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Highlights

 Oxidation byproducts were quantified when 2-CP s was treated by Fenton process.

 H2O2 dose, Tª and chloride show positive influence in the degradation of 2-CP.

 TOC balance was only closed with H2O2 at 100% of the stoichiometric dose and 70ºC.

 Besides, PCDD/Fs formation, promoted in presence of chloride, was quantified. 

ABSTRACT

This work assesses the influence of the operating conditions H2O2 dose (20 or 100% of 

the stoichiometric amount), temperature (20 or 70ºC), and the presence of chloride in 
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the oxidation medium  in the formation of polychlorinated dibenzo-p-dioxins and 

dibenzofurans (PCDD/Fs) during Fenton treatment of aqueous samples of 2-

chlorophenol, 2-CP , one of the strongest precursor of PCDD/Fs. After 4 h of oxidation

in the experiments carried out with 20% H2O2 chlorinated phenoxyphenols and 

biphenyls, which are intermediates in PCDD/Fs formation, as well as PCDD/Fs were

observed, resulting in concentrations 11 times higher than in the untreated sample. 

Additionally, when NaCl was also present in the reaction medium, PCDD/Fs were 

formed at higher extent, with a total concentration 74.4 times higher than in the 

untreated 2-CP solution. Results depicted a preferential formation of PCDFs over 

PCDDs, with dominance of lower chlorinated PCDD/Fs (tetra and penta-PCDD/Fs). 

Besides, the formation of the most toxic PCDD/Fs congeners (2,3,7,8-PCDD/Fs) was 

not favored under the operating conditions used in this work.

1. INTRODUCTION

Chlorophenols (CPs) are a family of organic compounds listed as priority pollutants by 

the U.S.EPA’s Clean Water Act [1] and by the European Decision 2455/2001/CE [2]

due their acute toxicity, resistance to biodegradation, tendency to bioaccumulate, and 

suspected carcinogenicity [3]. CPs have been applied as wood preservatives and 

disinfectants, and serve as intermediates in the synthesis of some insecticides, 

herbicides, pharmaceuticals and dyes [4]. CPs may be formed during waste incineration, 

pulp bleaching, and water disinfection [5]. As a result of their wide use and production

for many years, and the past practice of chemical waste disposal in ordinary landfills, 

CPs have been detected in industrial wastewaters, surface waters, groundwater, soils 

and municipally treated drinking waters [6,7]. 

Wastewater treatment is necessary to remove CPs before their potential discharge into 

the environment. Biological processes are effective only when CPs are present in low 
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concentrations due to its inhibition of microbial growth, and physical/chemical 

treatments require post-treatment processes to remove the pollutants [7]. Alternatively, 

advanced oxidation processes (AOPs) offer many advantages to these aforementioned 

remediation techniques. They are based on the formation of very active species, 

typically hydroxyl radicals (OH·), to remediate target organic compounds in wastewater.

Fenton oxidation involves the generation of OH· from H2O2 using Fe2+ as a catalyst at 

acidic pH [8]. The highly reactive OH· initiate the oxidative destruction of organic 

compounds leading to the formation of carbon-centered radicals, R·, which can be 

further oxidized by Fe3+, O2, H2O2, OH·, or other intermediates to form a stable and 

oxidized product [9,10].

Several studies emphasize the relative ease of use and efficacy of Fenton oxidation 

treatment for various industrial waters, and for the remediation of CPs [5,8,11,12]. One 

important limitation in the treatment of heavily polluted wastewaters by Fenton

oxidation may be its high H2O2 consumption. To maintain economic feasibility, lower 

oxidant concentrations have been proposed, but this may lead to the formation of stable, 

and potentially toxic, aromatic intermediates. One important consideration for Fenton 

oxidation, therefore, is the potential formation of byproducts that can be more 

dangerous than the target parent compounds. For example, the formation of coupling-

reaction aromatic byproducts, such as chlorinated biphenyls, dibenzofurans and 

dibenzodioxins, have been addressed from a qualitative and/or semi-quantitative 

perspective during the treatment of CPs under nonstoichiometric Fenton system

conditions [13-15]. CPs are potential precursors of the formation of polychlorinated 

dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and may also contain many 

chlorinated impurities, such as PCDD/Fs [16,17]. PCDD/Fs are a family of persistent 
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organic pollutants regulated internationally by the Stockholm Convention, characterized 

by their persistence, bioaccumulative behaviour and toxicity [18]. 

To date, a thorough understanding of PCDD/Fs and other related byproducts formation

during the application of AOPs for the abatement of chlorinated organic compounds is 

lacking. This work, therefore, evaluates the reaction products, with especial and detailed 

quantitative assessment of PCDD/Fs, during Fenton treatment of solutions containing 2-

chlorophenol (2-CP). The influence of H2O2 dose, temperature and presence of chloride 

ions in the reaction media on the potential formation of PCDD/Fs has been evaluated. 

Furthermore, in order to provide a better understanding of the reaction mechanisms that 

are involved in their formation the distribution of intermediates oxidation products has 

been analyzed.

2. MATERIALS AND METHODS

2.1. Fenton oxidation experiments

All the chemicals used were analytical grade reagents. Fenton oxidation experiments 

consisted of 1L of 15.56 mM 2-CP, and were performed in batch mode in magnetically 

stirred (700 rpm) glass reactors. The initial pH was adjusted to 3.0 with HNO3. Excess 

H2O2 was removed by NaHSO3 when the oxidation time was reached. All experiments 

were done in duplicate under the operating conditions listed in Table 1. H2O2 doses 

corresponding to 100% (202.28 mM) and 20% (40.44 mM) of the theoretical 

stoichiometric amount to oxidize 2-CP were used. Two different temperatures, 20ºC and 

70ºC, were evaluated, and the presence of chloride (56.34 mM) in the reaction medium 

was tested.

Table 1. Experimental conditions of Fenton experiments.
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H2O2 (mM) 40.44 40.44 40.44 202.28 202.28 202.28

Fe+2 (mM) 0.18 0.18 0.18 7.22 7.22 7.22

Tª (ºC) 20 20 70 20 70 70

NaCl (mM) - 56.34 - - - 56.34

2.2. Analytical methods. 

Total organic carbon (TOC) analysis was performed using a TOC-V CPH (Shimadzu). 

2-CP and aromatic reaction intermediates were quantified using a HPLC (Waters 2690)

equipped with a reversed-phase column LC-8 (Supelco) and a PDA detector, and using 

4 mM H2SO4 as the mobile phase at = 211 nm.

Quantification of acetic, formic, maleic, fumaric and oxalic acids were made using ion 

chromatography with anionic suppression (Dionex ICS-1100) with a conductivity cell 

detector (ASR-ULTRA model). An IonPac AS9-HC (4 mm) column was used as the 

stationary phase with a mobile phase of 9 mM solution of Na2CO3 at 1 mL min-1.

Samples were L-L extracted with dichloromethane, concentrated in a rotary evaporator

(Buchi R-210) and analyzed by GC-MS (Shimadzu QP2010 Ultra) with a capillary 

column (HP-5ms, 30 m length, 0.25 mm internal diameter). Confirmation of all

structural assignments for the identified compounds was made using the NIST08 spectra 

library.

2.3. PCDD/Fs analysis

Standard Method U.S.EPA 1613 (1994) for PCDD/Fs analysis was used in this study. 

Briefly, samples (0.45 L) were spiked with 10 µL of a 15 13C-labeled PCDD/Fs solution 

(EPA 1613 LCS) dissolved in acetone. PCDD/Fs were extracted with dichloromethane

in triplicate. The organic extract was concentrated in a rotary evaporator (Buchi R-210), 
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transferred to n-hexane, treated with H2SO4 and extracted twice with n-hexane. The 

organic phase was then dried with Na2SO4 and concentrated in the rotary evaporator to 

approximately 1-2 mL. The extract was then filtered and further cleaned-up using an 

automated system (Power-PrepTM, Fluid Management Systems) through silica, alumina

and PX-21 active carbon columns (Technospec). The purified extract was concentrated 

using a rotary evaporator, transferred into a vial and concentrated to dryness under N2.

Before analysis, an internal standard (EPA 1613 ISS) was added to the sample.

Purified samples were analyzed by the SERCROM Service (University of Cantabria)

using high resolution gas chromatography-high resolution mass spectrometry (HRGC-

HRMS), whereas it must be noticed that in previous works the formation of coupling 

reaction products during the Fenton oxidation of CPs was faced using low resolution 

MS. The HRGC system is comprised of a TRACE GC UltraTM gas chromatograph 

equipped with a split/splitless injector (Thermo Electron S.p.A.) and a DB-5 MS fused 

silica capillary column (J&W Scientific). The column was connected through a heated 

transfer line (270°C) to a DFS high-resolution magnetic sector mass spectrometer with 

BE geometry (Thermo Fisher Scientific). Positive electron ionization (EI+) mode with 

ionization energy of 45 eV was used in the source at 270 ºC. The mass spectrometer 

was operated in SIM mode at 10000 resolution power (10% valley definition). 

Detection limits were calculated as the concentrations that gave instrumental responses 

within a signal-to-noise ratio of 3.

Quantitative analyses were performed using the isotopic dilution method. Relative 

response factors, obtained from the calibration curve by analyzing CS-1 to CS-5 

standard solution mixtures, were used to determine the target compound’s concentration 

in the samples. The recoveries of labeled standards were calculated using the ISS 

standard.
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2.4. Quality control. 

The reliability of the PCDD/Fs analytical methodology was assured by analyses of 

ultrapure water samples spiked with native PCDD/Fs standards (EPA 1613 PAR), blank 

samples and the EPA 1613 LCS standard. The average recoveries were in the range of 

74.3 to 105.6% for 13C12- labeled 2,3,7,8-PCDD/Fs congeners, and were within the 

ranges established by the EPA 1613 method. Blanks representing all sample preparation 

steps were analyzed and indicated that congeners were either not detected or below the 

detection limits.

3. RESULTS AND DISCUSSION

3.1. Effect of H2O2 dose on Fenton degradation of 2-CP

The effect of two different concentrations of H2O2 (20 and 100% of the stoichiometric 

H2O2 dose) on the Fenton oxidation of 2-CP was investigated. Although oxidation was 

effective for both concentrations, it was faster with 100% H2O2 due to a higher OH

availability (Figure 1a).
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Figure 1. Effect of H2O2 dose on: a) 2-CP, H2O2 and TOC; b) aromatic intermediates; c).organic 

acids. Empty dots: 20% stoichiometric, solid dots: 100% stoichiometric.

However, even when 2-CP was completely degraded, the mineralization was far from 

complete at both H2O2 initial concentrations. With H2O2 at 20% of the stoichiometric 

value, TOC was reduced only by 4%, and remained constant after 30 min, whereas 

using the stoichiometric amount of H2O2 (100%) higher TOC removal was achieved

(22.9% after 4 h). This is likely due to both the low concentration of H2O2 remaining in 

solution, and to the presence of organic compounds such as carboxylic acids that could
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form complexes with Fe(III), deactivating its capacity to regenerate Fe(II) and 

diminishing OH· production [19].

Aromatic intermediate products were identified only in samples containing 20% H2O2. 

Concretely, 2-chlorobenzoquinone and catechol (Figure 1b), reached maximum 

concentrations at 5 min and remained at constant values after 30 min, coinciding with 

total H2O2 consumption. The cleavage of the aromatic ring led to the formation of 

aliphatic carboxylic acids: acetic, formic, oxalic and fumaric acids. Although the same 

organic acids were identified with both H2O2 dose (fumaric acid was not detected at 

20% H2O2), higher concentrations were obtained with H2O2 at 100% because of the 

higher OH· availability.

3.2. Effect of Temperature on Fenton degradation of 2-CP

The analysis of 2-CP degradation was performed at two different temperatures, ambient

(20ºC) and 70ºC, for both H2O2 concentrations (20% and 100% of the stoichiometric 

dose). Faster degradation of 2-CP was observed at 70ºC than at room temperature for 

both H2O2 concentrations, as would be expected due to the increase in the kinetic

constant of the oxidation reactions with temperature. 
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Figure 2. Effect of Temperature with H2O2 at 100% in: a) 2-CP, H2O2 and TOC; b) organic 

acids. Empty dots: 70ºC, filled dots: 20ºC.
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Figure 3. Effect of Temperature with H2O2 at 20% in: a) 2-CP, H2O2 and TOC; b) aromatic 

intermediates; c).organic acids. Empty dots: 70ºC, filled dots: 20ºC.

Although some authors claim that the thermal instability of H2O2 is a limitation for the 

use of Fenton oxidation at high temperatures [20], Zazo et al. [21] found that increasing 

the temperature in the range 25 to 130ºC enhanced mineralization rates. Accordingly, 

our results indicate that the overall mineralization was considerably more effective at 

70ºC (Figures 2a and 3a). The reduction in TOC increased from 3% at 20ºC to 27% at 

70ºC (H2O2 at 20%, 4h) and from 23% at 20ºC to 69% at 70ºC (H2O2 at 100%, 4 h).
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The concentration of the main aromatic intermediate products, 2-chlorobenzoquinone 

and catechol, which were only identified with 20% H2O2,was lower at 70ºC than at 

20ºC in agreement with the enhancement in TOC mineralization. On the other hand, the 

temperature increase resulted in high concentrations for some organic acids, formic and 

oxalic at 20% H2O2, and oxalic acid with 100% H2O2. Although the temperature 

increment favored TOC degradation, a complete mineralization could not be achieved,

accordingly to section 3.1, because of H2O2 consumption and the resistance of some 

carboxylic acids, such as oxalic acid, to Fenton degradation.

3.3. Effect of chloride on Fenton degradation of 2-CP

Since chloride may be one product of 2-CP degradation and high concentrations of 

inorganic salts, especially NaCl, have been measured in wastewaters, such as those

generated during the manufacture of pesticides, pharmaceuticals, dyes, and from landfill 

leachates [22-24], the effect of 2-CP was analyzed using two sets of experiments,

differently favored in terms of TOC removal (H2O2 at 100% and at 70ºC; H2O2 at 20% 

and 20ºC) and in the presence of 2000 mg L-1 (56.34 mM) of Cl-.

With 100% H2O2 and 70ºC, the presence of Cl- in the reaction medium did not affect the 

degradation of 2-CP, but increased the mineralization of TOC by 11% in comparison to 

samples without Cl- (Figure 4). As was shown by Micó and coworkers [25], this fact 

can be attributed to the formation of chloride radical anions (Cl·) from the reaction 

between OH· and Cl- (reactions 1 to 3), which contribute to the degradation of organic 

compounds. 

                                        (reaction 1)

                                    (reaction 2)

                                           (reaction 3)



Page 13 of 35

Acc
ep

te
d 

M
an

us
cr

ip
t

13

Although Cl· formation requires OH· scavenging, and Cl· are generally less reactive

than OH· with organic species, the magnitude of rate constants for Cl· reactions with 

organic compounds are comparable to those for OH· [25,26]. Additionally, Pignatello

[27] found that the scavenging effect of OH· by Cl- is noticeable above 10 mM Cl-; we 

have, accordingly, used Cl- concentrations higher than 10 mM.
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Figure 4. Effect of Chloride with H2O2 at 100% and at 70ºC in: a) 2-CP, H2O2 and TOC; b) 

organic acids. Empty dots: with NaCl, filled dots: without NaCl.

These results were opposed to other studies where Cl- significantly inhibited organic 

matter removal via OH· scavenging, as well as ferric ion complexation [25].

Nevertheless, the formation of ferric chlorocomplexes that affect the regeneration of 

Fe2+, can be overcome if Cl-concentrations are less than 200 mM [28], as was also 

observed in this study. Alternatively, with 20% H2O2 and at 20ºC, the presence of Cl-

did not affect the degradation of 2-CP and the overall TOC removal (Figure 5). These 

results suggest that when using low concentrations of Fenton reagent, the lower 
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production of OH· leads to preferential degradation of the main organic contaminant, 2-

CP.
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Figure 5. Effect of Chloride with H2O2 at 20% and at 20ºC in: a) 2-CP, H2O2 and TOC; b) 

aromatic intermediates; c) organic acids. Empty dots: with NaCl, filled dots: without NaCl.

3.4. TOC and Cl- balance

Theoretical TOC values after 4 h of treatment were calculated in order to account for 

the detected intermediate products and compared to the experimentally measured TOC 

data (Figure 6).
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The difference between measured and theoretical TOC values decreased with increasing 

H2O2 dose and temperature. After 4 h, the TOC balance was only 100% satisfied with 

100% H2O2 at 70ºC. Under experimental conditions other than 100% H2O2 and 70ºC, a 

difference between the measured and quantified TOC was observed and attributed to the 

presence of unidentified oxidation intermediates, which may be aromatic condensation 

species [21]. In addition, Cl- measurements were only balanced when the TOC was 

balanced. It is, therefore, likely that the aforementioned condensation byproducts 

included chlorinated organic compounds.

There are significant gaps in the understanding of the formation and identity of aromatic 

intermediates when using pronounced substoichiometric H2O2 to CPo molar ratios for 

Fenton oxidation [13]. In order to identify some of these unknown byproducts, samples

were analyzed using GC-MS. Working with 20% H2O2, the main species identified at 

low retention times were chlorobenzenediols, mainly as 2-chlorohydroquinone, 4-

chlorocatechol and 4-chloresorcinol (which were only detected by GC-MS, suggesting 

low yields). Compounds with higher molecular weights, such as condensation products 

formed by two-chlorinated aromatic rings, were detected at higher retention times. They 
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were primarily 4-chloro-3-(4-chlorophenoxy)phenol (m/z: 254, 184) and 4,4'-

dichloro[1,1'-biphenyl]-3,3'-diol (m/z: 254, 155). The formation of coupling-reaction 

aromatic byproducts is supported by the development of a brownish reagent medium

[29] and have also been reported during the treatment of chlorinated phenols under 

nonstoichiometric Fenton [13] and Fenton-like systems [14,15, 30]. Nevertheless, these 

compounds are present in low concentrations that do not balance the differences 

observed in the TOC. Therefore, it is likely that there were unknown analytes remaining 

in the solution. However, such compounds are susceptible to oxidation, as the organic 

carbon balance was closed by increasing H2O2 dose and temperature. Similarly, Sedlak 

and Andren [29] identified the formation of colored aromatic polymers during the 

Fenton oxidation of chlorobenzenes that were further oxidized by subsequent OH·

attack.

3.5. Formation of PCDD/Fs during the Fenton degradation of 2-CP

Since 2-CP is a potent precursor of PCDD/Fs, and its Fenton oxidation byproducts (i.e., 

chlorinated hydroxybipehnyls and phenoxyphenols) are key intermediates in the 

formation of PCDD/Fs from chlorinated phenols [31,32], the assessment of the potential

formation of PCDD/Fs as minor byproducts during Fenton oxidation of 2-CP is 

necessary. PCDD/Fs analyses were performed after 4 h of treatment under the operating 

conditions discussed in sections 3.1, 3.2 and 3.3. The homologue profiles of total 

PCDD/Fs and the congener profiles of 2,3,7,8-PCDD/Fs in untreated 2-CP solutions 

and in oxidized samples (4 h) are shown in Figure 7a and 7b, respectively.
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Figure 7. PCDD/Fs concentration: a) homologue profile of total PCDD/Fs; b) congener profile 

of 2,3,7,8-PCDD/Fs.

As can be observed in Figure 7a, three groups of homologues (HpCDD, OCDD, and 

TCDF) were detected at very low concentration (4.6-12.2 pg L−1) in the untreated water 
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solutions containing 2-CP. For 100% H2O2, although new groups of homologues 

appeared in the oxidized sample, in comparison to the untreated one, a significant 

PCDD/Fs formation was not observed. Besides, the concentration of some homologue 

groups, namely TCDD and TCDF, decreased when working at 70ºC. On the other hand, 

after 4 h of treatment with 20% H2O2, relatively large quantities of PCDD/Fs were 

observed, resulting in concentrations (312.9 pg L-1, Table 1SI) 11 times higher than in 

the untreated sample. Results from figure 7a showed a preferential formation of PCDFs 

over PCDDs, so the formation of PCDFs intermediate products seemed to be favored 

over the corresponding for PCDDs. According to Duesterberg and Waite [33], the 

electrophilic addition of OH· to CPs followed by water elimination results in the 

formation of Cl-phenoxy radicals. These radicals have been identified as key 

intermediates in basically all suggested pathways for PCDD/Fs formation [34]. The 

oxidative coupling reactions of Cl-phenoxy radicals with other radicals and/or 

molecules give rise to bioaromatic intermediates such as biphenyls and phenoxyphenols 

and then to PCDD/Fs [35,36]. Since radical-molecule pathway requires chlorine and 

hydroxyl displacement, steps that are not energetically favored, the radical-radical 

pathway is considered the major pathway for the formation of PCDD/Fs [36].

Furthermore, when NaCl was present in the reaction medium, PCDD/Fs were formed at 

higher extent, with a total PCDD/Fs concentration (2092 pg L-1 Table 1SI) 74.4 times 

higher than in the untreated 2-CP solution, highlighting the significance of ubiquitous 

Cl- in the reaction medium. Chlorine radicals (Cl·), formed from the reaction between

OH· and Cl- as was described in section 3.3, could contribute to PCDD/Fs formation by 

chlorination of their precursors as well as of lower chlorinated PCDD/Fs. The 

dominance of lower chlorinated PCDD/Fs (tetra and penta derivatives) underscores the 

reactivity dynamics of the reaction medium where lower chlorinated compounds (2-CP 
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and its derivatives) predominate, progressing with time to PCDD/Fs by means of

chlorination/condensation reactions.

Among total PCDD/Fs, congeners with chlorine at 2,3,7,8 positions (a total of 17 

PCDD/Fs congeners) are of particular interest due to their high toxicity and potential 

effects on human health. Only two 2,3,7,8-PCDD/Fs, OCDD and 2,3,7,8-TCDF, were 

detected at very low concentrations (1.2−4.6 pg L−1) in the untreated 2-CP solution

(Figure 7b). After 4 h of treatment using 20% H2O2, both congeners remained in the 

reaction medium although at low concentrations, 2.6 pg L-1 for OCDD and 6.9 pg L-1for 

2,3,7,8-TCDF (Table 2 SI). Similar values were obtained when NaCl was added to the 

reaction medium (20% H2O2), with concentration values of 1.8 pg L-1 for OCDD and 

8.4 pg L-1 for 2,3,7,8-TCDF (Table 2 SI). For both systems, the rest of the 2,3,7,8-

PCDD/Fs were observed at negligible concentrations. Under the remaining operating 

conditions and taking into account the low PCDD/Fs concentrations and the 

experimental error, the formation of 2,3,7,8-PCDD/Fs could not be confirmed.

Therefore, the formation of the less toxic PCDD/Fs congeners was favored under the 

operating conditions used in this work. Although PCDD/Fs have been shown to be 

formed in very small concentrations (i.e. 2092 pg L-1), it must be emphasized that these

low yields do not eliminate environmental threats, as many compounds, such as

PCDD/Fs, are toxic even at very low concentrations. In fact, the maximum contaminant 

level established by the U.S. EPA is 30 pg L-1 of the equivalent 2,3,7,8-TCDD. In 

addition, as PCDD/Fs are highly persistent in the environment and their lipophilic 

nature causes them to accumulate through food chains, there can be adverse effects for 

biota (including humans) from very low and continuous exposure to these compounds.

The formation of PCDD/Fs has also been reported during the treatment of chlorinated 

phenols using other AOPs. Vollmuth et al. [37] found that the photolytic treatment of 
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pentachlorophenol (PCP) in water resulted in the formation of several congeners of 

PCDD/Fs. Hong et al. [38] observed the presence of 1,2,3,4,6,7,8-HpCDD and OCDD 

as a minor transformation product during the photolysis of PCP. Furthermore, 

photolytical and photocatalytical treatment of triclosan in water solutions have been 

shown to result in the formation of some PCDD congeners [39-41]. On the other hand, 

Holt et al. [42] found that the concentration of 93 PCDD/F congeners in two pesticide

formulations increased between 3000 to 5600% after exposure to natural light. More 

recently, Vallejo et al. [43] assessed the formation of PCDD/Fs as a result of the 

electrochemical treatment of 2-CP as a function of the type of electrolyte used. When 

NaCl was used as electrolyte, the concentration of total PCDD/Fs increased by 26,800

times compared to the untreated sample (equivalent to the toxicity index of 220 pg-

ITEQ L-1).

Regarding Fenton oxidation, Fukushima and Tatsumi [44] observed the formation of 

OCDD during the photo-Fenton treatment of PCP. Poerschmann et al. [13] observed the 

generation of chlorinated biphenyls, diphenyl ethers, benzofurans and related 

compounds during the Fenton oxidation of 2-CP under substoichiometric conditions.

More recent studies report the formation of similar compounds, including 

dichlorodibenzodioxins, as a result of Fenton-like treatment of several CPs with 

substoichiometric doses of H2O2 and low quantities of iron [14,15]. These observations, 

in combination with the results presented in this paper, serve to confirm our recent 

observations of increasing concentrations of PCDD/Fs congeners during the Fenton 

treatment of different leachate samples from a municipal waste landfill [45].

4. CONCLUSIONS

This work reports the importance of understanding the effects of the operating 

conditions during the Fenton oxidation of 2-CP in regards to the formation of oxidation 
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byproducts (i.e., PCDD/Fs). Substoichiometric H2O2 concentrations lead to the 

formation of PCDD/Fs, and PCDD/F concentrations increase when Cl- is in the reaction 

medium. Our analyses represent a valuable contribution because they go beyond the 

previously published results, in which the formation of dioxins and related compounds 

was covered from a qualitative approach. Furthermore, these results provide evidence 

for the necessity of using proper operating conditions during the Fenton treatment of 

chlorinated pollutants, in particular when PCDD/Fs precursors and/or Cl- are present, or 

may be formed, in the treated samples.
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