite their common location in the North Atlantic. The

northern locations (Mayo and Coru~na)
are more exposed to Atlantic storms,
thus receiving higher energetic condi-
tions. In addition, the bathymetry and
coastline configuration varies at each
location, for example the Canary
Islands rise from very deep waters
where as Ireland has a shallow conti-
nental shelf (see Table 1 and Figure 2
for more information of each site).

4.1. Data
4.1.1. Predictor
The global SLP fields of the Climate
Forecast System Reanalysis (CFSR)
[Saha, 2010] are used to define the
predictor of the SD model. The tempo-
ral coverage spans from 1979 to 2013
with hourly temporal resolution and
0.58 spatial resolution.

Figure 2. Selected spatial domain of SLP predictor (black points). Red points show
study locations (analyzed predictands).

Table 1. Geographical Characteristics of Each Study Site

Location Lon (8) Lat (8)
Water

Depth (m)
Distance From
Coastline (km)

Mayo 210.5 54.5 179.08 35
Coru~na 29 43.5 204.24 21
La Palma 218 29 2707 25
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4.1.2. Predictand
Long-term, continuous, and spatially resolved records of data are needed in the construction of SD models.
Therefore, wave reanalyses often provide the preferred data source due to their homogeneity and temporal
coverage. In this work, the wave hindcast of 1979–2013 by Perez et al. [2015] with hourly resolution and
0.1258 spatial resolution in the continental shelf provides the historical significant wave height (Hs) data.

Figure 3. (a) Weather-types (WT) classifications represented by SLP fields (hPa) corresponding to the predictor-to-predictand classification obtained for Mayo, Ireland. (b) Occurrence
probability (pi, in blue scale) and (c) associated extremal index (hi, in red scale).
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4.2. Statistical Downscaling Method for Daily Maxima
Based on the method for ‘‘Evaluating the Source and Travel time of the wave Energy reaching a local Area,’’
namely ESTELA [Perez et al., 2014], a common generation area for all the locations is selected. Figure 2
shows the area selected in the North Atlantic basin 248N–708N and 548W–108E as the spatial domain of the
predictor. In order to account for the wave propagation time from generation to destination and based on
the ESTELA information, the predictor is defined as the three-daily mean SLP and three-daily mean SLPG.
PCA reduces the data redundancy and keeps 95% of the data variance using 95 PCs. The predictand y is the
maximum significant wave height (Hsmax) every 24 h at the target location.

The weather-type classification is performed at each location. As in Camus et al. [2014] a number of
NWT 5 100 synoptic WTs are used. A lesser number of WTs was tested with poorer results and a larger num-
ber of WTs diminishes the number of data points at each WT. Although individual classification is obtained

Figure 4. Associated histogram and GEV fitted probability distributions for daily maxima significant wave height in meters at each WT at Mayo, Ireland. The corresponding parameter
estimates of each distribution are illustrated in the bottom plots.
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at each study site, only the classification at Mayo on the Northwest Irish coast is shown. However, the results
for each site are discussed in the text.

In Figure 3a, the WTs corresponding to Mayo location are illustrated in a 2-D lattice using a similarity criterion to
provide an intuitive visualization of the classification. Low-pressure systems (below an averaged sea level pres-
sure of 1013 hPa) are displayed on blue color scale and high-pressure systems on a red color scale. Two different
groups of low-pressure systems are found. The first group, associated with the WTs located on the upper left cor-
ner of the lattice, is related to the positive phase of the North Atlantic Oscillation (NAO), which is characterized by
intense low-pressure system located over Greenland and the high over the Azores islands. The second group,
located on the bottom right corner, exhibits a similar dipole but displaced south-eastward and can be associated
with the East Atlantic (EA) positive phase [Izaguirre et al., 2011]. Figure 3b shows the occurrence probability of the
WTs during the historical period (1979–2013) in a blue color scale, and Figure 3c the associated extremal index in
a red color scale. Lower values of the extremal index are found for the WTs representing anticyclonic situations
over the study site, since their mean persistence is usually larger than in storm conditions. Similar weather pat-
terns are found in the other locations, however, different optimal factors (a) for the classification are chosen at
each site to obtain the most accurate extreme analysis. The final optimal factors chosen at each site were a 5 0.6
for Coru~na, a 5 0.3 for Mayo, and a 5 0.2 for La Palma. The differences between optimal factors are attributable
to the geographic location of each study site. In particular, because only one parameter (Hs) is used in the
regression-guided algorithm the predictand does not provide enough information to infer the origin of the
waves. Notably, this effect and the lower values of the optimal factor are found for the Mayo and La Palma sites.

Figure 4 shows the histogram of daily significant wave height maxima, the fitted GEV distribution and the
parameter estimates for each WT. In Figure 4, weather types with more intense low-pressure systems, responsi-
ble for wave generation in the Atlantic basin correspond to larger values of the location parameter. This pattern

Figure 5. Annual return period significant wave height for the three study sites. The shaded areas represent the 95% confidence intervals
of the annual significant wave heights obtained via Monte Carlo simulation based on WTs annual occurrence probabilities during the cali-
bration period (1979–2013).
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is observed for all the locations. The shape estimate parameter in Mayo takes slightly positive values (Frechet
family type), at some WTs that represent high-pressure systems possibly due to the rare occurrence of large
waves associated to these WTs. This effect is consistent with typical behavior of summer season [Men�endez
et al., 2009]. No positive values of the shape parameter are found at La Palma or Coru~na sites for any of the WTs.

Figure 5 shows annual return periods of significant wave heights based on the proposed method (red line)
for the three study sites including 95% confidence intervals (shaded areas) obtained via a Monte Carlo simu-
lation. One thousand realizations of 3000 years at daily scale are used to calculate the confidence intervals.
In each realization, different values {mi,wi,ni, i51; . . . ; NWT } are employed considering the statistical distribu-
tion of the parameter estimates. In order to account for the interdaily dependence in the Monte Carlo simu-
lation, the parameter estimates associated to each WT are modified according to the associated extremal
index [Coles, 2001]. Different behavior is observed at the different locations: Coru~na and La Palma have
bounded tails (Weibull-family behavior) while Mayo has a heavy tail (Frechet-family behavior) and wider
confidence intervals. Therefore, for example, the estimates of the 100 year event for the different locations
are Mayo 19.2 (61.9) m, Coru~na 13.37 (60.9) m, and La Palma 8.9 (60.7) m. For comparison purposes, also

Figure 6. Monthly return period significant wave heights for the three study sites. The shaded area represents the 95% confidence inter-
vals for the annual significant wave heights obtained via Monte Carlo simulation based on WTs monthly occurrence probabilities during
the calibration period (1979–2013).
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a stationary GEV (blue line) is fit to the annual maxima Hs (black dots) and shown in Figure 5. The stationary
GEV provides similar results to the current WTs method; however, the stationary method is constrained to
the available historical data and thus is limited in its application to longer time periods.

The monthly GEV distributions of significant wave height are shown in Figure 6. Larger waves occur at
Mayo for every month compared to Coru~na and La Palma. To obtain the annual maxima distribution associ-
ated to each month, the monthly WTs occurrence probabilities are used for both the annual return period
estimation based on equation (5) (red line) as well as for the Monte Carlo simulation. The most severe condi-
tions, with the largest monthly quantiles, occur during the winter months (December, January, and Febru-
ary) for the three locations. The statistical model is able to reproduce the extreme monthly behavior with a
few exceptions at Mayo in February or November, where it does not replicate two exceptionally large wave
events. In general, the model has poorer skills to reproduce the lower values of the distribution, however
on average the upper tail of the distribution is adequately modeled.

4.3. Assessing Climate Variability
The statistical model developed here is able to reproduce extreme wave heights at different time periods
outside the calibration period, owing to the statistical relationships established between the local extreme
conditions and the atmospheric forcings. As an example, a reconstruction of monthly significant wave
height maxima for the whole twentieth century is presented in Figure 7.

The long-term reconstruction of maxima significant wave height is derived from SLP data from the twentieth
century atmospheric reanalysis (20CR) [Compo et al., 2011], spanning from 1871 to 2010. The use of 20CR

Figure 7. (a) Top: monthly maxima temporal evolution at Mayo, Ireland (blue line) from GOW reanalysis (1979–2013) and 2.5 and 97.5 quantiles of simulated Hs (shaded area) based on
monthly WTs occurrence probabilities from 20CR (1950–2010); orange line corresponds to the mean annual simulated maxima. Bottom: WTs annual occurrence probability of those WT
associated with large values of NAO index (�3) and annual NAO index [Hurrell et al., 2003]. (b) Probabilities of occurrence for the present conditions (1979–2010) of the WTs (classification
shown in Figure 3) from CFSR reanalysis and 20CR reanalysis. (c) WTs occurrence probabilities associated with NAO index �3.
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reanalysis as a predictor is validated with the comparison of the occurrence rates of the defined WTs for the two
reanalysis (20CR and CFSR) for the common period (1979–2010) (Figure 7b). In Figure 7a (top), the historical
monthly maxima significant wave height is shown for the wave reanalysis time period (blue), as well as the
reconstruction of 95% intervals of simulated monthly maxima based on WTs probabilities obtained with SLP
fields from 20CR. Figure 7b shows good agreement between hindcasts and high skill of the model to reproduce
wave height maxima outside of the calibration period. Application of the current method to Global Climate
Models (GCMs) under different climate scenarios to estimate future extreme events is straightforward. However,
due to the large uncertainty associated with GCMs we have focused the current study on the twentieth century.

Variability in atmospheric patterns characterized by the NAO index may have a large influence on wave
extremes [Izaguirre et al., 2010]. Therefore, in order to test how the model is able to reproduce climate vari-
ability, we have analyzed the evolution of the occurrence probability of WTs that are related to the positive
phase of NAO [Hurrell et al., 2003] at the Mayo location. The selected WTs correspond with those located on
the upper left corner of the mesh of Figure 3, which as mentioned in section 4.2 have higher probability of
occurrence with positive values of NAO (Figure 7c). Figure 7a (bottom) demonstrates a clear correlation
between the occurrence probability of these WTs and the NAO index (0.67 Pearson correlation). Large val-
ues of NAO index were found during the 1990s which correspond to larger probabilities of occurrence of
the selected WTs and therefore larger values of wave height maxima (Figure 7a, top). Similarly, the probabil-
ity of occurrence of the selected WTs (and significant wave height maxima) diminishes with lower values of
the NAO index. This pattern is perceptible by the simulated mean annual maxima, the orange line of Figure
7a (top). These results are in agreement with previous works [Bertin et al., 2013; Camus et al., 2014], where
the influence of the NAO pattern on mean wave height in northern Europe was investigated.

The analysis performed here reveals the importance of large-scale climatic patterns in the behavior of
extreme significant wave heights. In addition, if we calculate the 100 year return period event in the Irish
location estimated using the whole twentieth century and only the last 34 years of wave reanalysis data it is
found that they differ by almost 1 m (not shown). This difference may be due to the persistence of positive
phase of NAO during most of the wave reanalysis time period which coincides with the occurrence of larger
wave events. Therefore, it is possible that the largest recorded event at the Mayo location (18.37 m) had a
much longer return period that would be expected to occur during the wave reanalysis period.

5. Summary and Conclusions

A statistical model to downscale and analyze the variability of daily maxima of significant wave height is
presented. The model is based on the ability of a predictor-to-predictand synoptic classification model to
group observations according to similar generating meteorological processes, namely WTs. A stationary
extreme value model is fit to each WT. The associated distribution for a certain period of time is obtained
via a combination of the GEV distributions of the 100 WTs used here to classify the whole population. Non-
stationarity is introduced in the model through the occurrence probability of each WT as a function of time,
i.e., probabilities of each WT at a particular month, season or year. The interdaily dependence is treated by a
climate-based extremal index, which specifically models the persistence at each particular WT.

The model is applied to three locations in the Atlantic basin with different wave climates. Differences were
found in the optimal regression-guided classification, mainly in the factor a, that defines the relative influ-
ence of the predictor and predictand in the classification. Some differences were also found in the parame-
ter estimates of the extreme value distributions of each WT, reflecting the particularities of the extreme
distributions for each site. The results of the model provide useful information to identify which WTs are
related to the more extreme events and to explain the interannual variability. The influence of large-scale
patterns, such as those described by the NAO index, has been explored by analyzing the time evolution of
the occurrence probabilities of certain WTs. A reconstruction of monthly maxima estimates for the twenti-
eth century has been performed using the 20CR atmospheric reanalysis [Compo et al., 2011]. Although it is
beyond the scope of this work the importance of understanding large-scale patterns such as NAO is high-
lighted due to its influence on extreme wave height variability.

The model provides new ways to gain insights about climate variability of extreme events. This work has
focused on a univariate model given the complexity and novelty introduced. However, future research will focus
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on modeling the daily-to-interannual sequence of weather patterns and the extension to multivariate extreme
analysis by considering other sea-state parameters such as wave period, direction or 10 m wind intensity.
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