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 
Abstract—A new method is presented for the two-level 

harmonic-balance analysis of multivalued synchronized solution 
curves in injection-locked oscillators. The method is based on the 
extraction of a nonlinear admittance function, which describes 
the circuit response from the input source terminals. It does not 
require any optimization or parameter switching procedures, this 
constituting a significant advantage compared with previous 
analysis techniques. With additional mathematical conditions, it 
enables a straightforward determination of the turning point and 
Hopf bifurcation loci that delimit the stable injection-locked 
operation bands. The codimension two bifurcation point at which 
the turning point and Hopf bifurcation loci merge is analyzed in 
detail, as well as the saddle-connection locus. As it is shown, a 
second intersection of the saddle-connection locus with the 
turning point locus acts as a boundary between synchronization 
points and points associated with jumps and hysteresis. The 
likely observation of chaotic solutions in the neighborhood of the 
saddle-connection locus is discussed too. The techniques have 
been validated by application to several injection-locked 
oscillators, obtaining good agreement with the experimental 
results. 
 

Index Terms—Injection-locking, oscillator, harmonic balance 
(HB), bifurcation, stability. 
 

I. INTRODUCTION 

NJECTION LOCKING [1-3] has multiple applications, such as 
phase noise reduction [2-3], high-gain amplification [4-6], 

compact and low-cost phase and frequency modulation [7-9] 
and phase shifting [10-12]. Injection-locked oscillators exhibit 
solution curves with intricate geometries when traced versus 
the input frequency s , injection current sI  and other 

parameters. For small input power, two different solution 
curves coexist [13-18]: a closed curve, composed of the actual 
injection-locked solutions, and a low-amplitude (non-
oscillatory) open curve, defined for all frequency values. As 
the input power increases, both solution curves merge into a 
single one, exhibiting several turning points. Turning points 
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(or infinite slope points) are thus intrinsic to the behavior of 
injection-locked oscillators. When approaching a turning 
point, convergence problems are typically found in default 
harmonic balance (HB) due to ill-conditioning of the Jacobian 
matrix. When occurring at low input power, turning points are 
associated with desynchronization: generation of a 
quasiperiodic solution at the two fundamentals s  and the 

autonomous frequency a  from zero frequency difference 

s a     [15-16,19-21]. For higher input power, the 

quasiperiodic solutions are typically generated at Hopf 
bifurcations, with frequency 0s a      [13-14,19], and 

turning points of the periodic curves give rise to jump and 
hysteresis phenomena. 

In previous works [14-16], auxiliary generators (AG) have 
been used to avoid undesired convergence to the low-
amplitude non-oscillatory solution. The AG must fulfill a 
nonperturbation condition corresponding to the zero value of 
the AG current-to-voltage ratio ( 0AGY  ). The injection-

locked solution curves, intrinsically exhibiting turning points, 
are obtained applying continuation methods (i.e. parameter 
switching) to the full HB system in in-house software [13-14], 
or to the AG outer tier system ( 0AGY  ) when using 

commercial HB software [22-24]. This outer tier is solved 
through optimization and the user is required to manually 
apply parameter switching, stopping each ill-convergence 
simulation and choosing a different analysis parameter. The 
procedure becomes cumbersome, especially in the region of 
intermediate input power. 

Hopf bifurcation and turning point loci have a valuable 
practical interest since in the plane defined by the input power 
and input frequency (or other relevant parameters) the loci 
provide a “map” showing regions with different qualitative 
behavior, i.e. periodic, quasiperiodic and hysteresis [13-16]. 
In in-house software, tracing the bifurcation loci requires 
solving a mixed system of equations composed of the HB 
system and a bifurcation condition, based on the characteristic 
determinant [13-14], which depends on the perturbation 
frequency  . The frequency   should take zero value at 
turning points and be different from zero and 
incommensurable with s  at Hopf bifurcations. This 

procedure may have numerical difficulties associated with the 
significant variation in the order of magnitude of the 
characteristic determinant when modifying the analysis 
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parameters [19]. When using commercial HB, turning points 
are detected imposing the singularity of the 2 2  Jacobian 
matrix of the AG admittance function [25]. This requires 
fixing a proper threshold for the determinant value, 
compatible with the one fixed for the nonperturbation 
condition 0AGY  . In turn, Hopf bifurcations are detected by 

means of an AG with amplitude tending to zero, operating at 
the frequency   and fulfilling the nonperturbation condition 
[15-16,19]. An additional problem comes from the fact that 
the turning point and Hopf bifurcation loci are often 
multivalued, this requiring the application of parameter 
switching [14,16,25-26]. 

A completely different procedure is proposed in this work, 
which, as presented, is valid for unilateral injection-locking, 
under the usual assumption of a perfectly sinusoidal 
synchronizing source. At a first stage, the injection source is 
suppressed and, instead, the AG is used to obtain an outer-tier 
admittance function TY  describing the circuit response to an 

external excitation. This function will depend on the AG 
frequency   and amplitude V . For each pair of values ,V , 

the whole HB system (acting as an inner tier) is solved, with 
as many harmonic components as desired. At a second stage, 
and once ( , )TY V  has been determined, the injection-locked 

solution curve at the particular injection current sI  is directly 

obtained from the level curve of the surface ( , ) TV Y V   

corresponding to sI . High analysis sensitivity will be ensured 

by using the Norton equivalent of the input network seen from 
the analysis nodes. No optimization techniques are required. 
Once the surface   has been determined in a single initial 
simulation, solution curves for any input power or frequency 
values are directly calculated with no need to resimulate the 
circuit. In addition, the turning point locus is efficiently 
obtained with simple mathematical conditions, applied to the 
surface  . The Hopf bifurcation locus is calculated 
considering an additional dependence on the perturbation 
frequency a . As shown in [16,19], turning points can 

correspond to either synchronization or jump phenomena. 
Another novelty of this paper is the investigation of the global 
bifurcation condition that distinguishes the two types of 
turning points. 

The analysis methodology based on level curves is 
automatable and can be applied in combination with any 
standard HB software, without optimization tools or dedicated 
routines for bifurcation detection. Due to its computation 
efficiency, it can be used for an optimized design of injection-
locked oscillators, globally accounting for their full response 
versus input power and frequency or other parameters. It is of 
general application to any nonlinear circuit and can be used 
for stability analysis and stabilization of power amplifiers, for 
instance [25-26]. Extensions of this method to the analysis of 
frequency dividers would be feasible although beyond the 
scope of this work. Here, it will be illustrated through its 
application to three injection-locked oscillators, enabling 

rigorous validations with the previous AG-based HB 
technique, time-domain methods and measurements. Note that 
the most accurate validation is with independent simulation 
techniques, as only in this case possible discrepancies should 
come from the method itself, instead of a deficient modeling 
of the nonlinear and linear elements. 

The paper is organized as follows. Section II presents the 
new methodology to obtain the solution curves of an 
injection-locked oscillator. This procedure, as shown in 
Section III, enables direct calculation of the turning point 
locus and the synchronization bandwidth. Section IV presents 
a new technique for obtaining the Hopf bifurcation locus. 
Additional bifurcation points, responsible for chaotic 
behavior, are found in Section V with the aid of the Poincaré 
map. Section VI presents the application of the methodology 
to the experimental oscillator at 12.7 GHz. 

 

II. OUTER-TIER CONTOUR 

Any injection-locked oscillator can be represented as the 
parallel connection of an oscillator block (with arbitrary 
complexity) and the Norton equivalent of the input source, 
assumed to be sinusoidal. The simplified equivalent circuit is 
depicted in Fig. 1(a). The oscillator block will be described 
with an admittance function. Note that a series representation, 
in terms of an impedance function, is also possible [16] and 
will be better suited in the case of reduced controllability 
and/or observability [27-28] with the parallel excitation. 

 

oscillator circuit with 
arbitrary complexity
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Fig. 1.  (a) One-port representation of an injection-locked oscillator using an 
admittance description. (b) After suppressing the injection source, a voltage 
auxiliary generator is connected in parallel to obtain the nonlinear admittance 
model of the oscillator. 
 

A. Periodic solution curves 

To obtain the admittance description of the oscillator block, 
the injection source will be suppressed and a voltage AG will 
be introduced into the circuit instead (Fig. 1). In most cases, 
this AG can be directly connected to the nodes where the 
injection source was at [see Fig. 1(b)]. Exceptions, requiring 
the Norton equivalent, are considered later in this section. The 
AG will constitute an excitation source, used to obtain a 
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nonlinear admittance model of the whole oscillator circuit. 
The model will depend on the AG frequency   and 
amplitude V . To obtain the admittance function ( , )TY V , a 

double sweep is performed in   and V . The frequency 
interval should comprise the one through which the oscillator 
will be injected with the independent source and include the 
free-running frequency or frequencies, estimated from an 
initial stability analysis of the circuit dc solution. In turn, the 
amplitude interval can be estimated from the ratings of the 
transistor. For each pair of values ,V , a whole HB 
resolution of the AG-excited circuit, operating in forced 
manner, is carried out, with as many harmonic terms as 
necessary. This can be formulated as: 

 

( , , ) 0

( , ) [1] /T AG

H X V

Y V I V







 (1) 

 

where H  is the HB error function, X  are the Fourier 
coefficients of the node voltages and inductor currents and 

[1]AGI  represents the first harmonic of the AG current. The 

first equation corresponds to the harmonic balance system, 
with NH  harmonic components. Indeed, the AG operates as 
an independent periodic generator connected to the circuit, as 
explicitly shown in (1)(a). Remember that the injection source 
is suppressed while obtaining the admittance model [Fig. 
1(b)]. The admittance function in (1)(b) is calculated from the 
ratio between the current through the AG (entering the circuit) 
and the excitation voltage. 

In a second stage, the injection source sI  is considered. The 

current-type injection source operates at the fundamental 
frequency s  and constitutes an open circuit at all the 

harmonic terms sk  with 1k  . Applying Kirchhoff's current 

law to the circuit in Fig. 1(a), the following equation can be 
formulated: 

 

( , ) 0j
T sY V V I e     (2) 

 

where sI  and   are respectively the injection current level  

and the phase shift between the input source and the first 
harmonic of the voltage across its terminals. Squaring and 
adding the real and imaginary parts of (2): 
 

2 2 2( , ) 0T sY V V I    (3) 
 

Note that the three squared quantities in (3) are always 
positive, so the square root can be taken to finally obtain: 
 

( , )s TI Y V V  (4) 
 

The phase shift   can be calculated from the real and 

imaginary parts of (2): 
 

 arg ( , )TY V   (5) 
 

The scalar current equation (4) describes a surface on the 
plane ,V  and, as shown in the following, can provide the 

injection-locked periodic solution curves with an accuracy 
equivalent to a full HB analysis of the injection-locked 
oscillator. Let the function 

 

( , ) ( , )TV Y V V    (6) 
 

be considered. The periodic solution curves can be obtained 
from the intersections of the surface (6) with horizontal planes 
for different values of injection current (Fig. 2). This 
constitutes the contour plot of (6). For a proper computation 
of the surface, it is convenient to first perform a coarse sweep. 
If the curves are not smooth or regular, a finer sweep should 
be used. The easiest is to use linear sweeps, just to obtain 
homogeneous data for computing the results. 

The level curve of the differentiable function 2:  � �  
corresponding to a real positive value sI  is the set of points 

 

 2( , ) : ( , )s s s s sV V I   �  (7) 
 

The graphical representation of a set of level curves is the 
contour plot of the surface  . The intersections (7) can be 
obtained with external software although commercial HB 
simulators usually provide the user with a function that 
computes the contour plot. The accuracy of the solutions 
obtained is generally excellent assuming the frequency and 
voltage steps used in the double sweep are properly chosen. 
As shown in Fig. 2, turning points of the solution curves are 
directly obtained with this method without any optimization or 
parameter switching procedures. 
 



V
( , )V

1sI
2sI

 
 

Fig. 2.  Graphical illustration of the outer-tier contour, applied to obtain the 
solution curves of an injection-locked oscillator. As an example, two sets of 
curves, corresponding to different qualitative behavior of the oscillator, are 
obtained by means of the intersections of the secant planes 1sI  and 2sI  with 

the surface  . These current values correspond to input power values 
−20 dBm and 0 dBm, respectively. The data are obtained from the circuit in 
Fig. 4(a), later analyzed. 
 

B. Application examples 

For illustration, the above methodology has been applied to 
two oscillators with different topologies: a ring oscillator and 
a feedback LC oscillator. The first oscillator analyzed [Fig. 
3(a)] is a single-ended three-stage ring oscillator at 2.5 GHz 
with transistors described by Angelov's FET model [29] and 
RC loads. Initially, no parasitic elements in the transistor 
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model are considered, so, in time domain, the circuit is 
governed by a three-dimensional system. This will enable a 
detailed analysis of its nonlinear dynamics by means of the 
Poincaré map (Section V-B), which in the case of a system of 
three dimensions admits a planar representation. A realistic 
description of the transistor, including all the parasitics, is 
considered in Section VI, where measurements are also 
presented. 

DSV

,s sI 

RF choke

dc block

RF choke

dc block
R C

dc block

RF choke

RF choke

dc block
R C

dc block

RF choke

dc block

RF choke

RC

GSV

GSV

GSV

DSV

DSV

1V

2V

3V

s

s

s

 
a) 

O
sc

ill
at

io
n 

am
pl

itu
de

 (
V

)

8 dBm 

6 dBm 

 
b) 

 

Fig. 3.  (a) Single-ended three-stage ring oscillator with transistors described 
by Angelov's FET model with no parasitic elements (admitting a planar 
representation of the Poincaré map) and RC loads. (b) Periodic solution curves 
versus input frequency for different values of input power (isolines with 2 dB 
step) and bifurcation loci, obtained with the new methodologies described in 
Sections II, III, IV. The results (solid lines) are compared with those obtained 
with standard AG optimization and parameter switching [16] (dots). In all 
cases the HB system has been solved using 15NH   harmonic terms. 
 

The periodic solution curves obtained applying the outer-
tier contour to the circuit in Fig. 3(a) are shown in Fig. 3(b), 
fully matching the results obtained with standard optimization 
and parameter switching, also included in the figure. The new 
analysis based on the level curve computation is 
straightforward, with no need of optimization or complex 
techniques such as parameter switching to pass through the 
turning points intrinsic to the injection-locked operation. For a 
rigorous comparison, the same number of harmonic terms 

15NH   have been considered in standard optimization with 
parameter switching. Both methods show excellent agreement. 

Note that no approximation has been performed when 

developing the formulation (4), so the equation predicts exact 
circuit solutions, up to the HB analysis error. Assuming the 
double sweep intervals are large enough, equation (4) allows 
predicting every coexisting periodic solution without missing 
any, as for each frequency value   every amplitude value V  
is covered in the double sweep. A relevant aspect of (4) is that 
there is no explicit dependence on the phase of the input 
source, thus providing an interesting result: the periodic 
solution curves from an injection-locked oscillator can 
actually be computed from data collected in the absence of the 
input source. This is why the AG phase can be arbitrarily set 
to any value, zero for instance. Emphasis should be made on 
the fact that the method presented is not a describing-function 
approach [30]. On the contrary, 15NH   harmonic terms are 
considered in the calculation of the outer-tier admittance 
function ( , )TY V  in all examples shown in this work. 

Furthermore, this particular number of harmonic terms 
enables maximizing the computational efficiency when 
solving the HB system using Krylov subspaces [31-32], as the 
computational complexity depends on the size of the FFT 
[33]. 

The outer-tier contour method is automatable and easily 
combinable with any HB simulator, either in-house or 
commercial. It is highly advantageous, not only for a 
reduction of the simulation time, which is significant as no 
optimization is used, but also for the fact that no parameter 
switching is needed; in simulations based on commercial HB, 
the user has to take decisions on which parameter to sweep in 
view of the geometry of the curves. As shown in next 
sections, the method allows an equally efficient determination 
of the bifurcation loci. 

The second circuit analyzed with the outer-tier contour 
[Fig. 4(a)] is a feedback LC oscillator at 2.5 GHz, using a 
NE3210S01 FET in common gate. The objective is to perform 
an exhaustive comparison of the outer-tier contour method 
technique with time-domain integration. Unlike the previous 
case, the complete transistor model, including parasitics, has 
been considered. In turn, the linear elements are assumed ideal 
to avoid descriptions based on scattering parameters by the 
manufacturers. The results obtained with the new method are 
compared in Fig. 4(b) with those obtained with full HB and 
AG optimization combined with parameter switching. Both 
methods show excellent agreement. Next, a comparison with 
time-domain analysis has been carried out. The input 
frequency s   has been swept at a constant input power of 

−10 dBm. Fig. 5(a) shows the bifurcation diagram obtained in 
time domain. At each input frequency value, the steady-state 
solution is sampled at multiples of the input signal period 

2 / sT   . In this manner, a single point is obtained if the 

period of the solution agrees with T  (synchronized regime) 
and a distribution of multiple points if the solution is 
unlocked. The synchronization bandwidth [Fig. 5(a)] shows a 
very good agreement with the one predicted by the new 
method. After each time-domain simulation, the magnitude of 
the first harmonic of the node voltage has also been calculated 
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from the spectrum of the steady-state solution. The variation 
of this magnitude versus the input frequency s  is traced in 

Fig. 5(b), where it can be compared with the corresponding 
isoline obtained with the outer-tier contour method. The stable 
section of the solution curve is delimited by the points T1 
(synchronization turning point) and H1 (Hopf bifurcation). 
The agreement is excellent. Similar comparisons have also 
been exhaustively carried out for other input power values. 
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Fig. 4.  (a) Feedback LC oscillator based on NE3210S01 FET in common 
gate. (b) Periodic solution curves versus input frequency for different values 
of input power (isolines with 2 dB step) and bifurcation loci, obtained with the 
new methodologies described in Sections II, III, IV. The results (solid lines) 
are compared with those obtained with standard AG optimization and 
parameter switching [16] (dots). In all cases the HB system has been solved 
using 15NH   harmonic terms. 
 

Tables I and II present a comparison of the computational 
effort of the new method (outer-tier contour) and the previous 
method based on AG optimization to fulfill 0AGY  , plus 

parameter switching. Table I corresponds to the ring oscillator 
in Fig. 3(a) and shows a speedup of 5.25. Table II corresponds 
to the LC oscillator in Fig. 4(a) and shows a speedup of 2.3. In 
the case of the existing AG method, the numbers correspond 
exclusively to active simulation time. The time devoted to 
inspect the curves, take decisions on which parameter to 
sweep and apply manually parameter switching is not 
included. In the case of the new method, the time is devoted to 
the double sweep used in the outer-tier contour. The time 
required to compute the data from the double sweep is 
negligible. One significant advantage of the new method is 
that once the outer-tier contour has been obtained, one can 

trace as many solution curves as desired, in the frequency and 
amplitude intervals covered by the double sweep. On the 
contrary, the existing methods can only provide a finite set of 
solution curves for particular values of input power, as these 
curves should be obtained one by one. 
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Fig. 5.  Comparison of the outer-tier contour method with time-domain 
integration for an input power value of −10 dBm. (a) Bifurcation diagram 
obtained in time domain. The steady-state solution is sampled at integer 
multiples of the input generator period T . (b) Magnitude of the first harmonic 
from the spectra of the solutions obtained with time-domain integration (dots) 
and the corresponding isoline obtained with the outer tier contour. The stable 
section is delimited by the points T1 (synchronization turning point) and H1 
(Hopf bifurcation). 

 

TABLE I 
COMPUTATIONAL EFFORT DEVOTED TO THE CIRCUIT IN FIG. 3(A). 

 
Number of 
simulations 

Simulation time 
(minutes) 

Number of 
solution curves 

Existing 
method 

38029 43.1 25 

New method 51471 8.2 ∞ 

 

TABLE II 
COMPUTATIONAL EFFORT DEVOTED TO THE CIRCUIT IN FIG. 4(A). 

 
Number of 
simulations 

Simulation time 
(minutes) 

Number of 
solution curves 

Existing 
method 

39923 39.52 32 

New method 103389 17.2 ∞ 
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C. Generalization 

In some oscillator circuits one problem can arise: the 
observation nodes where the input source is connected may 
not be sensitive enough to excite all the coexisting solutions. 
This can be circumvented by choosing the sensitive nodes and 
calculating the Norton equivalent of the input network seen 
from that nodes [13]. The sensitive nodes usually correspond 
to the active device terminals, since the active devices 
constitute the “sources” of negative resistance existing in the 
circuit. In the generalized method, the input source will be 
connected to the internal nodes by means of a linear network 
of arbitrary complexity, possibly including transmission lines. 
It is therefore plausible to represent this last one as a two-port 
network described with scattering parameters. Fig. 6(a) 
sketches this scenario. The Norton equivalent is applied to the 
fundamental frequency s , as shown in Fig. 6(b). The setup 

in Fig. 6(c) allows for properly obtaining iY . The input source 

is suppressed and an ideal high pass filter is included between 
the internal nodes and the input network. The purpose of this 
filter is to prevent the influence of the input network at the 
fundamental frequency, so that that the Norton equivalent can 
be used instead. The cutoff frequency of the ideal filter can be 
arbitrarily set between the first and second harmonic. From 
Fig. 6(a), the Norton equivalent current at the internal nodes 
is: 

 

21

11 22

2

1 ( )N s

S
I I

S S


   
 (8) 

 

where 11 22 12 21S S S S   . The Norton equivalent impedance 

is 
 

11 22
0

11 22

1 ( )

1 ( )N

S S
Z Z

S S

   


   
 (9) 

 

where 0Z  is the characteristic impedance. The equivalent 

circuit is represented in Fig. 6(b), which is analogous to the 
circuit in Fig. 1(a), so the formulation developed applies 
identically. The Norton current is frequency-dependant but it 
is directly proportional to the injection current sI . Applying 

(2) to the circuit in Fig. 6(b): 
 

 1/ ( ) ( , ) ( ) 0ij
N i i i NZ Y V V I e       (10) 

 

where iY  is the internal admittance function of the oscillator 

seen from the internal nodes, iV  is the voltage amplitude of 

the first harmonic and i  is the phase shift between the 

Norton equivalent current and the first harmonic of the 
voltage across the internal terminals. Substituting (8), (9) in 
(10) and reordering terms: 
 

   0 11 22 11 22

21

1 ( ) 1 ( )

2
ii j

i s

Y S S Y S S
V I e

S
        

  (11) 

 

where 0 01/Y Z  is the characteristic admittance. Again, 

squaring and adding the real and imaginary parts of (11) and 
taking the square root of both sides: 
 

   0 11 22 11 22

21

1 ( ) 1 ( )

2
i

s i

Y S S Y S S
I V

S

        
  (12) 

 

Note that (12) is in fact (4) evaluated at the internal nodes. 
The phase shift i  is calculated from the real and imaginary 

parts of (11): 
 

   0 11 22 11 22

21

1 ( ) 1 ( )
arg

2
i

i

Y S S Y S S

S


         
  

 
 (13) 

 

From (12), the solution curves of an injection-locked 
oscillator can be computed combining the results of two 
independent simulations: an S-parameter simulation of the 
linear network between the input source and the sensitive 
internal nodes [Fig. 6(a)], and a double sweep in HB to obtain 
the internal admittance function ( , )i iY V . Note that the 

frequency points of both sweeps should agree for 
computational convenience. 

 

iVV1a

1b
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2b,s sI  ( , )i iY V[ ]S

 
a) 

 

( )NZ  ( , )i iY V( )NI  iV

 
b) 
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network iV ( , )i iY V

AGI , iV

AGR

AG
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Fig. 6.  (a) A suitable observation nodes for applying the outer-tier contour to 
an oscillator may be connected to the input source by means of a linear 
network described with scattering parameters. (b) Norton equivalent of the 
input circuit. (c) A suitable setup for properly obtaining the nonlinear internal 
admittance function. 
 

Solution curves can be traced in terms of any state variable.  
To do this, (13) is interpolated at the values of input frequency 
and internal voltage amplitude of the first harmonic computed 
with the contour of (12). Note that to refer the phase shift 
value to the internal nodes, the opposite sign of (13) should be 
considered. Then, the values of injection current, input 
frequency, internal voltage amplitude and phase shift are 
exported to the HB simulator. These values are respectively 
provided to the input source and to an AG connected to the 
internal nodes. No optimization is required as the solutions 
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have already been calculated with the outer-tier contour. The 
solution curves in terms of the desired state variable are 
finally obtained through an ordinary HB simulation. 

The generalized outer-tier contour method has been applied 
to an experimental ring oscillator that will be analyzed in 
detail in Section VI. 

III. TURNING POINT LOCUS 

The turning point locus is the set of points of the solution 
curves satisfying infinite slope, which generally corresponds 
to a closed curve [14-18]. A mathematical condition for this 
locus, relying on the use of an AG, is given in [15-16,19] and 
corresponds to the singularity of the Jacobian matrix of the 
AG admittance function AGY . Using this condition in 

combination with commercial HB is demanding since it 
requires a calculation of the AG derivatives through finite 
differences [23], as well as the choice of a convenient 
threshold for the determinant of the Jacobian matrix. The 
formulation based on (4) offers a new methodology for the 
calculation of the turning point locus, compatible with the use 
of commercial HB software. In fact, the turning point locus is 
the set of points of the surface (6) satisfying zero partial 
derivative with respect to V . It is convenient to compute first 
the numerical gradient of (6) for later use: 

 

/

/ V

  
     

 (14) 

 

Then, the turning point locus is given by the zero-level 
contour of the V  component of (14): 

 

2( , ) : ( , ) 0s s s sT V V
V

      
�  (15) 

 

Expression (15) has been applied to the two oscillators 
previously considered, providing the results in Figs. 3(b), 
4(b). The accuracy of the method is excellent since the turning 
point locus obtained intersects the solution curves at the 
infinite slope points. However, the practical interest of the 
turning point locus is evidenced by its representation in the 
plane defined by the input frequency s  and injection current 

sI . In this plane, the turning point and Hopf bifurcation loci 

provide a "map" showing regions with different qualitative 
behavior. Obtaining the turning point locus in the plane 
( , )s sI  is only possible with a dedicated solution of the 

circuit, including the singularity condition. Indeed, the 
parameters ( , )s sI  can be calculated through interpolation of 

(4) at the locus points ( , )s sV  obtained with (15). Fig. 7 

presents the turning point locus in the plane ( , )s sI , 

corresponding to the circuits in Fig. 3(a) and Fig. 4(a). The 
Hopf bifurcation locus has also been included, which will be 
analyzed in Section IV. 

The turning point locus in the plane ( , )s sI  has a 

curvilinear-triangle shape, divided in two sections by the 

points aCT  and bCT . Through the turning point locus, a real 

pole stays at zero. In the section a bCT O CT  , exhibiting a 

V shape, all the rest of system poles are on the left-hand side 
of the complex plane (LHP). The turning points in this section 
correspond to either synchronization or jumps (the latter 
occurring in hysteresis cycles). The global bifurcation [20] 
that distinguishes the two types of points is analyzed in 
Section V. The remaining section of the turning point locus 

a bCT P CT   has a real pole on the right-hand side of the 

complex plane (RHP) (besides the real pole on the imaginary 
axis). Due to the presence of this unstable pole, the crossing of 
section a bCT P CT   has no physical impact. 
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Fig. 7.  Turning point and Hopf bifurcation loci represented in the plane 
defined by the input frequency and injection current. The Hopf bifurcation 
points obtained with the technique described in Section IV (solid lines) are 
contrasted with those obtained with standard optimization (dots). The 
codimension two bifurcations are also included, obtained by extrapolation of 
the Hopf bifurcation locus. (a) Single-ended three-stage ring oscillator with 
transistors described by Angelov's FET model with no parasitic elements and 
RC loads. (b) Feedback LC oscillator based on NE3210S01 FET in common 
gate. 

A. Free-running solution and merging point 

For very low input power, a perfect ellipse coexists with a 
low-amplitude open curve. Note that for zero input power, the 
ellipse degenerates into a point corresponding to the free-
running solution and the open curve becomes the horizontal 
axis 0sV  , corresponding to the unstable dc solution that 
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coexists with the free-running oscillation. As the input power 
increases, the perfect ellipse gets progressively distorted and, 
for a particular input power value, this closed curve merges 
with the low-amplitude solution providing a single open 
curve. So on, for convenience, the point at which both curves 
merge will be referred to as "merging point". 

The free-running solution and merging points can be easily 
computed from the surface (6). Remember that sI  can only 

take positive real values. The free-running solution O  is the 
minimum of the surface at ( , )o oV , where   takes zero 

value. The point O  is therefore a stationary point of   and 
satisfies zero value of the gradient (14). The free-running 
solution is computed as the intersection of the zero-level 
contours of the   and V  components of   for 0sI  : 

 

2

2

( , ) : ( , ) 0

( , ) : ( , ) 0 with 0

s s s s

s s s s s

O V V
V

V V I

 

 


    
 

    
 

�

�
 (16) 

 

The merging point P  of the solution curves is a saddle 
point of   and will satisfy zero gradient. A geometrical 
saddle point of a surface (not to confuse with saddle-type 
equilibria) is a stationary point but not an extremum [34]. At 
the saddle point, the contour plot of the surface appears to 
intersect itself, that is, the contour lines merge at the saddle 
point. The merging point is computed as the intersection of 
the zero-level contours of the   and V  components of   
for 0sI  : 

 

2

2

( , ) : ( , ) 0

( , ) : ( , ) 0 with 0

s s s s

s s s s s

P V V
V

V V I

 

 


    
 

     

�

�
 (17) 

 

Expressions (16) and (17) have been applied to the two 
oscillators under study. The results are shown in Figs. 3(b), 
4(b) and directly provide the free-running and merging point 
solutions, respectively denoted as O and P. The solutions O 
and P have also been represented in the plane ( , )s sI  of Fig. 

7, obtained by interpolation of equation (4) at the points 
( , )s sV  given by (16) and (17), respectively. 

B. Synchronization bandwidth and region of linear 
operation 

From zero input power up to that corresponding to P , the 
synchronization bandwidth is delimited by two turning points 
of the closed curve, one at each side. For higher input power, 
Hopf bifurcations will arise in the system and will also be 
responsible for the oscillator unlocking. Up to the point P , 
the turning points are in fact local-global bifurcations [21,35-
36] or synchronization points. Therefore, the synchronization 
bandwidth for a particular injection current value sI  is 

directly given by the frequency difference of the 

corresponding two points of the a bCT O CT   section of the 

turning points locus (15) when represented in the plane 
( , )s sI . The synchronization bandwidths of the oscillators in 

Figs. 3(a), 4(a) have been represented versus  input power in 
the plots on the left side of Fig. 8. 
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Fig. 8.  Maximum available synchronization bandwidth. The 5% expansion 
point (Q) and merging point (P) have been included to delimit the regions of 
operation. (a) Single-ended three-stage ring oscillator with transistors 
described by Angelov's FET model with no parasitic elements and RC loads. 
(b) Feedback LC oscillator based on NE3210S01 FET in common gate. 
 

The new method will be compared with previous models 
valid for low injection current [22-23]. Under low injection 
current, it is possible to linearize the admittance function 
describing the oscillator response about the free-running 
solution. The linearized model is written in terms of the partial 
derivatives of the admittance function, calculated by 
application of finite differences to the same AG used to obtain 
the circuit free-running oscillation [22-23]. This model 
predicts linear synchronization bandwidth versus the injection 
current sI : 

 

max

2
( )

( )
ToV

s s
o ToV To

Y
I I

V Y Y 

 


 (18) 

 

where ,ToV ToY Y   are the partial derivatives of the total 

admittance with respect to the voltage and frequency, 
respectively, calculated about the free-running point ( , )o oV , 

oV  is the oscillation amplitude and the product is 

 sin arg( ) arg( )r i i ra b a b a b a b b a     . 

The bandwidth obtained with the new method has been 
compared with the one predicted with the linearized model 
given in (18) when increasing the input power. As expected, 
for low input power there is very good agreement. However, 
when the injection-locked oscillator enters the nonlinear 
regime the actual bandwidth deviates from the one predicted 
with (18), either compressing or expanding with respect to this 
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linear behavior. There are examples of both expansion [37] 
and compression [38] in the literature. A figure of merit can 
be defined for the linearity of injection-locked oscillators, for 
instance, the input power corresponding to 5% 
compression/expansion of the linear bandwidth. The 5% 
compression/expansion point, denoted Q  in the diagrams of 

Fig. 8, can be considered to be the limit of linear operation 
with respect to the input source. The actual maximum 
available bandwidth, calculated with the new methodology, 
has been represented versus the linear bandwidth calculated 
with (18) on the right side of Fig. 8 for the two different 
oscillators considered so far. Interestingly, both oscillators 
expand their synchronization bandwidths as they 
progressively enter the nonlinear operation region. The 
merging point P  have been also included in Fig. 8. 

To summarize, from input power arbitrarily low up to the 
5% compression/expansion point, the oscillator will operate 
mostly linearly with respect to the input source. From the 5% 
compression/expansion point up to the merging point, the 
oscillator will operate mildly nonlinearly. From the merging 
point, the oscillator will operate strongly nonlinearly. The 
three regions have been delimited in Fig. 8. 

The new method presented for the calculation of the 
synchronization bandwidth is extremely powerful. The 
maximum available synchronization bandwidth is directly 
calculated with the contour computation in a manner similar to 
the injection-locked solution curves and the turning point 
locus. The method is equally accurate and effective, as well 
automatable and easily combinable with any HB simulator, 
either in-house or commercial. It must be noted that 
everything is obtained from just a single HB simulation in 
which the double frequency-amplitude sweep is performed. 

IV. HOPF BIFURCATION LOCUS 

At a Hopf bifurcation from periodic regime, a pair of 
complex-conjugate poles j    crosses the imaginary axis 

to the RHP [13-14,39-40], which gives rise to a quasiperiodic 
solution at s  and  , with s a    . The Hopf 

bifurcation locus is an open curve in the plane ,s sV  

composed of all the points where Hopf bifurcations occur [13-
14]. In fact, Hopf bifurcations delimit the stable 
synchronization ranges for intermediate input power level and 
high input power level, and generally occur in the low 
amplitude sections of the periodic solution curves. These low-
amplitude sections of the periodic solutions can be obtained 
with a default HB simulation, excited with the actual 
synchronization source, instead of the auxiliary generator. 
Taking this into account, the new method, the zero-level 
contour technique, is based on the calculation of an 
admittance function describing the circuit response to the 
unknown perturbation frequency. 

At a Hopf bifurcation, the oscillation amplitude at the 
incommensurable frequency a  tends to zero. Taking ,s sI  

as parameters, the Hopf locus can be obtained [15-16,19] 

introducing a small-signal current source at a  into the 

circuit, which must fulfill: 
 

( , , ) 0a s s aY I    (19) 
 

To trace the Hopf bifurcation locus, the frequency s  is 

swept, solving (19) for sI  and a  at each sweep step. 

However, in the case of a multivalued locus, parameter 
switching must be applied. An alternative method is proposed 
here. For each input frequency s , a relatively fine sweep is 

carried out in sI . At each sI  step, a HB analysis is performed 

(with as many harmonic terms as desired), followed by a 
conversion-matrix sweep [41-42] in the perturbation 
frequency a . The above procedure provides the perturbation 

admittance function ( , , )a s s aY I  . Then, the Hopf bifurcation 

locus is computed for each value s  as the intersection of the 

zero-level contours of the real and imaginary parts of aY : 
 

  
  

2

2

( ) ( , ) : Re ( , , ) 0

( , ) : Im ( , , ) 0

s s a a s s a

s a a s s a

H I Y I

I Y I

   

  

  

 

�

�
 (20) 

 

Expression (20) provides the pairs of values ( , )s aI   

corresponding to all the Hopf bifurcation points obtained for 

s . The new method is, in general, computationally more 

expensive than the one based on (19) in the case of regular 
(single-valued) behavior of the Hopf bifurcation locus. 
However, if it is multivalued, which is not unusual in 
microwave circuits, the new method offers superior 
capabilities, since it enables a global exploration of the 
parameter space in search for Hopf bifurcations. An example 
of Hopf bifurcation locus that could not be traced with the 
existing method [based on solving (19)] will be presented in 
Section VI. 

The method (20) has been applied to the oscillators in Figs. 
3(a), 4(a), with the results included in Figs. 3(b), 4(b). Fig. 7 
shows the turning point and Hopf bifurcation loci represented 
in the plane ( , )s sI . The circuit behaves in periodic regime 

in the shaded region. Outside this region the circuit response 
is quasiperiodic at the fundamental frequencies s  and  , 

where s a    . 

As will be discussed in Section V, the Hopf bifurcation 
locus merges tangentially with the turning point locus at the 
points aCT  and bCT . As a result, the complex admittance 

surface aY  folds at these two points and is multivalued in their 

neighborhoods. This gives rise to severe numerical problems 
that equally affect the standard optimization and the zero-level 
contour technique. However, with the latter, the advantage is 
the complex surface aY  is available to diagnose conflictive 

points. On the other hand, the Hopf bifurcation locus is not 
expected to vary significantly in this region and will just 
merge tangentially with the turning point locus. Therefore, 
extrapolation of the Hopf bifurcation points already calculated 
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can be applied to obtain the remaining ones and the 
intersections aCT  and bCT . These extrapolated points are 

shown in dashed line in the results of Figs. 3(b), 4(b), 7. 

V. ADDITIONAL BIFURCATION POINTS 

The Hopf bifurcation and turning point loci meet at two 
different points aCT  and bCT . These points are codimension 

two bifurcations, this meaning that two parameters must be 
simultaneously varied to obtain the bifurcation point [20-
21,43]. Indeed, the imaginary part of the critical pair of 
complex-conjugate poles involved in the Hopf bifurcation 
decreases when moving towards the codimension two 
bifurcation. It becomes zero at the codimension two 
bifurcation, where the two complex-conjugate poles turn into 
two real poles of zero value. This is why this bifurcation is 
known as double-zero eigenvalue. The real pole on the RHP 
in section a bCT P CT   passes through zero at each 

codimension two bifurcation ( aCT  and bCT ). 

A. Global bifurcations 

As already stated, the points within the physical section of 
the turning point locus ( a bCT O CT  ) can give rise to two 

different phenomena: synchronization or jumps. For low input 
power, these points will be synchronization points as this is 
the only possible transition mechanism from quasiperiodic to 
periodic regime (or vice versa). For higher input power, the 
Hopf bifurcation locus is traversed and at each Hopf 
bifurcation a quasiperiodic (unlocked) solution is necessarily 
generated. In these conditions, turning points are expected to 
correspond to jump points. Now, consider the bifurcation 
diagram shown in Fig. 9. Solely with the above consideration 
in mind, it is not possible to discern the behavior of the 
turning points in the section T T  . The point xT  is taken for 

illustration. When crossing xT  for constant injection current, 

the Hopf bifurcation locus is not traversed, as indicated in Fig. 
9. xT  should be a synchronization point. However, when 

crossing xT  for constant input frequency, the Hopf bifurcation 

locus is actually traversed, as indicated in the figure, which 
suggests xT  is a jump point. The nature of the turning points 

(synchronization or jump) cannot change depending on the 
parameter varied. Therefore, xT  corresponds to a 

synchronization point. A question arises then regarding the 
evolution of the quasiperiodic solution that is necessarily 
generated at the Hopf bifurcation 1H  in Fig. 9. 

The solution curves obtained for constant injection current 
1.772 mAsI   and constant input frequency 2.4 GHzsf  , 

passing through xT , are explicitly shown in Fig. 10(a) and Fig. 

10(b), respectively. The stability along the curves is indicated 
in the insets, as verified with pole-zero identification [44]. The 
nature of xT  is evidenced in Fig. 10(a): xT  is a 

synchronization point since it is the only periodic point where 
the quasiperiodic regime can be extinguished. This is because 

the Hopf bifurcation locus is never traversed for the constant 
current 1.772 mAsI  . xT  is therefore a synchronization 

point also in Fig. 10(b). Solutions in between 1xT T  in Fig. 

10(a) are of saddle type [20,45]. In analogous manner, 
solutions in between 2xT T  in Fig. 10(b) are also of saddle 

type. The periodic solution curve in Fig. 10(b) becomes stable 
at 2T  and remains stable up to the Hopf bifurcation 1H , where 

a quasiperiodic solution is generated. This quasiperiodic 
regime should be extinguished in an additional bifurcation. As 
will be shown, the fact that solutions in between 2xT T  are of 

saddle type is the key to understand the system behavior in the 
uncertainty region T T  . 
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Fig. 9.  The section T T   of the turning point locus of Fig. 7(a) shows 

ambiguous behavior. Consider the point xT  for instance: it is a 

synchronization point because no intersection with the Hopf bifurcation locus 
is observed when crossing xT  for constant injection current. However, the 

Hopf bifurcation locus is actually crossed from xT  when increasing the 

injection current for constant input frequency. This fact suggests it is a jump 
point, so additional bifurcation points should clarify the situation. 
 

The existence of additional bifurcation points (different 
from turning points or Hopf bifurcations) was conjectured by 
Cartwright [20] on the study of Van der Pol's equation. These 
bifurcation points are in fact global bifurcations and are 
studied in the phase space [20,45]. Indeed, global bifurcations 
involve the interaction of several solutions in a subset of the 
phase space [20,45-46] and cannot be detected using local 
stability analyses. The study was developed with a powerful 
geometrical tool, the Poincaré map [20,45], obtained as the 
intersection of the phase space with a transversal surface, 
which eliminates one of the system dimensions. A fixed point 
of the map corresponds to a periodic solution of the system 
and a limit cycle of the map corresponds to a quasiperiodic 
solution [20,45]. Cartwright noted different qualitative 
behavior in regions near the codimension two bifurcation 
point: for some parameter values, the Poincaré map exhibits a 
limit cycle and fixed points, whereas for others it only exhibits 
fixed points. Therefore, additional bifurcation points must be 
present, giving rise to the onset of a limit cycle. The missing 
global bifurcation points are saddle connections [20]. At a 
saddle connection in the Poincaré map [45], the stable and 
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unstable manifolds of a saddle point intersect and forms a loop 
known as homoclinic orbit [20,45]. Further variation of the 
parameter destroys the homoclinic orbit generating a limit 
cycle (a quasiperiodic solution). The bifurcation can be 
visualized in the reverse sense: under the continuous variation 
of a parameter, the limit cycle collides with the saddle point 
and disappears, annihilating the quasiperiodic solution [20]. 
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Fig. 10.  Periodic solution curves of the ring oscillator in Fig. 3(a) passing 
through xT . The evolution of the relevant poles along the periodic curve has 

been included in the insets. The unstable sections are traced in dashed line. 
The turning point and Hopf bifurcation loci are also superimposed. (a) 
Solution curve obtained for constant injection current 1.772 mAsI  . (b) 

Solution curve obtained for constant input frequency 2.4 GHzsf  . Note that 

the solutions of sections 1xT T  and 2xT T  are of saddle type [20,45]. 
 

The saddle connection bifurcation has hardly been 
investigated in the microwave literature [19]. In fact, 
obtaining the saddle-connection locus is not straightforward. 
Compared with a limit cycle generated/extinguished at a Hopf 
bifurcation, the limit cycle created/destructed at a saddle 
connection has non zero amplitude and frequency tending to 
zero, as the trajectories tend to spend long time near the saddle 
point. The existence of the saddle-connection locus in the ring 
oscillator of Fig. 3(a) will be analyzed next, combining the 
information provided by the bifurcation loci with the Poincaré 
map obtained from transient simulations. 

 

 

B. Poincaré map from transient simulations 

The Poincaré map (intersection of the phase space with a 
transversal surface) is relatively easy to compute for low-
dimension systems using transient simulations. Using proper 
perturbations, it is able to detect even unstable solutions. For a 
better understanding of the evolution of the trajectories, the 
discrete set of points of the perturbed map will be connected 
with straight lines when representing the results. An optimum 
way of tracing a perturbed Poincaré map is to compute first a 
transient simulation from fixed initial conditions. This allows 
guessing the simulation time needed to reach the steady-state, 
starting always from the same initial conditions. Then, the 
steady state is perturbed at a fixed perturbation time pt . In 

nonautonomous systems, such as injection-locked oscillators, 
the Poincaré map can be computed from pt  by sampling the 

state variables at integer multiples of the input generator 
period 2 / sT   . Note that starting the map computation at 

a different initial time means taking a different point of the 
periodic orbit with different values of the state variables, 
hence the importance of fixing the perturbation time. It is 
important to use a constant time step ht  in the integration 

method of the transient simulation. For convenience, an 
"oversample" value M  for the time step /ht T M  is 

selected to ensure good convergence of the transient 
simulation. Then, the map is simply constructed by taking one 
point every M  samples. The value 32M   will be enough 
for most cases. 

Here, the three-stage ring oscillator in Fig. 3(a) will be 
considered. This is an obvious choice for geometrical reasons: 
the phase space has dimension 3, providing a planar Poincaré 
map. In circuits containing lumped elements, the state 
variables preferred are usually voltages for capacitors and 
currents for inductors. The three state variables of the ring 
oscillator are the load voltages. The state variables chosen for 
the Poincaré map will be the two node voltages 1 2,v v  in Fig. 

3(a). Note that introducing a perturbation of a state variable of 
the same kind, that is, perturbing a capacitor voltage with a 
voltage or an inductor current with a current, is not the best 
way, as it forces the circuit overall response rather than adding 
a perturbation. Therefore, the three node voltages will be 
perturbed with current sources. However, when proceeding 
like this, the starting point of the Poincaré map for a particular 
set of perturbations is not clearly identified. This is solved 
tracing what could be called "constellation of initial 
conditions", that is, the first point of the Poincaré map from a 
triple sweep of the three perturbation currents. Note that only 
the simulation time from pt  up to the first sample needs to be 

computed. 
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Fig. 11.  Coexisting solutions for 2.25 GHzsf   and 5.4 mAsI   in the ring 

oscillator of Fig. 3(a). (a) Constellation map of initial conditions obtained for 
410p ht t . The three perturbing currents are swept from −200 mA up to 

200 mA in steps of 20 mA. (b) Resulting Poincaré map traced from a subset of 
the previous initial conditions, carefully selected, delimiting four coexisting 
solutions: 1P , a sink, 2P , a saddle, 3P , an unstable focus and LC , a limit 

cycle. (c) The previous solutions over the curve obtained for 5.4 mAsI   

with the new frequency-domain techniques (unstable sections in dashed line). 
The turning point and Hopf loci are also superimposed. 

The constellation map for the ring oscillator in Fig. 3(a) has 
been computed for the following parameter values: input 
frequency 2.25 GHz, injection current 5.4 mA and 

perturbation time 410 ht . The three perturbing currents are 

swept from −200 mA up to 200 mA in steps of 20 mA, 
providing the constellation map shown in Fig. 11(a). A subset 
of these initial conditions has been carefully selected to trace 
the Poincaré map shown in Fig. 11(b). Clearly, four different 
steady-state solutions can be identified [20,45]: three fixed 
points 1P , 2P  and 3P , and a limit cycle LC . This limit cycle 

is composed of nonconsecutive discrete points due to the 
nonrational relationship between the frequencies (rotation 
number). The limit cycle will be eventually filled as time 
tends to infinity [20,45]. The fixed point 1P  is a stable node (a 

sink), 2P  is a saddle, 3P  is an unstable focus and LC is a 

stable limit cycle. These solutions are in agreement with the 
results obtained with the new frequency-domain methodology 
[Fig. 11(c)]: indeed, the isoline corresponding to 5.4 mAsI   

is three times intersected by the vertical line corresponding to 
2.25 GHzsf  . The solution with largest amplitude is the 

sink 1P , the solution between 1T  and 2T  is the saddle 2P  and 

the low-amplitude solution is the unstable focus 3P . On the 

other hand, the limit cycle LC  observed in the Poincaré map 
corresponds to a quasiperiodic solution generated at 1H  in 

Fig. 11(c) when reducing the input frequency. Note that the 
points of the limit cycle are not connected with straight lines 
so that the Poincaré map does not get smudged. 

C. Saddle-connection locus 

Saddle connection bifurcations have been investigated with 
the Poincaré map. The analyses in Fig. 12 have been carried 
out for an input frequency value 2.25 GHzsf  . In Fig. 12(a) 

for 5.1 mAsI  , a saddle is observed very close to a limit 

cycle. In Fig. 12(b) for slightly lower injection current 
5 mAsI  , the limit cycle is suddenly destroyed. This is due 

to a collision between the limit cycle and the saddle giving 
rise to a saddle connection bifurcation. To obtain the saddle-
connection locus, the analysis is repeated for different input 
frequency values, which provides the locus represented in Fig. 
12(c). The saddle-connection, turning point and Hopf 
bifurcation loci meet at the codimension two bifurcation point 

aCT . Indeed, the Center Manifold Theorem [20-21,47-48] 

provides, under some non-degeneracy conditions, an 
analytical normal form for an n-dimensional system that is 
topologically equivalent near aCT  [20]. This normal form 

provides an interesting geometrical result: the three 
bifurcation loci meeting at the codimension two bifurcation 
are tangent to each other. Fig. 12(c) evidences this result. 

The saddle-connection locus meets the turning point locus 
at a second point S in Fig. 12(c). The study of the Poincaré 
map reveals that turning points on the right of S are 
synchronization points, whereas the turning points on the left 
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are jump points. An important conclusion is derived: the point 
S acts as a separator between synchronization points and jump 
points. An identical study has been carried out for a Van der 
Pol oscillator, obtaining the same conclusion. At a 
synchronization point, like xT  in Fig. 10, a saddle and a node 

of the Poincaré map are connected by the unstable manifold of 
the saddle, forming a homoclinic orbit [20-21]. After the 
bifurcation (desynchronization), this orbit becomes a limit 
cycle (quasiperiodic solution). It is therefore quite easy to 
distinguish between jump points and synchronization points in 
the Poincaré map. In the case of jump points, the limit cycle 
already exists and the collision between the saddle and the 
node occurs outside the limit cycle. In the case of 
synchronization points, the limit cycle is created after the 
collision between the saddle and the node in the homoclinic 
orbit. 
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Fig. 12.  Detection of saddle connections in the ring oscillator of Fig. 3(a) by 
means of the Poincaré map. (a) A region of the Poincaré map traced for 

5.1 mAsI   and 2.25 GHzsf   showing a saddle very close to a limit cycle. 

(b) The same region traced for 5 mAsI  . The limit cycle has been destroyed 

due to a collision with the saddle. (c) Bifurcation loci in the neighborhood of 
the saddle-connection locus obtained from direct observation of the 
bifurcations in the Poincaré map. 
 

Saddle connections are susceptible to give rise to 
homoclinic chaos. This chaotic behavior will be demonstrated 
next using envelope transient simulations. 

 

D. Detection of homoclinic chaos with envelope transient 

Saddle connections in the Poincaré map imply the 
formation of homoclinic orbits, leading to complicated 

dynamics: iterations of the map with transverse homoclinicity 
have been demonstrated to provide a horseshoe map 
[20,46,48], or equivalently, chaotic dynamics. Therefore, 
homoclinic chaos will be observed in the neighborhood of the 
saddle-connection points. Note that the qualitative dynamics 
discussed in this section are general to any injection-locked 
oscillator, so these circuits will exhibit homoclinic chaos for 
certain values of input power and frequency. The size of the 
chaotic region will vary from circuit to circuit. 

Despite the limitations of envelope transient when dealing 
with broadband signals, this method has enabled the detection 
of chaotic solutions of the ring oscillator in Fig. 3(a). The 
point 2.26 GHzsf  , 4.11 mAsI  , belonging to the saddle-

connection locus in Fig. 12(c), is selected. An AG with 
amplitude 0.1985 VAGV   and phase 100.1 degAG   is 

connected the first 11 ns to excite the desired solution and 
then it is disconnected. The envelope simulation time is 40 us 
with a time step of 0.14 ns and an initial offset of 800 ns. The 
results are displayed in Fig. 13. The irregular behavior, shown 
in Fig. 13(a), is characteristic of chaos. The continuous 
spectrum, shown in Fig. 13(b), observed is also characteristic 
of chaotic behavior. 
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Fig. 13.  Detection of homoclinic chaos near the saddle-connection locus of 
Fig. 12(c) by means of envelope transient simulations. (a) Chaotic envelope. 
(b) Chaotic spectrum (continuous spectrum) computed from the waveform. 
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VI. APPLICATION TO AN EXPERIMENTAL OSCILLATOR 

The methodology presented will be applied to the prototype 
presented in [49-50]. The experimental circuit in Fig. 14(a) is 
a single-ended three-stage ring oscillator based on 
NE3210S01 FET built on RO4003 substrate (h = 0.508 mm, 
εr = 3.38). Full models have been considered for the transistor 
devices, including all the parasitics. This particular circuit 
constitutes a challenging demonstrator of the capabilities of 
the new simulation method, due to the complexity of its 
synchronized solution curves. The oscillator exhibits 
multimode behavior, that is, stable oscillations with different 
frequencies and amplitudes coexist for particular parameter 
values. However, a thorough observation of the free-running 
bifurcation diagram versus the gate bias voltage ( GSV ) in Fig. 

14(d) reveals that monomode behavior, as in any well-
behaved oscillator, can be obtained in a certain interval of 

GSV . Indeed, only the mode 4 at 12.9 GHz is obtained in the 

gate bias voltage interval  1.71, 1.53  V  . This oscillation 

mode arises from a subcritical Hopf bifurcation from dc 
regime [39-40,49], and two different steady-state free-running 
oscillations coexist in the interval indicated. The two solutions 
correspond to the same mode (same solution curve), although 
only the one with highest amplitude is stable. When 
connecting an injection source to the oscillator and increasing 
the input power level, synchronization curves will arise 
around both the stable and unstable free-running oscillations. 
Indeed, both solutions synchronize with the input source, 
despite their stability properties. When tracing the injection-
locked solution curves versus the input frequency, for low 
input power, two different sets of closed curves will be 
obtained. Because the amplitudes and frequencies of the free-
running solutions are relatively close, the synchronized 
solution curves of each solution are likely to merge and 
provide a single closed curve for certain input power. When 
further increasing the input power, this closed curve will also 
merge with the coexisting low-amplitude solution, as already 
discussed in Section III. 

None of the load nodes 1V , 2V , 3V  indicated in Fig. 14(b) 

have been found to be sensitive enough to excite the circuit 
oscillation. Therefore, it is necessary to use the methodology 
described in Section II-C. The microstrip “tee” 
interconnecting each 50-Ohm load with the ring core is 
modeled with three microstrip lines connected in T, as shown 
in Fig. 14(b). This model is found accurate enough since no 
significant change is observed in the free-running bifurcation 
diagram of Fig. 14(d) when using the T model extracted from 
electromagnetic simulations of the structure. Inside the 
equivalent T, a sensitive internal node iV , shown in Fig. 

14(b), is available for the application of the generalized outer-
tier contour method presented in Section II-C. The input linear 
network, as gathered from Fig. 14(b), is constituted by the 50-
Ohm load and the microstrip line 1TL . The output power at 

the node 1V  [where the spectrum analyzer is connected in Fig. 

14(c)] is calculated providing the results obtained with the 
outer-tier contour to an AG connected to the node iV . The 

output power curves are presented in Fig. 15(a), obtained for 
input power values from −20 dBm up to 10 dBm in steps of 
5 dB. The results are validated with standard optimization and 
parameter switching, showing excellent agreement. Tracing 
the complicated geometries of the solution curves applying 
parameter switching with no previous knowledge of the 
turning points is highly involved and time-consuming. On the 
contrary, obtaining the solution curves with the outer-tier 
contour method is straightforward. 
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Fig. 14.  (a) Photograph of the single-ended three-stage ring oscillator based 
on NE3210S01 FET. (b) Schematic of the oscillator including an approximate 
model of the interconnection "tees". (c) Photograph of the measurement setup. 
(d) Free-running oscillation modes: output power at the first harmonic versus 
gate bias voltage. Unstable sections are traced in dashed line. Measurements 
(symbols) are superimposed. 
 



 15

O
ut

pu
t p

o
w

e
r 

(d
B

m
) 10 dBm

5 dBm

10 dBm5 dB
m

 
a) 

N
or

m
al

iz
ed

 o
ut

pu
t p

ow
er

 (
dB

)

10 dBm

5 dBm
10 dBm5 dBm

 
b) 

In
pu

t p
o

w
er

 (
dB

m
)

 
c) 

Fig. 15.  (a) Periodic solution curves (output power versus input frequency) 
and bifurcation loci of the experimental ring oscillator. Both the periodic 
solution curves and Hopf bifurcation locus are compared with the results of 
the previous AG-based techniques, represented with dots. The stable 
(unstable) sections of the solution curves are in solid (dashed) line. In all cases 
the HB system has been solved using 15NH   harmonic terms. The set of 
synchronization curves around 12.67 GHz are the ones measured. (b) 
Expanded view of the measurements (solid line) and simulated results (dashed 
line), where the amplitudes and frequencies have been normalized to the free-
running ones, respectively. Note the points of the Hopf bifurcation locus 
(dots) obtained with the previous AG-based technique. (c) Input power versus 
input frequency. Measurements (square symbols) match the results obtained in 
simulation with a slight frequency and amplitude offset. 
 

The free-running oscillation points sO  and uO  

corresponding to the stable and the unstable solutions, 
respectively, are in agreement with the results already 

obtained in the free-running bifurcation diagram of Fig. 14(d). 
The oscillation power and frequency of the stable solution are 
respectively 2.7 dBm and 12.91 GHz. The oscillation power 
and frequency of the unstable solution are respectively 
−1.7 dBm and 12.99 GHz. When increasing the input power, 
two sets of closed curves are obtained, which, in agreement 
with previous discussions, merge at point 1P  (corresponding 

to an input power of −2.6 dBm). When further increasing the 
input power [Fig. 14(d)], a single set of closed solution curves 
is obtained, which merges with the low amplitude curve at 2P  

(corresponding to an input power of 9.3 dBm). Additional 
solution curves, corresponding to injection current values 
Is = 65 mA, 66 mA, 67 mA and 68 mA, are included in Fig. 
15(a) to illustrate the behavior around the merging points 3P  

and 4P . All these sections are unstable, as verified with pole-

zero identification [44]. 
The turning point and Hopf bifurcation loci, together with 

the codimension two bifurcations, have been superimposed in 
Fig. 15(a). The intricate multivalued Hopf bifurcation locus 
could only be completed with the new method, based on 
condition (20). The points obtained with the former method 
[16], based on solving (19), are overlapped [see also Fig. 
15(b)]. However, convergence could only be obtained in 
rather small sections of the Hopf bifurcation locus, as shown 
in the figure (superimposed dots): it was not possible to detect 
the lower section of this locus since a discontinuous jump was 
observed between two different sections at the infinite slope 
point TH  [see Fig. 15(a), 15(b)]. The new zero-level contour 

technique predicts these sections and evidences the presence 
of TH . For illustration, Fig. 16(a) presents the contour curves 

Re[ ] 0aY   and Im[ ] 0aY   obtained at the particular injection 

frequency 13.055 GHzsf . The intersections predict four 

Hopf bifurcations in agreement with the bifurcation diagram 
in Fig. 15(a). The validity of (20) has been verified with an 
independent stability analysis based on pole-zero 
identification [44]. This analysis has been performed at a 
constant input power of 10 dBm. The results are shown in Fig. 
16(b), where the real parts of two different pairs of complex-
conjugate poles are traced versus the input frequency (the 
imaginary part of each pair is respectively 13.156 GHz and 
12.942 GHz at 13.05 GHzsf  ). The four zero crossings 

1H , 2H , 3H , 4H  are in total agreement with the four 

intersections of the solution curve corresponding to 10 dBm 
with the multivalued Hopf bifurcation locus in Fig. 15(a). 

The stable and unstable sections of the periodic solution 
curves in Fig. 15(a) (verified with pole-zero identification 
[44]) are traced with solid line and dashed line, respectively. 
Measured results are also superimposed in Fig. 15(a). Note 
that comparisons can only be performed between stable 
sections of the curves and measurements, since unstable 
sections are unphysical. There is a small offset in frequency 
and power attributed to modeling inaccuracies in the hybrid 
prototype and the transistor biasing below threshold voltage. 
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An expanded view of the curves normalized to the free-
running amplitudes and frequencies is also presented in Fig. 
15(b) for a detailed comparison. Up to −5 dBm, measurements 
should be compared with the closed synchronization curves 
about sO . In that power range, the synchronization bandwidth 

is delimited, for each power value, by the turning points of the 
corresponding closed synchronization curve. These are 
synchronization points (local-global bifurcations) instead of 
hysteresis points, in consistency with the absence of any stable 
periodic solution prior to the turning point on the left and after 
the turning point on the right. For input power 0 dBm, 5 dBm 
and 10 dBm, the experimental bandwidth agrees 
approximately with that of the stable section of the periodic 
solution curve obtained in simulation. This stable section is 
limited on the left side (lower input frequency) by a local-
global turning point bifurcation, associated with 
synchronization/desynchronization. On the right side (higher 
input frequency), it is limited by a Hopf bifurcation, as shown 
in Fig. 15(a), 15(b). 
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Fig. 16.  Multivalued Hopf bifurcation locus. (a) Contour curves Re[ ] 0aY   

and Im[ ] 0aY   obtained at the particular injection 

frequency 13.055 GHzsf  . (b) Pole-zero identification of the solution curve 

corresponding to an input power of 10 dBm. The real part of the poles is 
traced versus the input frequency. The four zero crossings validate the four 
intersections of the solution curve 10 dBm with the Hopf bifurcation locus in 
Fig. 15(a). 
 

The bifurcation loci have also been represented in the plane 

defined by the input frequency and the input power (in dBm), 
providing two V-shaped synchronization regions [16,23] 
shown in Fig. 15(c). Only the one on the left-hand side 
corresponds to physical solutions. The measurements (square 
symbols) are included in Fig. 15(c) and show good agreement 
with the turning point locus on the left-hand side. Again, a 
small offset in input frequency and power is observed due to 
modeling inaccuracies. To summarize, the major discrepancy 
comes from the free-running oscillation frequency which is 
240 MHz smaller in measurements and represents an error of 
1.9%. Because the bandwidth (reasonable well predicted in 
the simulations) is relatively small, simulation and 
measurements cannot overlap, as in case of [43]. 

Finally, chaos is measured for an input power value of 
12 dBm in agreement with the discussion in Section V-D. 
Measurements in Fig. 17 show chaotic behavior when 
increasing the input frequency. The chaotic spectrum arises 
suddenly, with no intermediate observation of quasiperiodic 
solution, either when increasing or decreasing the input 
frequency. This fact strongly suggests homoclinic chaos. For 

12.77 GHzsf  , the periodic injection-locked oscillation is 

observed in Fig. 17(a). Then, for sf  between 12.771 GHz  

and 12.773 GHz , a spectral regrowth appears in Figs. 17(b-d) 
about the spectral line corresponding to the input frequency. 
The resolution bandwidth of the spectrum analyzer is lowered 
to 51 kHz to highlight it is a continuous spectrum, which is 
characteristic of chaotic behavior. Finally, Fig. 17(e), 
corresponding to 12.774 GHzsf  , shows a discrete spectrum 

composed of individual spectral lines, with no region with 
continuous spectrum. This quasiperiodic solution implies the 
transition from chaos to the mixer-like regime where the input 
signal mixes with the autonomous oscillation of the circuit. 

VII. CONCLUSION 

 A new methodology has been presented for the efficient 
harmonic balance analysis of injection-locked oscillators, 
exhibiting complex multivalued solution curves in the low and 
intermediate input power ranges. Unlike previous analysis 
techniques, it does not require any optimization or parameter 
switching procedures. In combination with additional 
mathematical conditions, it enables a straightforward 
determination of the turning point and Hopf bifurcation loci 
that delimit the stable synchronization bands, often exhibiting 
intricate geometries. The codimension two bifurcation where 
the turning point and Hopf bifurcation loci merge has been 
investigated in detail, as well as the saddle-connection locus, 
analyzed in microwave circuits for the first time to our 
knowledge. The likely observation of chaos near the 
codimension two bifurcation has been discussed. The 
techniques have been applied to several injection-locked 
oscillators, obtaining good agreement between results and 
measurements. 
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Fig. 17.  Measured spectrum for 12 dBmsP   in the experimental ring 

oscillator of Fig. 14(a). (a) Periodic spectrum obtained for 12.77 GHzsf  . 

(b)-(d) Continuous spectra obtained for 12.771 GHzsf  , 12.772 GHz , 

12.773 GHz , respectively, evidencing chaotic behavior. (e) Quasiperiodic 

spectrum obtained for 12.774 GHzsf  . 
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