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Abstract 1 

Background: The production of value-added products from biomass has acquired 2 

increasing importance due to the high worldwide demand for chemicals and energy, 3 

uncertain petroleum availability and the necessity of finding environmentally friendly 4 

processes. In this work we present the synthesis of several catalysts for the conversion 5 

of glucose to methyl lactate.  6 

Results: A MCM-41 type mesoporous material containing tin (Si/Sn= 55) was 7 

developed with a uniform ordered mesoporous structure, high specific surface area and 8 

high pore volume. Sn-MCM-41 was tested in three consecutive catalytic cycles to 9 

evaluate its reusability giving methyl lactate yields of 43 %, 41 % and 39 %, in each 10 

cycle. The slightly reduction in activity could be explained by the reduction in the 11 

accessibility of active centers due to the adsorption of reaction products and structural 12 

changes. Microporous titanosilicates and MFI-type zeolite ZSM-5 showed a lower 13 

catalytic performance, but exfoliated materials give higher yields to methyl lactate and 14 

pyruvaldehyde dimethyl acetal than their respective layered precursors.  15 

Conclusions: Sn-MCM-41 material showed good results in the conversion of glucose to 16 

methyl lactate even in three catalytic cycles and exfoliated materials facilitated the 17 

access of glucose to the catalytic sites and fast desorption of products.  18 

 19 

 20 

Keywords: Glucose conversion; Lactic acid; Sn-MCM-41; Porous titanosilicates; 21 

exfoliated materials 22 

23 
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Introduction 1 

Nowadays, there is a growing interest in developing alternatives for replacing fossil 2 

sources due to unknown petroleum availability, high worldwide demand for chemicals 3 

and energy and concern about climate change. Besides, there is a need to develop 4 

methods to decrease global greenhouse gas emissions by consuming feedstock produced 5 

by plant growth photosynthesis, neutral in terms of CO2 balance. 1 In fact, at the 6 

beginning of the 20th century, many industrial materials such as dyes, solvents and 7 

synthetic fibers were made from trees and agricultural crops 2. Later, after the discovery 8 

of inexpensive fossil fuels, our society became dependent on petroleum derivatives. 9 

Nowadays, the new concept of biorefinery 3 has emerged pursuing the integration of the 10 

production of fuels (biofuels), heat and electricity (biopower) and platform molecules 11 

from biomass. A clear pathway to producing such platform molecules is the catalytic 12 

transformation of sugars. For example, Fig. 1 shows a tentative representation of the 13 

production of sugars from biorenewable resources and their transformation into some 14 

bioproducts of interest. 15 

However, biochemical processes are more applicable due to the thermal instability of 16 

carbohydrates. Nowadays fermentation processes dominate the production of biofuels 17 

and value-added compounds from carbohydrates. Currently, few products are directly 18 

obtained from carbohydrates by catalysis such as gluconic acid, sorbitol and 19 

hydroxymethylfurfural. 4 20 

Lactic acid is the most widely occurring hydroxycarboxylic acid and has several 21 

applications in food industry, chemical sector and polymer market. 5,6 Even though 22 

there is a chemical synthesis route from petrochemical resources (acetaldehyde), 7 about 23 

90 % of lactic acid is commercially produced by the microbial fermentation of aqueous 24 
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glucose. 8 However, biological processes in general have various drawbacks including 1 

low reaction rates causing long reaction times and the need for huge reactors, and low 2 

concentrations of products usually in water solutions requiring high energy 3 

consumption for their purification. In addition, biological processes are quite sensitive 4 

to pH and temperature parameters. 9 5 

Homogeneous catalysts have been tested as an alternative to fermentation processes 6 

and some compounds have been found to be efficient in the catalytic transformation of 7 

sugars, for example NaOH, 10 H2SO4 
11 and ZnSO4. 

12 However, these reactions are 8 

carried out under extreme conditions of temperature and pressure, and the catalysts are 9 

toxic or corrosive. Their recovery can therefore be a difficult process. 10 

Recent research has focused on heterogeneous catalysis due to the growing industrial 11 

interest in processes for the conversion of sugars to value-added products and the 12 

drawbacks of the other alternatives. 13,14 In 2005, Hayashi et al. 15 found that Ti-based 13 

Lewis acids such as SnCl4 and SnCl2 were efficient catalysts for sugar transformation. 14 

A few years later, Taarning et al. 16 applied Beta zeolite containing Al, Zr, Ti and Sn, 15 

achieving interesting results with Sn-Beta zeolite in the conversion of triose 16 

dihydroxyacetone to methyl lactate. An interesting research study carried out by Holm 17 

et al. 17 in 2010 reported  high conversion of common sugars (such as glucose, fructose 18 

and sucrose) catalyzed with Lewis acidic zeotypes for the direct formation of methyl 19 

lactate, achieving high selectivity. West et al. 18 made a study of liquid-phase 20 

isomerization of trioses to methyl lactate using commercially available zeolite H-USY 21 

as a catalyst, obtaining effective results. In 2011, Li et al. 19 used ordered mesoporous 22 

substituted silicates with MCM-41 type structure (such as Al-, Ga- and Sn-MCM-41) 23 

obtaining high catalytic performance in the complete conversion of trioses to the desired 24 
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lactate. In the same year, Wang et al. 20 demonstrated that tin ion-exchanged 1 

montmorillonite, which is a Brønsted acid, shows a high catalytic activity and 2 

selectivity for the conversion of trioses into methyl lactate. In recent research, 3 

Osmundsen et al. 21 tested different microporous and mesoporous stannosilicates such 4 

as Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15, observing their potential as 5 

catalysts for the conversion of trioses and sucrose to methyl lactate with high activity 6 

and selectivity. Recent reports have demonstrated that tin-containing compounds 21-23 7 

exhibit a high catalytic activity in the aqueous isomerization of sugars. 8 

In the present work, MCM-41 modified with tin was synthesized. Sn-MCM-41 was 9 

tested as catalyst in the transformation of glucose to methyl lactate. Other catalysts such 10 

as zeolite ZSM-5 and microporous titanosilicate materials (ETS-10) 24 and layered 11 

materials (JDF-L1 25 and AM-4 26,27) were chosen for the comparison of their catalytic 12 

results with those of Sn-MCM-41. Besides, zeolites offer a strong limitation to 13 

molecular diffusion, and the accessibility to catalytic sites in layered materials can be 14 

drastically enhanced by their exfoliation. 28 For this reason, UZAR-S1 29 and UZAR-S2, 15 

30 which are exfoliated materials obtained from JDF-L1 and AM-4, respectively, were 16 

also tested. 17 

 18 

Materials and methods 19 

Catalyst preparation 20 

MCM-41 with a nominal atomic Si/Sn ratio of 75 was prepared by dissolving 1.015 21 

g hexadecyltrimethyl-ammonium bromide (CTABr) (98 %, Sigma) in 45 mL of 22 

deionized water with 0.417 g of NaOH (98 %, pellets (anhydrous), Sigma-Aldrich). 23 

Then 0.05 g of SnCl2 dihydrate (98 %, Sigma-Aldrich) was added to this solution as the 24 
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Sn source. Finally, 3.41 g of tetraethyl orthosilicate (TEOS) (98 %, Aldrich) was also 1 

added. The mixture gave rise to a gel with a molar composition of 6 TEOS: 1 CTABr: 2 

900 H2O: 4 NaOH: 0.08 SnCl2 which was heated under reflux at 80 ºC for 8 h. The solid 3 

product was recovered by filtration, washed with deionized water and dried at 70 ºC 4 

overnight. The dried Sn-MCM-41 was calcined for activation in still air at 650 ºC for 8 5 

h. For the purposes of comparison, MCM-41 was synthetized in the same way but 6 

without the addition of a tin source.  7 

Commercial zeolite ZSM-5 (Zeolyst International, Si/Al=25) and microporous 8 

titanosilicate materials (JDF-L1, AM-4, ETS-10, UZAR-S1 and UZAR-S2) were also 9 

used. JDF-L1 and AM-4 were synthesized at 230 °C for 24 h by a seeded secondary 10 

growth procedure using the following molar compositions: SiO2:TiO2:Na2O:H2O 11 

4.2:1:2.9:101 and 4.2:1:2.9:68, respectively. To obtain UZAR-S1 and UZAR-S2, the 12 

layered materials were protonated in the presence of acetic acid and swollen using 13 

nonylamine. For exfoliation, the swollen materials were mixed with an HCl/H2O/EtOH 14 

solution at 55 °C for 8 h under reflux. More details of these procedures can be found 15 

elsewhere. 28,29 16 

Besides, ETS-10 crystals of about 400 nm in size were prepared according to 17 

previously reported procedures 24 by hydrothermal synthesis at 230 ºC for 24 h, using 18 

TiO2-anatase (nanopowder, <25 nm particle size, 99.7 %, Aldrich) with a gel of molar 19 

composition 5.5 SiO2: 1 TiO2: 4.6 Na2O: 1.9 K2O: 147 H2O.  20 

 21 

Catalyst characterization 22 

Powder low angle X-ray diffraction (LA-XRD) patterns were recorded on a Siemens 23 

D5000 X-ray diffractometer using Cu-Kα1 radiation (λ = 1.5418 Å) over a 2θ range of 24 
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1-8º at a step size of 0.01º. Also, some materials were characterized by conventional X-1 

ray diffraction (XRD) using a D-Max Rigaku System with a Cu-Kα1 radiation (λ = 2 

1.5418 Å) over a 2θ range of 2.5-40º. 3 

Elemental analysis was performed to determine the Si/Sn ratio in Sn-MCM-41 4 

samples using a Thermo Electron ARL ADVATXP X-ray fluorescence (XRF) 5 

sequential spectrometer equipped with an X-ray tube Be window and a Rh anode. 6 

Nitrogen adsorption/desorption isotherms were obtained using a Micromeritics 7 

Tristar 3000 surface area and porosity analyzer, after previously degassing the samples 8 

at 200 ºC for 8 h under vacuum. The specific surface area was calculated by the BET 9 

(Brunauer-Emmett-Teller) method.  10 

TEM pictures were taken with a FEI TECNAI T20 transmission electron 11 

microscope at 200 kV. 12 

Thermogravimetric analyses (TGA) were performed in air from room temperature to 13 

750 ºC with a heating rate of 10 ºC/min using Mettler Toledo TGA/SDTA 851e 14 

equipment. 15 

 16 

Catalytic reaction 17 

The conversion of sugars to methyl lactate was performed by dissolving 225 mg of 18 

D-(+)-glucose (99 %, Alfa Aesar) in 8.0 g of methanol (HPLC, Scharlau). 30 mg of 19 

naphthalene (99 %, Aldrich) was added as internal standard. The catalyst (160 mg) was 20 

dispersed in the methanol solution. The mixture was then sealed in a 35 mL-Teflon-line 21 

autoclave and heated to 160 ºC for different times in a rotary oven. 22 

After the reaction time, the catalyst was recovered by centrifugation and the reaction 23 

products were quantitatively measured by mass detector gas chromatography (GC-MS). 24 
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The equipment used was an Agilent 6850 GC system with a capillary column HP-5MS 1 

(30 m x 0.250 mm x 0.25 µm), coupled with an Agilent 5975C MSD.  2 

The yields of the different products were determined based on the internal standard 3 

of naphthalene using calibration curves made with the commercial compounds methyl-4 

S-(-)-lactate (98 %, Aldrich), methyl glycolate (98 %, Alfa Aesar), methylglyoxal 1,1-5 

dimethylacetal, also called pyruvaldehyde dimethyl acetal (97 %, Aldrich), and 1,1,2,2–6 

tetramethoxypropane (99 %, Aldrich). Unidentified compounds detectable by GC-MS 7 

were calculated from the response factor of the methyl lactate. Yields were calculated 8 

on a carbon basis. Glucose conversion was determined using an analytical method, 9 

which consists of an enzymatic quantitative determination of glucose (Glucose (HK) 10 

Assay Kit, Sigma). 11 

In the reusability experiments, the recovered catalyst was washed with methanol at 12 

room temperature and dried in an oven at 60 ºC overnight prior to reuse. 13 

 14 

Results and discussion 15 

Catalyst characterization 16 

XRF analysis showed that the Sn-MCM-41 samples had a Si/Sn atomic ratio in the 17 

range of 50-60 (mean=55; standard deviation=11; samples=3), lower than the nominal 18 

ratio (Si/Sn=75) and thus indicating a high degree of tin incorporation in the catalysts.  19 

Fig. 2a shows the LA-XRD pattern of MCM-41 and Sn-MCM-41. The highest peak 20 

observed for both samples (2.48º and 2.33º for MCM-41 and Sn-MCM-41, respectively) 21 

indicates the order of the mesopores, as expected in MCM-41 type ordered mesoporous 22 

structures. In agreement with previous reports, the Sn-MCM-41 sample shows (100), 23 

(110), (200) and (210) reflections, characteristic of hexagonal channel arrays. No 24 
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diffraction bands were observed at angles higher than 6º, thus demonstrating the 1 

amorphous nature of the samples. The values of the unit cell parameter (a0=2·d100/3
0.5) 2 

are 4.11 and 4.38 nm for MCM-41 and Sn-MCM-41, respectively. These values, within 3 

the range reported by other authors for Sn-MCM-41, 31,32 suggest that tin is incorporated 4 

in the framework of the MCM-41. The differences would be due to the larger size of 5 

Sn4+ (ionic radius 0.55 Å) compared with that of Si4+(ionic radius 0.26 Å) as well as Sn-6 

O having a longer bond length than that of Si-O. Both effects produce an increase in the 7 

unit cell parameter of Sn-MCM-41. The incorporation of tin in tetrahedral coordination 8 

within the MCM-41 framework can generate Lewis acidity. 19 9 

Fig. 2b presents the XRD patterns of the other catalysts used in the transformation 10 

of glucose. The XRD patterns of ETS-10, JDF-L1, AM-4 and ZSM-5 show high angle 11 

diffraction lines which indicate that the materials are crystalline. UZAR-S1 and UZAR-12 

S2, as for other delaminated porous materials, are XRD-amorphous exhibiting broad 13 

reflections of the parent materials JDF-L1 and AM-4, respectively. 28,29 14 

Calcination was used to remove the organic surfactant from as-synthesized Sn-15 

MCM-41. The TGA curve (not shown) revealed that the weight loss of as-synthetized 16 

Sn-MCM-41 is around 40 %, corresponding to the surfactant. However, the activated 17 

Sn-MCM-41 curve did not show this weight loss, showing that the calcination process 18 

was done properly. 19 

The TEM images in Figs. 3a and 3b correspond to as-synthesiszed Sn-MCM-41. 20 

The homogeneity of these images suggests a good dispersion of tin atoms in the MCM-21 

41 structure. The TEM images of activated Sn-MCM-41 reveal the presence of pores 22 

(Figs. 3c and 3d) where no morphological changes are observed with respect to the as-23 

synthesized sample. 24 
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The BET surface area for Sn-MCM-41 is 801 m2/g (Table 1), which is very close to 1 

that of MCM-41 synthesized in the same way. The Sn-MCM-41 pore volume is lower 2 

than that of MCM-41; this could be owing to tin atoms inserted into the structure. ZSM-3 

5 and ETS-10 give BET surface areas of 367 and 253 m2/g, typical values for these 4 

microporous materials. JDF-L1 and AM-4 scarcely adsorb N2 and this is reflected by 5 

BET specific surface areas of 30 and 13 m2/g, respectively. The exfoliation process 6 

increases the BET surface area with respect to the as-synthesized materials, attaining 7 

BET specific surface areas of 159 and 112 m2/g for UZAR-S1 and UZAR-S2, 8 

respectively. 9 

 10 

Catalytic results 11 

Different catalysts were used in the transformation of glucose in methanol to obtain 12 

methyl lactate (ML) as the desired product. However, other side-products were detected 13 

by GC-MS. In this work only three of these side-products were quantified: methyl 14 

glycolate (MG), pyruvaldehyde dimethyl acetal (PADA) and 1,1,2,2-15 

tetramethoxypropane (TMP). Based on previous reports 16,17,20 and the different 16 

products identified by GC-MS, a possible reaction pathway has been developed (Fig. 4). 17 

In an alcohol medium (methanol), hexoses such as glucose suffer retro-aldol reactions 18 

to form carbohydrate products with lower numbers of carbon atoms. On the one hand, a 19 

compound with four carbon atoms such as erythroxe is formed, which undergoes 20 

different transformations until obtaining methyl glycolate (MG) as the final product. On 21 

the other hand, compounds with three carbon atoms are formed such as glyceraldehyde 22 

and dihydroxyacetone which are lactic acid isomers. These products lose water 23 

molecules and form pyruvaldehyde, which in methanol suffers a reversible reaction to 24 
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obtain pyruvaldehyde dimethyl acetal (PADA) and another reaction to form methyl 1 

lactate (ML), our desired product. However, PADA could undergo changes to form 2 

1,1,2,2-tetramethoxypropane (TMP), another reaction product.  3 

In this work, different solid catalysts have been used in the transformation of 4 

glucose to methyl lactate. The yields of the quantified products are presented in Table 2. 5 

Sn-MCM-41 provides the highest methyl lactate and total yields of 43 % and 59 %, 6 

respectively, demonstrating that Sn-MCM-41 has a pore system sufficiently large for 7 

glucose to enter. Conventional MCM-41 is considerably less active for the reaction than 8 

Sn-MCM-41, which is encouraging. Additionally, it should be noted that for Sn-MCM-9 

41, the catalytic experiments were repeated 4 times in the same conditions with an 10 

average methyl lactate yield value of 42.7 % and standard deviation of 5.1 %, 11 

highlighting the reproducibility of the results. Similar to the case of zeolites, the 12 

catalytic behavior is related to the Lewis acidity ascribed to Sn incorporated in the 13 

MCM-41. 17 The Lewis acid sites can favor the retro-aldol reactions with the cleavage 14 

of C-C bonds of glucose (Fig. 4) to form trioses. 33 Moreover, it has been demonstrated 15 

that Sn-MCM-41 could have the combination of acid sites leading to the conversion of 16 

trioses to lactates. 19 Other reaction pathways are possible such as polymerization that 17 

products have not been analyzed. This can explain the lower total yield in comparison to 18 

the conversion of glucose. 19 

The methyl lactate yield obtained with Sn-MCM-41 is comparable to that obtained 20 

in similar operating conditions (160 ºC and 20 h) by Holm et al. 17 using Sn-Beta zeolite 21 

as catalyst (methyl lactate yield, 43 %) and higher than the yields obtained by the same 22 

authors using other metal containing zeolites: Ti-Beta (methyl lactate yield, 31 %) and 23 

Zr-Beta (methyl lactate yield, 33 %). In the conversion of sucrose (disaccharide 24 
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composed of glucose and fructose) at 160 ºC for 16 h, Osmundsen et al. 21 achieved a 1 

methyl lactate yield of 25 % using Sn-MCM-41. Using Sn-Beta zeolite with Si/Sn=200, 2 

these authors achieved a methyl lactate yield close to 60 %. Also using Sn-MCM-41, Li 3 

et al. 19 converted trioses (dihydroxiacetone) in ethanol to ethyl lactate with a yield of 98 4 

% after 6 h at a lower temperature (90 ºC) than the temperature used here. It has been 5 

pointed out 21 that the use of hexose sugars is significantly more interesting, due to their 6 

lower cost compared to trioses, but more challenging, due the possibility of other 7 

reaction pathways occurring that may decrease the yield to lactate compounds. Finally, 8 

Sn-MCM-41 has been used as catalyst in the isomerization of glucose into fructose and 9 

mannose. Moliner et. al. 22 obtained about 30 % of glucose conversion with 40 % 10 

fructose selectivity at 140 ºC and 90 min of reaction in an aqueous medium. These 11 

operating conditions are different from those used here (methanol, 160 ºC and optimum 12 

time 20 h), but it cannot be ruled out that these reactions could occur. In fact, 13 

Osmundsen et al. 21 found a fructose yield of about 80 % at much lower temperatures 14 

(80 ºC) for 48 h in methanol. 15 

For the layered materials (JDF-L1 and AM-4) and for microporous titanosilicate 16 

ETS-10 and zeolite ZSM-5, the methyl lactate yields are very low, under 4%. The 17 

exfoliated materials UZAR-S1 and UZAR-S2 give higher yields to the total products 18 

and to methyl lactate than their respective layered precursors. This behavior is in 19 

agreement with the observed role of delayered zeolitic materials (ITQ-2, ITQ-6 and 20 

ITQ-18), with good access of the reactants to their catalytic sites as well as fast 21 

desorption of the products, for example in the synthesis of bulky diamino diphenyl 22 

methane. 34 It should be noted that UZAR-S2, which is protonated, gave the highest 23 

yields to PADA, indicating that the conversion of pyruvaldehyde to PADA was favored 24 
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with Brønsted acidic catalysts against the parallel route to methyl lactate (see scheme in 1 

Fig. 4). 2 

The evolution with time of the catalytic performance of Sn-MCM-41 was also 3 

studied (Fig. 5). At short times, the yield of methyl lactate increased with time. 4 

However, at long times the yield reached a constant value of around 43 %; therefore, 20 5 

h is considered as the optimum time. The rest of the products gave lower yields, below 6 

10 %. The PADA yield decreased with time because it reacted to give TMP. Also, at 7 

high conversion it could be converted into methyl lactate with the back reaction shown 8 

in Fig. 4 (18). TMP produced from PADA appeared when the PADA diminished. As 9 

expected for a final product, there was an increase in the MG yield with time to reach an 10 

optimum at 20 h. 11 

Sn-MCM-41 was tested in three consecutive catalytic cycles to evaluate its 12 

reusability (Fig. 6). The methyl lactate yield was slightly reduced, the first, second and 13 

third cycles giving methyl lactate yields of 43 %, 41 % and 39 %, respectively. This 14 

lower activity could be explained by the reduction in the accessibility of active centers 15 

due to the adsorption of reaction products or structural changes. In any event, the use of 16 

methanol instead of water as solvent avoids coke deposition and structural damage, as 17 

has been shown in the conversion of trioses in H-USY zeolite. The yield to MG (Fig. 6) 18 

has low values and decreased in consecutive cycles from 3.4 % to 2.0 %. The PADA 19 

yields vary from 4.6 % in the first cycle to 7.5 % in the second and 6.4 % in third. This 20 

indicates that some properties of the catalysts could change to favor the production of 21 

PADA instead of methyl lactate. Finally, the yield to TMP in the three cycles is 22 

insignificant, being around 1.5 % in all cases. 23 
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It is well known that MCM-41 type catalysts have limited hydrothermal stability, so 1 

the catalyst was characterized after its use in glucose conversion. The BET surface area 2 

and pore volume decreased after use (Table 1), consistent with the slight activity 3 

decrease. The TEM of the used catalysts (Fig. 3e) shows the pore structure of MCM-41 4 

with no appreciable changes in the morphology.  5 

The thermal behavior of the catalyst was also studied (not shown). TGA of the as-6 

synthetized Sn-MCM-41 indicates that the CTABr surfactant was completely removed, 7 

as indicated above. The solid after reaction has a total weight loss of around 13 %. A 8 

first weight loss below 100 ºC (around 2 %) is due to the adsorbed methanol. After 100 9 

ºC, there are several weight losses up to 600 ºC which could be related to absorbed 10 

compounds and, at the highest temperatures, to carbonaceous species that would be 11 

responsible for catalyst deactivation.  12 

In their reusability study, Holm et al. (17) regenerated the catalysts (Sn, Ti, Zr- Beta 13 

zeolites) by calcination after each cycle. The catalysts were stable but in a fixed bed 14 

reactor the Sn-Beta zeolite deactivated gradually with time. There is a similarity 15 

between the fixed bed reactor and our operating conditions, where the catalyst is only 16 

washed with methanol and not regenerated by calcination after each cycle to remove the 17 

carbonaceous deposits observed by TGA. In fact, for a Sn-MCM-41 catalyst, 18 

Osmundsen et al. 21 and Li et al., 19 using sucrose and trioses as reactants, respectively, 19 

found that the deposition of carbon species deactivated the catalysts and that washing 20 

with solvent was not enough to regenerate them.   21 

 22 

 23 

 24 
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Conclusions 1 

Sn-MCM-41 material with an atomic ratio Si/Sn=55 showed good results in the 2 

conversion of glucose to methyl lactate with yields of around 43 %. Regarding its 3 

stability, similar yields to methyl lactate were obtained in three consecutive reaction 4 

cycles with only a slight reduction that can be explained by the surface area reduction 5 

and/or carbonaceous deposits. Other microporous materials tested exhibited lower 6 

yields to methyl lactate. Exfoliated materials (UZAR-S1 and UZAR-S2) allowed better 7 

accessibility of glucose to the catalytic sites and fast desorption of the products, 8 

increasing the reaction yield in comparison with their corresponding precursor layered 9 

materials (JDF-L1 and AM-4). 10 
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FIGURE CAPTIONS 1 

Fig. 1 Sugars: from biorenewable resources to platform molecules. 2 

Fig. 2 a) LA-XRD diffractograms of as-synthesized Sn-MCM-41 and MCM-41. b) XRD 3 

diffractograms of microporous catalysts.  4 

Fig. 3 TEM images of: a) and b) as-synthesized Sn-MCM-41; c) and d) Sn-MCM-41 5 

activated by calcination at 650 ºC in still air; e) Sn-MCM-41 catalyst after 20 h of reaction. 6 

Fig. 4 Possible reaction pathway for the transformation of glucose using Sn-MCM-41 as 7 

catalyst.  8 

Fig. 5 Product yields as a function of reaction time for the conversion of glucose at 160 ºC 9 

with Sn-MCM-41. The data at 20 h correspond to the average values with standard deviations. 10 

Acronyms are the same as in Table 2. 11 

Fig. 6 Product yields as a function of reuse cycle of Sn-MCM-41 catalyst at 160 ºC during 20 12 

h. Acronyms are the same as in Table 2. 13 
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TABLES 

Table 1  BET specific surface area and pore volume measured at p/p0 = 0.97 by nitrogen 

adsorption of the catalysts used in this work. 

Catalyst Surface area 

(m2/g) 

Pore volume 

(cm3/g) 

MCM-41 1199 0.80 

Sn-MCM-41 801 0.44 

JDF-L1 30 0.08 

UZAR-S1 159 0.17 

AM-4 13 0.05 

UZAR-S2 112 0.18 

ZSM-5 367 0.55 

ETS-10 253 0.14 

Used Sn-MCM-41 

(after 20 h of reaction) 

710 0.34 

Used Sn-MCM-41  

(after 3
rd
 reaction cycle) 

689 0.31 
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Table 2. Catalytic results after 20 h at 160 ºC (MG: methyl glycolate; ML: methyl lactate; 

PADA: pyruvaldehyde dimethyl acetal; TMP: 1,1,2,2-tetramethoxypropane). 

Catalyst 

Analyzed yields (%) 
Total 

yield 

Glucose 

conversion 

(%) MG ML PADA TMP 

Un-

indentified 

products 

Sn-MCM-41
(1) 3.4±0.1 42.7±5.1 4.6±1.2 1.8±0.8 6.5±2.6 59.0 100  

MCM-41 0.7 0.7 2.8 0.1 5.1 9.4 68 

JDF-L1 3.9 1.8 1.2 0.2 1.7 8.8 85 

UZAR-S1 2.1 3.9 4.4 0.1 6.6 17.1 93 

AM-4 2.5 1.2 0.6 0.1 0.7 5.1 72 

UZAR-S2 3.6 5.2 19.1 0.2 12.1 40.2 79 

ETS-10 4.8 1.9 1.5 0.2 1.4 9.8 85 

ZSM-5 1.1 3.5 0.5 0.2 9.4 14.7 89 
(1) The average values and standard deviation correspond to four experiments. 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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