
Optimized design of harmonic-injection dividers 

Franco Ramírez, Almudena Suárez 

Communications Engineering Department, University of Cantabria, 39005, Spain 

 
Abstract  —  A new formulation is presented for the 

efficient harmonic-balance analysis of the division 
bandwidth of frequency dividers by a high order. The 
procedure is based on some mathematical properties of the 
solution curve under low-amplitude of the input generator. 
Through a simple fitting technique, it is possible to determine 
the variation of the synchronization bandwidth versus any 
design parameter, while keeping constant the central 
frequency of the division band. The procedure also enables a 
prediction of the frequency-division interval for any value of 
the input-generator amplitude within the region of linear 
behavior with respect to the input source. It has been applied 
to the optimization of the input matching network in a 
frequency divider by 10, which uses a nonlinear transmission 
line (NLTL) as a feedback network. 

Index Terms  —  Harmonic-injection frequency divider, 
harmonic balance, synchronization. 

I. INTRODUCTION 

Frequency dividers are essential components of frequency 
synthesizers, widely used in radio communication 
systems. The harmonic-injection dividers can operate at 
high input frequencies and enable a versatile design with a 
small number of active devices and low power 
consumption [1,2]. However, the harmonic balance (HB) 
simulation of frequency dividers is demanding, so 
obtaining an optimized prototype can be a difficult task. In 
fact, HB must be combined with additional techniques to 
sustain the subharmonic oscillation [3,4], as otherwise it 
converges to a trivial solution, having the input frequency 
as fundamental. This undesired convergence can be 
prevented with the use of an auxiliary generator (AG) at 
the subharmonic frequency [3]. Setting the phase 
reference at the AG location, the bandwidth is obtained by 
sweeping the input generator phase from 0º to 360º [3,4]. 
More harmonic terms will be required for higher division 
order N. In general, the lengthy simulations will prevent 
an efficient analysis of the impact of the circuit elements 
on the operation bandwidth and, thus, an optimized 
design. 
 In view of this difficulty, a new formulation of 
general application to harmonic-injection dividers has 
been derived in this work. It should be applied in 
combination with a suitable choice of the circuit topology, 
so as to enable harmonic-injection division at low input 
power, with the divider behaving linearly with respect to 
the input source. This methodology provides the variation 
of the division bandwidth versus any design parameter, 

while keeping constant the central operation frequency at 
each parameter value. Preserving the central frequency is 
a relevant property of the method since, by default, any 
change of a parameter value (a line length, bias voltage 
etc.) will give rise to a shift of the division band. Unlike  
previous techniques [3,4], based on a numerical 
determination of an admittance-function derivatives about 
the free-running solution, in the new method the solution 
curve is fitted with a minimum number of injection-locked 
solution points, which should increase the accuracy and 
reduce the computational cost. A criterion is also provided 
to estimate the limit of the input-amplitude interval with 
linear behavior with respect to the input source. 

II. SIMULATION TECHNIQUE 

The simulation technique presented here for the first time 
has two goals: (1) maximization of the division bandwidth 
and (2) preservation of the central frequency of the 
operation band. Assuming linear behaviour with respect to 
the input source, this central frequency should correspond 
to the free-running frequency o [3]. For an optimized 
design, the division bandwidth will be calculated versus 
one or more design parameters, selecting the values that 
provide the maximum bandwidth. Let the parameter  be 
considered. At each sweep step i, the circuit is solved in 
two stages. In a first stage it operates in free-running 
regime. In a second stage, it operates in synchronized 
regime with respect to an input source with amplitude Ein 
and frequency  = No. The analysis is carried out with 
an AG [4]. The voltage AG, connected in parallel to a 
sensitive circuit node, such as the terminal nodes of 
transistor devices, must fulfil a non-perturbation 
condition, given by the zero value of the ratio between the 
current through this generator and the voltage delivered 
YAG = 0 [4]. This condition is solved through optimization. 
At each parameter step (i), the procedure is as follows. 
At Stage 1, the input amplitude is set to zero Ein = 0 and 
the AG frequency is made constant at the desired free-
running oscillation frequency (center of the division 
band), that is AG o  . Then the AG amplitude (agreeing 

with the voltage amplitude at o at the connection node 

AG oV V ) and another circuit parameter, such as a bias 

voltage Vbias, are optimized in order to fulfil 
YAG(Vbias,AAG) = 0 at o. At Stage 2, the input source with 
low amplitude Ein is introduced and two values of the 
input-generator phase (1 and 2) are considered, with the 
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phase reference at the AG node. At each of the two phase 
values, the non-perturbation condition is solved in terms 
of the AG amplitude AAG and frequency AG, that is., 
YAG(AAG, AG) = 0.  

In [3,4], it was demonstrated that provided a suitable 
design is carried out, for small input amplitude, the 
divider solution curve versus /N can be approached 
with an ellipse. This is obtained linearizing the total 
admittance function YAG about the free-running solution. 
Renaming YAG as Y, the equation is [3,4]: 
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 where the superindexes indicate real and imaginary 
part, and the subindexes indicate the variable with respect 
to which the derivative is calculated. Solving for the 
frequency and amplitude increments, one obtains: 
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where kw and kv are proportionality constants and v and 
 are constant phase shifts. Using the phase  as an 
intermediate variable, the parameters in each of the two 
equations in (2), can be obtained from the two injection-
locked solutions calculated with the AG: 1 1 1( , , )V    

and 2 2 2( , , )V   . The expansion of (2)(a), denoting 

cos vc   and sin vs  , provides the system: 
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 where the new constant parameters  ,   w w w wc k c s k s   

have been defined. The unknowns to be calculated are cw 
and sw, which are given by: 
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Then, the relationship between the frequency increment 
 and the phase shift  is: 
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So 2 2 1/2( )w w wk c s  and 2atan ( / )v w ws c  . From (4), at 

each Ein, the edges of the synchronization bandwidth 
correspond to the phase values  m= -π/2+αv and 
M = π/2+αv. In the plane / , inN E , the synchronization 

region is delimited by the two straight lines:  
/ ( ) / ,    / ( ) /in w o w in w o wE Nk k E Nk k          (6) 

The output frequency bandwidth Bw increases linearly 
with the input amplitude Ein, according to 2w in wB E k , 

which will be fulfilled provided that the circuit behaves 
linearly with respect to Ein. For a given circuit design, the 
limit of the linear region can be estimated from the 

deviation of the frequency  obtained with the AG in HB 
for  m= -π/2+αv and M = π/2+αv and the prediction by (6) 

Proceeding in identical manner with the amplitude 
increment V, it is possible to obtain the following 
constant parameters: 
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And the relationship between the amplitude increment V 
and the phase shift  is: 
  ( ) sin( ) cos( ) sin( )in v v in v wV E c s E k          (8) 

The ellipse equation is directly obtained making the phase 
 disappear from (5) and (8), which is done solving for 
sin( )  and cos( ) : 
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As the free-running solution changes at each sweep step, 
the stability [5] of the optimum solution (the one with the 
broadest bandwidth) must be verified. 

III. APPLICATION TO A FREQUENCY DIVIDER BY 10 

As an example, the technique will be applied to the 
divider circuit in Fig. 1. It includes a nonlinear 
transmission line NLTL [6] in the feedback loop, acting as 
a multiplier by N-1=9, which enables the division by 
N = 10.  The circuit in Fig. 1 is similar to the non-
optimized one in [2], although the input network used 
here is constituted by a parallel inductor and a distributed 
impedance transformer.  

 
Fig.1 Frequency divider based on an NLTL. It uses an ATF33143 
transistor and SMV1247 varactor diodes. 
 
The collection of ellipses calculated with (9) for fixed 
input power Pin = –10 dBm, increasing the width w of the 
input transmission line, is represented in Fig. 2. At each 
analysis in free-running conditions, AAG and bias voltage 
Vbias of the NLTL varactor diodes are optimized in order 
to fulfil YAG = 0. Even though all these different designs 
exhibit the same free-running frequency fo = 0.9 GHz, the 
free-running solution does change, which explains the 
variation of the tilt angle. The accuracy is validated in two 
cases (w = 0.15 mm and w = 2.65 mm, corresponding to 
the line impedance Z = 29 Ohm), tracing the whole 
solution curve with HB (41 points per ellipse, instead of 
only two). The stability [5] of the initial and final 
solutions has been successfully verified. For each width 



value, the upper section of the ellipse, comprised between 
the two turning points is stable, and the lower section is 
unstable. The deviation from the perfect ellipse in (9) 
changes (slightly) with the parameter value. It is larger in 
the lower section of the ellipse, expected to exhibit more 
irregular shape when the circuit operates nonlinearly with 
respect to the input source. The bandwidth calculated with 

2w in wB E k  is traced versus w in Fig. 3. Measurements 

are superimposed. The divider has been optimized since 
the technique has allowed increasing five times the 
original operation bandwidth. Furthermore, the central 
frequency of the band has been preserved, which would 
be impossible through a simple sweep or tuning 
technique. The measured spectrum is in Fig. 4.  

 
Fig. 2 Collection of ellipses identified with the new analysis 
procedure, validated with HB simulations. 

 
Fig. 3 Variation of the frequency-division bandwidth versus the 
transmission-line width at Pin=-10 dBm.   

The synchronization region in the plane , Ein is shown in 
Fig. 5. The limit of the linear region has been estimated 
performing two HB analyses, at  = π/2+αv and  = -
π/2+αv, for each Ein value. Besides the deviation from a 
perfect ellipse, as Ein increases, the bandwidth is no longer 
centred about Nfo. Projections of the full HB solution 
curve for two Ein values are also presented. In this 
particular case, the capability to obtain a noticeable 
bandwidth is due to the novel topology, using the NLTL. 
The bandwidth of an ordinary oscillator injection-locked 
at the 10th harmonic component would be negligible in 
most cases. Its observation might require input power that 
does not belong to the interval with linear behaviour with 
respect to the input source and the bandwidth might not be 
cantered about the free-running oscillation. 

O
u

tp
u

t 
p

o
w

e
r 

(d
B

m
)

 
Fig. 4 Measured spectrum of the frequency-divider.  

 
Fig. 5 Synchronization region in the plane , Ein. The limit of 
the linear region has been estimated performing two HB 
analyses at  = π/2+αv and  = -π/2+αv, respectively. 

 
IV. CONCLUSION 

A new formulation has been presented for the efficient 
analysis of the division bandwidth of frequency-dividers 
versus relevant design parameters. It is based on the 
identification of the solution curve using a small number 
of HB simulations. An advantage is the capability to 
maintain the central frequency of the division bandwidth 
under the variation of the particular analysis parameter.  
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