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Abstract— A system of two coupled oscillators based on 

nonlinear transmission lines (NLTL) is proposed for pulsed-
shaping applications. The maximum propagation frequency 
through the NLTL is calculated and optimized with a realistic 
numerical method. With additional design considerations, this is 
used to increase the waveform steepening capabilities of the 
NLTL and obtain an oscillator based on the shockwave concept. 
Coupling two of these oscillators with slightly different 
characteristics various pulse shapes can be achieved through 
composition of the individual waveforms. The coupled-system 
behavior is understood with the aid of a new reduced-order 
formulation, which takes into account the differences between the 
oscillator elements. The formulation is extended for stability and 
phase-noise analysis. It provides valuable insight into the impact 
of the individual oscillator characteristics on the coupled-system 
dominant poles and unsymmetrical stable phase-shift range. It 
also explains the variation of the spectral density with the phase 
shift, as well as the mechanisms for the phase noise corners 
observed when increasing the offset frequency. A more realistic 
analysis of the coupled system is also carried out with the 
conversion-matrix approach, using cyclostationary noise sources. 
The analysis and design techniques have been applied to several 
prototypes at 0.8 GHz. 
 

Index Terms— Nonlinear transmission line, oscillator, stability, 
phase noise. 
 

I. INTRODUCTION 

Oscillators generating a periodic train of short-duration 

pulses can be used in high speed sampling of rapidly varying 
signals [1] and time domain metrology, for high speed 
sampling oscilloscopes and reflectometry [2]. Due to their 
high harmonic generation capability, they can also be applied 
in frequency synthesis. They enable the implementation of 
comb generators [3,4] providing harmonic signals spanning 
through a broad spectrum, often used for the calibration of test 
sites and instruments [4]. In addition, several impulse-radio 
ultrawideband transmitters at pulse repetition rates above 1 
Gbps have been reported in the literature [5,6], with 
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monocycle pulses having the advantage of containing less 
power in the dc and low-frequency bands that cannot be 
radiated through antenna [7,8].The pulse shaping can be 
achieved using nonlinear transmission lines (NLTL) [9-11], 
which are composed by inductor–varactor cells, where the 
capacitance c(v) decreases with increasing voltage v. Due to 
this voltage dependence the high-voltage parts of the 
waveform will propagate faster through the NLTL than the 
low-voltage ones [9-11]. The pulse shaping is generally based 
on soliton formation [9-10], which requires a balance between 
the nonlinearity due to the varactor diodes and the dispersion 
inherent to the discrete nature of the NLTL [9]. The soliton is 
a solitary wave that maintains its shape while travelling 
through the NLTL at a constant speed [9]. Some previous 
works [1], [12-16] have demonstrated the possibility to obtain 
an autonomous soliton generator by suitably loading an active 
element with an NLTL (reflection configuration) [14-15] or by 
using the NLTL as the feedback block of an amplifier [1, 16]. 
This provides a periodic pulsed waveform, with no need of an 
input periodic signal. Here the pulsed waveform oscillator is 
obtained in a different manner, making use of the shockwave 
concept [9, 17], together with reflection and delay effects [18].  

In an ideal continuous medium, the nonlinear capacitance 
would lead to the formation of a shockwave when the high–
amplitude section of the waveform overtakes the bottom [9], 
which would ideally give rise to an infinite slope, as described 
in [18]. In practice, the NLTL is a lossy and dispersive 
network, the latter due its discrete nature, and this will limit 
the maximum propagation frequency. The NLTL does not 
admit an analytical solution and approximate expressions for 
the Bragg frequency have been provided [10, 11], assuming 
equal minima and maxima of the voltage waveform across the 
NLTL cells. Here an efficient numerical method is presented 
for a realistic determination of the maximum propagation 
frequency fmax through an NLTL with a relatively small 
number of cells, under sinusoidal excitation The method, 
intended for harmonic balance (HB) simulators, is based on a 
direct calculation of the input frequency at which a specified 
value of insertion loss is obtained. Driving the NLTL at an 
input frequency sufficiently below fmax, the nonlinear operation 
of the diodes will lead to progressive wavefront compression, 
and a pulsed waveform can be obtained with the aid of a 
grounded parallel stub, through combination of reflection and 
delay effects. The optimized NLTL will then be used as the 
load of an active element (with a suitably feedback network) 
to obtain an oscillator at the original excitation frequency.  

However, the pulse forming capabilities can be substantially 
increased by coupling two NLTL-based oscillators with 
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slightly different characteristics and adequate phase shift. Here 
the bias voltage of the active device in one of the oscillator 
elements will be varied to modify the corresponding output 
waveform, and the pulsed signal will be extracted in 
differential manner from the coupled system [19]. This 
methodology will allow the generation of various types of 
pulses, like narrow pulses and monocycle pulses with 
switchable polarity, which will be controlled by varying the 
phase shift between the oscillator elements. The idea is 
conceptually similar to the one presented in [2], which 
proposes a pulse generator using dual NLTLs with opposite 
polarity of the diodes. The input signal is split into two by an 
off-chip Wilkinson divider with one of the signals being 
delayed by a true time delay line before being fed into the 
corresponding NLTL. This work avoids the need of the power 
divider and has the advantage of the tunable delay, which is 
easily achieved by changing the phase-shift between the 
oscillator elements with a varactor diode.  

Because the two coupled oscillators can be different, in this 
work a fully new reduced order formulation for a system of 
two coupled oscillators having different free-running 
frequencies, amplitudes and admittance functions is derived. It 
is limited to the case of weak coupling (which minimizes the 
nonlinear dynamic effects) and relies on models extracted 
from a HB simulation of the individual oscillators in free-
running regime. The analysis methodology, of general 
application to any oscillator circuits, is different from that of 
the in-depth work [20], which considers two oscillators of the 
Van der Pol type under weak and strong coupling conditions.  

The HB-based reduced-order formulation presented here 
will enable an understanding and anticipation of the behaviour 
of the coupled system in terms of synchronization frequency 
and phase shift variation versus the tuning parameter. A 
perturbation analysis of this system will provide insight into 
the impact of the individual oscillator characteristics on the 
stable phase shift range in synchronized regime. Results will 
be validated with a detailed circuit level analysis based on 
pole-zero identification [21-22]. In turn, a reduced order 
formulation for the noise analysis will provide valuable insight 
into the causes of the corner frequencies observed in the noise 
spectrum and the dependence of phase-noise spectral density 
on the phase shift φ between the oscillator elements. In a 
manner similar to the stability properties, for different 
oscillator characteristics, this spectral density will not be 
symmetrical about φ = 0º.  

The paper is organized as follows. Section II presents the 
oscillator based on the shockwave concept. Section III 
describes the mechanism for pulse shaping based on the 
coupling of two NLTL-based oscillators, as well as the new 
reduced-order formulation for two coupled oscillators with 
different characteristics. Section IV presents the stability 
analysis and Section V the phase noise analysis. 

 

II. SHOCK WAVEFORM GENERATOR 

A.  Optimization of the NLTL 
The NLTL capacitance c(v) decreases with increasing 

voltage, so a waveform with steepening front can propagate 
through the NLTL [9]. However, this effect will be physically 

limited by the Bragg frequency of the NLTL and the cut-off 
frequency of the diodes. Under small loss resistance of these 
diodes, the Bragg frequency will be much lower than the cut-
off frequency. Disregarding this loss resistance, a linear 
electrical network with a large number n of L-C cells will be 
initially considered, where L and C are the unit cell inductance 
and capacitance, respectively. The dispersion relation of this 
network is given by [9]: 

2 24 sin
2LC
κω =    (1) 

The parameter in the above relationship is kκ δ= , where k 
is the wave number and δ  is the small unit cell length. From 
inspection of (1), the maximum propagation frequency is: 

1
Bf LCπ

=             (2) 

It is the Bragg frequency, or cut-off frequency of the line. 
As gathered from (1), at Bf , the delay per cell is κ π= ± . 
This property will be taken into account when deriving a 
numerical criterion to determine the maximum propagation 
frequency through the NLTL. The varactor diode used in the 
demonstrators is a SMV1232, with the cut–off frequency 
fc = 25.2 GHz. In a first stage, the propagation characteristics 
of the line are analyzed for various numbers n of L-C cells. 
The L value is 0.3 nH and the line is terminated with the 
approximate characteristic impedance /c oZ L C= , where Co 
is the linear capacitance. In the applications considered in this 
work, the input signal will be sinusoidal or quasi-sinusoidal, 
so, in the following study, excitation with a sinusoidal source 
at the frequency fin will be considered. Defining the unit cell as 
in [23], the phase shift per stage (calculated towards the 
middle of the NLTL) is analyzed versus fin, with the input 
amplitude Ein = 2.5 V. This analysis is carried out in harmonic 
balance, using N = 40 harmonic terms and Krylov 
decomposition [24] to optimize convergence and computation 
time. In Fig. 1(a), results are compared with the predictions of 
(1) for an ideal linear L-C line. From certain fin value, this 
phase shift becomes constant, and close to the ideal value π− . 
At this frequency, the output voltage at the first harmonic term 
Vout approximately fulfils Vout = 10-6 Ein. In our applications, 
the line will be excited with sinusoidal or quasi-sinusoidal 
signals, and the above voltage ratio will provide an 
approximate criterion to determine the maximum propagation 
frequency under variation of the design parameters.  

The value Vout = 10-6 Ein [derived from Fig. 1(a)] will be 
considered. An auxiliary generator (AG) [25-26], operating at 
the input frequency fAG = fin with amplitude VAG = Vout =10-6 Ein 
and phase φAG will be connected to the NLTL output node. 
The voltage AG, in series with an ideal bandpass filter at fAG, 
must satisfy the non–perturbation condition given by the zero 
value of the ratio between current circulating through this 
generator and the voltage delivered, i.e., YAG = 0 [25-26]. For 
each input voltage Ein, this condition is solved in terms of fin 
(agreeing with fAG) and φAG. Under the imposed VAG amplitude, 
the frequency fin fulfilling YAG = 0 will agree with fmax. This 
numerical method has been applied considering N = 40 
harmonic terms in the HB analysis. Fig. 1(b) shows the 
variation of fmax versus the cell inductance L for different 
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values of input amplitude Ein, under the criterion Vout = 10-6Ein. 
The number of L-varactor cells is n = 8. As indicated in [27], 
due to the diode losses, the number of L–varactor cells should 
be kept relatively low. The validity of the AG method has 
been checked tracing the quantity 1010log ( / )out inV E  versus 
the input frequency fin through independent and ordinary HB 
simulations (without AG), using N = 40 harmonic terms 
[Fig.  1(c)]. The frequency values at which the output voltage 
fulfills Vout = 10-6Ein totally agree with the predictions of Fig. 
1(b), which demonstrate the accuracy of the method. Note that 
other more or less stringent criteria could be chosen to define 
the maximum propagation frequency under sinusoidal 
excitation and the methodology would be equally applicable.  
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Fig. 1 Analysis of the NLTL under a sinusoidal input signal. (a) 
Phase shift per stage for different numbers n of NLTL cells. (b) 
Variation of fmax vs. the inductance L for different Ein values. (c) 

Validation of the technique in (b) by tracing 1010log ( / )out inV E  
versus fin with an independent HB simulation (without AG) and 
N = 40. (d) Optimization of the NTL to increase the maximum 
propagation frequency fmax. The curve complements the one in (b). 
Points validated with independent simulations are superimposed. 
 

The new method can also be applied for synthesis purposes, 
that is, to achieve a particular value of fmax. For given input 
amplitude Ein, this is done by fixing fmax to the desired value 
and optimizing the line parameters so as to fulfill the non-
perturbation condition YAG = 0 with VAG = 10-6 Ein (as 
considered here). To show an example, in Fig. 1(d) fmax has 
been swept optimizing the inductance L and the AG phase φAG 
at each sweep step in order to fulfill YAG = 0. In this example, 
the curve obtained complements the one in Fig. 1(b) as it 
provides the fmax variation in the low inductance section that 
had not been analyzed in that figure. Results obtained through 
independent HB simulations with N = 40 harmonics (and 
without AG) are superimposed with excellent agreement. In 
case more design parameters are available, these could be 
introduced as optimization variables. The limit of this 
optimization will come, of course, from limitations inherent to 
the NLTL components.  

Taking the component availability into account, the NLTL 
will be made up of eight cells, composed by the inductance 
L=0.3 nH and the varactor diode SMV1232, biased at 0 V. For 
fin sufficiently below fmax and nonlinear behavior of diodes, 
there should be a progressive compression of the wavefront. 
The results are analyzed in Fig. 2. In Fig. 2(a) a sinusoidal 
input at fin = 0.8 GHz with amplitude Ein = 2.5 V has been 
considered. The shockwave-like output waveform shows a 
significant falling–edge compression. For more insight, the 
waveform evolution through the various NLTL cells is 
represented in Fig. 2(b). In Fig, 3, the simulated waveform and 
output spectrum are compared with the measured ones. 
Discrepancies are attributed to parasitic effects in the hybrid 
circuit. Note that for comparison with the measurement 
results, the source impedance (having the original value Zc) is 
replaced with 50 Ohm. The NLTL is not matched in these 
conditions. However it should be matched when connected to 
the transistor output in the oscillator design.  
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Fig. 2 NLTL with n = 8 and L = 0.3 nH. (a) Comparison between 
input and output voltage waveforms. (b) Waveform evolution though 
the NLTL cells. 
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Fig. 3 Output signal of the NLTL. (a) Simulated and measured 
waveforms. The experimental waveform was obtained with the 
digital oscilloscope Agilent DSO90804A. (b) Spectra. 
 

B. Wavefront-steepening oscillator 
Due to the nonlinearity of the varactor diode, each NLTL 

section would ideally comprise the falling edge as T(Vh)–T(Vl) 
[11], where ( ) ( )TT V LC V= , where CT is the total capacitance 
per NLTL section and Vh and Vl are the high and low levels. 
However, the maximum propagation frequency fmax will limit 
the minimum achievable transition time, which can be roughly 

estimated from that of an RC low–pass filter, 0 35r max. / fτ =  
[11, 28]. Therefore, fmax should be initially maximized using 
the method in Section II.A. The nonlinear behavior of the 
diodes prevents an a priori prediction of the required input 
amplitude. Therefore, a simulation of the line excited with a 
sinusoidal source and terminated with its approximate 
characteristic impedance c oZ L / C=  must be carried out, as 
done in Section II.A. Next, a circuit capable to oscillate when 
loaded with the approximate NLTL characteristic impedance 

cZ  and providing the required excitation amplitude will be 
designed. The oscillation frequency must be the one 
considered in forced conditions, that is, fo = fin. In this case, we 
have chosen a Class-E oscillator topology, since the NLTL 
must be driven with sufficiently high amplitude to ensure the 
nonlinear operation of the diodes. The oscillator is composed 
by an amplifier with low output impedance [15] and a parallel 
feedback network to sustain the self–oscillation [Fig. 4(a)]. 
The transistor is a CLY5 biased at the gate voltage VGG = –1.5 
V and the drain voltage VDD = 2.9 V. The use of an AG 
operating at the desired oscillation frequency, fAG = fo = 0.8 
GHz, facilitates the large-signal oscillator design, due to the 
AG capability to force the frequency and oscillation amplitude 
at the fundamental frequency. To our knowledge, this AG 
method is the only one that allows imposing amplitude and 
frequency of the large-signal periodic oscillation, which 
should agree with the AG amplitude and frequency, then 
optimizing some circuit elements or parameters, so as to fulfill 
the non-perturbation condition (YAG = 0). Next, the oscillator 
load cZ  is replaced with the NLTL. Its average input 
impedance should be similar, so the AG optimization should 
not have any difficulty to converge for an AG amplitude close 
to that of the previous design at the same frequency fAG = fo. It 
might be convenient to further increase this amplitude to 
obtain the desired wavefront steepening effect. The amplitude 
is increased through a sweep, optimizing, for instance, the 
oscillator feedback elements at each sweep step, as has been 
done in this case. A pulsed waveform is obtained by 
connecting and tuning a high–impedance stub [Fig. 4(a)] to 
the output node through combination of reflection and delay 
effects. The length of this stub is easily tuned and due to its 
connection at the end of the NLTL, quite far from the active 
device, it has minimum impact on the fulfillment of the 
oscillation condition, or, equivalently, on the fulfillment of the 
AG non-perturbation condition. The resulting output voltage, 
named vout1(t), is shown in Fig. 7(a). However, there is little 
control on the pulse amplitude and width. For more flexibility, 
a design based on the coupling of two NLTL-based oscillators 
will be studied in the next section. 

III. PULSE-SHAPING GENERATOR BASED ON TWO COUPLED 
OSCILLATORS 

A. Proposed topology  
The pulse shaping generator proposed here is based on the 

coupling of two NLTL oscillators [Fig. 4(b) and Fig. 4(c)]. 
Due to the low NLTL characteristic impedance, the output 
signal can be taken in a differential manner vout(t) = vout1(t) – 
vout2(t), with a 50 Ohm load connected between the NLTL 
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output nodes. The pulse shaping is carried out through two 
main actions: delay of vout2(t) with respect to vout1(t) (achieved 
by tuning one of the two coupled oscillators) and subtraction 
[through the differential extraction of the output signal vout(t)]. 
The individual pulses vout1(t) and vout2(t) can be equal or 
different. For instance, in the work [18] a slight variation of 
the length l of the output stub was carried out. However, in 
this work the transistor bias voltage is proposed, thus avoiding 
any changes in the original circuit layout. The varactor used to 
change the phase shift will be connected to the feedback 
network of the first oscillator [Fig. 4(b)]. The coupling 
network, connected to the gate terminals, will consist of a 
transmission line bounded with series resistances [29-32]. 

 

 
 

Fig. 4 NLTL-based coupled oscillator system. (a) Schematic of the 
individual oscillator. (b) Coupled oscillators. (c) Photograph. 
 
 

Time (nsec)
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Fig. 5 Measured output signal of the sharpened–waveform oscillator 
terminated in 50 Ω. 

 
The harmonic balance analysis of the coupled-oscillator 

system is involved due to the need of two auxiliary generators 
(AG1 and AG2) [25-26] in order to maintain the two circuits 
in an oscillatory stage, i.e., to avoid trivial solutions in which 
one of the oscillator circuits simply responds to the periodic 
solution generated at the other one without self-oscillating. 
Furthermore, the lack of symmetry gives rise to additional 
difficulties in the convergence process, since the AGs must be 
resolved in terms of their individual amplitudes and phase 
shift, on top of the common oscillation frequency (compare, 
for instance, with the case of push-push oscillators [33-34], 
where the phase shift is known beforehand and the amplitudes 
are equal). In view of these difficulties, a two stage 
methodology has been developed. In a first stage, the phase 
shift required between the two different oscillator elements is 
estimated through individual analysis of these elements in 
uncoupled conditions, with one waveform artificially delayed 
with respect to the other. In a second stage, a new reduced 
order formulation is used to obtain the bias voltage of the 
oscillator varactor that is required for the desired phase shift, 
as well as the synchronized oscillation frequency. The design 
steps are indicated in the flow chart of Fig. 6. The original 
oscillator must include the varactor diode that will be used at a 
later stage to change the phase shift between the oscillator 
elements. At Step 1, one parameter in one of the two 
oscillators (Osc2) is modified, so as to change the 
corresponding NLTL output waveform. The other oscillator 
design (Osc1) remains unchanged, with the AG (AG1) having 
the original steady-state variables and, therefore, fulfilling 
YAG1 = 0. The second AG (AG2) is used as a forcing element 
(it does not fulfill the non-perturbation condition). It is 
connected to the transistor input terminal and enables a 
periodic forcing of the active sub-circuit and NLTL. It is also 
used to artificially shift the phase shift between the two 
oscillator circuits, operating at the same frequency. The tuning 
parameter (the transistor drain bias voltage, in this particular 
case) is varied, as well as the phase shift between the two 
AGs, until achieving the desired output pulse, extracted in a 
differential manner. If the AGs are connected at the input or 
near the input of the NLTL another possibility is to tune the 
AG amplitude (then, the tuning parameter would be 
optimized, instead of the AG amplitude, at the next step). At 
Step 2, the second oscillator is resolved isolated from the 
other. The AG amplitude (and possibly the transistor bias 
voltages) will have to be optimized to fulfill YAG2 = 0. This 
circuit level analysis is discussed in detail in Subsection III.B. 
At Step 3 (described in Subsection III.C), reduced-order 
models of the two individual oscillators, at their corresponding 
steady-state free-running oscillation points, are extracted 
through finite differences, using one AG, according to the 
methodology in [35]. The model of Osc1 must include the 
derivative with respect to the tuning voltage of the varactor 
diode, as this tuning voltage will enable the phase shift 
variation. The reduced-order models extracted in Step 4 are 
used to evaluate the phase shift variation versus the tuning 
voltage of the first oscillator element, as well as the oscillation 
frequency deviations resulting from this phase shift 
(Subsection III.C). The stability analysis is carried out with the 
reduced-order formulation in Section V, based on these 
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models. At Step 5, the result obtained with the reduced-order 
formulation is validated with a costly HB simulation of the 
two element coupled oscillator system. At this step, equivalent 
current noise sources at the coupling nodes should be 
extracted for each of the individual oscillators, simulated in 
uncoupled conditions, following the method in [36]. At Step 6, 
the noise models are introduced in the reduced-order 
formulation to obtain the phase-noise spectra, as described in 
Section VI. 

 
1.  Circuit level analysis with uncoupled oscillators:
   Osc1: Original design
   Osc2: One parameter is tuned to vary the NLTL output waveform. 
   AG2 operates in forcing mode.
   Phase shift between oscillators is changed by varying φAG. 

2. Circuit level:
   Osc2 is solved to fulfill YAG2=0 

3. Extraction of:
   Reduced-order models of Osc1 and Osc2
   Fourier coefficients of the individual NLTL output waveforms

6. Introduction of the noise models in the reduced-order formulation to 
obtain the phase-noise spectra.

5. Extraction of equivalent current noise sources
   Osc1 at resulting tuning voltage of varactor diode.
   Osc2 as in step 2.

4. Reduced order formulation. 
   Analysis of: 

phase shift vs. tuning voltage 
           oscillation and amplitude deviations. 
   Output waveform is estimated from the Fourier coefficients in Step 3. 
   Stable range is determined.

 
Fig. 6 Flow-chart indicating the steps to be taken for the design of the 
coupled system of two NLTL-based oscillators. 
 

B. Estimation of the phase shift between the oscillator 
elements  
In a first stage, the two NLTL-based oscillators are analyzed 

in a separate manner, using an auxiliary generator per 
oscillator element. The corresponding AGs will have a phase 
shift φ , which is imposed by doing 1 20,  AG AGφ φ φ= = . This 
will give rise to a time shift between the individual output 
voltage waveforms, which will be used to estimate the 
differential output in coupled conditions. The drain bias 
voltage VDD of the active device is chosen to modify the 
waveform of the second oscillator (VDD2). Because the first 
oscillator operates exactly at the original conditions, only the 
second oscillator is actually analyzed. Its corresponding AG, 
connected to the gate terminal, is initially used just as forcing 
source at the original oscillation frequency, without fulfilling 
YAG = 0. The time shift between the two waveforms is 
controlled with the phase φAG of the second oscillator. Note 
that the preliminary analysis in our previous work [18] 

involved a simulation of the NLTLs only, which prevented the 
use of tuning parameters affecting the active device, such as 
the drain bias voltage. 

In a first application, the above methodology has been used 
to obtain a very narrow pulse through the mechanism 
illustrated in Fig. 7(a). The pulse vout1(t) is the one obtained 
through the design in Section II.B, by terminating the 
oscillator with a grounded parallel stub and biasing the 
transistor at VDD1 = 2.9 V. As observed in the figure, the rise 
time of vout1(t) is shorter than the decay time. A second pulse 
vout2(t) of smaller amplitude is generated, by reducing the bias 
voltage VDD2 = 1.1 V of the second oscillator. When delayed as 
shown in Fig. 7(a), the second pulse is located under the slow 
decay section of vout1(t), so the differential signal vout(t) 
exhibits short rise and decay times. Once the desired 
waveform has been obtained, the AG frequency and amplitude 
of the second (modified) oscillator are optimized, so as to 
fulfill the AG non-perturbation condition YAG2 = 0. The results 
of this optimization, together with those corresponding to the 
original oscillator, will constitute the input data of the 
reduced-order model presented in Sub-section B. The drain 
voltage and current waveforms corresponding to each of the 
two coupled oscillators are shown in Fig. 7(b) and Fig. 7(c).  
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VDD1   =  2.5 V and fundamental-frequency amplitude 2.88 V. (c) The 
same for the second oscillator with VDD2 = 1.1 V and fundamental-
frequency amplitude 1.25 V. 
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Fig 8 Monocycle waveform. (a) Parameters: VDD2 = 2.5 V and 

9.8ºφ = . (b) Switched polarity monocycle with parameters: VDD2 = 
2.5 V and 16ºφ = − .  

 
With pulses vout1(t) and vout2(t) of nearly identical 

amplitudes, and applying sufficient delay to avoid 
overlapping, a monocycle pulse vout(t) is obtained, as shown in 
Fig. 8(a). In that figure the second oscillator is biased at 
VDD2  = 2.5 V and the phase shift is 9.8ºφ = . For comparison, 
the transmission-line pulse forming network used in the work 
[7] (which includes two carrier amplifiers and step-recovery 
diodes) has also been tested. When terminating one of the 
oscillators with that network, one obtains the lower amplitude 
monocycle shown in Fig. 8(a). By means of the proposed 
coupled system, the polarity of the monocycle can be 
electronically switched by simply varying the phase shift 
between the oscillator elements to 16ºφ = −  [Fig. 8(b)].  

The oscillator phase shifting will actually be carried by 
coupling the two oscillator elements, which will operate at the 
synchronized oscillation frequency ω. The coupled system 
will be analyzed with a new reduced-order formulation 
presented in the next sub-section. 

 

C. Reduced-order model of the coupled-oscillator system 
As already stated, the oscillators are coupled by means of a 

transmission line section, bounded by high resistors R [29-30], 
as shown in Fig. 4(b). The coupling network is connected to 
the gate nodes of the respective transistors, where the 
waveform is quasi-sinusoidal, so coupling effects can be 
assumed to be significant at the fundamental frequency only. 
Unlike [18], it is taken into account that due to changes in the 
second oscillator design or operation point, the oscillator 
characteristics will, in general, be different. For 
synchronization, the individual oscillation free-running 
frequencies, must, of course, be similar. However, the 

individual amplitudes may be different to a larger extent. 
Assuming small coupling strength (high R value), the 
admittance function of each oscillator, of zero value in free-
running conditions (Yk = 0), where k = 1, 2, can be described 
with a first-order Taylor series about the corresponding free-
running solutions, of respective amplitude and frequency 

,ok okV ω . Note that the admittance function Yk is identical to 
the AG current-to-voltage relationship. Through application of 
Kirchoff’s laws, the coupled system is governed by the 
following complex equations: 

1 1 1 1 1 1 1 2

2 2 2 2 2 2 1 2

( ) ( )

( ) ( )

 − + − + ∆ = − − 
 − + − = − − 

j
V o o e nb

j j
V o o nb e

Y V V Y Y V Y V Y V e

Y V V Y V e Y V Y V e

φ
ω η

φ φ
ω

ω ω η

ω ω
(3) 

where kV  (k = 1, 2) is the voltage amplitude of each 
oscillator circuit, once in coupled operation, and φ is the phase 
shift between the oscillator elements at the fundamental 
frequency. On the other hand, ,Vk kY Yω  are the derivatives of 
the admittance functions, evaluated at the corresponding free-
running points, with respect to the amplitude and frequency 
and Yη  is the derivative of the first oscillator with respect to 
the tuning parameter. The 2x2 admittance matrix of the 
symmetric coupling network has element values Y11 = Y22 = Ye 
and Y12 = Y21 = Ynb. In (3), it is taken into account that due to 
the autonomy of the coupled system the phase of one of the 
oscillator elements can be arbitrarily set to zero. The first 
oscillator is chosen here, so 1 0φ = . 

For each circuit, the derivatives are calculated in harmonic 
balance by means of an AG, introduced in parallel at the node 
where the coupling network will be connected (nodes 1 and 2, 
corresponding to the gate terminals in Fig. 4(b)). These 
calculations are carried out through finite differences, using 
the method described in [35-37]. The derivatives are obtained 
using an AG, with the pure HB system, including the whole 
harmonic content, as inner tier. For instance, to obtain the 
frequency derivative, the AG amplitude is fixed to AG okV V= , 
performing a small sweep in AGω  about the free-running value 

AG okω ω=  and obtaining the ratio between the admittance 
increment AGY∆  (calculated with HB) and the increment 
applied. The same procedure is applied for the calculation of 
the rest of derivatives. If the designer wishes to have a 
parameter available for consideration in the reduced-order 
model, the derivative calculation can be easily automated. For 
instance, the drain bias voltage VDD2 can be swept, obtaining 
for each VDD2, a set composed by the free-running solution 

2 2,o oV ω  (fulfilling the non-perturbation condition 0AGY = ), 
and the derivatives 2 2, VY Yω .  

The nonlinear system in (3) can only be solved numerically, 
through an error minimization technique, which provides little 
insight into the coupled-system performance. For a better 
understanding of this system, it will be taken into account that, 
under weak coupling, a first order approximation can be 
carried out, which leads to the following complex equations: 
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2
1 1 1 1 1

1

1
2 2 2 2 2

2

  

  

jo
V e nb o

o

jo
V nb e o

o

V
Y V Y Y Y Y e Y Y

V
V

Y V Y Y e Y Y Y
V

φ
ω η φ

φ
ω φ

ω η

ω −

+ + ∆ = − − + ∆ =

+ = − − + ∆ =  

(4) 

where the following constant increments have been defined: 
 

1 1 1 1 1

2 2 2 2 2

  ∆ = +

∆ = +
o V o o

o V o o

Y Y V Y

Y Y V Y
ω

ω

ω

ω
    (5) 

 
Two additional parameters will also be introduced: 

2
1

1

1
2

2

o
nb nb

o

o
nb nb

o

V
Y Y

V
V

Y Y
V

=

=
   (6) 

With the aid of the above parameters, it will be possible to 
predict the behavior of a system of two coupled oscillators 
having different free-running amplitudes. Splitting (4) into 
real and imaginary parts and solving for the synchronization 
frequency ω , one obtains the expression: 
 

2

2

2

2

V

V

Y Y
Y Y

φ

ω
ω

×
=

×
   (7) 

 
where the product means the following operation  

,Re( ) Im( ) Im( ) Re( ) sin a ba b a b a b a b α× = − =  and 

, ( ) ( )a b angle b angle aα = − . Performing this operation, the 
synchronized oscillation frequency ω  is given by:   
 

( )
( ) ( )

2 2, 2 2 2, 2

2 2, 2 2,

sin sin( )
sin sin

off V off nb V nb

V V

Y Y
Y Yω ω ω ω

α φ α
ω

α α

− +
= −  (8) 

 
where: 
 

2 2

2, 2 2 2

2, 2 2 2

2, 2 2

( ) ( )

( ) ( )

( ) ( )

off o e

V off off V

V nb nb V

V V

Y Y Y

angle Y angle Y

angle Y angle Y
angle Y angle Yω ω

α

α

α

= ∆ −

= −

= −

= −

  (9) 

 
As gathered from (8), to first order, the oscillation 

frequency varies sinusoidally with the phase shift φ, with an 
offset depending on the original free-running point 2oY∆  and 
the parameter Ye of the 2x2 admittance matrix that describes 
the coupling network. The oscillation frequency excursion 
depends on the magnitudes 2 2,VY Yω  that characterize the 
second oscillator (the oscillator that does not contain the 
tuning element), the ratio between the free-running voltages 

1 2/o oV V  and the coupling-network parameter Ynb. The 
parameter Ye gives rise to a constant pulling effect, whereas 
synchronization is due to the signal of the first oscillator (the 
one tuned with the varactor diode), which affects the second 
oscillator through the parameter Ynb2.  

Solving (4) for η∆ , an analytical expression is obtained for 
the tuning  voltage of the first oscillator required for each φ 
value: 

  

2 2 1 1
1, 1

1 2 2

1 1 2 2
2,

1 2 2

2 2 1 1 1 1 2 2

1 2 2

( )
 sin( )

( )( )

( )
 sin( )

( )( )

( )( ) ( )( )
 

( )( )

V V nb
V nb

V V

V V nb
V nb

V V

V V off V V off

V V

Y Y Y Y
Y Y Y Y

Y Y Y Y
Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y

ω

η ω

ω

η ω

ω ω

η ω

η φ α

φ α

×
∆ = − + +

× ×

×
+ − + +

× ×

× × − × ×

× ×

 (10)

  

The parameter η∆  affects the behavior of the two 
oscillators and, therefore, the phase shift φ  between the two 
depends on the individual responses of these two oscillators. 
The coupled performance is actually described by the 
combination of (8) and (10). Interestingly, in case the free-
running oscillators are equal, the tuning parameter η∆  
required for each φ  will not depend (to first order) on the 

frequency derivative 1 2 Y Yω ω= .  
Provided that the amplitude increments remain small, it will 

be possible to reuse the Fourier harmonic coefficients of the 
original output-pulse waveforms ( 1 2,m mV V ) for an estimation 
of the differential output. After an initial storage of these 
Fourier coefficients, the output pulse can be approached as: 

 
 ( )

1 2( ) jm t jm t
pulse m m

m k
v t V e V eω ω φ+= −∑ ∑   (11) 

where it is taken into account that the two oscillators operate 
at the same synchronized frequency ω, with the phase shift φ. 
Note that in case variations in the design parameter (VDD2 for 
instance) are considered, use of (11) will require an additional 
storage of the Fourier components 2mV , corresponding to each 
parameter value.  

The practical application of expressions (8) and (10) is 
shown in the following. The drain bias voltage, oscillation 
frequency, amplitude and derivatives obtained with the 
method described in Section III.B are shown in Table I. Note 
that only the design of the second oscillator is modified. Fig. 9 
compares the results obtained with (8) and (10), and with a 
costly HB simulation of the coupled system at circuit level. In 
Fig. 9(a) the synchronized oscillation frequency is traced 
versus the phase shift φ and Fig. 9(b) presents the tuning 
voltage required for each φ value. Note that HB convergence 
was not possible in the whole φ  interval (-180º, 180º). 
Furthermore, the more discrepant HB points in Fig. 9 were 
obtained with rather high convergence errors.  

The sketch and picture of the measurement set-up are shown 
in Fig. 10. It is based on the use of the Agilent DSO090804A 
Digital Storage Oscilloscope and the spectrum analyzer 
Agilent E4446A (with phase noise measurement personality). 
Connecting the two individual oscillator outputs to two power 
splitters, we can alternatively measure the differential output 
waveform, the individual oscillator waveforms and the 
individual oscillator spectra. Experimental measurements are 
superimposed in Fig. 9. These measurements are only possible 
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in the stable phase shift range, which will be analyzed in the 
next section. The experimental range was (–90º, 55º). We must 
emphasize that the new relationships (8) and (10) have a 
general validity to predict the coupled behavior of any two 
different oscillators with similar oscillation frequencies.  

 
TABLE I 

 
 VDD 

(V) 
fo 

(MHz) 
Vo 

(V) 
Yω 

(Ω−1/Hz) 
Yv 

(Ω−1/V) 
Yη 

(Ω−1/V) 
O1  1.1 800.065 1.72 -1.73 10-11 

+ j3.32 10-11 
7.49 10-3 

+j5.18 10-3 
6.13 10-4 - 
j6.22 10-4 

O2 2.9 806.351 3.20 -1.55 10-11 
+ j2.38 10-11 
 

5.97 10-3 
+j1.03 10-2 
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Fig. 9 Coupled system of two oscillators biased at VDD1 = 2.9 V and 
VDD2 = 1.1 V. (a) Oscillation frequency variation versus the phase 
shift, obtained with (8) and with HB. Measurements in the stable 
range are superimposed. (b) Tuning voltage variation versus the 
phase shift using (10) and HB. Measurements are superimposed. 
 
 

 
Fig. 10 Measurement test-bench. (a) Sketch. (b) Photograph. 
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Fig. 11 Pulsed waveform obtained for VDD2 = 1.1 V and 15ºφ = . (a) 
HB simulation and prediction with (11). (b) Measured waveform. 
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Fig. 12 Monocycle waveform obtained for VDD2 = 2.5 V and 
9.8ºφ =  . (a) HB simulation and prediction with (11). (b) 
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Fig. 13 Switched polarity monocycle obtained for VDD2 = 2.5 V and 

16ºφ = − . (a) HB simulation and prediction with (11). (b) 
Measurement. 
 

The narrowest output pulse is obtained for the phase shift 
15ºφ = . From (10), the required tuning voltage is 
  0.93 ∆ = Vη . The differential waveform obtained with HB 

and with the approach (11) is shown in Fig. 11(a). The 
measured waveform can be seen in Fig. 11(b), where several 
cycles are presented to show that there is no modulational 
instability, leading to a self-induced modulation of the 
waveform [9]. Discrepancies are attributed to parasitics in the 
hybrid NLTL. Note that most published circuits achieving 
very narrow pulses at high fundamental frequency are based 
on driven NLTLs implemented on MMIC technology, for 
instance [2],[10,11]. We did not aim at obtaining comparable 
results due to the limitations in the hybrid technology used, 
mostly coming from the parasitics in the packaged varactor 
diodes. An analogous approach has been applied to obtain a 
monocycle pulse. An optimized waveform is obtained for 
VDD2 = 2.5 V and 9.8ºφ = , obtained with 1.3 V∆ =η . The 
simulated and measured waveforms are presented in Fig. 12. 
The polarity of the monocycle can be inversed by simply 
changing the phase shift from 9.8° to –16° ( 1.82 V∆ =η ), as 
shown in Fig. 13. Therefore, the polarity of the monocycle can 
be switched electronically in a very simple manner. 

IV. STABILITY ANALYSIS OF THE COUPLED-OSCILLATOR 
SYSTEM  

In a first stage, stability of the two individual oscillators, 
with different VDD values, is analyzed at circuit level, using 
pole-zero identification [21-22]. In a second stage, the stability 
of the coupled system is evaluated through a perturbation 
analysis of this system. Because the two oscillators must be 
individually stable, instability may only arise from the 
coupling effects. On the other hand, due to the similarity in the 
individual free-running frequencies and the weak coupling 
conditions, instability (obtained in a certain phase shift range) 
should be due to real poles or complex-conjugate poles σ ± jΩ 
with low frequency Ω, in the order of the difference between 
the free-running frequencies [25-26]. Both types of dominant 
poles should be detectable with the reduced-order formulation.  

For the stability analysis of the coupled system, a small 
instantaneous perturbation is considered, which will gives rise 
to the following increments of the state variables: 

1 01 1 1

2 02 2 2

1 1

2 2 2

( ) ( ),
( ) ( ),
( ) 0 ( ),
( ) ( ),

= + ∆ +

= + ∆ +

= +
= +

V t V V V t
V t V V V t

t t
t t

δ
δ

φ δφ
φ φ δφ

(12) 

Next, Kirchoff’s laws are applied to the perturbed system. 
When doing so, the exponentials of the phase variables are 
approached as: 

( )( ) 1 ( )i ij t j
ie e j tφ φ δφ+   (13) 

It is also taken into account that the complex-frequency 
increment gives rise to a time-derivative operator [29-32], so 
the perturbed system can be written:  

1 1 1
1 1 1 1 1 1 2

1 1 2

1 1 1
1 1 1 1 1 1 2

1 1 2

2 2 2
2 2 2 2 2 1 2

2 1 2

2 2 2
2 2 2 2 2 1 2

2 1 2
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φ φ φ
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φ φ φ
φ φ

φ φ φ
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∆ ∂ ∂
∆ + ∆ + = ∆ + ∆

∂ ∂

∆ ∂ ∂
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∂ ∂

∆ ∂ ∂
∆ + ∆ + = ∆ + ∆

∂ ∂

∆ ∂ ∂
∆ + ∆ − = ∆ + ∆

∂ ∂

















 

(14) 

where superindexes r and i indicate real and imaginary parts 
and the following functions have been defined 

2 1( )
1 1

j
nba Y e φ φ−= −  and 1 2( )

2 2
j

nba Y e φ φ−= − . By grouping terms, 
one obtains the following LTI system, in matrix form: 

[ ] [ ] [ ] [ ]
11

122
1 2

11

22

;         

VV
VV

M M M M
φφ
φφ

−

∆ ∆  
   ∆∆   = =
   ∆∆
   

∆∆    









  (15) 

where the matrixes [M1] and [M2] are given by: 
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1
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1
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1
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0
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 −
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 ∂ ∂ −
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   (16) 
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Note that the phase derivatives must be particularized to 
each steady-state solution, given by 1 20,  φ φ φ= = . This 
provides: 

 

1 1
1 1

1 2

2 2
2 2

1 2

;     

;         − −

∂ ∂
= = −

∂ ∂
∂ ∂

= − =
∂ ∂

j j
nb nb

j j
nb nb

a ajY e jY e

a ajY e jY e

φ φ

φ φ

φ φ

φ φ

  (17) 

 
The stability is determined by the eigenvalues of the matrix 

[M] in (15). Due to the autonomous behaviour of the coupled-
system, one of these eigenvalues must necessarily be equal to 
zero for all the φ values. Mathematically this comes from the 
fact that the last two columns (c3, c4) of the matrix [M], 
containing the phase derivatives, are linearly related, as 

3 4 0c c+ = . The stability properties will be determined by the 
remaining three eigenvalues. 

For more insight into the stability properties of the coupled 
system, an approximation will be carried out next. When 
assuming oscillator admittance functions of the form 

( , ) ( ) ( )r iY V Y V jYω ω= +  and neglecting the amplitude 
variations 0V∆ ≅ , system (14) reduces to:    

 

1 1

1 21 1 11
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1 22 2

1 1 1 1
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2 2 2 2
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∂ ∂ ∆ ∆   = =     ∆∆ ∂ ∂     
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Y Y
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ω ω

ω ω

ω ω

ω ω
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φφ

φ φ
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1

2

 
 ∆ 

φ
φ

 (18) 

 
   

The stability properties of this approximate system will be 
determined by the two eigenvalues of the matrix in (18), given 
by the roots of the following second-order polynomial: 

2 2 2 1 1

2 1

cos sin cos sin
0

r i r i
nb nb nb nb

i i
Y Y Y Y

Y Yω ω

φ φ φ φ
λ λ

 + −
− + =  

 
 (19) 

One of the roots of this polynomial is 1 0λ = , in agreement 
with the autonomy of the coupled system. The second root is: 

 2 2 1 1
2

2 1

cos sin cos sinr i r i
nb nb nb nb

i i
Y Y Y Y

Y Yω ω

φ φ φ φ
λ

+ −
= +  (20) 

For stability, the above eigenvalue must be negative. 
Qualitative changes of stability, or bifurcations [25-26, 37], 
will occur at the phase values leading to 2 0λ = . These phase 
values fulfil: 

2 1 2 1

2 1 2 1
cos sin 0

r r i i
nb nb nb nb
i i i i

Y Y Y Y
Y Y Y Yω ω ω ω

φ φ
   

+ + − =      
   

   (21) 

It is derived in a straightforward manner that the two 
solutions of (21) can be written as 1 2 1,  180ºb b bφ φ φ= + , so the 
approach predicts a stable range of 180º , regardless of the 

particular oscillator characteristics. With different oscillators, 
the stability boundaries will be located at unsymmetrical phase 
shift values 1 2,  b bφ φ . For identical oscillators, the above 
expression would provide the stability boundaries 

1,2  90ºbφ = ± . Another relevant conclusion derived from the 
approximate expression (20) is that in case the frequency 
derivative of one of the oscillators is much smaller than the 
other, the pole 2λ  will be mostly influenced by the properties 
of the corresponding oscillator (assuming not too different 
values of 1 2,  nb nbY Y ).  

The analysis above has been applied to the two different 
designs of the previous section. The circuit level stability 
analysis of the two individual oscillators (based on pole-zero 
identification) demonstrates stable behaviour. Next, the 
stability of the coupled system is analysed using (15). In Fig. 
14(a), the four real poles provided by this system have been 
traced versus the phase shift φ. As expected, the real pole 
associated with the system autonomy 1 0γ =  remains at zero 
for all the phase shift values. The next dominant real pole 2γ  
is due to the coupling effect. This is compared with the 
prediction by the approximate expression (20), traced in dotted 
line. The stable phase shift interval obtained using (15) is 
delimited by 1 2107º ,  73ºb bφ φ= − = . The addition of the two 
values is 180º, in agreement with the prediction of (20). In the 
measurements, the stable interval was (–95º,55º), as shown in 
Fig. 9.  

As seen in Fig. 14, there are two additional real poles 
3 4,  γ γ , relatively far from the imaginary axis, that exhibit 

very small variation with the phase shift φ. These two poles 
have their origin in the dominant real poles of the two 
individual free-running oscillators, prior to their connection to 
the coupled system. As demonstrated in [26, 38], the dominant 
real pole γ  of a free-running oscillator has the approximate 
value: 

 
( ) 

2
V oY Y V

Y

ω

ω

σ
×

= −   (22) 

 
which depends on the amplitude and frequency derivatives of 
the admittance function of that oscillator , ,V oY Y Vω , as well as 
the oscillation amplitude oV . For the two individual free-
running oscillators, one obtains the values 

8 1 8 1
1 25.5 10 s , 9.08 10  so oγ γ− −= − = − , which approximately 

correspond to those of the real poles 3 4,  γ γ . In the case of two 
equal oscillators, the free-running poles will be identical 

1 2 o oγ γ=  and they are likely to evolve into a pair of complex-
conjugate poles when the two oscillators are coupled.  
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Fig. 14 Stability analysis of the coupled-oscillator system providing a 
narrow pulse. (a) Analysis versus the phase shift based on (15), with 
the result of the approximate expression (20) for 2λ  superimposed. 
(b) Results of pole-zero identification at circuit level for the particular 
phase shift value 15ºφ = . 
 

Due to the HB convergence difficulties of the coupled-
system, the rigorous stability analysis of this system has only 
been carried out for the particular phase shifts that provide the 
narrow pulse and the monocycle pulse, obtaining stable 
behaviour in the two cases. The pole locus obtained through 
pole-zero identification (at circuit level) in the case of the 
narrow pulse, is shown in Fig. 14(b). In total agreement with 
the reduced-order model, this pole locus shows the presence of 
four real poles, or four complex-conjugate poles at the 
fundamental oscillation frequency ω  of the coupled system. 
Note that due to the relationship between Floquet multipliers 
and poles [39], a pair of complex conjugate poles at the 
fundamental frequency jσ ω±  is equivalent to a real pole σ , 
as both this complex-conjugate poles and the real pole are 
associated to a same Floquet multiplier. This is why the four 
real poles in the analysis of Fig. 14(a) appear as four complex-
conjugate poles at the oscillation frequency ω in the analysis 
of Fig. 14(b). Pole-zero identification [21-12] was initially 
carried out in a broadband where no unstable poles were 
found. This is in agreement with the fact that the weak 
coupling of two oscillators at similar frequencies should only 
give rise to either real poles or poles with small beat frequency 
Ω. The detailed identification in Fig. 14(b) has been carried 
out about the oscillation frequency, where it is generally more 
accurate than at baseband.  

 

V. PHASE NOISE OF THE COUPLED-OSCILLATOR SYSTEM 
In a manner similar to the stability analysis, the phase noise 

of the coupled oscillator system will be investigated through 
the combination of a detailed analysis based on circuit-level 
simulations and a new reduced-order formulation. Once the 
phase-noise spectrum of each individual oscillator has been 
obtained at circuit level, using the conversion matrix approach 
[40-41], an equivalent noise source, located at the node where 
each oscillator will be connected to the coupling network, is 
fitted until obtaining a similar phase noise spectrum, following 
the technique proposed in [36]. For simplicity and better 
insight, only white-noise sources will be taken into account in 
the reduced-order formulation. The consideration of flicker 
noise in the reduced-order analysis would require an 
additional baseband equation [26]. The analysis would be 
based on a formulation of the perturbed system about dc and 
the fundamental frequency, and the model extraction would 
require the use of auxiliary generators at dc and the 
fundamental frequency, applying a finite-difference technique 
[35] to obtain derivatives with respect to the dc voltage and 
the fundamental amplitude and frequency. Departing from the 
perturbed system in (14), in the presence of the two equivalent 
noise sources, the coupled system will be ruled by the 
following equations: 
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 ∆ ∆         ∆∆   − =     ∆∆       ∆∆      
 
 
  









  (23) 

where the phase derivatives are evaluated at 1 20,  φ φ φ= =  
using expressions (17) and ( )nkI t , with k = 1, 2, are the 
equivalent current noise perturbations. The phase-noise 
spectrum is obtained through application of the Fourier 
transform to the above system, taking into account that the two 
noise sources are uncorrelated and so are the real and 
imaginary parts of each of these two noise sources [38, 40-41]. 
This provides the following noise spectra: 

[ ] [ ]{ }

2
1

2
2

2
1

2
2

1 1
V V

( )
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( )

( )

( ) N (Ω)N (Ω) ( )n n

V

V

diag M j M j

φ

φ

+− −+

 ∆ Ω
 
 

∆ Ω 
= 

 ∆ Ω
 
 

∆ Ω  
 = Ω Ω 
 

(24)

 

where VN (Ω)  is directly derived from the right hand vector in 
(23) and the conversion matrix [ ]( )nM jΩ  is given by: 

[ ] [ ] [ ]1 2( )nM j j M MΩ = Ω −   (25) 
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In order to get an intuitive understanding of the noise 
behaviour of the two coupled oscillators, we will proceed in a 
manner similar to what was done in the stability analysis, that 
is, assuming admittance functions of the form 

( , ) ( ) ( )r iY V Y V jYω ω= +  and neglecting the amplitude 
variations 0V∆ ≅ . This simplification leads to the following 
2x2 conversion matrix: 

1 1
1

1 2

2 2
2

1 2

1 1
1

1 2

2 2
2

1 2

( , )

i i
i

i i
i

i i
i

i i
i

a aj Y
MC

a aj Y

a aj Y

a aj Y

ω

ω

ω

ω

φ φ
φ

φ φ

φ φ

φ φ

 ∂ ∂
Ω − − 

∂ ∂ Ω = = ∂ ∂ − Ω −
 ∂ ∂ 

 ∂ ∂
Ω − − 

∂ ∂ =  ∂ ∂ − Ω −
 ∂ ∂ 

(26) 

where the phase derivatives are evaluated at 1 20,φ φ φ= = . By 
means of a derivation analogous to the one in (24), one obtains 
the following analytical expression for the phase noise spectral 
density of the first coupled oscillator: 

 
2 2

2 22 1
2 1 2

2 22
1 2

4 2 2 2 1
1 2 1 2

2 1

( )

( )

    ∂ ∂ + Ω +      ∂ ∂     ∆ =
 ∂ ∂

Ω + Ω +  ∂ ∂ 

i i
i

i i
i i i i

a aY N N

a aY Y Y Y

ω

ω ω ω ω

φ φ
φ

φ φ

  (27) 

where two functions have been introduced: 
 

 
2 2

1 2
1 22 2

1 2

2 2
,     n n

o o

I I
N N

V V
= =   (28) 

Calculation of the phase derivatives in (27) from (17) 
provides an explicit relationship between the phase-noise 
spectral density and the phase shift φ : 
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  (29) 

 
where the denominator is given by: 

 

( )
4 2

1 2
22

1 2 2 1 1 2 2 1

( , ) ( )

( ) cos ( )sin )

i i

i r i r i i i i
nb nb nb nb

D Y Y

Y Y Y Y Y Y Y Y

ω ω

ω ω ω ω

φ

φ φ

Ω = Ω +

+Ω + + −
 (30) 

 

The expression for 2
2( )∆ Ωφ is identical, with the 

subindexes 1 and 2 interchanged. As expected, due to the 
autonomy of the coupled system, there is a common factor 2Ω  
in the denominator. On the other hand, the two individual 
expressions for the phase-noise spectral density, 2

1( )∆ Ωφ  

and 2
2( )∆ Ωφ  become equal to those corresponding to the 

individual free-running phase-noise spectra for Ynb1 = Ynb2 = 0, 
that is, when the two oscillators are not coupled. These 
individual phase noise spectra are given by: 

 
2 21 2

1 22 2 2 2
1 2

( ) ;     ( )
  i i

N N
Y Yω ω

φ φ∆ Ω = ∆ Ω =
Ω Ω

  (31) 

 
At low frequency offset Ω , the constant term will dominate 

in the numerator and the 2Ω  term will dominate in the 
denominator. Therefore, the spectrum will exhibit the –20 
dB/dec decay that is typical of an autonomous system under 
the influence of white-noise sources only. From inspection of 
(29) and (30), at low offset frequency the phase-noise 
spectrum will be the same for the two oscillator elements. Due 
to the term in sin( )φ in the denominator, at constant offset 
frequency, the variation of the phase-noise spectral density 
will not be symmetrical about 0φ = , unless the two oscillators 
are identical. At phase shift φ = 0º, the phase-noise spectral 
density is given by: 

( )2 2 2 2
2 1 1 2 2 12

1 4 2 2 2
1 2 1 2 2 1

( )

( ) ( )

+ + Ω
∆ =

Ω + Ω +

r r i
nb nb

i i i r i r
nb nb

Y N Y N Y N

Y Y Y Y Y Y
ω

ω ω ω ω

φ   (32) 

 
Comparing with (31) and assuming approximately equal 

noise sources and oscillation amplitudes, the phase noise 
spectrum of the two coupled oscillators will be smaller than 
those of the individual oscillators by the following amount: 

 

 
2

,
2

,

( )
10 log10

( )

 
=  

Σ  

i
k

red i
k

Y
S

Y
ω

ω

  (33) 

 
where k =1, 2. Note that the above expression is valid for 
φ = 0º, at low frequency offset. From (33), the phase noise 
spectrum will be better than that of any of the two individual 
oscillators. Expression (33) predicts an improvement of about 
3 dB in the case of two equal oscillators. In the unlikely case 
of two oscillators with very different phase noise levels, the 
response of the coupled system will approach the better one, in 
agreement with physical intuition. 

Coming back to the general expression (29), (30), another 
interesting fact is that the denominator takes a minimum value 
at the stability boundaries, determined by the condition (21). 
At these boundaries the term in brackets affecting Ω2 in the 
denominator vanishes and this denominator takes the value 

2 2 4
1 2  i i

bD Y Yω ω= Ω . On the other hand, the minimum phase 
noise should be obtained for : 
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 2 1 1 2
min

2 1 1 2
 

i i i i
nb nb
r i r i

nb nb

Y Y Y Y
tg

Y Y Y Y
ω ω

ω ω

φ
−

=
+

  (34) 

with minφ belonging to the stable range. For equal oscillator 
elements, min 0ºφ = . 

It is also interesting to investigate the behaviour versus the 
frequency offset at any particular phase shift value φ . One 
spectrum corner (or change of slope of the spectral density) 
will be observed when the term in 4Ω  and the term in 2Ω  of 
the denominator (30) become equal in magnitude, this 
occurring at the frequency ,Ωc d . The other corner will be 

observed at the frequency ,Ωc n , where the term in 2Ω  and the 
independent term in the numerator become equal in magnitude 
[see (29)]. For , ,c d c nΩ > Ω , the spectrum will initially exhibit a 
–20dB/dec decay and then a –40dBc/dec decay. For 

, ,c d c nΩ < Ω , the spectrum will initially exhibit a –20dB/dec 
decay and then it will become flat. These corner frequencies 
will be different for the two oscillators, as they depend on the 
spectral density of the two individual noise sources and the 
individual oscillator-admittance derivatives 1 2, i iY Yω ω  and 
oscillation amplitudes. As derived from simple inspection of 
(29) and (30), for high offset frequency Ω , the phase noise 
spectra of the two coupled oscillators will progressively 
approach their individual free-running spectra, given by (31).  

For illustration, the phase noise analysis will be applied to 
the coupled system providing a narrow pulse. Initially, the 
phase noise of each of the two oscillators (in free-running 
regime) is analyzed in harmonic balance with the conversion 
matrix approach. In this approach [41], the nonlinear elements 
are replaced with their conversion matrixes and the linear 
embedding matrixes are evaluated at the sideband frequencies. 
For this analysis both white and flicker noise sources are taken 
into account. The cyclostationary flicker-noise sources are 
modelled as ( )_ ( )  ( ) ( )F

d cyc di t i t tαβ ε=  [43], where α and β 
are constant coefficients, ( )di t  is the drain-to-source current 
and ( )F tε  is the elementary flicker process. The coefficients α 
and β are fitted through comparison with measurements in 
large-signal oscillating regime [16], as described in [43]. Good 
fitting has been found with ( )110( ) 2 10 ( ) ( )d F

cyc di t i t tε−= . The 
original prototype exhibited relatively high values of phase 
noise spectral density. For comparison, we built a prototype 
without NLTL but terminated in the NLTL characteristic 
impedance cZ . The resulting phase-noise spectrum was 
similar to the original one, concluding that the major noise 
contributions must come from the transistor active core. The 
phase-noise spectrum was improved through modification of 
the oscillator feedback loop. This was done through the use of 
an AG connected at the input of the NLTL, so as to keep the 
oscillation frequency and amplitude fixed when tuning the 
elements of the feedback loop, and minimize the impact on the 
NLTL output pulse waveform. However, the changes affecting 
the phase-noise spectrum should also have an impact on the 
stability properties. Despite this, the results obtained with the 
stability analysis based on the reduced-order model and with 

pole-zero identification are similar to those obtained with the 
first prototype. The new stable phase shift interval is –107º to 
72.6º, very similar to the original one. In Fig. 15(a) the 
simulated spectra of the two oscillators are compared with 
measurement results, with reasonable agreement. However, 
there is a slight noise amplification effect about 105 Hz. This 
effect could not be predicted with the conversion-matrix 
approach, despite the full capability of this approach to detect 
the spectrum resonances [40-42], so this simulation problem is 
attributed to inaccuracies in the component models. Before 
their introduction into the coupled system, the second 
oscillator exhibits a higher phase noise spectral density than 
the first oscillator. The experimental phase noise values are –
98 dBc/Hz for the first oscillator and –93 dBc/Hz for the 
second oscillator, at 100 KHz offset frequency. Predictions by 
the approximate model in (24) are presented in Fig. 15(b). 
They show agreement with results of Fig. 15(a) in the 
frequency interval dominated by white noise. 

Next, the coupled system is considered. The phase-noise 
spectrum of the coupled system calculated at circuit level with 
the conversion matrix approach provided unreasonable results, 
which is attributed to accuracy limitations in the non-
symmetric coupled system. The approximate calculation with 
the formulation (24) provides –98 dBc/Hz at 100 KHz offset 
for the first oscillator, –93 dBc/Hz for the second oscillator 
and –99 dBc/Hz for the coupled system, in reasonable 
agreement with the measured results. Finally, Fig. 16 presents 
the variation of the phase-noise spectral density at 100 KHz 
offset versus the phase shift, predicted with (24). The 
individual (constant) phase noise levels at this offset 
frequency are also shown, for comparison. The spectral 
density is not symmetrical. It exhibits a minimum at 

min 13.8ºφ = −  and maxima at the two stability boundaries. 
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Fig. 15 Narrow pulse generator. (a) Phase noise spectral density of 
the two individual oscillators and the coupled system. Results of the 
conversion-matrix approach are compared with experimental 
measurements. (b) Predictions with the approximate formulation 
(24) . 
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Fig. 16 Narrow pulse generator. Variation of the phase-noise spectral 
density at 100 KHz frequency offset obtained with the approximate 
formulation in (24).  

VI. CONCLUSION 
A system of two NLTL-based coupled oscillators has been 

investigated in detail, which can be applied for versatile pulse 
shaping. Its capability to sharpen narrow pulses and provide 
monocycle pulses with switchable polarity has been 
demonstrated. The two coupled oscillators will have similar 
oscillation frequencies but their amplitudes and characteristics 
will be different in general. This is why a new reduced-order 
model for the analysis of coupled system of two different 
oscillator elements has been developed. Although the 
formulation is approximate, it enables an in-depth 
understanding of the behavior of the coupled system, as well 

as a prediction of the synchronization frequency and tuning 
voltage required for each phase shift value. In fact, the 
formulation fills a simulation gap since harmonic balance fails 
in most cases due to the high harmonic content and the lack of 
symmetry between the oscillator elements. A new formulation 
has also been derived for the stability analysis of the coupled 
system, which enables a prediction of the impact of the 
different oscillation characteristics on the stable phase shift 
range. A formulation for the noise analysis has also been 
presented, which enables an understanding of the mechanism 
for the spectrum frequency corners and the unsymmetrical 
variation phase-noise spectral density versus the phase shift.  
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