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Abstract 

Three different types of anaerobic sludge (granular, thickened digestate and anaerobic 

sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion 

of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a 

high efficiency process yielding a volumetric methane production rate of 4.1 L CH4 L
-1 

d-1 at 1.5 days HRT (0.248 L CH4 g
-1 COD) at an organic loading rate of 16.4 g COD L-

1 d-1. The thickened digestate sludge experimented flotation problems, thus resulting 

inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented 

biomass wash-out, but allowed high process efficiency operation at 3 days HRT, 

yielding a volumetric methane production rate of 1.7 L CH4 L
-1 d-1 (0.236 L CH4 g

-1 

COD) at an organic loading rate of 7.2 g COD L-1 d-1. To guarantee the success of the 

UASB process, the settleable solids of the slurry must be previously removed. 

Keywords: Granular sludge, anaerobic sewage sludge, supernatant, volumetric methane 

production rate, thickened digestate  
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1. Introduction 

The concentration of industrial pig farms involves the increase and concentration of 

animal waste production. When handled improperly this waste causes, among other 

environmental problems, greenhouse gas emissions and soil and groundwater pollution 

by nitrates (Xu et al., 2016).  

Intensive pig farms use cleaning systems in which pressurized water is used to carry and 

handle the waste. This system facilitates the movement of the waste and improves the 

hygiene and the sanitary conditions of the farms. However, an enormous disadvantage 

is the complication of the management of increased volumes of slurry, the semi-liquid 

manure resulting from the mixture of defecations, washing water and residues of food 

and bedding. 

Thermal dehydration in centralized facilities was the most widespread treatment option 

for pig slurry in Spain in areas with high farming density, due to a strong institutional 

support. The process used waste heat from combined heat and power plants (CHP), 

fueled by natural gas. This marginalized other alternatives such as anaerobic digestion. 

However, the reform of the electricity sector by the Royal Decree 413/2014 (MITT, 

2014), which substantially reduced the price of cogenerated kWh, made this technical-

financial mechanism economically unsustainable. As a consequence, all of the 

cogeneration facilities processing pig slurry in Spain were closed in 2014. In this 

context, future pig slurry treatment systems must be efficient, environmentally friendly 

and economically sustainable without the help of artificial bonuses that can be 

withdrawn via a change in legislation.  



  

3 

 

From an energy-efficient point of view, the anaerobic digestion of pig slurry is much 

more adequate. When the slurry decomposes in the absence of oxygen it produces 

methane, a renewable fuel, contributing to environmental protection and energy demand 

reduction (Zhou et al., 2016). This option, instead of consuming energy, produces it and 

the resulting energy can be used by the farms themselves, while the digested slurry is 

usable as fertilizer with improved properties (Antezana et al., 2016; Massé et al., 2011). 

This practice would imply compliance with one of the basic ecological principles, 

namely, closing the cycle of raw materials. 

Despite the benefits of the anaerobic digestion, the dilution of manure with cleaning 

water reduces the energy potential in the slurry due to its relative low volatile solids 

(VS) content. It implies low biogas production rates in continuous stirred tank reactor 

systems (CSTR) currently used for manure anaerobic digestion (Bergland et al., 2015), 

making the economic viability of pig slurry biogas plants in conventional wet anaerobic 

facilities difficult (Vu et al., 2016; Yang et al., 2015).  

Under this scenario, if technically viable, the high rate anaerobic digestion technology 

in upflow anaerobic sludge blanket (UASB) reactor can provide a more efficient 

solution for the anaerobic treatment of pig slurry. Compared with the CSTR reactor, the 

main advantages of the UASB reactor are smaller reactor size (lower investment costs) 

and the fact that mechanical stirrers are not required (lower investment and operational 

costs). This opens up the possibility of using UASB technology not only in large pig 

farms, but also in medium and small-sized premises due to small reactor size and the 

low investment and operating costs.  
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The UASB reactor concept was created and developed by Gatze Lettinga and 

collaborators (Lettinga et al., 1980). The feasibility of the UASB reactor has been 

sufficiently demonstrated for treating mainly soluble wastewaters. One of the basic 

conditions for the success of high rate anaerobic digestion process in UASB reactors is 

the development of granular sludge, a highly settleable sludge with high methanogenic 

activity (Hulshoff Pol, et. al, 1983). However, there is no consensus about the 

mechanism and operation conditions triggering granulation (Chong et al., 2012; 

Hulshoff Pol et. al, 2004). High ammonia nitrogen concentration has been suggested as 

a factor that prevents granulation in UASB reactors (Hulshoff Pol et. al, 1983). This 

could be the reason for the lack of granulation in UASB reactors treating animal manure 

slurry. When granulation does not occur, granules from another UASB reactor can be 

used to seed the reactor with granular biomass. In this case, availability of granules 

from another UASB reactor is required. It is also important that granules do not 

disintegrate due to the change in the feed characteristics and operation conditions 

(Weiland and Rozzi, 1991). 

If granular biomass is unavailable, the UASB reactor can perform efficiently without 

granules (Chong et al., 2012; Lettinga and Hulshoff Pol, 1991). However, the lower 

settling capacity of the sludge implies that a lower organic loading rate should be 

applied, thus resulting in higher hydraulic retention time (HRT) and higher reactor 

volume. Anaerobic sewage sludge or other types of anaerobic digested sludge can be 

used to seed the UASB reactor. The main advantage of the anaerobic sewage sludge is 

the higher availability of this anaerobic biomass. Another type of anaerobic biomass, 

such as digestate from agro-industrial biogas plants may have the advantage of being 

adapted to the substrate to be treated in the UASB reactor. Accordingly, digestate from 
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a conventional biogas plant processing pig manure can provide microorganisms 

acclimated to the ammonia nitrogen levels of pig slurry.  

On the other hand, the presence of suspended solids in the UASB feed can hinder the 

success of the process by reducing the specific methanogenic activity of the sludge, 

promoting the formation of scum layers, affecting the stability of granular biomass and 

leading to its spontaneous and sudden wash-out (Lettinga et al., 1991). In a recent work, 

Bergland et al. (2015) studied the efficiency, flexibility and stability of pig manure 

supernatant in UASB reactors seeded with granular biomass, concluding that the 

treatment of pig manure supernatant in UASB reactors is technically feasible.   

The objective of the present work is to evaluate the anaerobic treatment of pig slurry in 

UASB reactors with three different types of seed sludge with the aim to determine the 

capacity of the inocula to reach rapid stable operation conditions at high efficiency 

performance levels. Thickened digestate from an agro-industrial biogas plant, anaerobic 

sewage sludge and granular biomass were the seed inoculum assayed. The study has 

been developed with filtered pig slurry and raw pig slurry as UASB feed. The UASB 

reactor performance was evaluated in terms of methane and biogas production, volatile 

fatty acids evolution and process stability under increasing organic loading rates. The 

biochemical methane potential of the filtered slurry and the raw slurry were also 

determined to evaluate the efficiency in terms of methane yields obtained in the UASB 

process.  

2. Materials and methods 

2.1 Pig slurry  
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The UASB reactors were fed with raw and filtered pig slurry from a closed-cycle pig 

production farm. The raw pig slurry (RPS) was collected from the storage pit and the 

filtered slurry (FPS) was the result of filtering the raw slurry through a 100 µm textile 

filter. Both the filtered and the raw slurry were stored at 4ºC until use.  

2.2. UASB seed 

Three different types of sludge were used to seed the UASB reactors with the aim to 

compare the performance of the UASB process with different inoculum sources: 

thickened digestate (TDS) from an agro-industrial biogas plant that processes pig slurry 

and slaughterhouse wastes (108.7 g TS kg-1 sludge and 86.7 g VS kg-1 sludge), 

anaerobic sewage sludge (ASS) from an anaerobic digester of a wastewater treatment 

plant (33.5 g TS kg-1 sludge and 18.4 g VS kg-1 sludge) and granular biomass (GR) 

from an industrial UASB reactor treating wastewaters from a bioethanol production 

plant (90.2 g TS kg-1 sludge and 71.3 g VS kg-1 sludge).  

2.3. UASB reactor and mode of operation 

Lab-scale UASB reactors with an operating volume of 1 L were used (1.3 L total 

volume). The UASB reactors were cylindrical, made of plexiglass, measuring 65 mm in 

internal diameter and 450 mm in height. In the upper part, the reactor was provided with 

a gas-liquid-solid separator device similar to those described in the literature for UASB 

reactors (Lettinga and Hulshoff Pol, 1991). The feed was prepared daily and entered the 

reactor by its lower zone and the effluent left the reactor by means of an exit tube on the 

upper part of the reactor. The reactor was fed in semi-continuous mode in 15-minute 

cycles by means of a temporized peristaltic pump. A stable reactor temperature was 

maintained at 36 ± 1ºC in the UASB reactor using a thermostat-controlled electric 
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heating blanket. Biogas left the reactor through the gas collector by its own pressure. 

The biogas in the UASB reactor was collected daily in one or two 5-L gas tedlar bags, 

depending on the amount produced. The volume of biogas was measured by connecting 

the gas bags to a liquid displacement system device. 

The reactors inoculated with granular and thickened digestate sludge were filled with 

500 g of biomass (wet weight). On the other hand, due to the lower VS content of the 

anaerobic sewage sludge, the reactor seeded with this inoculum was filled with 1000 g 

of sludge (wet weight).  

The reactors were first filled with the seed sludge and with the filtered slurry and batch 

operated for a week to facilitate a progressive acclimatization of the microorganisms 

and to observe the settling behavior of the sludge. Then, the reactors were started up at 3 

days HRT with the filtered slurry as feed. Steady state was assumed when the operation 

conditions were maintained for three HRTs and the reactor showed stability. At this 

point, HRT was reduced by increasing the daily feed flow. This operation was repeated 

until reactor efficiency decreased or operational problems occurred. Operation with raw 

slurry was only planned in the event of successful operation with the filtered slurry for 

each of the seed inocula used in the UASB reactors. 

2.4. Biochemical Methane Potential tests 

Biochemical methane potential (BMP) tests for the raw and the filtered slurry were 

carried out with the three types of sludge used as UASB seed inoculum. The test was 

performed for each substrate and inoculum in triplicate in 250-mL serum bottles capped 

with rubber septum sleeve stoppers, following the methodology described in Valero et 

al. (2016). 
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For the BMP determination, each bottle was filled with 150 g (wet weight) mixture of 

substrate and inoculum with a VSinoculum/VSsubstrate ratio of 2. For each inoculum, the 

blanks were also assayed in triplicate to measure methane potential of the inocula. 

Results are expressed as means ± SD subtracting methane production from the blanks. 

In order to complete the set-up of the reactors, they were flushed with nitrogen to 

remove the oxygen in the headspace of the bottles, and then incubated at 37ºC for 35 

days. Gas production was determined by pressure measurement. The pressure was taken 

from the headspace of the reactors through the septum with a syringe connected to a 

digital pressure sensor with a silicon measuring cell (ifm, type PN78, up to 2 bar).  

2.5 Analytical techniques 

The volatile fatty acids (VFA) were determined using a HP6890 gas chromatograph 

(GC) fitted with a 2 m 1/8-in glass column, liquid phase 10% AT 1000, packed with the 

solid-support Chromosorb W-AW 80/100 mesh. Nitrogen was used as the carrier gas at 

a flow rate of 14 mL/min, and a FID detector was installed. The VFA concentrations are 

expressed in COD units. The biogas composition was assayed on a 2 m Poropak T 

column in a HP 6890 GC system with helium as the carrier gas at a flow rate of 15 

mL/min with a TCD detector. The biogas and methane production measurements are 

expressed at 0ºC and standard pressure of 760 mm Hg (NCTP) in dry conditions. The 

influent and effluent pHs were measured from samples with a glass electrode pH meter 

(WTW, SENTIX 21). Total Solids (TS), Volatile Solids (VS), Chemical Oxygen 

Demand (COD), Total Ammonia Nitrogen (TAN) and alkalinity were performed 

according to standard methods (APHA, 1998).  

3. Results and discussion 
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3.1 Characteristics of the filtered and the raw slurry 

According to the characteristics of the raw and the filtered slurry (Table 1), it can be 

said that the characteristics of the latter are quite favorable for the UASB process. Some 

doubts might arise about the raw slurry due to its particulate matter content. Both 

substrates present a high ratio CODVFA/COD as well as a high alkalinity content which 

will result in high COD conversion to methane and protection against acidification. The 

total ammonia nitrogen (TAN) levels in both substrates are not so suitable for anaerobic 

digestion, but are below serious inhibition levels reported in the literature. Ammonia 

inhibition has been reported at TAN concentrations values above 1.7 g L-1 for 

unacclimated biomass (Chen et al. 2008). However, free ammonia (FA) is the toxic 

agent, and thus pH and temperature play an important role in this kind of inhibition. 

Thermophilic processes are more sensitive to high TAN levels due to higher FA/TAN 

ratios. Increased tolerance as a result of biomass acclimatization has allowed anaerobic 

digestion under TAN concentration as high as 8 g TAN L-1 (Parkin et al., 1983). 

Concerning ammonia inhibition in the anaerobic digestion of pig manure, Hansen et al. 

(1998) reported a threshold inhibition value of 1.1 g FA L-1, below which the process 

was uninhibited. Taking into account the TAN content of the pig slurry used in this 

work (2.9 g TAN L-1), a pH of 8.7 or higher would result in FA values higher than 1.1 g 

FA L-1 at 35ºC. Therefore, the TAN content in the pig slurry used in this work should 

not inhibit the process, but a short period of acclimatization can be expected for the 

biomass not previously adapted to these TAN levels.  

With regards to particulate matter, the filtered slurry should not be problematic for the 

UASB process. The insoluble COD fraction accounts only for 20% of the total COD 

and the TSS are below 6 g TSS L-1. With these characteristics the high rate UASB 
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process should perform successfully at organic loading rates (OLR) between 15 and 24 

g COD L-1 d-1 with granular sludge and between 5 and 8 g COD L-1 d-1 with flocculent 

sludge, according to the criteria reported by Lettinga and Hulshoof Pol (1991). In the 

case of the raw slurry, the insoluble COD fraction represents 35% of the total COD 

which calls into question the success of the high rate treatment according to the same 

criteria. 

However, in view of an industrial application at farm scale, raw slurry is a much more 

profitable substrate. A filtration process implies an additional cost in filtration 

equipment and operation. In addition, the removal of organic matter through the 

filtration process would result in a substrate with lower methane potential than that of 

the raw slurry.   

3.2 BMP test of raw and filtered slurry with different inocula 

The cumulative methane production results from the BMP tests are depicted in Fig. 1. 

As expected from the different VS content, the filtered slurry yielded a lower volume of 

methane per liter of substrate than the raw slurry. The filtered slurry yielded 615 ± 8 mL 

CH4 g
-1 VS (279 ± 5 mL CH4 g

-1 COD), which results in 6.0 ± 0.1 L CH4 per liter of 

filtered slurry. The raw slurry yielded 640 ± 12 mL CH4 g
-1 VS (301 ± 4 mL CH4 g

-1 

COD), which results in 8.7 ± 0.1 L CH4 per liter of raw slurry.  

For both substrates, the three inocula attained similar methane potentials after 35 days. 

However, the speed at which methane was produced throughout the test was 

significantly different for the different inoculum sources. Anaerobic sewage sludge was 

the inoculum that processed both the filtered and the raw slurry the fastest. The granular 

sludge and the thickened digestate showed a similar methane production rate evolution 
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throughout the test. The reason for the faster degradation rate observed with the sewage 

sludge can be attributed to the higher volume of inoculum used (due to its lower VS 

content), which diluted the ammonia of the pig slurry. Due to the higher volume of 

sewage sludge inoculum, the ammonia nitrogen levels from pig slurry in the BMP 

reactors was diminished by dilution with the inoculum (52% ASS inoculum with FPS, 

60% ASS inoculum with RPS – wet weight), thus reducing the possibility of 

methanogenesis inhibition. The higher ammonia nitrogen levels in the BMP reactors 

with granular sludge can be the reason for the slower degradation rate with this 

inoculum source (21% GR inoculum with FPS, 28% GR inoculum with RPS – wet 

weight)). On the other hand, the ammonia nitrogen levels should not be the reason for 

the slower degradation rates in the bottles containing the thickened digestate inoculum. 

In this case, the thickened digestate showed an important residual methane yield. It 

implies that some of the VS that were assumed to be microorganisms, were in reality 

residual organic matter not processed in the biogas plant, which in turn results in a 

lower amount of active microorganisms. 

Inoculum selection has been pointed out as an important factor for obtaining a reliable 

estimation of the methane potential of organic substrates (De Vrieze et al., 2015; 

Holliger et al., 2016). The similar results obtained with the three types of inoculum 

increase the reliability of the methane potential observed for the raw and the filtered 

slurry and the capacity of the inocula to process both substrates. These BMP results are 

particularly useful to evaluate the efficiency of the UASB process in terms of methane 

yields. 

The high values of specific methane yields (SMY) can be explained by the VS 

determination method, which includes drying at 105ºC and incineration (550ºC).  
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During the drying phase, up to 75% of the VFA in the samples can be lost (Derikx et al., 

1994). Therefore, the high VFA content in the pig slurry, together with its high 

contribution to the total organic matter, is the reason why the VS values obtained were 

lower than the real values, inflating the SMY. In this sense, a wide range of SMY can 

be found in the literature for pig slurry. Córdoba et al. (2016) observed an SMY of 256 

mL CH4 g
-1 VS for pig slurry with 7.21% TS and 6.23% VS content. Kafle and Chen 

(2016) reported 323 mL CH4 g
-1 VS for pig manure with 31.02% and 26.93% TS and 

VS content. Møller et al. (2004) reported SMY between 329 and 403 mL CH4 g
-1 VS 

for different samples of pig manure ranging from 16.7% to 22.3% VS content. With 

regards to SMY from pig slurry with lower solids content, Cestonaro do Amaral et al. 

(2016) reported SMY ranging between 170 and 642 mL CH4 g
-1 VS for raw pig slurry 

samples (VS content between 0.5-2.6%) collected at different departments of two pig 

farms in Brazil. The same authors also reported a SMY value as high as 737 mL CH4 g
-1 

VS for supernatant liquid fraction of pig slurry (0.33% VS) collected from a sow 

farrowing house. Bergland et al. (2015) reported an SMY of 685 mL CH4 g
-1 VS for pig 

manure supernatant with 14.5 g TS L-1 and 7.3 g VS L-1 content at continuous operation 

in UASB reactor at 48 h HRT. 

3.3 UASB reactors performance 

3.3.1 UASB seeded with granular sludge 

The granular sludge occupied approximately 40% of the useful volume reactor and 

remained settled in the bottom part of the reactor during the batch period. Then, the 

reactor started to be continuously fed with the filtered slurry at 3 days HRT. The reactor 

produced biogas from the first operation day and the sludge blanket got expanded.  
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The performance of the reactor during operation with the filtered slurry in terms of 

volumetric methane production rate (VMPR) and methane yield is represented in Fig. 

2a (days 1-34). During the first operation days, the methane production was lower than 

expected from the BMP results. Although the process was stable, the methane yield did 

not exceed 3.5 L CH4 L
-1 filtered slurry (163 mL CH4 g

-1 COD), about 41% lower than 

the BMP value. From day 5, methane production progressively increased, stabilizing at 

a value around 5 L CH4 L
-1 filtered slurry (233 mL CH4 g

-1 COD) after 18 operation 

days at 3 days HRT. When HRT was reduced at 2 days and afterwards at 1.5 days, the 

reactor rapidly reached steady state conditions increasing not only the VMPR, but also 

the methane yield, reaching stable values of 3.5 L CH4 L
-1 d-1 and 5.3 L CH4 L

-1 filtered 

slurry (247 mL CH4 g
-1 COD) at 1.5 days HRT. Taking the BMP value as a reference, 

the efficiency of the process (CH4 UASB yield/BMP value) was 88%. At this point, the 

organic loading rate was 14.3 g COD L-1 d-1. When the HRT was set at 1.1 days, the 

reactor suffered biomass wash-out and was stopped after 34 days of operation. As can 

be deduced from the data in Fig. 2a, the wash-out was not critical because the VMPR 

was still increasing, reaching 4.0 L CH4 L
-1 d-1. Despite the reactor showing potential to 

maintain stable operation at 1.1 days HRT, the feed was stopped in order to re-start the 

process with the raw slurry.   

During the operation with the filtered slurry, the effluent pH values, as well as the 

methane content in biogas, showed symptoms of process robustness. The effluent pH 

values ranged between 8.6 ± 0.1 and 8.4 ± 0.1 for HRT from 3 to 1.5 days. At 1.1 days 

HRT, the pH dropped to 8.3 ± 0.1. The alkalinity of the effluent was also stable with 

values ranging between 11.0 and 11.7 g CaCO3 L
-1. The methane content in the biogas 

decreased with the increasing organic loading rate, which is a consequence of increased 



  

14 

 

carbon dioxide production per unit volume of the liquid phase, saturating the liquid 

phase with CO2 (Rico et al., 2015). The mean methane content percentage values in the 

biogas were 86.4 ± 1.3, 84.4 ± 0.9, 82.6 ± 0.7 and 81.5 ± 0.5 for 3, 2, 1.5 and 1.1 days 

HRT.  

The VFA concentration in the effluent (Fig. 2b) corroborates the results described 

above. During the first operation days, the effluent had a concentration value of 5.2 g 

CODVFA L-1. The increasing methane yield observed indicated a progressive acclimation 

of the granular biomass to the substrate and operation conditions. When the reactor 

reached higher methane yields, the VFA concentration in the effluent remained low in 

value, between 1.3 and 1.8 g CODVFA L-1 at HRT of 3 and 2 days. At higher loading 

rates, when the HRT was set at 1.5 days, the VFA decreased to concentrations lower 

than 1 g CODVFA L-1, which coincides with the highest methane yield values and the 

process efficiency observed. Propionic acid was the predominant VFA, followed by 

acetic.  

After stopping the feed with the filtered slurry at day 34, the UASB reactor was 

maintained for two days without feeding to allow its degasification. At day 36, the 

reactor started to be fed with the raw slurry at an HRT of 3 days. The raw slurry formed 

a layer of sediments in the bottom of the feed vessel. To avoid the entrance of the settled 

sediments into the reactor, the slurry take-off point was placed above the sediments 

layer.  

The reactor reached rapidly steady state conditions, as can be seen in Fig. 2a (days 36-

62). After three days of operation, the reactor yielded a stable value of 6.1 L CH4 L
-1 

raw slurry (0.248 L CH4 g
-1 COD). When HRT was reduced to 2 days and afterwards to 
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1.5 days, the reactor, once again, showed a strong robustness. The methane yield 

remained at 6.1 L CH4 L
-1 raw slurry, whereas the VMPR increased up to 4.1 L CH4 L

-1 

d-1 at an HRT of 1.5 days, a value 17% higher than that for the filtered slurry at the 

same HRT. When the HRT was set at 1.1 days, the VMPR was a constant 4.1 L CH4 L
-1 

d-1, but the methane yield decreased to 4.6 L CH4 L
-1 pig slurry (0.187 L CH4 g

-1 COD), 

indicating a decrease in the efficiency of the process. On the last two days of 

experimentation the slurry take-off point was placed at the bottom of the feed vessel, 

causing the entry of the settleable solids into the reactor. This, in turn, provoked a 

significant sudden wash-out of solids, including the anaerobic biomass. This suggests 

that the success of the process requires the removal of these sediments. 

The effluent pH values were very similar to those observed for the filtered slurry, 

ranging between 8.6 ± 0.1 and 8.4 ± 0.1 for HRT from 3 to 1.5 days and dropping to 8.3 

6 ± 0.1 at 1.1 days HRT. The alkalinity of the effluent was also stable with values 

ranging between 12.0 and 12.5 g CaCO3 L
-1, which prevents acidification. The methane 

content in the biogas was a bit lower compared with the filtered slurry, and also 

decreased with the increasing organic loading rate, the mean percentage values being 

83.7 ± 0.8, 82.7 ± 0.6, 82.2 ± 0.6 and 80.4 ± 0.7 for 3, 2, 1.5 and 1.1 days HRT.  

In this case, there was a bigger difference between the methane yield in the UASB 

process and the BMP value of the pig slurry: 6.1 L CH4 L
-1 raw slurry in the UASB 

process and 8.7 L CH4 L
-1 raw slurry in the BMP test. This can be explained by the fact 

that the raw slurry was homogenized for the BMP test, so that the settleable solids were 

introduced in the BMP reactor bottles. On the other hand, settleable solids were not 

allowed to enter into the UASB reactor, as it was fed just with the supernatant pig 

slurry. The low VFA content in the effluent corroborates that sediments removal was 



  

16 

 

the reason for this difference. The minimum presence of VFA in the effluent at HRT of 

3 and 2 days shown in Fig. 2b (days 36-62) is indicative of the high process efficiency 

performance and proves that all the available biodegradable organic matter was being 

degraded. At 1.5 days HRT, VFA concentration in the effluent reached 1.6 g CODVFA 

L-1, but at 1.1 days HRT the VFA value increased up to 3.3 g CODVFA L-1, which 

confirms the decrease in the efficiency of the process. Finally, values of 5.0 g CODVFA 

L-1 in the effluent were measured when the take-off point was placed at the bottom of 

the feed vessel.  

3.3.2 UASB seeded with thickened digestate 

The thickened digestate sludge occupied approximately 40% of the useful volume 

reactor and experimented sludge flotation from the first day of operation during batch 

operation. Some of the biogas produced was entrapped under the mass of sludge, 

causing its flotation. When the reactor started to be continuously fed with the filtered 

slurry, sludge flotation became an operational problem. The sludge blanket got broken 

in two parts and the biggest one got trapped under the gas-solid separation device. The 

first continuous-mode operation days resulted in poor reactor performance, as Fig. 3a 

shows. Methane yields were quite low compared to those attained with the granular 

sludge reactor, with values lower than 1.5 L CH4 L
-1 filtered slurry (70 mL CH4 g

-1 

COD). The reason for the low efficiency of the reactor was probably the channeling 

caused by the sludge clogging, which hampered the contact between microorganisms 

and substrate. To cope with this, after six days of operation a propeller-shaped piece of 

plastic was placed at three-quarters of the reactor height, with the aim to stop the sludge 

flotation. The piece of plastic worked and stopped the rise of the sludge. Although the 

big block of sludge remained under the prop and did not settle to the bottom of the 
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reactor, the efficiency of the reactor improved progressively and after 26 days of 

operation, the reactor yielded 5.0 L CH4 L
-1 filtered slurry (233 mL CH4 g

-1 COD), a 

similar value to that attained with the granular biomass. Then, the HRT was reduced to 

2 days and the methane yield suffered a small decrease down to 4.3 L CH4 L
-1 filtered 

slurry (200 mL CH4 g
-1 COD). The HRT was reduced to 1.5 days with the aim to create 

higher hydraulic turbulence to allow the release of the biogas entrapped in the sludge. 

However, the shorter HRT increased the operational problems. The methane yield 

continued to decrease and the reactor was stopped because the sludge rose above the 

plastic piece and some solids were expelled out with the biogas, ending up in the gas 

bag. 

The effluent pH values ranged between 8.6 ± 0.1 and 8.4 ± 0.1 for HRT from 3 to 2 

days. The alkalinity of the effluent ranged between 10.0 and 10.5 g CaCO3 L
-1. At 1.5 

days HRT, the pH dropped to 8.2 ± 0.1. The methane content in the biogas was a bit 

higher compared to the granular sludge reactor, and also decreased with the increasing 

organic loading rate, the mean percentage values being 87.0 ± 0.5, 84.2 ± 0.5 and 83.5 ± 

0.6 for 3, 2 and 1.5 days HRT.  

The VFA levels in the effluent correspond with the methane yields observed during the 

experimentation. During the first days of operation, before the piece of plastic was 

installed inside the reactor, the concentration of VFA in the effluent was 8.1 g CODVFA 

L-1. From then on, as methane yield increased, the VFA concentration in the effluent 

progressively decreased, dropping down to a value lower than 1.5 g CODVFA L-1 at day 

26, on the last day of operation at 3 days HRT. When HRT was set at 2 days, the VFA 

concentration in the effluent increased to 2.7 g CODVFA L-1. As a significant difference 

with regard to the granular sludge reactor, the predominant VFA was the acetic acid 
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with very low levels of propionic acid. It is indicative of the higher capacity of the 

thickened sludge to process the pig slurry despite the high ammonia nitrogen levels. The 

higher acetic concentration could possibly be a consequence of a limited contact 

between microorganisms and substrate caused by sludge flotation and clogging. In fact, 

the reactor was working more as an anaerobic filter than as a UASB reactor, which, in 

turn, results in a process with lower efficiency (Lettinga et al., 1983).  

Due to the difficulties found in the operation with this type of sludge as inoculum, the 

reactor was not operated with the raw slurry. 

3.3.3 UASB seeded with anaerobic sewage sludge  

The anaerobic sewage sludge occupied approximately 75% of the useful volume reactor 

and remained settled in the bottom part of the reactor during the batch period. When the 

reactor started to be continuously fed with the filtrated slurry at 3 days HRT, the sludge 

blanket expanded and some solids were washed-out from the first operation day.  The 

reactor produced biogas from the first operation day and the methane yield 

progressively increased as Fig 4a shows. After ten operation days, the reactor reached a 

methane yield of 5.0 L CH4 L
-1 filtered slurry (233 mL CH4 g

-1 COD). Then, the HRT 

was reduced to 2 days and wash-out increased notably. The VMPR increased, but the 

methane yield decreased, reaching a stable value of 4.6 L CH4 L
-1 filtered slurry (214 

mL CH4 g
-1 COD) after five days of operation at this HRT.  When HRT was reduced to 

1.5 days, excessive wash-out forced the reactor stop. At this point the methane yield had 

decreased to 3.8 L CH4 L
-1 filtered slurry (177 mL CH4 g

-1 COD). 

Similarly to the previous assays, the effluent pH values ranged between 8.6 ± 0.1 and 

8.4 ± 0.1 for HRT from 3 to 2 days. At 1.5 days HRT the pH dropped to 8.3 ± 0.1. The 
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alkalinity of the effluent ranged between 9.0 and 9.5 g CaCO3 L
-1. The methane content 

in the biogas decreased with the increasing organic loading rate, the mean percentage 

values being 86.0 ± 0.7, 84.2 ± 0.8 for 3 and 2 HRT.  

During reactor operation, the system was not able to provide an effluent VFA 

concentration below 1.5 g CODVFA L-1. As can be observed in Fig. 4b, the lowest VFA 

concentration reached in the effluent was 1.7 g CODVFA L-1, which was attained at 3 

days HRT. At shorter HRTs, the VFA concentration increased, reaching a value of 4.2 g 

CODVFA L-1 on the last operation day, at an HRT of 1.5 days. As in the case of the 

granular sludge, the predominant VFA was the propionic acid, followed by acetic.   

Due to the lower reactor efficiency performance compared with the granular sludge and 

the wash-out observed, the reactor was not operated with the raw slurry. 

3.4 Comparison of CSTR and UASB systems for the anaerobic treatment of pig 

slurry. 

The reactor performance results of the present work have been compared with previous 

anaerobic treatment systems reported for pig slurry in CSTR and UASB systems. The 

UASB process shows improved performance in terms of smaller reactor size (higher 

OLR), VMPR and methane content in the biogas. As summarized in Table 2, previous 

studies that processed pig slurry in CSTR systems required HRT equal or longer than 10 

days to attain high efficiency performance. Creamer et al. (2008) and Pagilla et al. 

(2000) processed slurries with higher TS and VS content than those in the present work, 

thus obtaining higher methane yields (L CH4 L
-1 substrate). It is not possible to know if 

those slurries would have been suitable for the UASB process due to their higher solids 

content. However, the similar TS and VS content of the pig slurry processed in 
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Regueiro et al. (2012), allows its comparison with that in the present work. In this case, 

the differences are significant. The HRT was 6.7 times higher, the VMPR was 11 times 

smaller, and the methane content was much lower (55% versus 82%).  

In previous UASB studies, Bergland et al. (2015) processed supernatant pig slurry (14.5 

g TS L-1 and 7.3 g VS L-1) in UASB reactor (35ºC) with granular biomass at OLR 

between 14 and 400 g COD L-1 d-1, operating at HRT between 48 and 1.7 h. The higher 

methane yield was obtained at the lowest OLR, reaching an SMY of 685 mL CH4 g
-1 

VS (5.0 L CH4 L
-1 slurry) with 81% CH4 content in the biogas. The highest VMPR 

(34.0 L CH4 L
-1 d-1) was reached at the highest OLR (400 g COD L-1 d-1). However the 

efficiency in terms of methane yield at this OLR was 52% lower, (329 mL CH4 g
-1 VS 

and 2.4 L CH4 L
-1 slurry). Kalyuzhnyi et al. (1999) treated diluted supernatant pig slurry 

in UASB reactor (35ºC) seeded with granular sludge. The slurry processed had a VS 

content of 6-15 g L-1.The reactor was operated at OLR of 12 g COD L-1 d-1 (1.2 days 

HRT), reaching a VMPR of 3.2 0 L CH4 L
-1 d-1 (77% CH4 in biogas) and a methane 

yield of 3.8 L CH4 per liter of slurry . 

3.5 Process considerations 

The results obtained show great potential for pig slurry treatment in UASB reactors. 

The process has been successfully performed at high efficiency levels at HRT between 

3 and 1.5 days, depending on the type of biomass seed. Another advantage of this 

process is the high quality of the biogas, with methane contents higher than 80%. 

Moreover, the process only requires a relatively small size UASB reactor, a feed pump, 

a biogas boiler for energy use and a heat exchange system to provide the required 

process temperature. No mixing devices are required, thus making the process quite 
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competitive and energetically efficient. This confirms that, when treatment of pig slurry 

in this type of reactor is possible, the economy and mechanical simplicity of the process 

can make it economically sound. In this sense, Asam et al. (2011) reported that animal 

slurries with water content higher than 90% make the economic viability of 

conventional (CSTR) biogas plants difficult.  

It is important to note that the degree of dilution of the pig slurry and the resulting solids 

content is an important factor for the UASB process. The VS content and the 

biodegradability of the pig slurry will determine the methane potential of the slurry and, 

thus, the economic viability of the process. The TSS content will determine the 

suitability of the UASB process. For instance, the solids content of the pig slurry used in 

this work were optimal for the UASB process. The organic matter content of the 

supernatant slurry resulted in a positive net energy production yield, as data in Table 3 

shows. It is probable that a slightly higher solids content would result in a higher 

methane yield without operational problems at a similar HRT, thus improving the 

energetic balance. But it is also probable that a significantly higher solids content would 

make the filtration of the pig slurry necessary, thus requiring additional equipment and 

cost to obtain the filtered slurry suitable for the process. On the contrary, a higher 

dilution of the pig slurry would result in a lower solids content and lower methane 

yields that would make the process less attractive from an energetic (and economic) 

point of view.     

With regards to the different types of inocula studied in this work, the best operation 

conditions for each inoculum are summarized in Table 3. The granular sludge reactor 

was able to work stably at high efficiency levels at an HRT of 1.5 days and an OLR of 

16.4 g COD L-1 d-1 with the supernatant raw slurry. At higher OLR (shorter HRT), 



  

22 

 

biomass wash-out started when treating the filtered slurry and also efficiency decreased 

in the case of the raw slurry. It is probable that a more gradual increase in the OLR 

might result in stable process performance at higher OLR, which would have allowed 

successful operation at HRT close to 1 day. 

The reactor seeded with the thickened digestate suffered sludge flotation problems that 

make its use in UASB reactors not recommendable. However, the low propionic acid 

levels found in the effluent and the high methane content in the biogas suggest a very 

good adaptation of the microbial reactor community to the pig slurry. Although this 

kind of sludge is not suitable for the UASB process, it could be useful for other concept 

of process, such as the bacterial sludge entrapment (anaerobic filter), the bacterial 

immobilization by attachment to fixed surfaces (anaerobic fixed film reactor) or the 

mobile particulate surfaces (anaerobic attached film expanded bed). 

The anaerobic sewage sludge can be an alternative to inoculate a UASB reactor for the 

treatment of pig slurry when there is no availability of granular sludge. In such a case, 

the size of the reactor should be larger in comparison with the granular sludge reactor. 

The OLR should not exceed the recommended values for flocculent sludge, 8 g COD L-

1 d-1 (Lettinga and Hulshof Pol, 1991). This value is in accordance with the results 

obtained in the present work, since the best operation conditions were performed at an 

HRT of 3 days with an OLR of 7.2 g COD L-1 d-1. Higher OLR applied resulted in 

excessive biomass wash-out and decreases in reactor efficiency.  

4. Conclusions 

Pig slurry can be efficiently treated in UASB reactor after removing settleable solids. 

Granular sludge performance allowed a high efficiency process at 1.5 days HRT, 
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yielding 6.1 L CH4 L
-1 supernatant pig slurry. The thickened digestate sludge was 

unsuitable for the UASB process due to sludge flotation. The anaerobic sewage sludge 

can be an alternative for the treatment of pig slurry in UASB reactors when there is no 

availability of granular biomass. UASB reactor technology is a promising solution for 

pig slurry due to the small reactor size required, low associated costs and high process 

efficiency. 
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Figure captions 

 

Figure 1. Methane yield curves (BMP test) of the filtered (FPS) a) and the raw (RPS) b) 

pig slurry substrates for the anaerobic sewage (ASS), granular (GR) and thickened 

digestate (TDS) sludge inocula. Error bars show standard deviations. 

 

Figure 2. a) Volumetric methane production rate (VMPR) and methane yield at 

different HRTs and b) VFA in the effluent during UASB operation with granular 

sludge.  

 

Figure 3. a) Volumetric methane production rate (VMPR) and methane yield at 

different HRTs and b) VFA in the effluent during UASB operation with thickened 

digestate sludge.  

 

Figure 4. a) Volumetric methane production rate (VMPR) and methane yield at 

different HRTs and b) VFA in the effluent during UASB operation with anaerobic 

sewage sludge.  
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Table 1. Characteristics of the filtered and the raw pig slurry used in this study 

Parameter Filtered Slurry Raw Slurry 
COD (g L-1) 21.5 ± 1.3 28.9 ± 1.8 
CODsupernatant (g L-1) 20.7 ± 0.8 24.6 ± 1.5 
CODsoluble (g L-1) 17.2 ± 0.7 18.8 ± 1.1 
CODVFA (g L-1) 13.5 ± 0.6 15.5 ± 0.9 
NH4

+-N (g L-1) 2.8 ± 0.1 2.9 ± 0.2 
COD/N ratio 7.7 ± 0.7 8.8 ± 0.8 
Alkalinity (g CaCO3 L

-1) 8.5 ± 0.1 9.0 ± 0.2 
TS (g L-1) 14.3 ± 0.4 19.2 ± 0.6 
VS (g L-1) 9.7 ± 0.4 13.6 ± 0.6 
TSS (g L-1) 3.6 ± 0.5 8.5 ± 0.4 
VSS (g L-1) 2.9 ± 0.3 7.2 ± 0.5 
pH 7.3 ± 0.2 7.3 ± 0.2 
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Table 2- Operational features of successful anaerobic digestion systems for pig 

slurry in CSTR and UASB systems 

Substrate 

TS - 

VS 

(g L
-

1
)  

Reactor type 

Operation 

Temperature 

HRT 

(days) 

OLR  

(kg 

COD 

m-3·d-

1
) 

VMPR 

(L L
-1

 

d-1) 

CH4 in 

biogas 

(%) 

CH4 yield 

(L L
-1

 

substrate) 

Reference 

Diluted pig 
slurry 

32.0 
- 

21.5 

CSTR 
55ºC 

10 5.5  1.0 74 10.0 
Creamer et 
al. (2008) 

Non diluted 
pig slurry 

43 – 
28 

CSTR  
37ºC 

15 --- 0.47 --- 7.0 
Pagilla et 
al. (2000) 

Filtered pig 
slurry 

17.3 
- 

11.7  

CSTR 
35ºC 

10 2.0 0.37 55 3.7 
Regueiro et 
al. (2012) 

Diluted 
supernatant 
 pig slurry 

11.5 
- 

10.5 

UASB-
granular 

35ºC 
1.2 12 3.2 77 3.8 

Kalyuzhnyi 
et al. 

(1999) 

Supernatant 
pig slurry 

14.5 
– 7.3 

UASB-
granular 

35ºC 
2 14.2 2.5 81 5.0 

Bergland et 
al. (2015) 

Supernatant 
pig slurry 

14.5 
– 7.3 

UASB-
granular 

35ºC 
0.07 400 34.0 76 2.4 

Bergland et 
al. (2015) 
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Table 3. Summary of the best operation conditions for the UASB process with different types 

of seed sludge 

Type of seed sludge Granular Granular 
Thickened 
Digestate 

Anaerobic Sewage  

Type of pig slurry 
(substrate) 

Filtered slurry 
Supernatant 
Raw slurry 

Filtered slurry Filtered slurry 

HRT (days) 1.5 1.5 3 3 

OLR (g COD L-1 d-1) 14.3 16.4 7.2 7.2 

L CH4 L
-1 d-1 3.5 4.1 1.7 1.7 

L CH4 L
-1 substrate 5.3 6.1 5.0 5.0 

%CH4 in biogas 82.6 82.2 87.0 86.0 

mL CH4 g
-1 COD 246 248 236 236 

% Efficiency (with respect 
to BMP value) 

88.3 n.d.a 83.3 83.3 

Biogas gross energy  
(kWhthermal m

-3 substrate) 
53 61 50 50 

Energy required to heat 
the substrateb 
(kWhthermal m

-3) 
17 17 17 17 
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a BMP for the supernatant raw slurry was not assayed 

b Assuming 1 Kcal/(kg C) as substrate specific heat capacity and a required temperature substrate increase 
of 15ºC   

 

  

Operational problems No No Sludge flotation Wash-out 
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• Supernatant pig slurry is suitable for UASB at stable high process performance. 

• Thickened digestate sludge was inappropriate as seed inoculum source.  
• Granular biomass inoculum reactor yielded 248 mL CH4 g

-1 COD at 1.5 days HRT. 
• Anaerobic sewage sludge inoculum reactor yielded 236 mL CH4 g

-1 COD at 3 days 
HRT. 

 


