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Abstract

The inter- and intra-crystalline fractions d?atella vulgata limpets recovered from
archaeological sites in Northern Spain (coveringolitléc, Mesolithic, Magdalenian,
Solutrean, and Aurignacian periods) were examined &mino acid composition and
racemisation over time. The calcitic apex and rieaa of the shells were found to probably
be composed of similar proteins, as the D/L valaed amino acids were comparable and
varied in the same way with increasing age; howeer mineral structures present in these

areas differed. The aragonitic intermediate parthef shell showed a distinctly different
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amino acid composition and mineral structure. Thannprotein leaching from the inter-
crystalline fraction occurred within the first 6@Q@r after the death of the organism. In
contrast, the intra-crystalline fraction — compdsaf a different protein composition than
the inter-crystalline fraction — appeared to behase closed system for at least 34 ka, as
reflected by the lack of a significant decreasthamamino acid content; however, changes in
the amino acid percentages occurred during thieghemhe concentration of aspartic acid
remained almost constant with age both in interd amra-crystalline proteins, and its
contribution to the total amino acid content insewith age at the expense of other amino
acids such as glutamic acid, serine, glycine aadia¢. Temperature is thought to play a key
role in the amino acid racemisation Bf vulgataand could explain why in the localities
belonging to the Gravettian and Solutrean periotliclw formed during relatively cold
conditions, D/L values were similar to those detdan shells from sites formed during the

Magdalenian.

Key-words: Patella wvulgata, inter- and intra-crystalline proteins, amino acids,

microstructure, archaeology

Highlights:

- The calcitic apex and rim &. vulgatashells are probably made of similar proteins

- The aragonitic intermediate area has a differenharacid composition

- The main protein leaching in the inter-crystallfreection occurs in the first 6 ka
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- Asp content remained constant up to 34 ka in irsted intra-crystalline fractions

- The percentage of aspartic acid increased witH@age ca. 34 ka)

1. Introduction

The first attempts to establish the chronology oklls middens using amino acid
racemisation/epimerisation date back to the 197@snwMasters and Bada (1977) and
Wehmiller (1977) analysed marine bivalve mollus€hipng from California. Several
studies have demonstrated that amino acid racaoms@hAAR) is a satisfactory tool for
dating palaeontological and archaeological siteduding the use of limpets recovered from
Palaeolithic and Mesolithic anthropogenic shell deids (Bateman, 2008; Ortiz et al., 2009a;
Demarchi et al.,, 2011). Shell middens often acdateurelatively rapidly but they are
subject to complex taphonomy. Consequently, lagyepde sizes for dating are required to
resolve issues of intra-site chronology (e.g. Gtosteal., 1990; Stein and Deo, 2003).The
number of samples commonly used for the age caloolaf a single level through AAR
allows not only the rejection of anomalous resuligf also an understanding of time-

averaging and the time over which a certain sitenéal.

Some uncertainties regarding the protein diagersddimpet shells remain. Further research
is therefore required to clarify the processesrotgin preservation and degradation and the
concomitant success of AAR for dating archaeolddmealities. Recent studies of modern
limpets performed by Demarchi et al. (2011, 201B8asbowed the potential of intra-

crystalline proteins inPatella shells for AAR geochronology. In these studiegifiaal
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diagenesis was induced in proteins (both inter-iatrd-crystalline protein fractions, and the
isolated intra-crystalline fraction) of moderRatella shells through high-temperature
experiments (80° 110° and 140°C) over a rangéinodés (0 to 5738 h). The protein
breakdown was quantified by measuring the extedtranemisation of various amino acids.
This provided data on protein diagenesis in modlerpets; however, it is pertinent to reveal
the circumstances of protein degradation in fosgiresentatives. In this regard, here we
examined the amino acid content and D/L valuesnipéts Patella vulgata collected from
several archaeological sites of known ages (daye@) covering the Aurignacian (ca. 34
cal. ka BP), Gravettian (ca. 27.5 cal. ka BP), 8ean (ca. 26.5-20.5 ka cal. BP), Lower,
Middle and Upper Magdalenian (20.5-12.0 cal. ka,BRj)lian (ca. 12.0-10.8 cal. ka BP),
Mesolithic-Asturian (10.8-6.3 cal. ka BP), and N#mt (ca. 6.3-5.8 cal. ka BP) period2.
vulgata was chosen because this limpet is the most conspenies in shell middens in
Northern Spain (Gonzélez-Morales, 1982; Bailey &rdighead, 2003; Gutiérrez-Zugasti,
2009, 2011; Alvarez-Fernandez, 2011). We examimedbiehaviour of the whole protein
content (inter- and intra-crystalline proteins) ahd intra-crystalline fraction separately, the

latter by bleaching prior to analysis.

Several studies (Haugen and Sejrup, 1992; Wehmillé®3; Torres et al., 1999) have
reported intra-shell variation of D/L values depiegdon the part of the carapace from which
the sample is recovered. We therefore also stutieedmino acid content and D/L values of

two parts of the shell (apex and rim) in samplegasious ages.

2. Material and methods
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The samples were collected from 12 sites in thensgof Asturias and Cantabria (Northern
Spain) previously excavated in archaeological cagmsa(Fig. 1). Permission was obtained
for sampling the limpets. Once collected, the shekre stored at the “Museo Arqueoldgico
de Asturias”, the “Museo de Prehistoria y Arqueddode Cantabria”, and the “Museo y

Centro de Investigacion de Altamira”. Limpets weleaned with water after their collection

and stored in boxes at room temperature (15°Chénmuseums. The coordinates of the
localities are reported in Table 1 (Fig. 1), togettvith the time period of the archaeological

level sampled.

P. vulgata shells from the levels belonging to the Upper @alithic (Aurignacian,
Gravettian, Solutrean, Magdalenian, Azilian), Mé&bad (Asturian) and Neolithic (Table 1)
periods were analysed for AAR. For comparitive ggs, modern specimens were

recovered from Cue beach (Asturias), located dioske archaeological localities (Fig. 1).

2.1 Petrographic analysis

SelectedP. vulgatashells from modern individuals were cut into thecsons along their
major axis and placed on microscope slides. Torahete the distribution of minerals and the
organic matrix, the sections were submerged inltsegmd Mutvei’s solutions for 5 min and

observed under a Nikon microscope.

To distinguish between the two calcium carbonatgmorphs that mollusc shells generally
form, we applied Feigl’s solution, which was pregphfollowing Feigl (1937, in Friedman

1959). This procedure stained aragonite crystalskhwnhile calcite ones remain unstained.
5
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To highlight the organisation of the organic matamd the crystal arrangement, we used
Mutvei's solution (Mutveiet al. 1994), following the modifications described byh8oeet

al. (2005): one litre of Mutvei's solution consists T30 ml 1% acetic acid, 500 ml 25%
glutaraldehyde and ca. 5 to 10 g Alcian blue powdbe use of Mutvei's solutiofacilitates
the identification of micro-growth structures inricanates of biogenic origin by staining

organic matrix laminae and crystal envelopes irdsbaf blue.

2.2 Amino acid racemisation

Between 4 and 1P. vulgatashells (analytical samples) from each archaeolbtgval were
analysed for amino acids. The use of monospecificm@nogeneric samples reduces
taxonomically-controlled variability in D/L valug®lurray-Wallace, 1995; Murray-Wallace
and Goede, 1995). In the laboratory, shells werefgby sonicated and cleaned with water
to remove sediment. Peripheral parts, approxima&@h30%, were removed after chemical
cleaning of the sample with 2 N HCI.

For all samples, we drilled a small disc in thexapéthe shells, which has been shown to
reduce variability (cf. Murray-Wallace, 1995). Tlaslection was also based on the results
from the petrographic analysis, which showed the &pex was made of calcite (cf.
MacClintock, 1967; Fenger et al., 2007, Ortiz et @009a; Demarchi et al., 2013a). In
addition, we sampled the rim, also made of calaitéhe same limpets (with the exception of
those from La Riera cave) in order t test intraHshariation. The intermediate part of the
shell was also sampled, but only in modern limpeas5-20 mg of apex and rim areas was

subjected to AAR analysis of the total protein emt(inter- and intra-crystalline proteins).
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Samples from the apex were also used to measurantimeo acids in the intra-crystalline

fraction after bleaching.

2.2.1 Bleaching

Powdered shell samples from the apex of the sameels used to analyse the total protein
content were used for the isolation of intra-crijta proteins. The shell particles measured
less than 500 um, following Demarchi et al. (2012a)ize for which bleaching is most
effective. In this regard, we exposed these powvetdsemnples to 10% sodium hypochlorite
(NaOCl), an effective oxidising agent for this posp (Penkman et al., 2008; Demarchi et al.,
2013a). Samples were exposed to NaOCI for 48imereported to be the optimal bleaching
period forP. vulgata(Demarchi et al., 2013a), although they used aGladncentration of
12%.

For each fraction, 5QL of NaOCI per mg of powdered shell was added tousately
weighed subsamples at room temperature. To enswecomplete penetration of the
oxidising agent, the vials containing the powderd the bleach were shaken every 24 h. The
bleach was then removed, and the powders weredrinsetimes in ultrapure water and once
in HPLC-grade methanol, with centrifugation or 4nmbetween each rinse to minimise the

removal of powder. Finally, the samples were aiediovernight.

2.2.2 Amino acid analysis
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Amino acid concentrations and racemisation/epiragda ratioswere quantified using a
HPLC, following the sample preparation protocolatdsed in Kaufman and Manley (1998)
and Kaufman (2000). This procedure involves hydsiglywhich was performed under ag N
atmosphere in 2(L/mg of 7 M HCI for 20 h at 100°C. The hydrolysatesre evaporated to
dryness invacuoand then rehydrated in 1@/mg of 0.01 M HCI with 1.5 mM sodium azide
and 0.03 mM Lkhomearginine (internal standard).

Samples were injected into an Agilent HPLC-1100igoed with a fluorescence detector.
Excitation and emission wavelengths were programate285 nm and 445, respectively. A
Hypersil BDS C18 reverse-phase columnu®; 250 x 4 mm i.d.) was used for the analysis.
Derivatisation was achieved before injection byimypthe sample (gl) with the pre-column
derivatisation reagent (2;d), which comprised 260 mM isobutyryl-L-cysteinenii@l thiol)
and 170 mM o-phtaldialdehyde, dissolved in a 1.@dassium borate buffer solution at pH
10.4. Eluent A consisted of 23 mM sodium acetat# k5 mM sodium azide and 1.3 mM
EDTA, adjusted to pH 6.00 with 10 M sodium hydraxiand 10% acetic acid. Eluent B was
HPLC-grade methanol, and eluent C consisted of HBlade acetonitrile. A linear gradient
was performed at 1.0 mL/min and 25°C, from 95% mleand 5% eluent B upon injection
to 76.6% eluent A, 23% eluent B, and 0.4% elueiat @in 31; and then with a progressive
gradient at 1.07 mL/min and the following perceesgl6.2% eluent A, 48.8% eluent B, and
5.0% eluent C at min 95. As a laboratory routine, separated the D and L peaks of the
following amino acids (Fig. 1-Supplementary Dataypartic acid and asparagine (Asx),
glutamic acid and glutamine (GIx), serine (Ser)anme (Ala), valine (Val), phenylalanine
(Phe), isoleucine (lle), leucine (Leu), threoniriér), arginine (Arg), and tyrosine (Tyr),

together with the abundance of glycine (Gly).
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Asx and GlIx D/L values obtained by means of HPLE ewmparable with those measured
with GC as similarities have been reported in Heoratory comparison exercises (cf.
Wehmiller, 1984; Torres et al., 1997; Wehmilleragét 2010) and between several samples
analyzed by GC and HPLC in our laboratory (cf. Det al., 2009b, p. 955, see Fig. 2-

Supplementary Data).

2.2.3 Data screening of the AAR analyses

A total of 121 powdered samples taken from the ageéX. vulgatashells were analysed for
amino acid content. The same 121 samples wereuatsibfor the bleaching experiment. Rim
samples of 76 of these limpets were also used terrdee their amino acid composition
(samples from the levels of La Riera Cave wereused because we obtained permission to
take samples only from the apex).

Of these, 14 results (11.6% of the data- 1 in Kdea®, 3 in Arenillas, 2 in Mazaculos 11, 1
in El Penicial, 1 in Bricia-B, 3 in El Cuco, 2 ievel 24 of La Riera, and 1 in level 23 of La
Riera 5) were excluded due to Asx and GIx D/L valtiet fall off the covarience trend (cf.
Kaufman, 2003, 2006; Laabs and Kaufman, 2003) (BdgsAppendix) and/or because of
abnormally high D/L values, characterised by Ask Bxid GIx D/L values falling outside the
26 range of the group (cf. Hearty et al., 2004; Kksamd Kaufman, 2008). These samples
also showed a low amino acid content. 12.4% ofitita from bleached apex samples, and
11.8% from unbleached rim samples were also exdluctgnciding in most cases with
outliers from unbleached apex. It is possible thase samples with high D/L values were

anthropogenically-heated. Each result and the ssswpjected are shown in the
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Appendix.The data used in the following sectionsriky from the screened samples, not

including outliers.

2.3 Temperature within the sediment of archaeological sites

As AAR is a temperature-dependent process, we pteginto observe the influence of
atmospheric temperature inside the archaeologited.sFor this purpose, permission was
obtained from the Communities of Asturias and Clamdato bury Hobo UA-001-64 digital
thermometers between 10 and 15 centimetres inB&leddiment at the entrance to some of
the caves where the remains were collected (El CAenillas, EI Perro, Mazaculos I, La
Riera, Bricia, El Penicial, and La Lloseta). Thetevices were programmed to register

temperature at 4-h intervals and data was collexted 1 year (January to December 2013)..

3. Intrashell variations

3.1 Petrographic analysis

As observed previously (MacClintock, 1967; Fengerak, 2007; Ortiz et al., 2009a;
Demarchi et al. 2013a), calcite was the main corapbof the apex and rim of modern and
archaeological representatives. These shell amraained unstained after submerging the

thin sections in the Feigl dye (Figs. 2A, B), whmtrresponded to layers M+3, M+2 and M-
10
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2 according to the terminology of MacClintock (196K being the myostracum (muscle
attachment site). In contrast, the intermediata &layers M+1, M, M-1) was stained black,
indicating that it was made of aragonite (Figs. BA, Similar to the findings of MacClintock
(1967) and Demarchi et al (2013a), we found thatdhter aragonitiayer didnot occupy a

significant portion of the shell

Of note, the boundary between the calcitic M-2 taged the aragonitic M-1 layer was not
straight but showed an interfingering relationshgtween the two layers (Fig. 2A). This
relationship was also observed when the shells stareed with Mutvei’'s solution (Fig. 2C).
This dye revealed major and minor growth lines iofgbnic carbonate, both in the calcitic
and aragonitic dominions, which were parallel te ghell surface. Major growth lines in the
cross-sections were identified as thicker, morepuomced lines, and these were more clearly
observed in layers M+1, M-1 and M-2 (Fig. 2C, D)inkr growth lines, representing
semidiurnal and lunar growth increments (Fengealet2007), were extremely fine and

detected only at high magnification (Fig. 2E).

Mutvei's solution also showed an irregular disttibo of organic matter through the shell
section, as revealed by a strong stain in thet@alapex (M-2) and rim (M+3, M+2), thus

indicating stripes rich in organic matter. In castr, aragonitic intermediate parts (M+1, M-1)
were a brownish colour. In most cases, the outeriMes and M+2 layers were not clearly

distinguishable, as also reported in Forli et2004).

The myostracum was very thin and showed a prisnsaticture with large crystals oriented
perpendicular to the shell surface (Fig. 2D). la thosest interior and external areas to the
myostracum (M-1, M+1 respectively), namely the aratic intermediate part, we observed a

complex crossed-lamellar structure consisting ahglicated hierarchical structural (first-,

11
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second- and third-order lamellar structures) festwith a feather-like pattern, in which the
fibres are oriented perpendicular to the surfacehef shell (Fig. 2E, G). Consistent with
observations by MacClintock (1967) and Cohen andnBhn (1992), we found that the

aragonitic M-1 layer was very thin (Fig. 2D, E).

In contrast, the microstructure of the rim (M+3, Bltayers) showed a concentric crossed-
lamellar pattern with crystal aggregates arrangadlfel to the shell margin, although in
these layers (M+2 and M+3) they then became gridahlique to the outer surface, with a
progressive twist to 90° of first order lamellagFeD, E, F, H), although columnar in
appearance. The apex, which was occupied by lay2r 8howed a microstructure with an

irregular to radial crossed-lamellar pattern (R2G).

In agreement with Watabe (1984) and Cohen and Brg©692), the complex crossed-
lamellar layers (M-1, M+1) consisted of aragonitdereas the concentric crossed-lamellar

layers (M+3, M+2, M-2) were made of calcite.

In brief, layers M+3, M+2 and M-2 were made of @a@nd rich in organic matter, although
showed different microstructural patterns. In castr M+1, M and M-1 layers consisted of
aragonite and contain less organic matter. For AdRanalysed the M-2 layer (apex), and
M+3 and M+2 layers (rim). In modern representatives also analysed the M+1 and M-1

layers located in the intermediate area.

3.2 Amino acid D/L values

3.2.1 Apex and rim - unbleached

12
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The mean Asx and GIx D/L values in the rim and ape405 bleached and unbleached
vulgatashells from the archaeological levels (after thjeation of samples with abnormally
high D/L values) are shown in Fig. 3. We selectex And GIx because they account for a
considerable percentage of the amino acid comemiodern shells, as shown by Demarchi et

al. (2013a).

The individual Asx D/L values in modern limpets wesimilar in the apex and rim (Fig. 6-
Supplementary Data) corresponding with Demarchalet(2013a). A similar pattern was
obtained for Asx D/L values in these two areas g shells from the archaeological
localities. Similarly, the mean GlIx D/L values inetapex and rim of shells from each site

were equivalent (Fig. 3, Fig. 7-Supplementary Datdle 2- Supplementary Data).

In modern limpets we also analysed the amino acidbe intermediate part of the shell,

observing that Asx and GIx D/L values were highartin the apex and rim (Table 2).

3.2.2 Apex - bleached

Asx DI/L values were lower in bleached than in uabled samples for the same individual
shell (Fig. 3). In contrast, GIx D/L values wereglmer in bleached samples than in

unbleached ones for modern and archaeologicalifiesal

3.3 Amino acid concentrations

13
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3.3.1 Apex and rim-unbleached

The mean of the total amino acid concentrationnbleached. vulgatashells was higher in
the rim than in the apex, at least in modern, Nieigli and Mesolithic limpets (Fig. 4). In
contrast, in Palaeolithic limpets the concentratddramino acids in these areas was more
similar to each other. Likewise, there was variggbih the amount of amino acids present in

shells within the same level.

Similar results were observed for the individuahoentrations of Asx ([Asx]) and GIx
([GIX]) (Fig. 5, 6), two of the most abundant amiaoids in limpet shells. Of note, the

percentage of each amino acid was similar in tlex @apd rim areas (Fig. 7).

In modern representatives, the total amino acidesdn[Asx], and [GIx] were lower in the
intermediate parts of shells than in the apex andTable 2). Nevertheless, the percentages
of [Asx] and [GIx] in modern specimens were simitarthose found in the apex and rim,
although the proportion of other amino acids ddter(Fig. 8), i.e. %Ser and %Gly were
lower in the intermediate part than in the apex amdareas, while %Ala, %Val and %Leu

were higher.

3.3.2 Apex - bleached

14
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The apex intra-crystalline fraction accounted favumd 15% of the total proteins within a
modern limpet shell (Fig. 4). The amino acid conifi@s of inter- and intra-crystalline
proteins in the apex of modern and archaeologiogldts also differed, as the percentage of
[Asx] was higher in unbleached (40%) than in blegtlsamples (20-25%) (Table 3), the
percentages of [GIx] and [Gly] being higher in tlagter. Similar [Asx] percentages were
reported by Demarchi et al. (2013a) for bleached ambleached modern representatives.
However, in some other mollusc shells, the perggntd [Asx] has been reported to increase

after bleaching (Penkman et al., 2008).

3.4 Interpretation of intrashell variations

3.4.1 Inter-crystalline fraction

Here we observed similar Asx D/L values in the eabhed rim and apex sub-samples of
modern limpets and archaeological sites (Fig. 3)is Tobservation is reinforced by the
finding that the percentage of each amino acid suadar in the apex and the rim, even with
increasing age (Fig. 7). This finding indicatest ttie proteins comprising these regions are
probably similar, both areas being made of calife MacClintock, 1967; Fenger et al.,
2007, Ortiz et al., 2009a; Demarchi et al., 201Bahust be highlighted that the acidic amino
acids (Asx and GIx) accounted for more than ha# ttontent ofPatella shells. This
observation could be associated with the presehaeidic and Asp-rich proteins, which are
usually found linked to calcitic structures (Gotév al., 2005; Marin et al., 2012). However,

we found that the total amino acid content and #tsoindividual concentrations of the two

15
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main amino acids (Asx and GIx) . vulgatashells were higher in the unbleached rim than
in the unbleached apex, at least in modern, Neolitmd Mesolithic limpets (Fig. 4). These
results could be attributable to the different mahestructure observed (Fig. 2). Similarly,
differential leaching from the unbleached sampley imave produced these differences (cf.
Penkman et al., 2007, 2008). Likewise, Demarchalet(2013a) reported slightly higher
concentrations of amino acids in the unbleached efimmodern representatives when
compared with the unbleached bulk samples (rimexpaur findings imply that in spite of
sampling different parts of thfe. vulgatashells (apex, rim), there is no significant instzell

variation of D/L values from the inter-crystallifraction.

The total concentration of amino acids presenk.rvulgatashells was variable within the
same archaeological level. This observation has lzde€n made in other molluscs (Penkman
et al., 2008; Torres et al., 2013) and can bebatied to diverse factors related to the
depositional environment, including taphonomicabgasses such as chemical dissolution,
mechanical fragmentation, and bioerosion (Davied.efi989; Meldahl et al., 1997; Kidwell,
1998; Carroll et al., 2003; Kidwell et al., 200%)] of which can directly influence the
skeletal preservation of shells. Nevertheless, residerable part of the organic matrix was
conserved, thereby reinforcing the notion propdsgdVehmiller (1990) that approximately

30-60% of the original amino acid concentration aem in carbonate Quaternary fossils.

Asx and GlIx D/L values in the aragonitic intermédigart of the modern limpet shells
(comprising mostly M-1, M, and M+1 layers) were lneg than in the apex and rim (Table 2),
which are made of calcite (Fig. 2). Also, the patages of each amino acid differed slightly,
as %[Ser] and %[Gly] were lower, whereas %[Ala] V&l and %[Leu] were higher than in
the apex and rim, thus indicating that other prsteivere present, or were represented in
differing proportions. These differences were conéid by the different stain produced in
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these layers after submerging the shell crossesectin Mutvei's dye, showing that the
calcitic M-2, M+2 and M+3 layers were richer in argc matter than the aragonitic M-1 and
M+1 layers. According to Marie et al. (2013), Asphrproteins, which are more abundant in
calcium structures (Sarashina and Endo, 2001; Marah Luquet, 2004; Gotliv et al., 2005;
Marie et al., 2013) are strongly stained with Aicialue, while other proteins do not show

such colouration.

Although differences in the amino acid compositi@bundance and percentages) were
observed between the aragonitic intermediate part( M, M-1) and the calcitic apex (M-2)
and rim areas (M+2, M+3), there was a high contérdcidic amino acids (predominantly

Asx) in the whole shell (Fig. 8).

3.4.2 Intra-crystalline fraction

The intra-crystalline proteins represented a sinadition with respect to the total proteins in
modernPatella shells (ca. 15%) (Fig. 4) in agreement with Deraet al. (2013a), who

observed that they represented 10% in modern sl@ftslar to that observed in the inter-
crystalline matrix, acidic amino acids were alsawrakant in the intra-crystalline fraction,

representing 30—-35%, vs 45-50% in the inter-crirstafraction (Table 3). This observation
indicates that the inter- and intra-crystallinetpino compositions differ, at least in the apex
area, thus potentially affecting the AAR rates (A Asx and Glx D/L values were indeed

higher in the intra-crystalline fraction of moddimpets.
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4. Protein degradation with age

4.1 Amino acid concentrations vs. age

4.1.1 Apex and rim - unbleached

The total amino acid concentration in the apex amd of unbleached limpet shells

(representing the amino acids that comprise isted-intra-crystalline proteins) was higher in
modern specimens than in archaeological ones &ighe total amino acid content in the
apex decreased by around 40% from modern to MhbBeoliimpets. However, the

concentrations were similar in archaeological litspef diverse ages, even in the oldest
samples analysed in this study, with the exceptibhes Pedroses cave, in which slightly
lower concentrations were detected. Limpets fronbaé&merra (Neolithic) showed a large
standard deviation, mainly as a result of two sasplith amino acid concentrations

exceeding 30,000 pmol/mg.

The decrease of the amino acid concentration wpecedly noticeable in samples taken
from the rim area, in which values fell by ~30%lwe Neolithic site and ~50% in Mesolithic
localities with respect to those of modern specgndndecrease in the amino acid content in
the rim was observed from Mesolithic material tdaRalithic shells, while this content

remained stable in shells from Magdalenian, Sodutyé&ravettian, and Aurignacian sites.

Regarding the concentration of amino acids, [Asxihe rim and [GIx] in the apex and rim

were higher in modern and Neolithic limpets, whileey were similar in pre-Neolithic
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samples (Figs. 4, 5), although [Asx] content in dipex area did not vary significantly with

age.

Similar percentages were obtained for apex and suh-samples for all amino acids
(considering [Asx], [GIX], [Ser], [lle], [Leu], [P&], [Val], [Ala], Gly], [Arg] and [Thr])

However, the percentage of each amino acid vaneddifferent way with age (Fig. 7). The
percentage of Asx increased progressively with(&ge 7), i.e. for modern specimens it was
around 40%, whereas for the Neolithic ones (Kobaajlé was 47%, for Mesolithic ones ca.
55%, and for Magdalenian, Solutrean, Gravettian Amdgnacian ones 65%. In this regard,
samples older than ca. 12,500 cal. yr BP (Upperddkenian) and up to ca. 34,000 cal. yr BP
showed similar proportions of [Asx]. In contragtietpercentages of Glx, Ala, Phe, Gly and
lle showed a sharp decrease in limpets from mottethe Mesolithic age, after which the

percentage of these amino acids remained almostaiarin Palaeolithic samples.

A rapid decrease was observed in the percentag8eof, [Thr], and [Arg] from modern
limpets to those of the Mesolithic period, afterieththe content of these amino acids
decreased steadily until ca. 30 ka. This was esaleaignificant in [Ser] (from 10% in
modern shells to 2% in Solutrean ones). It shoelchdsted that the percentages of [Val] and

[Leu] remained almost the same.

4.1.2 Apex - bleached

The concentration of amino acids in the apex oadied limpets (representing the amino

acids that comprise only intra-crystalline protg¢wss similar for modern and archaeological
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representatives of different ages (Fig. 4). Theesagsults were obtained for [Asx] and [GIX]

(Figs. 5, 6).

4.2 | nterpretation of amino acid concentration trends

4.2.1 Inter-crystalline amino acids

Significant protein leaching is likely to have ooad from the inter-crystalline fraction
during the ca. 6,000 cal. yr after the death of litpets, as the total amino acid content
decreased over this time, and then stabilised.r Alfis decrease, the amino acid content in
limpets of Mesolithic and Palaeolithic ages (upcto 34 cal. ka BP) remained almost the
same (Fig. 4), whereas the contribution of eacmaracid to the total content differed (Fig.
7). However, [Asx] in the apex area of archaeolabghells did not differ significantly with

respect to modern ones.

Also, there was an increase in the percentage sxX][A both apex and rim areas with age.
The percentages of other amino acids such as G#,Phe, Gly and lle decreased with age.
This observation might be explained by the positbrach amino acid in the protein chains,
thus producing different degradation rates (Krikusaand Mitterer, 1980; Mitterer and

Kriausakul, 1984; Wehmiller, 1980, 1993).

4.2.2 Intra-crystalline amino acids
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The intra-crystalline proteins represented aroub®b With respect to the total proteins in
modernPatella shells (Fig. 4). This percentage increased with @g to 20-30% over 34
ka), in spite of the apparently limited degradatiointhe proteins in this fraction (the
concentration of amino acids remained constant agnin the bleached samples), indicating
that there was a preferential break-down and lbgse@r-crystalline proteins. Similarly [Asx]
and [GIx] also remained constant with age. Thiglifig coincides with reports by Penkman
et al. (2008), who observed that the proportiorintfa-crystalline amino acids within the

whole shell increases as the sample ages.

Of note, acidic amino acids represent a high priogoiof the fraction with age, as reflected
by the increase in the relative percentages of fAamx modern to Palaeolithic shells (Table

3).

It is also remarkable that while Asx and GIx D/Uues differed in the two inter- and intra-
crystalline fractions of archaeological limpetsthis case Asx D/L values in intra-crystalline
proteins were lower and GIx D/L values were higthem in the inter-crystalline ones (Fig.
3), which could be attributable to the removal eftain proteins and amino acids from the
inter-crystalline matrix of the shells when bleach(cf. Penkman et al., 2007, 2008). In this
sense, the higher concentration of free amino aeitifsn the intra-crystalline fraction (which

are the most highly racemised), may explain theefo@lx D/L values obtained in the inter-
crystalline fraction. However, other processes rhaye to be taken into account, i.e.,
different amino acids contribute to the proteindragped within the biomineral, which

undergo racemisation at different rates (cf. Pemketaal., 2008), and the position of each
amino acid in the protein chains can produce differdegradation rates (Kriausakul and

Mitterer, 1980; Mitterer and Kriausakul, 1984; Walken, 1980, 1993). As evidence here,
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the percentage of amino acids differed in bleached unbleached samples (Table 3).
Likewise, partial leaching of the inter-crystallin@atrix of proteins may have influenced in
the Asx D/L values.

The differences found in the concentration and amsitpn of amino acids and D/L values
between inter- and intra-crystalline proteins areagreement with Sykes et al. (1995) and
Penkman et al. (2007, 2008), who observed distax@misation rates in these fractions in a
variety of mollusc shells. In leaching experime(it40°C for 24 h to 240 h) on unbleached
and bleache®ithyniaandPatella shells, Penkman et al. (2008) and Demarchi gtall3a)
observed that only a small percentage (1-4%) oftdked amino acid content leached from
the intra-crystalline fraction, in contrast to aglmer percentage (ca. 40%) leached from
unbleached shells under the same conditions. Whtler-crystalline proteins are more
susceptible to decomposition or leaching, the iotgatalline fraction has been found to
approximate a closed system in various mollusclsh&mino acids within the crystals are
apparently effectively isolated from variable extdrfactors, although Orem and Kaufman
(2011) observed that the intra-crystalline fractionhe bivalveMargaritifera is not a closed

system under certain conditions.

5 Aminochronology of limpet shells

5.1 Asx and GIx D/L valuesvs. age

5.1.1 Apex-unbleached
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In general, limpet shells from archaeological sglegewed Asx and Glx D/L values consistent
with their age (Fig. 3), i.e. in the Neolithic sii€obaederra) shells had the lowest Asx and
Glx D/L values, followed by those belonging to thesolithic (level 29 of La Riera, level
1.3 of Mazaculos II, El Penicial, Bricia-A and Ardgs), Azilian/Magdalenian (level 27 of
La Riera), Magdalenian (levels 24, 23 and 18.1 afRiera, Bricia-C, La Lloseta and Les
Pedroses), and Aurignacian (El Cuco) periods. Hanesome exceptions were detected: in
level 2/3 of Fuente del Salin (Gravettian), D/Lued were similar to those of the Lower
Magdalenian sites. Likewise, Solutrean (levels i and 8 of La Riera) and Pre-Solutrean

(level 1 from La Riera) sites showed lower Asx DAlues than those expected.

5.1.2 Apex-bleached

As with Asx and GIx D/L values of unbleached apamples, D/Ls also increased with age
in the bleached fraction (Fig. 3). Asx D/L valuesre higher in the unbleached samples, and
a strong correspondencé=r0.92) was observed between Asx D/L values of liatttions
(Fig. 9). GIx D/L values were slightly higher indlaiched Neolithic, Mesolithic, and Upper
Palaeolithic shells than those of unbleached sampking clearly higher in shells from older
levels (Fig. 3). Also, a strong correspondenée (r.85) was found between Glx D/L values

of both fractions (Fig. 9).

5.2 Temperature measurement inside the sediment

Fig. 10 shows a plot of the temperature registatetth intervals in the sediment of selected

archaeological localities in northern Spain ovex tourse of a year (2013), together with
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atmospheric temperature obtained from the metegicdb station of Llanes. The monthly
and annual mean temperatures measured in the sedaineelected localities during 2013

are shown in Table 4.

Two main considerations are interpreted from th& decorded: 1) atmospheric temperature
affects all localities, although its effect is lesarked inside the sediment (10-15 cm deep) at
the entrance of the caves (no more than 3 m fan fiee entrance), and variations are
attenuated; and 2) temperature within the sedimiiers between caves. The archaeological
remains of Mazaculos Il, La Riera, Bricia, El Peali@and La Lloseta are currently preserved
at lower temperatures than at other sites, whil&laCuco, temperatures are significantly

higher than at the other sites, probably becauseoiiented to the south.

5.3 Aminochronological considerations

A general increase between Asx D/L values and cadlimn ages was observed (Fig. 3) up to
18 cal. ka. We propose that the palaeoclimaticatians occurred after the accumulation of
the archaeological remains affected the amino madmization rate d?. vulgata shells, as

it was observed that atmospheric temperature affeetiments bearing the limpets in the
entrance of the caves. Levels belonging to thet&an (levels 16 to 1 of La Riera) and
Gravettian (level 2/3 of Fuente Salin) periods stdwower Asx D/L values than expected,
but similar values to those typical of Magdalenliacalities (Fig. 3). During the Last Glacial
Maximum (LGM), temperatures in the sediment woultidr been lower than during the
Holocene, i.e., according to Bard (2002) and P¢ch. €2008), sea surface temperature in the
North Atlantic during the LGM was 5-6°C lower thdaring the Holocene, thus decreasing

the racemisation rate. This is especially notioeadil La Riera, where Asx D/L values of
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shells in the Asturian, Azilian/Magdalenian, Magetabn levels were in agreement with
calibrated*’C ages and the periods to which they belong (Bigin3contrast, limpets in the
Solutrean and Pre-Solutrean levels showed lower¥&xvalues than expected (Fig. 3), and
probably those of Lower Magdalenian as well. Asabserved, the main leaching of open-
system proteins occurred during the first 6,00@fyer the death of the limpets (Fig. 4). As
temperature influences the racemisation rates ahamcids, the low temperatures that
occurred during the Last Glaciation appears to Isewed the racemisation of limpets from
27,000 cal. yr BP to at least 18,000 cal. yr BRerakhich they followed a similar rate to that
of shells in Magdalenian levels (18,000-12,000 galBP). This explanation could account
for the observation that limpets from the Solutread Gravettian levels showed lower Asx
D/L values than those expected, with an apparerredse in racemisation between 18-27 cal

ka BP i.e, both in unbleached and bleached apémpeéts (Fig. 3).

It is noticeable that the El Cuco samples, depdsi@der cold conditions, showed

significantly higher Asx and GIx D/L values thanvéds belonging to Solutrean and

Gravettian. This may be explained by the orientatibthe entrance of this site (to the south),
increasing the solar radiation received in compariwith other localities. In support of this,

higher temperatures were measured by the loggeldd®, Fig. 10), indicating that this site

may have not been as affected by the decreasdes dae to cold conditions as the other
sites. Nevertheless, other explanations are pessibtluding that thé“C ages for the El

Cuco remains may be in error; it is planned togrenfnew radiometric dating.

The climate amelioration that occurred from thetsththe Late-Glacial and throughout the
Holocene explains the general agreement betweenocealon ages and the

aminostratigraphy of Magdalenian, Azilian, Mesadbtittand Neolithic levels. However, in
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some cases there was a discordance, which mayplteareed by the taphonomical conditions

that affected these sites.

Of note, level A of Bricia Cave and the shell mida# La Riera (level 29) were dated B¢

at 7,375 + 185 cal. yr BP and 7,680 + 150 cal. i @lark, 1976), respectively, but they
showed different mean Asx D/L values (0.264+0.088lével A of Bricia, and 0.248+0.009
for La Riera shell midden-level 29). Although thés® caves are less than 100 m apart and
positioned on the same karstic massif, they alsovell different mean annual temperatures
over the year recorded. La Riera Cave experienmedrltemperatures, especially noticeable
during the summer months, in which a mean diffeeenic3°C was observed, whereas during
winter, temperatures differed by less than 1°C. Bk values were only slightly higher in
BRI-A (0.089+£0.004) than in RIE-29 (0.081+0.005)hiah is explained by the lower

racemisation rate of GIx in comparison with thafsk.

Likewise, the mean Asx D/L value in Arenillas rogskelter was higher than expected, as the
shell midden remains were dated at 6,385+70 caBPR/(Bohigas and Mufioz, 2002n this
case, the mean annual temperature was observedhigler (3-4°C) than in other localities
of similar age (Fig. 10), explaining the Asx D/Uwes. In addition, recent radiocarbon dating
has indicated that these deposits accumulated ,880 7cal. yr BP (unpublished data).

However, the effects of other factors in elevatimg D/Ls cannot be ruled out.

This study indicates that Asx D/L and GlIx D/L prdeia useful method for dating limpets
from archaeological levels younger than ca. 18 kalBP in this region. For older sites (at
least those belonging to the Gravettian and Salatrevhich were formed under cold
climates), past temperatures are likely to haveedsed racemisation rates, and extrapolation
of Asx D/L values to age should therefore take this account. Likewise, taphonomical and

environmental conditions must be considered isitdls for accurate age estimation.
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6. Conclusions

In summary:

1.-Amino acid D/L values in the apex (M+3 and M&¥érs) and rim (M-2 layer) areas of
unbleachedP. vulgatashells are comparable and can therefore both bd f@w the age

calculation of archaeological localities. These eomre made of the same polymorph of
calcium carbonate (calcite). In contrast, D/L valire the aragonitic intermediate area (M+1,

M and M-1 layers) are higher.

2.-Proteins in rim and apex areas are probablylaimas the percentages of amino acids
within them contribute the same percentage to aked amino acid content and vary in the
same way with increasing age. Nevertheless, higheunts of amino acids were found in
the rim of modern limpet shells than in the apdihcagh in archaeological ones, similar

concentrations were observed.

3.-The main leaching of open-system proteinsPinvulgata shells (at least the inter-

crystalline fraction) occurred within the first 6@ cal. yr BP after the death of the organism.
This is evidenced by the considerable decreaseeiriatal amino acid content in Mesolithic
samples with respect to modern and Neolithic oksvever, leaching may be faster, as
limpets from the Neolithic Kobaederra-2 site shovggh variability in the concentrations

and percentages of amino acids with respect toetlmbsmodern ones. However, the total
amount of amino acids in the intra-crystalline fraic remained virtually intact for at least 34

ka.
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4.-[Asx] remained constant with age (over ca. 34 k@ BP), both in inter- and intra-
crystalline proteins. While the contribution of pdsto the total amino acid content was
higher in the former, in both fractions it incredseith age. The percentage of Asx increased
with age in unbleached shells: from 42% in modémmpéts to 47% in Neolithic, 55% in
Mesolithic, and 65% in Magdalenian, Solutrean, ®tagan and Aurignacian
representatives. The contribution of Asx to thalt@mino acid content in bleached shells
also increased with age (over ca. 34 cal ka BH)pafh percentages varied. In contrast, the
concentration of other amino acids decreased vgeh(gGIx], [Ser], [Ala], [Phe], [lle], [Gly],

[Thr] and [Arg]), whereas the percentage of [ValfldLeu] remained almost constant.

5.-Differences in amino acids that contribute te ithter- and intra-crystalline proteins, which
undergo racemisation at different rates, may bélymmed because the products of diagenesis
are likely to remain in the intra-crystalline fremt. Likewise, the preferential removal of
certain proteins and amino acids from the intestaljine matrix through time, might
produce that the inter-crystalline protein fractidegraded faster than the intra-crystalline
one. Although Asx D/L values were higher in unblest samples, there was good
correspondence between Asx D/L values in inter- iatGh-crystalline proteins. However,
other amino acids, such as Glx, showed lower legElmcemisation in the inter-crystalline
proteins, at least in the first ca. 12,000 cal lyr.our view, it is sufficient to analyse
unbleached samples to establish the age of arawieal levels, but bleaching provides
important information and complements the integdieh obtained from the inter-crystalline

fraction.

6.-Atmospheric temperature affects the sedimentiigghe archaeological remains and thus

contributes to the rate of AAR dP. vulgata,thus explaining why the Gravettian and
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Solutrean localities, formed during cold conditipgsRowed D/L values similar to those of

Magdalenian ones.
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Figure captions

Figure 1. Geographical location of the caves stlidieKobaederra, 2-El Cuco, 3-Arenillas,
4-Fuente Salin, 5-Mazaculos Il, 6-Riera, 7-CuetoMina, 8-Bricia, 9-Penicial, 10-Lloseta,

and 11-Les Pedroses. Cue beach and Llanes metgioedlstation were also plotted.

Figure 2. Microphotographs of thin sectionsRofvulgatashells treated with Feigl's (A-B)
and Mutvei’s (C to F) solution (Feigl’s solutioristed aragonite crystals black, while calcite
ones remain unstained; Mutvei’'s solution stainegaonic matrix laminae and crystal
envelopes in shades of blue). A- cross section sifedl showing the unstained apex area in
the central part and the intermediate region sthindlack; B- transition between the stained
aragonitic intermediate part (M-1, M, M+1 layers)the unstained rim area (M+2, M+3); C-
apex with the M-2 layer with an irregular/radiabssed-lamellar pattern and the transition to
the M-1 layer (major growth lines are marked witlmows) stained in blue; D- contact
between the intermediate part (M-1, M+1) with a ptewm crossed-lamellar structure and the
rim (M+2, M+3 layers) with a concentric crossed-&lar pattern (major growth lines are
marked with arrows); E- detail view of the rim a(d&+2, M+3 layers) and the M+1, M, and
M-1 layers (minor growth lines are marked with ars); F- detailed view of the rim area
(M+2, M+3 layers), which shows a concentric croslsedellar pattern, the aragonitic M+1
layer, which shows complex crossed-lamella, and Nhéayer, which shows a prismatic
structure with large crystals oriented perpendictdathe shell surface; G- detailed view of
the complex crossed-lamellar structure of the Mylet; H- detailed view of the concentric

crossed-lamellar structure of the M+2 layer.
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Figure 3. Relationship between age (cal. yr BParghaeological sites and mean Asx and
GIx D/L values for unbleached apex and rim and diled apex samples &fatella shells
(data shown in Table 2-Supplementary informatioDashed lines indicate estimated

racemisation patterns for Asx in unbleached anddbled apex samples .

Figure 4. Relationship between age (cal. yr BParohaeological sites and the total amino
acid content in bleached and unbleached apex abkkaoched rim ofPatella shells (data

shown in Table 3-Supplementary information).

Figure 5. Relationship between age (cal. yr BRgrohaeological sites and the Asx content in
bleached and unbleached apex and unbleached ritatefla shells (data shown in Table 4-

Supplementary information).

Figure 6. Relationship between age (cal. yr BPgrohaeological sites and the GIx content in
bleached and unbleached apex and unbleached ritatefla shells (data shown in Table 4-

Supplementary information).

Figure 7. Percentage of each amino acid in theeagbled apex (A) and rim (B) areasPof
vulgatashells from modern and archaeological sites. Tiheeseolour code was used for all

the levels of the same period, and localities &g in age order indicated in the legend.
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Figure 8. Percentage of each amino acid concemtratithe apex, rim and intermediate areas

of modernP. vulgatashells (data shown in Table 5-Supplementary in&tiom).

Figure 9. Comparison of Asx D/L and GlIx D/L valuasbleached and unbleached samples

from the apex oP. vulgatashells of different ages.

Figure 10. Annual temperature record of the sediniensome archaeological localities
compared to the atmospheric temperature recordedeirmeteorological station of Llanes

during 2013.

Figure 1-Supplementary Data. Chromatogram showieg D and L peaks of the following
amino acids: aspartic acid and asparagine (Asxjaglic acid and glutamine (GlIx), serine
(Ser), alanine (Ala), valine (Val), phenylalaninBhg), isoleucine (lle), leucine (Leu),

threonine (Thr), arginine (Arg), and tyrosine (Tyi9ogether with the abundance of glycine

(Gly).

Figure 2-Supplementary Data. Comparison between DAlues obtained by gas-
chromatography (GC) and high performance liquid ootatography (HPLC) in the
Biomolecular Stratigraphy Laboratory for A) Asp aBiiGlu in the same samples. Based on

the data of Table 4 of Ortiz et al. (2009b).
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Figure 3-Supplementary Data. Best-fit exponengédtion between Asx D/L versus GIx D/L
values obtained in the unbleached apeRatkllashells. Each subsample is represented by a
black dot, and outliers are in red with the labona{LEB) number. The best-fit regression is

plotted.

Figure 4-Supplementary Data. Best-fit exponengédtion between Asx D/L versus GIx D/L
values obtained in the unbleached rimPattella shells. Each subsample is represented by a
black dot, and outliers are in red with the labona{LEB) number. The best-fit regression is

plotted.

Figure 5-Supplementary Data. Best-fit exponengédtion between Asx D/L versus GIx D/L
values obtained in the bleached apeXatella shells. Each subsample is represented by a
black dot, and outliers are in red with the labona{LEB) number. The best-fit regression is

plotted.

Figure 6-Supplementary Data. Asx D/L values (inoigdoutliers- represented in black) in
the apex (unbleached and bleached samples) compmatkdse in the rim area (unbleached
samples) of modern and also archaeologiéalvulgata shells, including mean values
(excluding outliers) for each locality. Asx D/L was measured in intermediate parts of

modern specimens were also plotted.

Figure 7-Supplementary Data. GIx D/L values (inahgdoutliers- represented in black) in
the apex (unbleached and bleached samples) compmatkdse in the rim area (unbleached
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985 samples) of modern and also archaeologiealvulgata shells, including mean values
986  (excluding outliers) for each locality. GIx D/L wes measured in intermediate parts of

987 modern specimens were also plotted.
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Tables

Table 1. Geographical location of the archaeologit levels studied and the periods
assigned. Calibrated ages (cal yr) were convertedsimg the Radiocarbon Calibration
Program 7.0 (CALIB 7.0) (Stuiver et al., 2014) withthe calibration dataset IntCall3
(Reimer et al., 2013). Original radiocarbon ages & in Table 1-Supplementary

information.
Cave Latitude Longitude Elevation Archaeological Age (cal. yr BP)
a.s.l. (m) level
Cue beach 43°25°4”'N 4°43°45"W 0 - Modern
Kobaederra 43°20°35”N 2037°3"W 260 Level 2 Neolithic [1]
(KBR) 5,975+160 (UBAR-472)
Arenillas 43023°'44”°N 3°18°46"'W 20 Shell midden Asturian [2]
(ARE) 6,385+70 (GrN-19596)
Bricia 43025°38.2°N 4°51°17.8"W 50 Shell midden (Level  Asturian [3,4]
(BRI) A[5]) 7,680+150 (GaK 2908)
Level C [5] Upper Magdalenian [3]
Mazaculos I 43°23°26"°N 4°34°43°W 35 Shell midden Level Asturian [6]
(MAZ) 1.3 8,490+40 (UGAM-9081)
La Riera 43°2526.86'N 4°5053.63"'W 35 Shell midden 29 Asturian [3]
7,375+£185 (GaK-3046)
(RIE) Level 27upper Azilian/Magdalenian[7]
12,510+195 (BM-1494);
Level 24 17,960+490 (GaK-6985)
Upper Magdalenian [7]
12,660+545 (GakK-6982)
Level 23 Upper Magdalenian [7]
11,945+730 (Ly-1646)
Level 18.1 Lower Magdalenian [7]
18,430+530 (Q-2116);
18690+490 (Q-2110);
19,680+555 (GaK-6448)
Level 16 Solutrean [7]
21,750+770 (GaK-6983)
Level 10 Solutrean [7]
23,690+565 (GaK-6447)
Level 8 Solutrean [7]
24810+1055(GaK-6981)
19,090+350 (GakK-6450)
Level 1 Pre-Solutrean [7]
23485+550(UCR-1270)
242851565 (Ly-1 783);
24,285+525 (BM-1739)
El Penicial 43°26°42.9”°N 4°56°22.3"W 60 Surface shell Asturian [3,8]
(PEN) midden 9,760+250 (GaK 2906)
Les Pedroses  43°27°26.6"'N 5°6°17.7"W 80 20 cm thick level Lowdagdalenian
(LPS) [3,9]
La Lloseta 43°27°38.3'N 504°29.1"W 40 Level B (sample A)  Ml&lMagdalenian [3]
(LLO) 18,340+280 (GaK 2549)
Fuente del 43°22°7°N 4°28'52"W 10 Level 2/3 Gravettian[10]
Salin 26,850+775(GrN-18574)
(FTS) 27,315+385(GX-27756)
El Cuco 43°23'28"N 3°13'40"W 25 Level Xl Aurignacian [11]
(CUC) 34,290+£160(GrA 32436)
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1.-Zapata Pefia et al. (1997) ; 2.-Bohigas and Mufi¢2002) ; 3-Clark (1976); 4.-Jorda (1957, 1958); 5.-

Jorda (1954); 6.-Gonzalez Morales (1982); 7.- Stralet al., 1978; Straus and Clark, 1986; 8.-Vega del
Sella (1914); 9.-Hernandez-Pachea al. (1957); 10.-Moure and Gonzalez Morales, 1992; 1Mufioz
Fernandez et al. (2007).
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Table 2. Mean total amino acid, Asx, and GIx concerations (pmol/mg), and Asx D/L
and GIx D/L values in unbleached samples taken frorthe apex, rim, and intermediate
areas of modernP. wulgata shells.

Area [total] [Asx] [GIX] Asx D/L GIx D/L

Apex 2546216354 10616+3165  1772+355 0.047+0.006  0.028D.
Rim 43478+10786  18154+3489  3361+928 0.048+0.001  0.02040
Interm 22384+4592 8669+2132 17934432 0.112+0.018 0.0490.0

Table 3. Percentage of Asx and Glx content with regct to the total amino acid content
of unbleached and bleached samples taken from thepex area of modern and
archaeologicalP. vulgata shells in modern and archaeological localities.

Period Localities N %[AsX] %[AsX] %[GIX] %[GIX]
Apex Apex Apex bleached
Bleached
Modern 12 41.1+ 3.7 23.2+7.0 72+1.1 10.6% 2
N KBR-2 4 47.1+5.8 26.0+12.7 6.9 £1.0 12.8+3.0
M RIE-29 5 56.3+£3.1 27.6+£2.3 5703 9.840.
ARE 7 58.0+27 30.5+6.7 58+0.6 124+£1.9
BRI-A 5 521+£53 29.6+9.9 7013 12.2+3.0
MAZ 11-1.3 9 532+7.1 29.8+64 6.4+1.6 1%8.6
PEN 5 58.7+0.9 33.0+2.7 58+0.1 106+ 2.9
UM BRI-C 5 59.9+3.2 32.0+3.8 57+05 94 41.
RIE-27 5 60.6 +1.9 429+24 55+04 8.3+04
RIE-24 3 60.4+04 42.0+5.1 54+0.6 89+1.1
RIE-23 4 61.2+4.6 40.7 £ 3.3 57+0.9 9.5+£05
LM LLO 5 63.4+£23 41.0x4.7 54+0.3 8.1+£04
LPS 5 62.4 +£3.3 441 +3.1 6.0£0.7 8.3+0.6
RIE-18.1 5 64.9+£0.3 46.4+ 4.6 53+0.3 85a1
S RIE-16 5 63.8+£3.5 46.5+2.8 5101 8.4& 0.
RIE-10 5 64.7+1.8 458121 53+0.2 85+£0.3
RIE-8 5 62.7+14 41.2+25 56+0.3 9.3+£05
RIE-1 5 64.1+3.2 451+2.0 55+0.5 8.3+0.5
G FTS-2/3 7 64.1+0.9 409+ 3.7 5.6+0.2 9.321
A CucC 7 66.0+1.3 49.2+2.3 5.8+0.2 8.3+£0.3

N:Neotlithic; M: Mesolithic (Asturian); UM: Upper Bligdalenian; LM: Lower Magdalenian; S: Solutrean; G:
Gravettian; A: Aurignacian.
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Table 4. Mean monthly and annual temperature (in dgrees Celsius) record in the sediment of some arakalogical localities (measured
at 4-h intervals).

Cave Annual January February March Aprii May June July August September October November December
Cuco 17.6 14.2 134 155 172 157 16.8 20.8 22.5 223 112 16.3 14.6
Arenillas 15.2 104 9.6 115 135 136 16.2 218 22.3 20.4 .0 19 13.2 10.9
Mazaculos 11.8 9.0 8.6 8.6 9.6 10.3 123 153 15.6 14.9 142 118 8.6

La Riera 11.2 9.6 9.1 9.0 9.7 10.2 114 1238 13.6 13.8 13.6 12.0 9.3
Bricia 12.2 9.5 9.0 9.4 10.3 10.7 127 165 16.5 15.7 14.8 12.0 9.2
Penicial 11.8 9.2 8.8 8.8 9.9 10.3 12.1 153 15.9 15.3 146 123 9.0
Lloseta 11.0 8.9 8.7 8.5 9.3 96 114 139 14.5 14.2 138 141 7.8
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The calcitic apex and rim of P. vulgata shells are probably made of similar proteins

The aragonitic intermediate area has a different amino acid composition

The main protein leaching in the inter-crystalline fraction occursin thefirst 6 ka

Asp content remained constant up to 34 kain inter- and intra-crystalline fractions

The percentage of aspartic acid increased with age (over ca. 34 ka)
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Table 1-Supplementary Data. Radiocarbon ages (yr BPof the archaeological
levels and calibrated ages (cal yr) converted usinthe Radiocarbon Calibration

Program 7.0 (CALIB 7.0) (Stuiver et al., 2014) withthe calibration dataset
IntCall3 (Reimer et al., 2013).

Locality Radiocarbon age (yr BP) Age (cal yr)
KBR-2 5,200+110 yr BP (UBAR-472) [1] 5,975+160
ARE 5,580+80 yr BP (GrN-19596) [2] 6,385+70
BRI-A 6,800+165 yr BP (GakK 2908) [3,4] 7,680+150
MAZ 11-1.3 7,700+30 yr BP (UGAM-9081) 8,490+40
RIE-29 6,500+200 yr BP (GaK-3046) [5] 7,375+185
RIE-27 10,630£120 yr BP (BM-1494) [6] 12,510£195
10,760+400 yr BP (GaK-6985) [6] 17,960+490
RIE-24 10,890+430 yr BP (GaK-6982) [6] 12,660+545
RIE-23 10,340+560 yr BP (Ly-1646) [6] 11,945+730
RIE-18.1 15,230+500 yr BP (Q-2116) [6] 18,430+530
15,520+350 yr BP (Q-2110) [6] 18,690+490
16,420+430 yr BP (GaK-6448) [6] 19,680+555
RIE-16 18,200+610 yr BP (GaK-6983) [6] 21,750+770
RIE-10 19,820+390 yr BP (GaK-6447) [6] 23,690+565
RIE-8 20,690+810 yr BP (GaK-6981) [6] 24,810+£1055
15,860+330 yr BP (GaK-6450) 19090+350
RIE-1 19,620+390 yr BP (UCR-1270A) 23485550
20,360+450 yr BP (Ly-1783) 24285+565
20,860+410 yr BP (BM-1739) [6] 24,285+525
PEN 8650185 yr BP (GaK 2906) [3] 9,760+250
LLO 15,200+140 yr BP (GaK 2549) [3] 18,340+280
FTS-2/3 22,340+£510/-410 yr BP (GrN-18574) 26850775
22,580+100 yr BP (GX-27756) [7] 27315+385
cuc 30020+160-150 yr BP (GrA 32436) [8] 34,290£160

1.-Zapata Pefia et al. (1997) ; 2.-Bohigas and Mufi¢2002) ; 3-Clark (1976); 4.-Jorda (1957, 1958);
5.-Gonzalez Morales (1982); 6.- Straus et al., 1978traus and Clark, 1986; 7.-Moure and Gonzéalez
Morales, 1992; 8.-Mufioz Fernandez et al. (2007).



Table 2-Supplementary information. Mean Asx and GIx D/L valuesin unbleached
and bleached samplestaken from the apex and rim areas of modern and
archaeological P. vulgata shells.

Period Localities N Asx D/L Asx D/L Asx D/L Glx D/L GIx D/L Glx D/L
Apex Rim Apex Apex Rim Apex
Bleached Bleached
Modern 5 0.047+0.006 0.048%+0.0010.079+0.008 0.026+0.004 0.027+0.001 0.036+0.006
N KBR2 4  0.203+0.008 0.224+0.033 0.199+0.007 0.073+0.013 0.068+0.004 0.084+0.008
M RIE-29 5 0.248+0.009 - 0.202+0.011 0.081+0.005 - 0.118+0.011
BRI-A 5 0.264+0.008 0.286+0.0150.191+0.030 0.089+0.004 0.086+0.008 0.094+0.034
MAZ 11-1.3 9 0.267+£0.010 0.256+0.0130.213+0.018 0.088+0.015 0.072+0.0050.107+0.021
ARE 7 0.279+0.020 0.290+0.0130.212+0.037 0.087+0.010 0.077+0.0030.093+0.026
PEN 4 0.292+0.018 0.309+0.026 0.229+0.001 0.098+0.003 0.103+0.030 0.112+0.009
UM BRI-C 5 0.308+0.023 0.313+0.0230.225+0.008 0.105+0.008 0.089+0.010 0.105+0.012
RIE-27upp. 5 0.300£0.018 - 0.223+0.015 0.092+0.004 - 0.111+0.005
RIE-24 3 0.302+0.020 - 0.227+0.015 0.087+0.001 - 0.121+0.010
RIE-23 4 0.303+0.004 - 0.242+0.022 0.093+0.007 - 0.138+0.015
LM LLO 5 0.363+0.018 0.343+0.017 0.260+0.010 0.104+0.006 0.096+0.005 0.131+0.018
LPS 5 0.387+0.013 0.381+0.0120.289+0.024 0.115+0.0130.111+0.012 0.123+0.024
RIE 18.1 5 0.356+0.018 - 0.267+0.006 0.108+0.016 - 0.126+0.010
S RIE-16 5 0.369+0.006 - 0.275+0.016 0.111+0.007 - 0.130+0.022
RIE-10 5 0.378+0.010 - 0.287+0.017 0.112+0.008 - 0.130+0.011
RIE-8 5 0.379+0.013 - 0.267+0.008 0.101+0.006 - 0.120+0.033
RIE-1 5 0.370+0.013 0.276+0.025 0.097+0.003 - 0.113+0.008
G FTS-2/3 7 0.367+£0.014 0.374+0.018.280+0.010 0.098+0.005 0.119+0.0240.132+0.028
A CucC 7 0.484+0.012 0.483%+0.0270.403+0.029 0.174+0.008 0.168+0.0160.220+0.013

N:Neotlithic; M: Mesolithic (Asturian); UM: Upper Bligdalenian; LM: Lower Magdalenian; S:
Solutrean; G: Gravettian; A: Aurignacian.



Table 3-Supplementary information. Mean of total amino acid concentrations
(pmol/mg) in unbleached and bleached samplestaken from the apex and rim areas

of modern and archaeological P. vulgata shells.

Localities N [AA] [AA] [AA]

Apex Rim Apex

Bleached

Modern 5 25477 + 6340 42771 + 12320 4095 + 2510
KBR-2 4 26846 £ 11925 30420 + 6352 29631671
RIE-29 5 18107 + 2216 - 3280 + 281
ARE 7 18274 + 5638 24497 + 2274 4546 + 4090
BRI-A 5 14554 + 3733 19396 + 1795 4922 + 1522
MAZ 11-1.3 9 15934 + 6426 23906 + 2997 3399 + 1402
PEN 5 14816 + 2132 21363 + 3356 3100 + 645
BRI-C 5 14186 = 4880 15238 + 2901 4025 + 1117
RIE-27upper 5 16925 + 2768 - 3887 + 674
RIE-24 3 15388 + 4993 - 3668 + 617
RIE-23 4 17476 + 4197 - 3126 + 368
LLO 5 13349 + 1073 16170 + 3123 3631 + 649
LPS 5 9624 + 1766 13470 + 3095 3667 + 520
RIE-18.1 5 14428 + 2618 - 3944 + 1567
RIE-16 5 12288 + 921 S 4084 + 1093
RIE-10 5 10066 + 2071 - 3277 + 444
RIE-8 5 12759 + 1669 - 3876 + 1318
RIE-1 5 12322 + 4282 4021 + 780
FTS-2/3 7 15359 + 3457 15217 + 7957 3505 + 455
CcucC 7 13437 + 2451 14540 + 1558 4117 =557




Table 4-Supplementary information. Mean Asx and Glx concentrations (pmol/mg)
in unbleached and bleached samplestaken from the apex and rim areas of modern
and archaeological P. vulgata shells.

Localities N [AsX] [AsK] [AsX] [GIX] [GIX] [GIX]
Apex Rim Apex Apex Rim Apex
bleached bleached
Modern 5 10616 + 18154 + 827 + 83 1788 + 3361+ 4751434
3165 3489 347 928
KBR-2 4 1215044110 16424412760 9614544  1903+964 2326+391 351+110
RIE-29 5 10181 + - 1237 +167 1021 +83 - 321 +47
1294
ARE 7 10755 + 14074 + 1150+518 1032 + 1421+ 588 +617
3590 1454 250 116
BRI-A 5 81632680 13155+ 1231+289 963 1215 1459+ 674+ 270
1102 201
MAZ II- 9 88384091 13413+ 947 +204 9351295 1379+ 419 1245
1.3 1631 197
PEN 4 8709+ 1315 12380+ 1091+329 884 +215 1347+ 257 £60
1657 417
BRI-C 4 8460+ 2771 11480+ 1320+489 812 +289 1061+ 371%75
2323 195
RIE-27 5 10274 + - 1672 + 314 928 +144 - 320 +41
1844
RIE-24 3 12172 + - 1567 + 443 895 + 288 - 321 +22
1256
RIE-23 4 10797 + - 1276 + 222 977 + 206 - 298 + 25
3052
LLO 5 8449 £+ 584 9813+ 1566 1490+335 719+89 935+218 292 +44
LPS 5 6045+1347 8493+19881631+296 568+57 793+ 187 306 +49
FTS-2/3 7 9848 +2249 8860+5040 1384 +17B62+205 9461420 33677
RIE-18.1 5 9363+ 1682 - 1863 +£890 767 £171 - 329+ 116
RIE-16 5 7867 +£1336 - 1921 +644 624+71 - 338 +62
RIE-10 5 6531+ 1453 - 1501 +£217 533194 - 280 + 38
RIE-8 5 7846 £ 701 - 1478 £+ 331 724 +£140 - 381 + 165
RIE-1 5 8939+ 2552 - 1824 + 441 658 £185 - 33352
CcucC 7 8873+1669 9342 +1161 2036+364 782+ 13B96 +84 340 + 35




Table 5-Supplementary information. Per centage of each amino acid concentration
in the apex, rim and inter mediate ar eas of modern P. vulgata shells.

Area Asx Glx Ser Ala Val Phe lle
Apex
Rim

Leu Thr Gly Arg
41.1+3.6 7.2+1.0 9.4+0.3 7.2+1.0 3.8+0.5 2.4+0.7 3.3+0.62.8+1.2 5.7+0.411.5+0.8 5.6+0.3

42.1+2.5 7.6+£0.4 9.6+0.5 7.2+0.5 4.0+0.2 2.0+0.3 3.2+0.13.0+0.7 5.7+0.210.2+0.8 5.7+0.2
Intermediate 39.6+2.4 8.0+0.4 8.9+1.0 8.1+0.2 4.9+0.3 2.1+0.2 3.6+0.24.3x0.4 5.7#0.48.9+0.6 6.0+0.3
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