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ABSTRACT 

This paper presents a new approximate solution to study the settlement of rigid footings 

resting on a soft soil improved with groups of stone columns. The solution development 

is fully analytical, but finite element analyses are used to verify the validity of some 

assumptions, such as a simplified geometric model, load distribution with depth and 

boundary conditions. Groups of stone columns are converted to equivalent single 

columns with the same cross-sectional area. So, the problem becomes axially 

symmetric. Soft soil is assumed as linear elastic but plastic strains are considered in the 

column using the Mohr-Coulomb yield criterion and a non-associated flow rule, with a 

constant dilatancy angle. Soil profile is divided into independent horizontal slices and 

equilibrium of stresses and compatibility of deformations are imposed in the vertical 

and horizontal directions. The solution is presented in a closed form and may be easily 

implemented in a spreadsheet. Comparisons of the proposed solution with numerical 

analyses show a good agreement for the whole range of common values, which 

confirms the validity of the solution and its hypotheses. The solution also compares well 

with a small scale laboratory test available in literature. 

 

KEYWORDS: Ground improvement; stone columns; analytical solution; settlement; footings; 

design. 

 



 3

NOTATION 

 

ar  Area replacement ratio: lcr AAa   

c  Cohesion 

dc  Column diameter 

Ka  Coefficient of active earth pressure 

K0  Coefficient of lateral pressure at rest 

pa  Uniform applied vertical pressure 

rl,, rc  Radius of the loaded area, of the column 

s  Centre-to-centre column spacing 

sr  Radial displacement at the soil/column interface 

sz  Settlement 

sz0  Settlement without columns 

Δt  Slice thickness 

u  Displacement 

x,y,z  Cartesian coordinates 

 

A  Cross-sectional area 

B  Footing width 

D  Footing diameter 

E  Young's modulus  

Em  Oedometric (constrained) modulus:       21)1(1  EEm  

G  Shear modulus:    12EG  

H  Soft soil layer thickness 
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L  Column length 

N  Number of columns in the group 

 

b  Settlement reduction factor: 0zz ss  

g’  Effective unit weight 

ε  Strain 

  Lamé's constant:   GEG m 2212    

ν  Poisson's ratio 

σ  Stress 

  Friction angle 

  Dilatancy angle 

 

Subscripts / superscript: 

c,s,l  column, soil, loaded area 

e,p  elastic, plastic 

eq  equivalent central column 

i,y,f  initial (prior to loading), at yielding, final 

r,z,  cylindrical coordinates 

 

Notes: 

Compressive stresses and strains are assumed as positive throughout the paper. 

Effective stresses are used throughout the paper, which are equal to total stresses but for 
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hydrostatic pore pressures because drained conditions are assumed. For the sake of 

brevity, dash notation is not used. 
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1. INTRODUCTION 

Stone columns, also known as granular piles or aggregate piers, are commonly 

employed to improve soft soils for foundation of embankments or structures. They are 

vertical boreholes in the ground, filled upwards with gravel compacted by means of a 

vibrator. The inclusion of gravel, which has a higher strength, stiffness and permeability 

than the natural soft soil, improves the bearing capacity and the stability of 

embankments and natural slopes, reduces total and differential settlements, accelerates 

soil consolidation and reduces the liquefaction potential. 

 

Stone columns are usually installed in large uniform grids under embankments or 

uniform distributed loads. In those cases, taking advantage of symmetries, theoretical 

studies usually simplified the problem to a "unit cell", i.e. only one column and the 

corresponding surrounding soil. So, there are analytical solutions that provide the 

settlement of a unit cell [1,2] and its evolution with time [3]. On the other hand, when 

focus is, for example, on stability of lateral slopes of an embankment, plane strain 

models, converting the columns to granular trenches, are usually considered [4]. 

 

More recently, stone columns have also been deployed beneath small isolated pad or 

strip foundations at low or moderate loading conditions [5]. The bearing capacity of 

those groups of stone columns has predominantly been the focus of previous studies 

[4,6-8]. However, stone columns are installed in soft soils that can undergo large 

displacements at relatively low loads and the serviceability limit state may be critical for 

their design. Black et al. [9] identified the lack of information regarding the settlement 
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performance and conducted small-scale laboratory tests. Similarly, Shahu and Reddy 

[10] performed laboratory tests and their numerical simulation. Killeen [11] and Ng [12] 

have studied groups of stone columns using two- and three-dimensional (2D and 3D) 

finite element analyses. They studied the influence of several geometric and material 

properties, such as column length, friction angle, diameter, spacing and stiffness. 

Recently, the author [13] has also studied numerically groups of stone columns under 

rigid footings to investigate the influence of the number of columns, column 

arrangement and column length. 

 

Analytical solutions are useful tools for design, but they are very limited for groups of 

stone columns beneath rigid footings. Priebe [14] suggests calculating the settlement of 

a group of columns applying a correction factor, lower than 1, to the settlement of an 

infinite grid of stone columns, i.e. the settlement of the “unit cell”. This correction 

factor is tabulated and depends on the number of columns and the depth to diameter 

ratio. Calculation of the tabulated correction factor is based on lower lateral 

confinement of the outer columns of the column group below the rigid footing, but no 

further details are provided. Stuedlein and Holtz [15] summarize some simplified 

solutions, such as those based on spring analogy using the modulus of subgrade reaction 

[16], and develop a multilinear regression equation, using a database of 58 field load 

tests to fit the linear coefficients. Ng [12] also proposes a simplified equation fitting 

coefficients. In this later case, the fitting is done using numerical results. 

 

The review of the analytical solutions to predict the settlement of groups of stone 

columns beneath rigid footings presented above shows the current interest in the topic 
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and the semi-empirical nature of the proposed solutions, e.g. based on the fitting of 

experimental [15] or numerical results [12]. Therefore, this paper tries to contribute to 

more rigorous solutions and presents a new solution that is analytically developed. The 

analytical treatment of a group of several columns is very complex and some 

simplifying assumptions are needed, e.g. a simplified geometric model and a simplified 

stress distribution beneath the footing are used. Those simplifying assumptions are 

presented in Section 2. The new analytical solution is developed in detail in Section 3 

and a calculation example is presented in Section 4. The paper concludes with a 

validation against numerical results and published experimental data (Section 5) and the 

conclusions. 

 

2. MODEL ASSUMPTIONS 

The problem to be analysed in this paper is the settlement of a group of stone columns 

beneath a rigid footing (Figure 1a). Drained conditions are assumed, so the soil and 

column responses are studied in effective stresses. However, dashes are not added to 

stress notation for the sake of brevity. Perfect bonding is assumed between soil and 

column at their interface, as it is a common practice (e.g. [17]) because stone columns 

are tightly interlocked with the surrounding soil. Column installation [18] is not 

considered. A key parameter of the problem is the area replacement ratio, ar, which is 

defined as the area of the columns, Ac, divided by the loaded area, Al. Sometimes, the 

area replacement ratio is specifically called the footprint replacement ratio, to clarify 

that, at the surface, the loaded area is the area of the footing. 
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2.1 Column length 

Columns are assumed to reach a rigid substratum (end-bearing columns) or, for floating 

columns, to have a length, L, equal or higher than the critical column length. Ng [12] 

and Castro [13] have shown that for a non-stratified soil profile, there is a critical 

column length, whose value is around 1.5-2 times the footing width, B, for settlement 

reduction. Castro [13] also shows that for failure conditions, i.e. for bearing pressure, 

the critical length is lower, around 0.5B. The existence of critical column lengths and 

their values are justified by the depth of the pressure bulb for settlement reduction and 

the depth of the failure mechanism for bearing pressure. 

 

The presented analytical model does not consider column punching or penetration into 

the underlying soil, but that is not possible for end-bearing columns and is small for 

columns lengths equal or higher than the critical length [13], which will be assumed on 

the safe side as 2B in this paper. 

 

2.2 Simplified geometric model 

The analysis of a group of several stone columns in the actual geometry is very 

complex; therefore, a simplified geometric model is here used. Ng [12] and Castro [13] 

show that the number of columns and their configuration in a group of stone columns 

beneath a rigid footing, if ar is kept constant, has little influence on the load-settlement 

response. That is visible from numerical [12,13] and laboratory results [6,9] and is an 

important feature because it justifies simplified geometric models that have long been 

used, such as converting stone columns in concentric rings with the same cross-
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sectional area, e.g. [19], and homogenization techniques, i.e. an equivalent soil with 

improved properties, e.g. [20]. Those simplified geometries allow for a 2D axially-

symmetric analysis (Figure 1). To get a 2D model, it may also be necessary to transform 

the footing, e.g. a square footing, to a circular footing with the same area. The 

transformation of the footing follows a similar principle of same area and is also 

common practise. 

 

Another simplified 2D geometric model that also neglects the small influence of the 

number of columns and their configuration is converting all the columns to only one 

central column with the same cross-sectional area [13] (Figure 1d). That is the model 

used here to develop the analytical solution. 

 

2.3 Depth and stress distribution 

Similarly to hand calculations of footings, the soil profile with depth is divided into 

horizontal slices and a simplified stress distribution is considered. That means that an 

average constant stress, pa(z) is applied on each horizontal slice at depth, z (Figure 2). 

The applied stress on the footing, pa(0), spreads out at a slope, whose value is usually 

assumed for an unimproved soil as 2 V(vertical) to 1 H(horizontal). However, stone 

columns are stiffer than the natural soft soil and concentrate the load, so the load 

spreads out on a narrower area. Shen and Blackburn [16] propose a slope of 4V:1H 

from the base of the footing (Figure 2). So, the average vertical stress at each depth may 

be obtained as 
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    
 2

2

2
0

zD
Dpzp aa 

  (1) 

where D is the diameter of the footing. 

 

That stress distribution is directly taken from that used for pile groups (e.g. [21]). It is 

worth clarifying that the spreading of the vertical stress with depth in an improved soil 

obviously depends on the relative stiffness between the columns and the soil. So, for 

stone columns, the load is expected to spread on a slightly wider area than that for piles, 

but the approximate proposal by Shen and Balckburn [16] will be here used as a first 

approach on the safe side. Additionally, a constant slope is assumed because a 

homogeneous soil is considered, but for stratified soils, the load distribution slope may 

vary. For example, if there is an upper crust, usually much stiffer than the soft soil 

below, the load distribution slope should be higher in that upper crust layer. 

 

On the other hand, the load on the footing displaces the soil downwards, and as the soil 

is not laterally confined, there is also an important horizontal displacement radially 

outwards. So, the columns and the soil beneath the footing expand radially (εr<0), while 

the soil far from the footing presents compressive radial strains (εr>0). The limit 

between compressive (positive) and extensive (negative) radial or horizontal strains is 

shown in Figure 3 for several cases, which were numerically simulated in Castro [13]. 

Figure 3 shows that the boundary between compressive and extensive horizontal strains 

is approximately at a slope of 4V:1H from the base of the footing, which happens to be 

the same as the assumed vertical stress distribution slope. 
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The footing is also assumed to be at the ground level, yet it will be usually embedded 

into the ground, which may be considered as an extra safety or later modified by an 

embedment correction factor. 

 

2.4 Boundary conditions and material properties 

The solution is developed for a horizontal slice at a depth z (Figure 4), and shear 

stresses between slices at different depths are neglected. The overall behaviour is 

obtained by means of addition of the solution, i.e. vertical deformation, at different 

depths. An average vertical stress, pa(z), is applied on each slice and is distributed 

between soil and column. Average values of the vertical stress on the soil, zs , and on 

the column, zc , are used in the development of the analytical solution. The vertical 

strain at each horizontal slice, εz, is assumed as uniform, which is an acceptable 

approximation because the load is applied on a rigid footing. 

 

The boundary condition on the left-hand side (Figure 4) is the axis of symmetry and on 

the right-hand side, the radial strain is assumed as zero (εr=0), as explained above and 

shown in Figure 3. It is worth noting that this boundary condition (εr=0) allows for a 

horizontal displacement radially outwards, which means that there is not a full lateral 

confinement and the vertical strain is higher than for the “unit cell” case, where the 

lateral displacement at the outer boundary is restrained (e.g. Pulko et al. [2]). The radial 

distance, at which this boundary condition has to be applied, coincides with the lateral 

extension of the loaded area, rl(z), which varies with depth as explained in Figure 2. 

That means that the area replacement ratio decreases with depth, ar(z), because the area 
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of the column, Ac, is constant and the loaded area, Al, increases with depth. The area of 

the column is 2
,

2 44 eqccc ddNA   , where N is the number of columns in the group, 

and the subscript “eq” refers to the central equivalent column. So, similarly to Eq. (1), 

the area replacement ratio is given by 

  
   2

2
,

2

2

22)( zD

d

zD

Nd
zA

A
za eqcc

l

c
r 




  (2) 

 

Soil is assumed as elastic (Es, νs) but plastic strains are also considered in the column 

using the Mohr-Coulomb yield criterion and a non-associated flow rule, with a constant 

dilatancy angle (Ec, νc, c, c). 

 

The accuracy of the above simplifying assumptions will be evaluated in Section 5, 

comparing the results of the analytical model with numerical analyses. 

 

3. ANALYTICAL SOLUTION 

3.1 Elastic case 

In a first step, elastic behaviour is assumed for the soil and the column. As previously 

mentioned, only a horizontal slice at a depth z of the unit cell is analysed (Figure 4). A 

horizontal slice of the column is a vertical solid cylinder subjected to a vertical uniform 

pressure zc  and a radial pressure rc  at its lateral wall, i.e. it is subjected to a triaxial 

stress state. Its elastic solution is (e.g. [1]) 
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Radial and hoop (circumferential) stresses are the same and constant within the column. 

Therefore, εrc=εθc=-sr/rc, where sr is the radial displacement at the soil/column interface, 

which is positive radially outwards. Compressive stresses and strains are considered 

positive and Lamé's elastic constants are used for convenience (   212  G  is the 

first Lamé’s constant and    12EG  is the shear modulus or second Lamé’s 

constant). 

 

The surrounding soil is a cylinder with a central cylindrical cavity, subjected to a 

vertical uniform pressure zs , a radial pressure rs  at the cavity wall (soil/column 

interface) and a null radial strain (εr=0) at the external boundary (r=rl). Its solution is 

derived in detail in Appendix I and is equal to 
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 (4) 

The stresses in Eqs. (3) and (4) correspond to stress increments produced by the applied 

load, pa. Compatibility of deformation at the soil/column interface in the horizontal 

direction gives εrc=εθc=-εθs. Imposing radial equilibrium at the soil/column interface 

( rsrc   ), the relationship between horizontal and vertical strains is obtained 

   zrs aF   12 *  (5) 

where 
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    sccscscr

sc

GGGGa
F 

 
*  (6) 

To get the vertical strain, the condition of vertical equilibrium to soil and column is 

imposed. 

  rzsrzca aap  1  (7) 

Then, the vertical strain may be expressed as a function of an equivalent elastic modulus 

 e
ml

a
z E

p  (8) 

where the equivalent elastic modulus is 

       rcrsrmsrmcr
e
ml aaaFEaEaE  111 *   (9) 

and Em is the confined (oedometric) elastic modulus. The first and second terms in Eq. 

(9) are the weighted values of the soil and column moduli, respectively. 

 

Vertical and horizontal stresses can be determined substituting Eqs. (8) and (5) into Eq. 

(3) for the column and into Eq. (4) for the soil. 

 

3.2 Plastic column 

A key issue to correctly capture stone column behaviour is considering its yielding, 

which can be adequately modelled with the Mohr-Coulomb yielding criterion and a 

non-associated flow rule for the plastic strains, with a constant dilatancy angle 

 cc   : 
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2
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Stone column material is usually dense and granular with a negligible cohesion. 

 

As for the elastic case, the column is assumed to be in compressive triaxial condition, 

and then, major principal stress direction is vertical. Now, column strains have an 

elastic part (Eq. 3) and another plastic (Eq. 11). Superscript "p" is used here to denote 

the plastic component. Combining those two components, the stress-strain relationship 

is: 
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where CE is the following constant of the column, which has units of stiffness: 

 
 caccac

c

c
cac

cc
E

KKKK
G

KK

G
C








121

23
 (13) 

The column constant CE gives an idea of the importance of the elastic strains in the 

column during its plastic deformation [22]. If the elastic strains are disregarded, 1/CE=0. 

 

Now, in the elastic-plastic analysis, the effective stresses in the yield condition (Eq. 10) 

have to include also the initial stresses, existing before load application. Assuming an 

initial geostatic stress state, given by the effective unit weight of soil and column, γ’s 

and γ’c, and the coefficient of lateral earth pressure at rest of the soil, K0s, the initial 
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effective stresses are 

 

izssircirs

cizc

sizs

K
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z

,0,,

,

,
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

 (14) 

Subscript "i" is used here to denote initial (prior to loading) stresses. Initially, the 

column is in an elastic state, because acs KK 0  always, but the applied load, pa, may 

cause column yielding. The value of the applied load that causes column yielding, y
ap , 

may be obtained using Eq. (10) 

 ac
yzcc

yrcss

yzc

yrc K
z

zK

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
,

,0

,

,

'
'


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


 (15) 

where the subscript "y" refers to column yielding and the stress increments (denoted as 

) are due to load application and may be obtained using Eqs. (3), (5) and (8). 

Substituting those equations in Eq. (15), y
ap  is obtained. 

 Yzp y
a   (16) 

where 

 
 
       raccracc

e
mlcacss

aFKaFKG
EKK

Y



11112

''
**

0




 (17) 

 

So, the applied load may be divided into the yielding load and the plastic increment 

load, p
a

y
aa ppp  . 

 

The solution for the plastic increment, p
ap , may be developed following the same 
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procedure as for the elastic case, but replacing Eq. (3) by Eq. (12) to account for column 

elasto-plastic behaviour. Now, the relationship between horizontal and vertical strains is 

 zs K 
*2   (18) 

where 

  
  cac
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sssr
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aC

GGa
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
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
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Imposing the condition of vertical equilibrium to soil and column, the vertical strain is 

 p
ml

p
a

z E
p  (20) 

where p
mlE is an equivalent modulus for the plastic increment 
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where 

 
  **

1
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a
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J
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sssr
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   (22) 

As for the elastic case, the vertical stresses and the radial displacement at the 

soil/column interface may be obtained substituting Eqs. (20) and (18) in Eqs. (4) and 

(12). 

 

3.3 Solution 

The final solution for the vertical strain, εz, of a horizontal slice at depth z may be 
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expressed as 
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To get the footing settlement, sz, the soil profile beneath the footing has to be divided 

into several slices of finite thickness, Δt. The vertical deformation of each slice is 

approximate by the vertical strain at the centre of each slice. The addition of the vertical 

deformation of all of the slices gives the surface settlement 

 i

i

izz ts 
1

,  (24) 

To clarify the calculation procedure, an example is presented in the next section. The 

solution may be easily implemented in a spreadsheet or any programming language; an 

example is shown in Appendix II. 

 

4. CALCULATION EXAMPLE 

In this example, the soil profile is simplified to only one homogeneous soil layer of 

thickness H=10 m. The elastic properties of soil and column are Poisson's ratios of 

νs=νc=0.33 and Young's moduli of Es=2 MPa and Ec=30 MPa, respectively. That means 

a modular ratio of 15. The friction and dilatancy angles for the column material are 

assumed as ϕc=45º and ψc=10º, respectively. For the sake of simplicity, the ground 

water level is at the surface and the unit weights of soil and column are γs=γc=20 kN/m3, 

which means effective unit weights of γ's=γ'c=10 kN/m3. The coefficient of lateral earth 
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pressure at rest of the soil is set equal to K0s=0.6, disregarding installation effects [18]. 

 

The foundation to be studied is a rough rigid square footing of side length B=5 m under 

a vertical pressure of pa=50 kPa. The soil beneath the footing is improved with 4 stone 

columns, whose diameter is dc=0.9 m. So, the total column area is Ac=2 m2, and divided 

by the footing area, Al=25 m2, gives the area replacement ratio at the base of the footing 

ar(0)=10%. As shown in [12,13], the number of columns is not relevant if ar is kept 

constant. 

 

The square footing (B=5 m) is converted to a circular footing of same area. Therefore, 

its diameter is BD 2 =5.64 m. In some practical situations, the diameter of the 

equivalent circular footing is directly taken as the side length of the square footing. The 

4 columns are also converted to a central equivalent column. Its diameter gives the same 

total column area, ceqc dNd , =1.8 m. If the columns, and consequently the equivalent 

central column, are assumed to reach a rigid substratum (end-bearing columns), their 

length is L=H=10 m. 

 

As an example, the soil and the equivalent column are divided into 5 horizontal slices of 

same thickness, Δt=2 m. For this case, dividing the soil into 5 slices is accurate enough. 

No further comments are provided on the necessary number of horizontal slices as it is 

similar to other settlement calculations and depends on the natural layering of the soil. 

The applied vertical stress and the area replacement ratio at the centre of each horizontal 

slice are calculated using Eqs. (1) and (2). The results are shown in Table 1. Eqs. (9) 
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and (21) are used to get the equivalent moduli for the elastic and plastic cases, e
mlE  and 

p
mlE , respectively. They are slightly different for each horizontal slice because they 

depend on the area replacement ratio. Next, the yielding load, y
ap , is obtained with Eq. 

(16). The vertical strain at the centre of each horizontal slice, εz, is given by Eq. (23). 

Finally, multiplying the slice thickness (2 m) by the vertical strains gives the 

deformation of each slice, szi, and the addition of the deformation of the 5 slices is the 

footing settlement, sz=70 mm (Table 1). 

 

5. VALIDATION AND PARAMETRIC ANALYSES 

Using the previous calculation example as a reference case, parametric studies were 

carried out varying several properties. The calculation example and their parametric 

variations were also compared with numerical analyses to validate the accuracy of the 

analytical solution. The finite element method was used for the numerical simulations. 

Similarly to Castro [13], the codes Plaxis 3D 2012 [23] and Plaxis 2D 2012 [24] were 

used for the full 3D models and the simplified 2D axisymmetric models, respectively. 

The numerical models for the calculation example are shown in Figure 5. The results of 

the full 3D and the simplified 2D models are very similar [13]. So, for the sake of 

simplicity, only the results of the simplified 2D model are shown unless otherwise 

stated. The soil and column properties in the numerical model are the same as those 

used for the analytical solution. 
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5.1 Calculation example 

The footing settlement calculated in the previous section (sz=70 mm) is compared with 

the footing settlement computed numerically, 59 and 57 mm, using the 2D and 3D 

models, respectively. The small difference between the 2D and 3D models is at least 

partly caused by the higher order of the elements used in the 2D model [13]. Although 

the analytical solution slightly overpredicts the settlement as explained below, it 

captures well the variation with depth (Figure 6). In the numerical models, the vertical 

line cross section corresponds to the centre of the footing, which means that it is in the 

column for the 2D model and in the soil for the 3D model. The oscillation at 2 m depth 

for the 2D model is caused by a shear band in the column (e.g. Pulko et al. [2]). 

 

To further analyse the calculation example, the horizontal displacements at the 

soil/column interface are compared in Figure 7. The comparison is only possible with 

the 2D model because in the 3D model, there are 4 columns instead of the central 

equivalent column and the results are not comparable. Above roughly z=5 m, the 

horizontal displacements are significant, while below that depth, they are much lower. 

That is caused by the plastic strains in the column in the upper 5 m, while in the lower 

part, the column remains elastic. The analytical solution properly reproduces the 

horizontal displacements but for the upper (z=0) and lower (z=10 m) boundaries, which 

are rough (src=0) in the numerical model. Those differences in the boundary conditions 

explain part of the difference in the settlement. Numerical simulations in the 2D model 

were performed using smooth upper and lower boundaries and the settlement increased 

from sz=59 mm to 61 mm. So, there is still a difference between the numerical model 

and the analytical solution, which is mainly caused by the stress distribution assumed 
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for the analytical solution (4V:1H) (Figure 2), as shown in the following. 

 

The vertical stresses, including the initial geostatic stress, are plotted at several depths in 

Figure 8. The assumed distribution of the vertical stress (Figure 2) is obviously a 

simplification, and in the numerical analyses there is not an abrupt distinction between 

loaded or not-loaded soil. However, the stress distribution between soil and column is 

well captured by the analytical solution and the general agreement is good. For this 

calculation example, the stress distribution assumed in the analytical solution (4V:1H) 

slightly overpredicts the vertical stresses, and consequently the vertical strains, 

particularly for z>B (e.g. Figure 8c). A 3V:1H distribution of the vertical load gives a 

better approximation and matches nearly perfectly the surface settlement (Figure 9). It is 

worth noting that a 4H:1V distribution is kept for the external boundary condition 

(εr=0). In the following, as an estimation on the safe side, the 4H:1V distribution for 

both the vertical load and the external boundary condition is used if not otherwise 

stated. 

 

5.2 Influence of soil yielding 

The analytical solution assumes an elastic behaviour for the soil. For spread loadings 

and the unit cell model, the soil reaches its maximum strength only near the column and 

for high load levels. Consequently, assuming an elastic behaviour for the soil gives 

good settlement predictions for the unit cell model (e.g. [2]). However, the influence of 

soil plastic deformations for small groups of columns is more significant (e.g. [13]). To 

evaluate that influence, numerical analyses were performed. As an example, Figure 10 
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shows the load-settlement curves of the calculation example but including the numerical 

simulation with an elasto-plastic behaviour of the soil. The Mohr-Coulomb yield 

criterion and a non-associated flow rule, with a constant dilatancy angle were used for 

both soil and column. A low strength (s=23º, cs=3 kPa) and a non-dilatant behaviour 

(s=0) were chosen for the soil. Obviously, plastic strains in the soil increase the 

settlement but for low vertical loads (pa<20 kPa for the calculation example). For high 

loads, plastic strains in the soil notably increase the settlement; ultimately, the bearing 

pressure is reached. Nevertheless, the proposed analytical solution is just for 

serviceability limit states, where soil yielding should be limited. For the calculation 

example and a service pressure around pa=50 kPa, the settlement overestimation 

provided by the assumption of a 4V:1H distribution of the vertical load is compensated 

by the increase in the settlement that is caused by the soil plastic strains (Figure 10). 

 

5.3 Floating columns 

So far, only end-bearing columns have been considered, but the analytical solution is 

also applicable to floating columns, whose length is equal or higher than critical (L≥2B). 

Using the calculation example as a starting point, the soft soil layer thickness, H, was 

increased from 10 m to 40 m, while keeping the column length equal to the critical 

length (L=10 m). The case with columns (improved soil) and the case without columns 

(unimproved soil) were simulated, and, in both cases the footing settlement (sz and sz0, 

respectively) increases with H (Figure 11). The settlement increase beyond H=40 m=8B 

is small. For example, the settlement for a homogeneous elastic half-space without 

columns is around 96 mm. 
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The settlement reduction factor achieved with the improvement, which is defined as the 

coefficient between the settlement with columns and without columns, β=sz/sz0, does not 

notably change beyond the critical length (Figure 11) [12,13]. Therefore, the settlement 

reduction factor of floating columns whose length is equal or higher than critical (L≥2B) 

may be estimated studying those columns as if they were end-bearing columns. To get 

the settlement reduction factor, the settlement with columns is obtained using the 

proposed solution and the settlement without columns may be estimated also 

analytically using any conventional method (e.g. [25]). In some cases, assuming L≥2B 

may not be realistic, and then, the proposed solution is not applicable. 

 

5.4 Influence of area replacement ratio 

In the calculation example, the area replacement ratio at the base of the footing is low, 

namely ar(0)=10%, and therefore, the footing settlement is reduced by a small amount 

(Figure 11). If a further reduction of the settlement is required, ar may be increased. 

Figure 12 compares the footing settlement for several values of ar. The settlement 

predicted by the proposed analytical solution assuming a 3V:1H load distribution 

matches very well the settlement computed numerically, while the settlement predicted 

by the proposed analytical solution assuming a 4V:1H load distribution gives a good 

estimation on the safe side. 

 

5.5 Influence of footing width 

A parametric analysis was also performed varying the footing width (Figure 13). For an 

infinitely small footing, the settlement is null and it increases with the footing width as 
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the loaded area increases. However, as the factor D/H increases, the lateral confinement 

of the columns also increases and the settlement tends to an asymptotic value that 

corresponds to the “unit cell” model (full lateral confinement). As for previous cases, 

the analytical solution gives a conservative estimation of the computed settlement for a 

4V:1H load distribution (Figure 13a), while a good matching is achieved using a 3V:1H 

distribution (Figure 13b). 

 

For high values of D/H, e.g. higher than 1 for ar=30%, the lateral confinement is high 

and the agreement between the proposed solution and the numerical analyses is worse 

because the hypothesis about the location of the external boundary where εr=0 is no 

longer valid. Under high lateral confinement, i.e. high values of D/H, there is not a 

spreading of the external boundary and that boundary is nearly a vertical line from the 

edge of the footing (e.g. Figure 14). That means that the proposed solution has been 

developed for columns beneath footings or pads, and consequently, the solution and its 

hypotheses are valid for those cases but not for rafts or large loaded areas. 

 

5.6 Influence of soil and column properties 

To complete the parametric study and verify that the proposed analytical solution is able 

to accurately predict the footing settlement for the common range of problem 

parameters, the soil and column properties were also varied. Firstly, the column 

strength, namely the friction angle, was varied from 35º up to 50º. The dilatancy angle 

of the column was also varied accordingly, from 0º up to 15º. The footing settlement 

evidently decreases as the column friction and dilatancy angles increase (Figure 15), 
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because the column yields later and the plastic strains are less important. The analytical 

solution assuming a 4V:1H load distribution gives a good estimation on the safe side; 

only for high area replacement ratios and very low column strengths (e.g. ar=50%, 

c=35º, c=0), the analytical solution gives slightly higher settlement.  

 

Secondly, the soil and column Young’s moduli were varied. For the same modular ratio, 

Ec/Es, the results of both parametric analyses are the same if the footing settlement is 

expressed in terms of the settlement reduction factor, β (Figure 16). The results confirm 

that the proposed analytical solution gives a good estimation on the safe side. The 

agreement between the analytical solution and the numerical analyses is better for high 

values of ar and Ec/Es, because the load distribution is closer to 4V:1H. On the contrary, 

for low ar or Ec/Es, the vertical load spreads out on a wider area and the load distribution 

slope of 4V:1H assumed for the analytical solution gives conservative values, i.e. 

overestimates β. Ultimately, for ar=0% or Ec/Es=1, the analytical solution would 

significantly overestimate , if a 4H:1V load distribution slope is assumed instead of a 

more realistic slope of 2H:1V for the case of no improvement. 

 

5.7 Comparison with published experimental measurements 

To fully validate the proposed analytical solution, a comparison with experimental 

measurements is here presented. The set of high-quality laboratory experiments 

performed by Sivakumar et al. [26] were used because of the detailed information 

provided. Sivakumar et al. [26] performed model tests on soft soil samples, 300 mm in 

diameter and 400 mm high, reinforced with single stone columns of three different 
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diameters, namely dc=40, 50 and 60 mm. A 60 mm diameter footing was resting on top 

of the column and subjected to foundation loading under drained conditions. The 

resulting area replacement ratios are ar=44, 69 and 100%, respectively. Speswhite 

kaolin and crushed basalt were used to model the soft soil and the stone column. Their 

properties may be found in Black et al. [9]. Those relevant for the analytical solution are 

Es= 4 MPa, Ec=30 MPa, ϕc=43º. Common values were assumed for other parameters 

that are not provided, νc=νs=0.33 and ψc=10º. The soil samples were isotropically 

consolidated (K0=1) to 50 kPa. That is the initial stress state for this case (Eq. 14). The 

soil and column weight were neglected. The columns were fully penetrating (L=400 

mm) but the deformation below 2D=120 mm was assumed to be small, and therefore, 

for the analytical solution the column length was input as 120 mm. 

 

Although there is some scatter in the laboratory data, the predicted settlement by the 

analytical solution matches reasonably well the laboratory measurements for design 

footing pressures (Figure 17). For higher pressures, e.g. pa>60-100 kPa, the 

experimental load-displacement curves bend towards the bearing pressure because of 

soil plastic deformation. 

 

5.8 Limit of the applied load 

As shown in Section 5.2 and Figure 17, the proposed solution is only valid for low or 

moderate applied loads that do not generate significant plastic strains in the natural soft 

soil. An exhaustive analysis of the soil plastic strains is beyond the scope of the paper, 

but further information and some comments are presented here to provide some 
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guidance on the limit of the applied load when using the proposed solution. 

 

For the calculation example, the proposed solution gives conservative settlements for 

loads not exceeding 50 kPa (Figure 10). This limit increases with the soil strength, 

footing diameter and area replacement ratio. As an example, Figure 18 shows the 

settlement predicted by the analytical solution and the numerical analysis, considering 

soil plastic strains (s=23º, cs=3 kPa) for different area replacement ratios. When the 

predicted values by the analytical solution and the numerical analysis coincide, that is 

considered the limit of the applied load to be used in the analytical solution. The limit 

load for the calculation example, i.e. ar=10%, is 50 kPa, but this value increases up to 

75 kPa for ar=60% and up to 100 kPa for ar=80%. Those values are higher for higher 

soil strengths and footing diameters. 

 

In the comparison with the laboratory measurements presented in the previous section 

(Figure 17), the limit load is between 60 and 100 kPa, depending on ar and the scatter of 

the laboratory results. Although the footing diameter is small, the limit load is similar to 

the previous calculation example because of the higher soil strength. 

 

In summary, for common situations (footing diameter, soil strength and ar), the limit of 

the applied load to be used in the analytical solution is between 50 and 100 kPa. 
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CONCLUSIONS 

A new approximate solution has been developed to study the settlement of rigid 

footings resting on a soft soil improved by groups of stone columns. The solution 

development is fully analytical, imposing equilibrium of stresses and compatibility of 

deformations. Some simplifying assumptions are necessary, such as: 

 Groups of columns are converted to equivalent single columns with the same 

cross-sectional area. So, the problem becomes axially symmetric. 

 Applied load distributes with depth at a 4V:1H slope. For some cases, a 3V:1H 

load distribution gives a closer approximation. 

 Columns reach a rigid substratum or their length (L) is higher than critical (≈2B). 

 Soil profile is divided into slices that are independently analysed. 

 Plastic strains in the soil are not considered. 

 Foundation loading is under drained conditions. 

 

These simplifying assumptions impose some limitations to the analytical solution. The 

solution is not directly applicable to large loaded areas or stratified soils because the 

load distribution slope changes. Additionally, the solution is not applicable to those 

cases where the column does not reach a rigid substratum and it is not realistic to 

assume L≥2B. The solution is only valid for low to moderate foundation loads (lower 

than 50-100 kPa for common cases) because plastic strains in the soil are not 

considered. 
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The solution may be implemented in a spreadsheet or any programming language. A 

simplified calculation example and the corresponding Matlab code are presented. 

 

The analytical solution predicts footing settlements that agree well with numerical 

analyses and are usually on the safe side for most cases. Good agreement is also found 

for vertical displacements, vertical stresses and horizontal displacements at the 

soil/column interface. Additionally, the solution compares well with a small scale 

laboratory test available in literature, which confirms the validity of the solution and its 

hypotheses. So, the proposed solution is an analytical and accurate tool for the design of 

groups of stone columns beneath rigid footings. 
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APPENDIX I: SOLUTION FOR THE SOIL HOLLOW CYLINDER 

The soil surrounding the column is a hollow cylinder, subjected to a vertical uniform 

pressure zs , a radial internal pressure rs  at the soil/column interface (r=rc) and a null 

radial strain (εr=0) at the external boundary (r=rl) (Figure 4). The solution is obtained by 

superposition of a state A of confined vertical compression and a state B in plane strain 

conditions (e.g. [27]). In state A, there is only vertical deformation, εz, and in state B, 

there are only horizontal deformations, εr and εθ. The solution for state A is 

 














 










s

z

s

ss

Ars

Azs G










20

02

,

,  (A.1) 

where εθs is the hoop strain at the soil/column interface (r=rc) and is related to the radial 

displacement at the soil/column interface, εθs=sr/rc. 

 

The solution for state B starts with the displacement field for a hollow cylinder in plane 

strain conditions and axial symmetry (uθ=0): 
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where A and B are constants that satisfy the boundary conditions. From the 

displacement field (Eq. A.2), the strains may be calculated 
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The stresses are 
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and the boundary conditions are 
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Applying the boundary conditions (Eq. A.5) to Eqs. (A.3) and (A.4), the constants A 

and B and the solution for state B are calculated. 
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The final solution is obtained by superposition of states A (Eq. A.1) and B (Eq. A.6). 
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APPENDIX II: CODE FOR THE ANALYTICAL SOLUTION 

The analytical solution may be implemented in a spreadsheet or any programming 

language. This appendix shows an example of code in Matlab to get the footing 

settlement. The data of the calculation example in Section 4 are here used. 

% Units: Length (m), Stiffness and applied pressure (kPa), Unit weight (kN/m3) 
 
% Geometry data  
    % Square footing 
    B=5; 
    %Equivalent circular footing 
    D=2/sqrt(pi)*B; 
    % Number of columns, diameter and length (end-bearing columns) 
    N=4; 
    dc=0.9; 
    L=10;  
    % Divide soil and column into n slices 
    n=5; 
 
% Soil properties 
Es=2000; 
mus=0.33; 
gammas=10; 
K0s=0.6; 
 
% Column properties 
Ec=30000; 
muc=0.33; 
gammac=10; 
fic=45*pi/180; 
chic=10*pi/180; 
 
% Applied load  
pa0=50; 
 
% Intermediate parameters 
deltat=L/n; 
vz=linspace(0+deltat/2, L-deltat/2, n); 
 
Ems=Es*(1-mus)/((1+mus)*(1-2*mus)); 
Gs=Es/(2*(1+mus)); 
lamdas=Ems-2*Gs; 
 
Emc=Ec*(1-muc)/((1+muc)*(1-2*muc)); 
Gc=Ec/(2*(1+muc)); 
lamdac=Emc-2*Gc; 
Kac=(1-sin(fic))/(1+sin(fic)); 
Kchic=(1-sin(chic))/(1+sin(chic)); 
CE=(3*lamdac+2*Gc)/(1+2*Kac*Kchic+lamdac/Gc*(1-Kac-Kchic+Kac*Kchic)); 
 
sz=0; 
 
% Deformation of each slice 
for i=1: n 
    z=vz(i); 
    ar=N*dc*dc/(D+z/2)^2; 
    pa=pa0*D*D/(D+z/2)^2; 
     
    Fstar=(lamdac-lamdas)/(ar*(lamdac+lamdas+Gc+Gs)+(lamdac+Gc-Gs)); 
    Emle=ar*Emc+(1-ar)*Ems+Fstar*ar*(lamdas*(1-ar)-lamdac*(1+ar)); 
     
    Kstar=(Kac-1/CE*lamdas)/((ar*(lamdas+Gs)-Gs)/(CE*(1+ar))+Kac*Kchic); 
    Jstar=lamdas+(ar*(lamdas+Gs)-Gs)/(1+ar)*Kstar; 
    Emlp=(1-ar)*Ems+(1-ar)/(1+ar)*ar*lamdas*Kstar+ar/Kac*Jstar; 
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    Y=(K0s*gammas-Kac*gammac)*Emle/(Gc*(2*Kac+Fstar*(1+ar))-lamdac*(1-Kac)*(1-
Fstar*(1+ar))); 
    pay=Y*z; 
     
    if pa>pay 
         
        pap=pa-pay; 
        ez=pay/Emle+pap/Emlp; 
         
    else 
         
        ez=pa/Emle; 
         
    end 
     
    % Addition of the deformation of each slice 
    sz=sz+ez*deltat*1000; 
     
end 
  
% Total settlement in mm 
sz 
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TABLE CAPTIONS 

Table 1. Calculation example. 
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FIGURE CAPTIONS 

Figure 1. Modelling of a group of stone columns beneath a rigid footing: (a) Real 

geometry ; (b) Equivalent concentric rings ; (c) Homogenization technique ; 

(d) Equivalent central column. 

Figure 2. Stress distribution beneath the footing: (a) End-bearing columns; (b) Floating 

columns. 

Figure 3. Limit between extensive (in white) and compressive (in grey) horizontal 

strains. 

Figure 4. Analytical model. 

Figure 5. Numerical models [13]. Calculation example: (a) 3D model; (b) Simplified 2D 

model. 

Figure 6. Vertical displacement with depth. 

Figure 7. Horizontal displacements at the soil/column interface. 

Figure 8. Vertical stresses at several depths. 

Figure 9. Different load distributions: (a) Vertical displacement with depth; (b) Load-

settlement curve. 

Figure 10. Influence of soil plastic strains. 

Figure 11. Influence of soil layer thickness. Numerical analyses. 

Figure 12. Influence of area replacement ratio. 

Figure 13. Influence of footing width: (a) 4V:1H load distribution; (b) 3V:1H load 

distribution. 

Figure 14. Limit between extensive (in white) and compressive (in grey) radial strains 

(D/H=2). 

Figure 15. Influence of column strength. 

Figure 16. Influence of soil and column stiffnesses. 

Figure 17. Analysis of laboratory tests (Laboratory data from [26]). 

Figure 18. Limit of the applied load for different ar. 
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Table 1. Calculation example. 
 
Depth pa ar e

mlE  p
mlE  y

ap  εz szi 
(m) (kPa) (%) (kPa) (kPa) (kPa) (%) (mm) 

1 42.2 8.4 5,373 3,234 5.6 1.24 25 
3 31.2 6.2 4,746 3,140 14.6 0.84 17 
5 24.0 4.8 4,335 3,086 22.1 0.57 11 
7 19.0 3.8 4,051 3,054 28.8 0.47 9 
9 15.5 3.1 3,848 3,032 35.1 0.40 8 
Total       70 
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Improved
properties

 

   (a)      (b)        (c)        (d) 

Figure 1. Modelling of a group of stone columns beneath a rigid footing: (a) Real geometry ; (b) 

Equivalent concentric rings ; (c) Homogenization technique ; (d) Equivalent central column. 
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Figure 2. Stress distribution beneath the footing (end-bearing columns). 



 43

ar=0.1
N=1
B=5 m
L=H=10 m
ϕc=35º

4

1

 

4

1

ar=0.5
N=1
B=5 m
L=H=10 m

 

ar=0.1
N=24
B=5 m
L=H=10 m

4

1

ar=0.3
N=4
B=5 m
L=H=10 m

4

1

  

Figure 3. Limit between extensive (in white) and compressive (in grey) horizontal strains. 
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Figure 4. Analytical model. 
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Figure 5. Numerical models [13]. Calculation example: (a) 3D model; (b) Simplified 2D model. 
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Figure 6. Vertical displacement with depth. 
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Figure 7. Horizontal displacements at the soil/column interface. 
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Figure 8. Vertical stresses at several depths. 
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(b) 

Figure 9. Different load distributions: (a) Vertical displacement with depth; (b) Load-settlement curve. 
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Figure 10. Influence of soil plastic strains. 
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Figure 11. Influence of soil layer thickness. Numerical analyses. 
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Figure 12. Influence of area replacement ratio. 
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Figure 13. Influence of footing width: (a) 4V:1H load distribution; (b) 3V:1H load distribution. 
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Figure 14. Limit between extensive (in white) and compressive (in grey) radial strains (D/H=2). 
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Figure 15. Influence of column strength. 
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Figure 16. Influence of soil and column stiffnesses. 
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Figure 17. Analysis of laboratory tests (Laboratory data from [26]). 
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Figure 18. Limit of the applied load for different ar. 


