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ADI-FDTD Modeling of Tellegen media
Ana Grande and José A. Pereda

Abstract— The magnetoelectric coupling that appears in the
constitutive relations of Tellegen media makes formulating uncon-
ditionally stable finite-difference time-domain (FDTD) extensions
a challenging problem. In this letter, we present an alternating-
direction implicit (ADI)-FDTD approach for modeling transient
wave propagation in Tellegen media. In the proposed formulation,
the discretization of the governing equations is performed in-
troducing weighted average parameters. The numerical features
are then carefully examined and the weighted discretization
parameters conveniently chosen to yield an unconditionally stable
scheme. Moreover, the resulting approach presents second order
accuracy and preserves the tridiagonal structure of the data
matrices. Finally, the numerical dispersion relation is given in
a closed-form. The new method has been validated by means of
numerical experiments and has shown good agreement.

Index Terms— Alternating-direction implicit finite-difference
time-domain method (ADI-FDTD), Tellegen media, bi-isotropic
media, unconditionally stable.

I. INTRODUCTION

On the macroscopic level, bi-isotropic (BI) media are char-
acterized by two magnetoelectric-coupling parameters in their
constitutive relations. Two subclasses of BI media are chiral
and Tellegen media. Chiral media are reciprocal, exhibit an
inherent handedness, as well as the well-known phenomena of
circular birefringence and dichroism. Tellegen media are non-
reciprocal and present a magnetoelectric coupling in-phase
with the exciting field [1].

A phenomenological model for Tellegen media consists
of particles with permanent coupled electric and magnetic
dipole moments. These media were introduced by Tellegen
in 1948 [2], when he suggested a gyrator, the corresponding
nonreciprocal circuit element. Since then, Tellegen media
have drawn considerable attention. In particular, the physical
realizability of such materials has been a matter of controversy
since they seem to violate Post’s constraint [3]–[5].

Several attempts have been made to model Tellegen media
in the time domain [6], [7], and good results have also been ob-
tained by using the conventional finite-difference time-domain
(FDTD) method [8]–[10]. However, the stability of these
approaches has seldom been addressed. Recently, two FDTD-
based implicit schemes have been presented for the modeling
of monochromatic wave propagation in BI media [11], [12].
These works are based on the locally one-dimensional (LOD)-
and the alternating-direction implicit (ADI)-FDTD schemes,
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respectively. The main advantage of the LOD- and the ADI-
FDTD techniques is that these schemes are unconditionally
stable, the Courant condition is removed, and the time-step
size is only limited by accuracy considerations. However,
the stability analysis performed in [11] shows that the pro-
posed formulation is unstable for the case of Tellegen media.
Moreover, for Tellegen media, the stability condition of the
approach presented in [12] is more restrictive than that of the
conventional FDTD method.

This letter presents a successful implementation of an
implicit unconditionally stable FDTD scheme for modeling
transient wave propagation in Tellegen media. It is based on
the ADI approach, and discretization is performed using Yee’s
mesh. In addition, in order to enable a more general study, the
magnetoelectric-coupling terms that appear in the governing
equations are discretized by using a weighted average. A
stability study is then performed and convenient values of
the weight parameters are selected. Thus, the resulting ADI-
FDTD scheme for Tellegen media is unconditionally stable
and preserves the tridiagonal structure of the data matrices.
Moreover, the numerical dispersion relation is given in a
closed-form. Finally, the proposed formulation is validated by
means of numerical experiments.

II. DIFFERENTIAL MODEL

Consider Maxwell’s curl equations in the Laplace domain

s �D(�r, s) = ∇× �H(�r, s) (1a)

s �B(�r, s) = −∇× �E(�r, s). (1b)

The constitutive relations for Tellegen media are [1]

�D(�r, s) = ǫ �E(�r, s) + χ̄ �H(�r, s) (2a)
�B(�r, s) = µ �H(�r, s) + χ̄ �E(�r, s) (2b)

with χ̄ = χ/c, being χ the Tellegen parameter. The parameter
χ̄ satisfies the condition [1]

χ̄2 < µǫ. (3)

Substituting (2) into (1) and rearranging terms we obtain

ξs �E(�r, s) = µ∇× �H(�r, s) + χ̄∇× �E(�r, s) (4a)

ξs �H(�r, s) = −ǫ∇× �E(�r, s)− χ̄∇× �H(�r, s) (4b)

where ξ = ǫµ− χ̄2.
For simplicity, we consider the one-dimensional (1D) prob-

lem consisting of plane waves propagating in the z-direction.
The characteristic magnetoelectric coupling of Tellegen media
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Fig. 1. 1D FDTD meshes for Tellegen media: a) Yee mesh where the electric
and the magnetic field components are staggered in space. b) Bi-mesh where
we distinguish the “x-nodes” and the “y-nodes.”

requires the x and y polarizations to be considered simultane-
ously. Hence, for the 1D case, (4) reduces to

ξsEx = −µ∂zHy − χ̄∂zEy (5a)

ξsEy = µ∂zHx + χ̄∂zEx (5b)

ξsHx = ǫ∂zEy + χ̄∂zHy (5c)

ξsHy = −ǫ∂zEx − χ̄∂zHx. (5d)

III. NEW ADI-FDTD SCHEME FOR TELLEGEN MEDIA

In this work, we propose the following ADI-FDTD approx-
imation of (5)
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In these equations, the temporal discretization has been
explicitly expressed. The spatial discretization has been per-
formed according to Yee’s mesh shown in Fig. 1.a. The spatial
central-difference operator δz and spatial average operator µz
are defined as

δz = S
1

2

z − S
−
1

2

z (8)

µz =
1

2
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1
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z + S
−
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TABLE I

WEIGHTED-AVERAGE COEFFICIENTS FOR THE ADI-FDTD SCHEMES

SCHEMES λ1 λx
2

λ
y
2

λx
3

λ
y
3

λ4 Λ2

Backward 1 0 0 0 0 0 1
Forward 0 0 0 0 0 1 Z2

In-place 0 0.5 0.5 0.5 0.5 0 Z
In-place alternating x-y 0 1 0 0 1 0 Z
In-place alternating y-x 0 0 1 1 0 0 Z

being Sα (α = t, z) the shift operator given by

Smt F
n = Fn+m (10)

Smz F (k) = F (k +m). (11)

We have used weighted-average approximations, where λi
are arbitrary constants that satisfy the constraints λ1 + λ

x
2 +

λx3 + λ4 = 1 and λ1 + λ
y
2 + λ

y
3 + λ4 = 1. Of all the possible

choices for these parameters, we focus on some illustrative
choices, which are quoted in Table I.

A. Analysis of the Stability

Adopting the von Neumann method, we obtain the follow-
ing stability polynomial for the proposed scheme

S(Z) = (Z − 1)2ξ2 + (Z + 1)2ǫµν2z − 4A
2
zΛ

2χ̄2ν2z (12)

where νz and Az are defined as
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and Λ is given by
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x
2 + λ

x
3)Z

1

2 + λ4Z. (15)

being λx2 + λ
x
3 = λ

y
2 + λ

y
3. The values of Λ2 for the schemes

analyzed in this work are given in Table I.
Computing the roots of the stability polynomial (12) for the

schemes detailed in Table I we find:
• Backward scheme: is unstable.
• Forward scheme: is unconditionally stable. However,

this approach is ruled out because the coupling of the
equations makes implementation impossible.

• In-place and In-place alternating schemes: these
three methods have the same stability polynomial S(Z).
The roots Zi of S(Z) can be written as

Zi =
ξ2 − ǫµν2z + 2A

2
zχ̄

2ν2z
ξ2 + ǫµν2z
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2ν2z
)
ν2z

ξ2 + ǫµν2z
.

These roots verify |Zi| � 1 provided

χ̄2 < ǫµ. (17)

This means that these schemes are unconditionally stable,
since (17) is just the physical constraint of the parameters
of Tellegen media given in (3). Therefore, and for sim-
plicity, we hereafter focus on studying and implementing
of the in-place alternating y-x scheme.
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B. Numerical Dispersion Relation

Equating (12) to zero and letting Z = exp(jω∆t) we obtain
the dispersion relation for the three in-place schemes
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C. Local Truncation Error

For ADI schemes the local truncation error presents ad-
ditional terms that depend on the spatial derivatives of the
fields with respect to two or three different spatial coordinates
[13]. Hence, for the present 1D formulation, those error terms
vanish. However, in a further extension of this scheme to 2D
and 3D, those error terms could play a critical role, especially
in problems where fields present strong spatial variations,
e.g. around singularities associated with corners or near-field
sources. To overcome this limitation several modifications
have been proposed [14].

D. Implementation of the ADI Scheme for Tellegen Media

For the in-place alternating y-x scheme, the ADI general
equations given at the beginning of section IV reduce to
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Sub-step 2
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Since the discretization of (5) is performed according to
Yee’s mesh shown in Fig. 1.a, equations (19a), (19b), (20a)
and (20b) are evaluated at the spatial position z = k∆z, while
(19c), (19d), (20c) and (20d) are computed at z = (k+ 1

2
)∆z.

The implementation of (19) and (20) comprises the follow-
ing calculations:

Sub-step 1
1) �En+

1

2 and �Hn+ 1

2 are explicitly updated by using (19).
Sub-step 2
1) Equation (20d) is substituted into (20a), and En+1x is

implicitly computed (tridiagonal matrix).
2) Equation (20b) is substituted into (20c), and Hn+1

x is
implicitly computed (tridiagonal matrix).
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Fig. 2. Relative error for the phase constant for several values of Nλ andNt.
Second-order accuracy of the scheme: when both resolutions are multiplied
by 2, the relative error is divided by 4.

3) En+1y is explicitly updated by using (20b).
4) Hn+1

y is explicitly computed by means of (20d).

E. Bi-Mesh ADI-FDTD Scheme for Tellegen Media

The so-called “bi-mesh” shown in Fig. 1.b was introduced to
facilitate the modeling of bi-isotropic media [6], [9], whose pe-
culiar constitutive relations relate the electric and the magnetic
fields in the same point and at the same instant. Thus, in the bi-
mesh all the x-components are placed within the same point,
which we call the “x-node.” Similarly, the y-components are
positioned in the “y-node.” The proposed ADI-FDTD scheme
can easily be adapted to the bi-mesh, by substituting the spatial
average operator µz that appears in (19) and (20) by a factor
of 1. Hence, equations (19a), (19c), (20a) and (20c) would
be evaluated at the spatial position z = k∆z, while (19b),
(19d), (20b) and (20d) would be computed at z = (k+ 1

2
)∆z.

The stability polynomial and the numerical dispersion relation
can also be obtained replacing the factor Az which appears
in (12) and (18) by a factor of 1. The resulting scheme is
unconditionally stable provided that (17). The implementation
procedure follows the same steps as described above.

IV. NUMERICAL RESULTS

To validate the proposed ADI-FDTD scheme, we have com-
puted the phase constants of electromagnetic pulses travelling
in Tellegen media with ǫr= 4, µr= 1.2. The spatial resolution
was defined as Nλ = λ0/∆z, with λ0 being the wavelength
in the Tellegen medium at the center frequency of the pulse
f0= 9 GHz. Analogously, the temporal resolution was given by
Nt = T0/∆t, with T0 = 1/f0. Fig. 2 shows the relative error
for the phase constant as a function of the Tellegen parameter
for several values of Nλ and Nt. When both resolutions are
multiplied by 2, the relative error is divided by 4, which
highlights the second-order accuracy of the method.

In a second simulation, and in order to show the characteris-
tic behavior of waves propagating in Tellegen media, we have
considered a band-limited pulse impinging on the interface
between air and a Tellegen medium with χ = 0.6, ǫr = 3.5,
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Fig. 3. Incidence of a y-polarized pulse travelling in the (+z)-direction at
the interface between air and a Tellegen medium. �Er is the reflected field
which is rotated an angle φR. �Et is the transmitted field which is rotated
φT . �Ei is the incident pulse travelling in the (−z)-direction. The �Et and
�Ht fields are not orthogonal.

µr = 1.2. The excitation pulse was linearly polarized in the
y-direction with a center frequency of f0 = 9 GHz. It was
applied at point z = 2800∆z. The discretization parameters
were Nλ = 50 and s = 4, being s = c0∆t/∆z. The resulting
temporal resolution was Nt = 24.5. Fig. 3 shows a snapshot of
the simulation at t = 950∆t. The incident pulse, travelling in
the (+z)-direction, reflects back into the air region. Due to the
non-null crosspolarized reflection coefficient, the polarization
of the reflected field ( �Er) is rotated an angle of φR = 27.553

o.
The polarization of the transmitted field ( �Et) is rotated an
angle of φT = −10.752o. The incident pulse, travelling
in the (−z)-direction ( �Ei) is also shown in Fig. 3. The
nonorthogonality of the electric- and magnetic-field vectors
(�Et, �Ht) in the Tellegen medium can be seen in Fig. 3.

Finally, Fig. 4, depicts the relative error of the angle φR as
a function of χ for several values of the stability factor s. The
spatial resolution considered was Nz = 80. The rotation of
the reflected field was computed considering [1]

φR = a tan

(
R̃cr

R̃co

)

(21)

with R̃co and R̃cr being the numerically-computed moduli of
the co- and crosspolarized reflection coefficients, respectively.

V. CONCLUSIONS

Due to the magnetoelectric coupling, developing of implicit
unconditionally stable FDTD extensions for Tellegen media
is a challenging problem. This letter presents a successful
ADI-FDTD technique for the modeling of transient wave
propagation in Tellegen media. The proposed formulation is
unconditionally stable, second order accurate, and preserves
the tridiagonal structure of the data matrices. The numerical
dispersion relation has been given in closed-form. The new
scheme has been validated by means of numerical results.
The proposed formulation may provide the basis for the
transient unconditionally stable FDTD modeling of general
biisotropic media [1], and also of the recently introduced
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Fig. 4. Relative error of the angle φR as a function of χ for several values
of the stability factor s, with Nz = 80.

perfect electromagnetic conductors (PEMC) [15], which are
a special limit class of Tellegen media.
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