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Abstract: Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural 
deterioration of bone tissue, with a consequent increase in bone fragility and propensity to fracture. 
Environmental factors during early life, including those in utero, may influence bone mass during later 
life and, consequently, the risk of osteoporosis. Epigenetic mechanisms play central roles in the 
differentiation of bone cells, osteoblasts and osteoclasts, responsible for bone formation and bone 
resorption, respectively. A few studies have shown some differentially methylated genes in patients 
with osteoporosis. They include genes belonging to the Wnt pathway, which is an important regulator 
of osteoblast differentiation, and other genes involved in the development of the skeleton. Likewise, some miRNAs may 
be differentially expressed in these patients. However, those preliminary results need to be replicated in other cohorts. 
Unlike the genome, the epigenome is cell-specific and changes with aging and environmental factors. Therefore, the 
design and interpretation of epigenetic epidemiology studies pose a number of practical difficulties. A framework for the 
critical appraisal of these studies is proposed. 
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INTRODUCTION 

 Osteoporosis is characterized by reduced bone mass and 
architectural deterioration of bone tissue, which lead to a 
decreased bone strength and propensity to fractures. It is a 
prevalent disorder, affecting more than one third of post-
menopausal women and 10-16% of men over 60 years of age 
[1, 2]. Bone mass accumulation starts at the intrauterine life 
and continuous during the growth period, so that bone mass 
reaches a peak by the third decade of life in humans. After 
remaining stable for some years, bone mass starts a progres-
sive decline that accelerates in women during the 5-10 years 
following the menopause. Thus, osteoporosis may result 
from an inadequate accumulation of bone during the growth 
period, and/or from an accelerated loss of bone after the peak 
bone mass is attained [3, 4]. 

OSTEOPOROSIS DUE TO AN INADEQUATE PEAK 
BONE MASS 

 Osteoporosis is infrequent in young individuals. In fact, 
even subjects with an inadequate peak bone mass, due to an 
insufficient accumulation of bone mass during the growth 
period, rarely suffer osteoporosis-related fragility fractures 
(ie, fractures occurring in the absence of high-energy 
trauma). However, these individuals are at high risk for frac-
tures in later life, because the universal age-related decrease 
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of bone mass, superimposed on an already low bone mass, 
easily lowers it below the fracture threshold [5]. 
 Peak bone mass appears to have a strong genetic compo-
nent. Thus, direct correlations between the bone mass of 
parents of various ethnicities and their children have been 
reported [6, 7]. However, despite large cooperative efforts, 
the genes explaining the hereditary influence on bone mass 
have not been completely elucidated. Nevertheless, some 
genes, including members of the Wnt family, have been con-
sistently identified as associated with bone mass in young 
individuals [8]. 
 A number of acquired factors have profound influences 
in the growing skeleton. They include nutrient factors, exer-
cise, comorbid disorders, etc. They may act either in utero or 
after birth. In fact, there is evidence for a relationship be-
tween in utero growth and bone mass during later years [9, 
10]. For example, a meta-analysis of observational studies 
found a clear association between birth weight and bone 
mass later in life. Birth weight is associated more clearly 
with bone mineral content (BMC) than with bone mineral 
density (BMD) [11]. This suggests that the association is 
preferentially driven by a correlation of birth weight with the 
future bone size, rather than with bone density. Among the 
prenatal environmental factors influencing the skeletal mass 
of the offspring, the maternal vitamin D levels have received 
much attention [12].  
 These studies show that intrauterine events influence the 
skeletal phenotype. However, despite some suggestive data 
in experimental animals [13], it has not been elucidated to 
which extent true epigenetic mechanisms explain the influ-
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ence of intrauterine environmental factors on the human 
skeleton. Nevertheless, a few studies have suggested that the 
DNA methylation pattern at birth may influence skeletal 
homeostasis. Thus, some studies reported associations of the 
methylation of eNOS (an enzyme responsible for the synthe-
sis of nitric oxide) and RXR (retinoid –X receptor) in cord 
blood with childhood bone mass [14, 15]. 

OSTEOPOROSIS DUE TO ACCELERATED BONE 
LOSS 

 The loss of bone mass is a phenomenon associated with 
normal aging. It depends on both genetic and environmental 
factors. Estrogens play a critical role in bone homeostasis, 
both in women and men. In line with this concept, several 
studies have shown an association of polymorphisms of the 
CYP19A1 gene and BMD [16-21]. CYP19A1 encodes aro-
matase, an enzyme that converts androgenic precursors into 
estrogens. Aromatase activity in fat, bone and other tissues is 
the main source of estrogens in men and postmenopausal 
women [22]. Large collaborative studies have revealed that 
allelic variants of other genes are also associated with BMD 
and fractures [23]. 
 As reviewed in other papers in this issue and in previous 
reviews in the journal [24], epigenetic mechanisms play im-
portant roles in the differentiation and activity of bone cells. 
However, there is only scarce information about how epige-
netic marks actually influence the risk of osteoporosis and 
other skeletal disorders. 
 We have explored the differences in DNA methylation 
between osteoporosis and osteoarthritis, two disorders with 
changes in bone mass in opposite direction. In line with the 
hypothesis that these disorders have a developmental com-
ponent, among the genes differentially methylated we found 
several members of pathways involved in the development 
of the skeleton [25]. Also, in line with this concept, the 
methylation status of the promoters of sclerostin and other 
genes of the Wnt pathway have been suggested to influence 
the risk of osteoporosis [26, 27]. However, these results need 
to be replicated in other cohorts before drawing firm conclu-
sions. 
 Non-coding RNAs are also involved in regulating the 
differentiation of osteoblasts and osteoclasts, the main play-

ers of bone remodeling [24, 28]. In fact, in studies analyzing 
the abundance of miRNAs in human tissue samples, several 
miRNAs were found differentially expressed in osteoporosis 
[29-32]. However, as shown in (Table 1), the results were 
not replicated across studies. Therefore, additional investiga-
tions are needed to identify which miRNAs are actually in-
volved in the pathogenesis of osteoporosis. 

INTERPRETATION OF EPIGENETIC EPIDEMIOL-
OGY STUDIES 

 Current technologies allow performing candidate and 
epigenome-wide studies efficiently. Thus, not unexpectedly, 
the number of published studies on epigenetic epidemiology 
is increasing exponentially. However, a number of issues 
need to be taken into consideration to critically appraise 
those studies [33, 34]. Following the experiences of other 
disciplines and some consensus recommendations [35-38], a 
framework for the interpretation of epigenetic literature is 
proposed here (Table 2). 

Internal Validity 

 In order to confirm the internal validity of the study, po-
tential sources of bias should be considered.  

Study Subjects 

 First, the phenotype of the individuals needs to be clearly 
stated. If the study included diseased subjects, we should 
examine if the phenotype of the patients is representative of 
the whole disease spectrum or just of a particular stage or 
variant of the disorder. It is important to note that, differently 
from the genome, the epigenome may change with age and 
with environmental influences. Thus, the age of the indi-
viduals and other potential confounders, including previous 
therapies, need to be considered. On the other hand, if the 
study compared patients and controls, it is important to 
check if the control group was adequate for the patient group 
studied. Features such as age, sex, ethnicity and nutrition and 
other environmental influences should be comparable be-
tween both groups. 

Sample Issues 

 The fact that the epigenome is cell-specific represents a 
difficulty inherent to epigenomic studies. In other words,

Table 1. Studies exploring miRNAs in patients with osteoporosis. 

Author Ref. miRNA Target Genes Results 

Li, 2009 [32] miR-2861 RUNX2 
HDAC5 Mutation causes osteoporosis in young subjects 

Wang, 2013 [31] miR-214 ATF-4 Promotes osteoporosis 

Seeliger, 2014 [30] 

miR-21 
miR-23ª-24 

miR-100 
miR-125b 

PDCD4 
RUNX2 
BMPR2 

Differentially expressed in osteoporosis 

Garmilla, 2015 [29] miR-518 
miR-187 

WISP1 
CTNBP1 
IL6, TNF 

Differentially expressed in osteoporosis 
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Table 2. Checklist for the critical appraisal of studies of epigenetic epidemiology. 

1. Is the study valid? 

a. Study subjects issues 

 Accurate phenotype definition? 

 Age and sex? 

 Appropriate disease spectrum? 

 Did they receive previous therapy? 

 If the study included control individuals, were they appropriate? 

b. Tissue (or other sample) issues 

 Is the tissue relevant to disease pathophysiology?. If not, were the initial results confirmed in a relevant tissue? 

 Was sample cell heterogeneity considered? 

 If several tissues are compared, was the control tissue relevant and appropriate? 

c. Technology issues and data analysis 

 Is the technology properly described? 

 How extensive genome coverage was attained?  

 Is the technology precise and accurate?  

• Replication with the same procedure (precision)  

• Verification with alternative methods (accuracy) 

 Was the analysis pipeline well described and appropriate? 

• Technical controls, batch correction, etc. 

• Statistical analysis. Type I and II errors 

 

2. What are the results? 

a. Single locus (CpG, individual miRNAs, etc) 

b. Single gene and other genomic regions (promoters, TFBS, CGIs, etc.) 

c. Network analysis: Pathways, GSEA, IPA, miRNA families, etc. 

d. Functional assays: in silico, in vitro, in vivo 

 

3. Are the results important and generalizable? 

a. Is there a known (or new) biological rationale? 

b. Were the results replicated in an independent group of individuals? 

c. Was the possibility of reverse causation considered? 

d. Are the results of pathogenetic, diagnostic, prognostic or therapeutic importance? 

 
different from genetic sequences, epigenetic marks vary across 
cells. Hence, studies trying to identify the disease’s epigenetic 
signatures must be performed in relevant tissues. However, 
getting the appropriate tissue samples may pose ethical and 
practical problems. Thus, in some cases it may be worthwhile 
to use accessible tissues or fluids (blood, saliva urine) as prox-
ies in exploratory analyses. Additionally, this approach may 
provide information useful for utilizing epigenetic marks as 
biomarkers. Nevertheless, from a pathophysiological perspec-
tive, the results must be confirmed in samples of a relevant 
tissue, such as bone when studying skeletal disorders.  
 If samples from different individuals are compared, it is 
important to pay attention to differences in cell composition 
and the potential influence of this factor should be consid-
ered [39]. There are algorithms appropriate to perform cell 
composition adjustments in studies of DNA methylation of 
blood samples [40]. However, similar adjustments are more 

difficult when solid samples are analyzed. Laser-assisted 
microdisection followed by methods optimized for the 
analysis of CpG methylation of small number of cells may 
be an alternative [41]. Finally, in paired studies of diseased 
and control tissues of the same individual, the control tissue 
should be carefully selected depending on the study objec-
tives. It is important to consider that not only the disease, but 
also the host responses may induce changes in tissue compo-
sition and epigenetic marks. For example, the epigenetic 
signature of tumor tissue is frequently compared with that of 
adjacent tumor-free tissue. However, the latter may have an 
altered cell composition due to the host immune response 
and, consequently, it may not be a good representation of the 
true normal tissue. 

Technology and Data Analysis 

 As in all research papers, the methodology and the details 
of the technology used should be precisely explained. In 
particular, in epigenome-wide studies it is important to 
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ticular, in epigenome-wide studies it is important to consider 
the coverage attained. There are about 25 million CpGs 
across the genome. Exploring their methylation level may 
require costly whole bisulfitome sequencing. Alternative 
procedures frequently used include reduced representation 
bisulfite sequencing (RRBS), which explores about 5 million 
CpGs [42], and the popular Infinium 450K arrays. These 
represent a convenient and relatively inexpensive method to 
explore the DNA methylome. However, it is important to 
realize that these arrays interrogate about 485,000 CpG sites 
[43]; this is, they just explore about 2% of the potentially 
methylated CpGs. Thus, many regions remain unexplored. 
This fact must be considered especially in the case of studies 
with negative results. 
 As with other analytical tools, the reproducibility of the 
technique used can be assessed by including replicate ali-
quots of some samples that are analyzed several times with 
the same procedure (technical replicates). On the other hand, 
the accuracy of the procedure should be confirmed by using 
a different technique. For instance, data obtained with meth-
ylation arrays are commonly verified by using some tech-
niques based on the sequencing of bisulfite-converted DNA, 
such as pyrosequencing or base specific cleavage and ma-
trix-assisted later desorption/ionization time-of-flight mass 
spectrometry (MALDI-TOF MS), the basis of the Epityperr 
system. 
 Epigenome-wide analyses are susceptible to various 
technical biases (batch effects, color biases, etc.). Therefore, 
quality control issues need to be considered carefully. Some 
analytical pipelines and software packages to facilitate such 
analyses have been recently described [44-48]. 
 As in other studies, sample size is an important issue. 
The statistical power of the study and consequently the prob-
ability of type II error (ie, obtaining a negative result when 
there are true differences between the studied groups) should 
be considered. Sample size and the variability of the meas-
urement (ie, CpG methylation level, miRNA abundance, 
etc.) are major factors influencing the statistical power. Epi-
genome-wide studies explore potential between-group dif-
ferences at many loci (up to several millions). Therefore, the 
inflation of type I error (ie, assuming as statistically signifi-
cant a difference that was found just by chance) is an issue. 
In order to minimize it, the usual 0.05 threshold for statisti-
cally significance is no longer appropriate. It must be low-
ered down to a new threshold adjusted by the number of 
comparisons being made. Several methods exists to perform 
such addjustment, including the Bonferroni procedure, and 
the less stringent false discovery rate calculation [49]. 

What Are the Results 

Single Locus, Genomic Regions and Networks 

 As a first step, data analysis is usually focused on the 
individual unit of analysis, such as the methylation level of 
single CpGs or the abundance of individual miRNAs. A 
deeper insight may be obtained by grouping procedures. For 
DNA methylation, after the analysis of individual CpGs, 
other common procedures include analyzing CpGs grouped 
in genomic regions of interest, such as gene bodies, promoter 
regions, CpG islands, transcription factor binding sites, etc. 

 Following this exploration, some type of network analy-
sis should usually be performed. Simple pathways analysis 
and gene set enrichment analysis try to find out if the genes 
showing a special characteristic (for example, differential 
methylation between the groups studied) are overrepresented 
in a given “pathway” in comparison with the overall ge-
nome. Other studies try to find relationships between the 
genes or genomic regions identified as significant in the in-
dividual analysis. A number of commercial software pack-
ages, as well as other tools freely available on internet 
(DAVID, GESEA, WebGestalt, EnrichNet, NetworkAnalyst, 
etc.), help performing pathways and network analyses. 

Functional Studies 

 Functional experiments enhance the conclusions of the 
study. For example, in a study showing that a gene promoter 
is more methylated in patients with a disease than in con-
trols, the validity and relevance of this finding would in-
crease if a reduced expression of the gene or repressive his-
tone tail marks are shown in the patient group. In some 
cases, an in silico validation is appropriate, as available data-
bases can be explored looking for data validating the hy-
pothesis. However, depending on the objectives of the study, 
in vitro experiments may be needed to obtain functional data. 
They may include, for example, EMSAs and transfections of 
reporter vectors with methylated and unmethylated inserts, 
gain-of-function and loss-of-function experiments by trans-
fecting miRNA mimics and antagonists, etc. Finally, in vivo 
experiments may provide the strongest support for the bio-
logical relevance of the findings. 

Importance and Generalization of the Results 

Biological Rationale 

 New, unexpected and even unexplained findings must 
not be merely discarded, for they may disclose previously 
unknown and potentially important information. Neverthe-
less, a biological rationale adds value to epidemiological 
findings. Such rationale may result form functional studies 
and other data in the literature. 

Replication 

 The replication in independent cohorts of individuals is 
important. On the one hand, it supports the technical validity 
of the initial results; on the other hand, it confirms that the 
conclusions can be applied to populations other than that 
represented in the discovery cohort. Nevertheless, it is im-
portant to note that the absence of replication does not neces-
sarily mean that the result in the discovery cohort was spuri-
ous. A number of factors, including the genetic background 
and environmental circumstances, have strong effects on the 
epigenome (Fig. 1). Therefore, in some cases epigenetic dif-
ferences may be observed only when the individuals are ex-
posed to certain environmental factors or have a particular 
ethnic origin.  

Direct and Reverse Causation 

 The genome is stable from conception. Therefore, the 
question of reverse causation is not important in genetic 
studies. However, it is certainly a cause of concern for the 
interpretation of epigenetic studies. In a study showing dif-
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ferent epigenetic marks between a group of patients and a 
group of controls, we should ask the question whether the 
epigenetic differences are causing the disease or it is the 
other way around. In human studies this may be a very diffi-
cult to solve question. However, in some situations the com-
parison of epigenetic signatures in early and late stages of 
the disease may provide some useful clues.  

 

 

Fig. (1). Factors determining the epigenome. 

Scientific and Clinical Relevance 

 Epigenetic studies are revealing new data that are very 
important from the scientific point of view, as they provide a 
better insight into the molecular mechanisms regulating cell 
differentiation and function. Their importance from a bio-
medical point of view is even higher if the studies open new 
windows to elucidate the pathogenesis of the disease, to use 
new biomarkers for establishing the diagnosis or the progno-
sis of the disease, and especially, to find therapeutic targets 
that may lead to more effective and safe treatments. 
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