DE GRUYTER

brought to you by I CORE

Josefa Fernández* and M. J. Renedo

Sulfation and Carbonation Competition in the Treatment of Flue Gas from a Coal-Based Power Plant by Calcium Hydroxide

Abstract: In this work, a gas containing CO₂ and SO₂ at the usual concentrations on the coal combustion flue gas reacted with calcium hydroxide to evaluate and quantify the influence of SO_2 on the CO_2 capture and vice versa. This influence was quantified with a continuous gas analyzer and by thermogravimetry (TG). Results show that the CO₂ retained increases in general as its concentration does and decreases as the SO₂ concentration increases. A similar behavior was found for the SO₂ retention at different CO₂ concentrations being more relevant the influence of the presence of SO₂ on the CO₂ capture than the opposite one. Results suggest that for a high CO₂ capture, SO₂ should be eliminated previously. With respect to the reaction process it was found that the desulfurization product clearly identified was CaSO₃·1/2H₂O; in the reaction between Ca(OH)₂ and CO₂, CaCO₃ is mainly obtained, the complex CaO·CO₂ being another possible product synthesized in low amount. Gas analyzer shows that SO_2 and CO_2 react simultaneously and that a part of the CaCO₃ reacts with the SO₂ and releases CO₂. Sulfation values calculated by TG and from the gas analyzer are very similar but the amount of CO₂ captured is not possible to know clearly by TG due to the synthesis and decomposition of CaCO₃ during the process. The study of the evolution of the sorbent porosity in the process reveals that the presence of both acid gases produces a lower blockage of the pores than when only one gas is present probably due to the generation of new pores in the reaction of CaCO₃ and SO₂.

Keywords: CO_2 and SO_2 capture, low temperature, flue gas, calcium hydroxide

DOI 10.1515/ijcre-2014-0182

1 Introduction

Coal combustion is one of the energy sources for electricity generation. Coal produced about 18% of Spanish electricity and recently, as Spain depends on coal industry for employment, the government, according to the European Community, approved to maintain subsidies for domestic coal used to generate energy up to 2014 [1]. The flue gas generated from coal combustion power plant contains CO_2 (about 12%) and SO_2 at concentrations depending on the coal sulfur content, as well as NO_x , H_2O , O_2 and N_2 .

There are three main approaches to capture the CO₂ generated from a primary fossil fuel or biomass, classified as post-combustion (capture from the flue gas), precombustion separations (capture in the gasification process, before the combustion step) and oxy-fuel firing, use of oxygen instead of air as comburent gas [2, 3, 4]. Developed post-combustion technology consists in the flue gas absorption in an aqueous solution with amines, mainly in the form of gas-liquid absorption columns. This technology is commonly used in various industries faced with the task of removing CO₂ from gas mixtures containing a wide range of species in different concentrations [5, 6]. Adsorption at low temperatures (up to 423 K) is considered one potential alternative with the added advantage that solids are easy to handle [7]. Carter, L.D [8] proposed the combined capture and storage of CO_2 and SO₂ or H₂S for conventional power plants to reduce cost in power production. The relevance of CaO, Ca(OH)₂ or calcium-based sorbents on the removal of acid gases, like SO_2 , NO_x , HCl or CO_2 , justifies the great number of works focused on the preparation of efficient calciumbased sorbents. Arias et al. [9] studied the sulfation behavior of cycled CaO particles in Ca-looping CO₂ capture system. Sun et al. [10] and Manovic and Anthony [11] found that SO₂ impedes the cyclic CO₂ capture by limestone or calcium aluminate pellets, because of the blockage by sulfation products, suggesting that desulfurization of flue gas before CO₂ capture is essential for CO₂ cyclic capture at high temperature. Several works have studied the process of simultaneous CO₂ and SO₂ retention by

^{*}Corresponding author: Josefa Fernández, Chemistry and Process and Resources Engineering, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain, E-mail:

josefa.fernandez@unican.es

M. J. Renedo, Chemistry and Process and Resources Engineering, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain, E-mail: josefina.renedo@unican.es

CaO or Ca(OH)₂ at medium or low temperature and at the usual CO₂ and SO₂ concentration in the flue gas of a coalbased power station. Kramer et al. [12] stated the main reactions implied in the desulfurization process with $Ca(OH)_2$ when CO_2 was present. Guang et al. [13], working with $Ca(OH)_2$, injected in the flue gas, at temperatures about 500°C, SO₂ concentrations of 3,000 or 1,500 ppm and CO₂ concentrations of 14% found that the carbonation of the sorbent hinders the SO₂ capture even though slight alterations in CO₂ concentrations did not have significant effects on the SO₂ removal. Ho et al. [14] proved that when O_2 , CO_2 and SO_2 were present in the flue gas, the sulfation and carbonation reactions took place simultaneously and the carbonate formed further reacted with SO_2 to form sulfite. Liu et al. [15], working at the conditions similar to those in the bag filters of dry or semi-dry flue gas desulfurization (FGD) systems, found when CO₂ and SO₂ are present that the final carbonate amount was lower than when only CO_2 is present because the CaCO₃ reacts with SO₂. For a constant CO₂ concentration of 12.6%, the SO_2 capture after 1 h of reaction was nearly independent on the SO₂ concentration from 1,000 to 50 ppm of SO_2 and this capture was insensitive to the presence of CO₂.

In a previous work [16], experiments of chemisorption of CO_2 at 50°C were performed with a dry flue gas (10% CO_2 in He), commercial Ca(OH)₂ and with this hydroxide supported on mesoporous materials to investigate the possibility of a cyclic CO_2 capture at low temperature. In that work, it was found that CO_2 was retained as a CaO·CO₂ complex and also as CaCO₃ in higher amounts. Even when the amount of CO_2 retained as CaO·CO₂ was low, the sorbents could be regenerated at 550°C and used cyclically without appreciable loss in activity.

In the present work, the influence of the presence of SO_2 and CO_2 , at the usual concentrations in a coal combustion flue gas, on the co-capture of both gases by calcium hydroxide at low temperature is studied. The objectives

were to know the reaction process and the products synthesized to explain the modification of the sorbent porosity and the influence of the presence of one gas on the capture of the other one, quantifying with two different techniques, this influence. All of this information will be used to predict the influence of the presence of SO₂ on the cyclic CO₂ capture by Ca(OH)₂ at low temperature.

2 Experimental section

A commercial $Ca(OH)_2$, supplied by Calcinor, was used as sorbent.

A Camsizer XT from Retsch with the dry dispersion module was used to obtain the particle size distribution of the sorbent. The isotherm of the commercial calcium hydroxide before and after the reaction was obtained by using a Micromeritics ASAP-2010 apparatus by N₂ adsorption. The specific surface area was calculated using the BET (Brunauer, Emmett, Teller) method and the pore size distribution from the desorption branch of the isotherm following the BJH (Barreto, Joyner & Halenda) procedure. A Setaram thermal analyzer model SETSYS-1700 was used for the thermogravimetric (TG) curve determination.

2.1 Reaction of the sorbent with CO₂ and SO₂

In the laboratory experimental setup, shown in Figure 1, a flue gas containing CO_2 and SO_2 , at the usual concentrations in the exhausted gas of a coal combustion power station, is conducted through commercial $Ca(OH)_2$, used as sorbent. The concentration of SO_2 and CO_2 after the reaction was continuously monitored in an Emerson MLT-1 NGA 2000 gas analyzer and data were compiled with a personal computer equipped with NGA win control software. The breakthrough curves of both gases were plotted

Figure 1 Experimental setup of the reaction process

with the analyzer data and the calcium utilization of the sorbent in the reaction with CO_2 and SO_2 and the total calcium utilization were obtained from the area above the curve. One gram of the sorbent, commercial calcium hydroxide, dispersed in 30 g of inert silica sand was placed in a 3.6 cm diameter glass-made jacketed fixed bed reactor at 55% of relative humidity and at temperature of 58°C. The composition of the gas stream was 12% or 6% or 0% CO_2 ; 9.5% synthetic air; 5,000, 2,500, 1,000 or 0 ppm SO_2 and balanced N_2 , being 1,000 ml/min the flue gas rate.

Table 1 shows the concentrations of the acid gases essayed. Three runs were performed for each condition. When the reaction time was over, 1 h approximately, (controlled by the breakthrough curves), the reacted sorbent was sieved to separate it from the sand. Some of the reacted sorbents were submitted to TG analysis.

2.1.1 Determination of the calcium utilization or calcium conversion in the reaction with CO₂ or SO₂ and of the total calcium utilization

The calcium utilization or the calcium conversion in the reaction of $Ca(OH)_2$ with CO_2 or SO_2 in percentage is defined as:

 $\frac{\text{moles of CO}_2 \text{ captured / grams of sorbent}}{\text{moles of calcium / grams of sorbent}} \times 100 \text{ or}$

$$\frac{\text{moles of SO}_2 \text{ captured / grams of sorbent}}{\text{moles of calcium / grams of sorbent}} \times 100$$
(1)

The sum of these two terms will be the total calcium utilization. The moles of CO_2 and SO_2 captured, at any time and after 1 h of reaction, were calculated from the area above the breakthrough curves. For sorbents

Table 1 Concentrations of SO₂ and CO₂ at different runs

submitted to TG analysis, the amounts of CO_2 or SO_2 were also obtained from TG data. The moles of calcium in the sorbent were calculated considering the commercial calcium hydroxide composition. To calculate the calcium utilization in the reaction with CO_2 by TG it must be considered that the CaCO₃ present in the reacted sorbent is mainly due to the CaCO₃ present in the commercial Ca(OH)₂, the CaCO₃ synthesized with the CO₂ captured and the CaCO₃ disappeared by reaction with SO₂.

3 Results and discussion

Particle size distribution of the commercial $Ca(OH)_2$ obtained with the Camsizer shows that 100% of the sample is lower than 200 µm, being 90% lower than 80 µm and 10% lower than 10 µm. The purity of the commercial $Ca(OH)_2$ determined by TG analysis using N₂ as purge gas was 82.7% being 9% the $CaCO_3$ content. The specific surface area of the commercial $Ca(OH)_2$ calculated following the BET method was 13 m²/g.

3.1 Reaction process and products identification

Breakthrough curves of CO_2 and SO_2 were discussed in a previous work [17], showing that both gases react simultaneously with the calcium hydroxide according to Ho et al. [14]. Furthermore, the CO_2 breakthrough curve shows at about 600 s, a gas concentration higher than the initial one due to the reaction of SO_2 with $CaCO_3$ that releases CO_2 . From the area above the breakthrough curves and applying eq. (1), conversion values at any time and after 1 h of reaction are calculated. Results are shown in Table 2.

SO ₂ conc. (ppm)	0	1,000	2,500	5,000	1,000	2,500	5,000	1,000	2,500	5,000
CO ₂ conc. (%)	12	12	12	12	6	6	6	0	0	0

Table 2 Mean values (of three runs) \pm standard deviation of calcium conversion in the reaction with SO₂ or/and CO₂ for different experimental conditions

CO ₂ conc. (%)	12	12	12	12	6	6	6	0	0
SO ₂ conc. (ppm)	5,000	2,500	1,000	0	5,000	2,500	1,000	5,000	2,500
Ca(OH) ₂ conv. to CaSO ₃ (%) Ca(OH) ₂ conv. to CaCO ₃ (%) Total Ca(OH) ₂ conversion (%)	$\begin{array}{c} 14.8\pm0.5\\ 14\pm1\\ 29\pm2 \end{array}$	$\begin{array}{c} 11\pm1\\ 16\pm1\\ 27\pm2 \end{array}$	$\begin{array}{c} 10.7 \pm 0.6 \\ 20 \pm 2 \\ 31 \pm 3 \end{array}$	27.0 ± 0.6	$\begin{array}{c} 15.1\pm0.9\\ 11\pm1\\ 26\pm2 \end{array}$	13 ± 2 10.4 ± 0.8 23 ± 3	$\begin{array}{c} 10\pm1\\ 10.2\pm0.7\\ 20\pm2 \end{array}$	20 ± 2	17.6 ± 0.9

In that previous work, the calcium conversion in the reaction with SO_2 or CO_2 versus time showed different shapes mainly at the beginning of the process, principally due to the great differences in SO_2 and CO_2 concentration in the gas mixture (Table 1) and in consequence a great difference in their reaction rates. The calcium conversions with time in the reaction with CO_2 showed a first step in which the reaction of $Ca(OH)_2$ with CO_2 was very fast, in a chemically controlled process; this step was followed by a period diffusional controlled with a slow CO_2 capture or even with no appreciable capture. The calcium conversions with time in reaction with SO_2 showed that the SO_2 capture increased at any time with its concentration for a CO_2 constant concentration, being the highest SO_2 capture when CO_2 was not present.

A great difference in the CO_2 capture depending on the presence of SO_2 in the flue gas was also found (27% without SO_2 and 14% with 5,000 ppm of SO_2 and 12% of CO_2 , after 1 h of reaction, as Table 2 shows). Liu et al. [15], working at similar temperature, relative humidity and CO_2 concentration, found a CO_2 capture, after 1 h of reaction, very similar to that found in this work, when SO_2 was not present.

In all runs performed with both gases, except in experiments with 12%, CO₂ and 1,000 ppm SO₂, there is a time period, at about 600 s, with values of CO₂ concentrations higher than the initial one, revealing a net CO₂ production. The CaCO₃ present in the sorbent or produced in the reaction of Ca(OH)₂ and CO₂ reacts with SO₂, a stronger acid than CO₂, and releases CO₂. Although this reaction occurs all the time, only when the amount of CO₂ captured is lower than the amount of this gas released, a net CO₂ emission is detected. In the experiment performed without CO₂ and 5,000 ppm of SO₂, CO₂ emissions were also detected, meaning that the CaCO₃ present in the commercial Ca(OH)₂ also reacts with SO₂. These results obtained from analyzer data were confirmed by mass spectrometry (MS) analysis [17].

TG, differential scanning calorimetry (DSC) and MS results of the sorbent before and after the reaction allowed us in a previous work [17] to explain and discuss the analyzer data, the reactions that occur in the process and the conversion results obtained. $CaSO_3 \cdot 1/2H_2O$ was the unique desulfurization product clearly identified. $CaSO_4$ was not identified by TG–MS as MS peaks of SO₃ were not found, probably due to the decomposition of the calcium sulfate at elevated temperatures to form CaO, SO₂ and O₂ according to bibliography [18]. $CaCO_3$ is the main product of CO₂ capture and CaO·CO₂, another product. DSC and MS data allowed distinguishing the calcination of the CaCO₃ formed from the CO₂ capture than that present in the initial sorbent.

Table 3 $\mbox{Ca(OH)}_2$ conversion values obtained from gas analyzer data and from TG data

CO ₂ (%)/SO ₂ (ppm) concentrations	Ca(OH) ₂ conversion to CaCO ₃ (%) gas analyzer/ TG	Ca(OH) ₂ conversion to CaSO ₃ (%) gas analyzer/TG
12/5,000	14.3/24.0	14.7/14.2
	13.6/13.0	15.6/15.2
12/2,500	14.6/4.4	10.1/12.4
12/1,000	20.0/13.1	9.5/9.4
12/0	27/10.3	
0/5,000		18.8/19.0

According to the objectives of the work, Table 3 shows conversion values obtained after 1 h of reaction with two different techniques, from gas analyzer and from TG data of the reacted sorbent. Results show that the calcium conversion values in the reaction with SO₂ are very similar independently of the experimental procedure used to calculate it, but there is no concordance in the results of calcium conversion in the reaction with CO₂. In the calculation of conversion to CaCO₃ from gas analyzer data, the moles of CO_2 are the net amount of this gas captured. Conversion values from TG data are calculated from the final CaCO₃ remaining in the sorbent after 1 h of reaction that, as has been explained, depends on three different processes: the CaCO₃ present in the commercial Ca(OH)₂, the CaCO₃ synthesized with the CO₂ captured and the $CaCO_3$ disappeared by reaction with SO_2 . Because of that, TG technique is not a good tool to quantify the real amount of CO₂ captured and it is better to use the gas analyzer data.

Table 2 shows the mean values (obtained from three runs for each condition) of calcium conversion in the reaction with SO₂ or CO₂ obtained from gas analyzer data after 1 h of reaction and values of total Ca(OH)₂ conversion. As values show, the capture of SO₂ increases with SO₂ concentration for a constant CO₂ concentration and also increases as CO₂ concentration decreases though this influence is nearly inappreciable at the conditions essayed. The CO₂ capture increases with CO₂ concentration for a constant SO₂ concentration and decreases as SO₂ concentration increases for a constant 12% concentration of CO_2 . For a CO_2 concentration of 6% there is almost no variation on CO₂ capture at different SO₂ concentrations. Results obtained at the usual SO₂ and CO₂ concentrations in the flue gas of 2,500 ppm and 12% confirm that both acid gases compete to react with the base. But results of Table 2 and previous work also show that at these usual concentrations, the presence of SO₂ has a higher influence on the CO_2 capture $(Ca(OH)_2)$ conversion values to CaCO₃ varied from 15.6% to 27.0% as the SO_2 concentration goes from 2,500 to 0 ppm) than the presence of CO₂ on the SO₂ capture (conversion to CaSO₃ varied from 11.9% to 17.6% as the CO₂ concentrations diminishes from 12% to 0%). Guan et al. [13] found that slight alterations in CO₂ concentrations did not have significant effects on the SO₂ removal and Liu et al. [15] also found little variation on the SO₂ capture when CO₂ at 12.6% of concentration was or was not present. Although the rapid reaction of CO_2 with $Ca(OH)_2$ at the beginning of the process to form CaCO₃ blocks the pore holes and hinders the diffusion of SO₂, the desulfurant properties of the salt and the lower acidity of CO₂ explain that the real influence of CO₂ on the SO₂ capture is less relevant than vice versa. The same considerations can be used to explain that despite the great difference in the concentrations of both gases, the moles of SO₂ and CO₂ captured are very similar.

When both gases are present, total conversion of calcium hydroxide is the highest, the base is more efficiently used; but if the aim of the process is to retain CO_2 , considering the great influence of the SO_2 on its capture, it would be more convenient, as it has been proposed, to desulfurize previously the gas [15]. If the co-capture is the option, conversion results obtained quantify the CO_2 capture reduction, related to the presence of SO_2 at the conditions essayed in this work.

In a previous work [19], the variation of the specific surface area of calcium hydroxide before and after its reaction with CO_2 and/or SO_2 at the concentration of 12% and 5,000 ppm, respectively, was studied. Results indicate that after the reaction with both gases the specific surface area of the sorbent is slightly higher than after the reaction with each gas alone. Figure 2 shows the pore size distribution of $Ca(OH)_2$ before and after the

reaction at the same conditions used in that previous work. This figure shows a high pore blockage after the reaction due to the solid products, mainly CaCO₃ and CaSO₃·1/2H₂O. Within the reacted sorbents, the highest remaining porosity corresponds to the sorbent after the reaction with both gases. This result can be explained, at least in part, considering that when both gases are present, the CaCO₃ reacts with SO₂ releasing CO₂ and generating new pores. That means that when calcium hydroxide is used to retain CO₂ in the presence of SO₂, at low temperature, the reversible adsorption of CO₂ as CaO.CO₂, found in the previous work [16] could be higher than without SO₂, due to the higher porosity available.

4 Conclusions

The study of the reaction of CO_2 and SO_2 with commercial calcium hydroxide at low temperature in a continuous gas analyzer proves and quantifies the simultaneous reaction of the sorbent with both gases and the CO_2 release in the reaction of $CaCO_3$ with SO_2 .

According to previous TG–DSC–MS results, the main reaction product of calcium hydroxide and SO₂ at this low temperature is $CaSO_3 \cdot \frac{1}{2}H_2O$. The main product of the reaction of CO₂ and Ca(OH)₂ is CaCO₃. The detection by MS of little amounts of CO₂ released within 425–525°C and the difference between the Ca(OH)₂ reacted and the CaCO₃ formed when SO₂ is not present suggest the possible formation of a CaO·CO₂ complex, postulated in a previous work.

Only data of the gas analyzer allow determining the CO_2 captured, while the SO_2 captured can also be determined from TG data. Results of calcium conversion show that both acid gases compete to react with the base but it

Figure 2 Pore size distribution of Ca(OH)₂ before and after the reactions

is higher than the influence of SO_2 on the CO_2 capture than the influence of CO_2 on the SO_2 retention. That result can be explained considering that CO_2 is a weaker acid than SO_2 and that $CaCO_3$ acts as desulfurant.

Despite the higher CO_2 concentrations with respect to SO_2 , in all the conditions tested (12% or 6% CO_2 versus maximum 5,000 ppm SO_2), the strongest acidity of SO_2 makes that the moles of the base that react with both gases are of similar order of magnitude. When both gases are present the base is more efficiently used (total calcium conversion is higher than the conversion with one gas).

According to these conclusions obtained working at low temperature, if the purpose of the process is mainly to retain CO_2 , it is convenient to desulfurize previously the flue gas. If the aim is to co-capture, this work shows the reduction on the retention of each gas when both gases are present. Nevertheless, as the porosity reduction after the reaction with both gases is lower than the reduction with one gas, it is predictable that the reversible adsorption of CO_2 as $CaO \cdot CO_2$ could be higher than without SO_2 .

Acknowledgements: We are thankful to MICINN in Spain, National Plan for Scientific Research, Development and Innovation, for financial support under Project: MAT2010-18862 and to the University of Cantabria, Project Ref. 51.VP10.64005.

References

- 1. BOE Núm. 51, 27 de febrero de 2010 Sec. I. Pág. 19123. Real Decreto134/2010, de 12 de febrero.
- 2. Rojey A, Torp TA. Capture and geological storage of CO₂: an overview. Oil Gas Sci Technol 2005;60:445.
- Stephens JC, van der Zwaan B. CO₂ capture and storage (CCS): exploring the research, development, demonstration and deployment continuum, BCSIA discussion paper, Harvard University, 2005:1–20.
- IPPC Special Report on carbon dioxide capture and storage. Intergovernmental panel on climate change. Cambridge University Press, 2005.
- Minchener AJ, McMullan JT. Sustainable clean coal power generation within a European context – the view in 2006. Fuel 2007;86:2124.

- 6. Satyapal S, Filburn T, Trela J, Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 2001;15:250.
- Veawap A, Tontiwachwuthikul P, Chakma A. Corrosion behavior of carbon steel in the CO₂ absorption process using aqueous amine solutions. Ind Eng Chem Res 1999;38:39.
- 8. Carter LD. United States carbon sequestration council. Capture and storage of CO_2 with other air pollutants. IEA Clean Coal Centre, January 2010.
- Arias B, Cordero JM, Alonso M, Abanades JC. Sulfation rates of cycled CaO particles in the carbonator of a Ca-looping cycle for postcombustion CO₂ capture. AIChE J 2012;58:2262.
- Sun P, Grace JR, Lim CJ, Anthony EJ. Removal of CO₂ by calcium based sorbents in the presence of SO₂. Energy Fuels 2007;21:163-70.
- Manovic V, Anthony EJ. Competition of sulfation and carbonation reactions during looping cycles for CO₂ capture by CaObased sorbents. J Phys Chem A 2010;114:3997–4002.
- Kramer G, Brunner Ch, Khinast J, Staudinger G. Reaction of Ca(OH)₂ with SO₂ at low temperature. Ind Eng Chem Res 1997;36:1410–18.
- 13. Guang GL, Keener TC, Stein AW, Khang SJ. CO_2 reaction with $Ca(OH)_2$ during SO_2 removal with convective pass sorbent injection and high temperature filtration. Environ Eng Policy 2000;2:47–56.
- 14. Ho C-S, Shih S-M, Lee C-D. Influence of CO_2 and O_2 on the reaction of $Ca(OH)_2$ under spray-drying flue gas desulfurization conditions. Ind Eng Chem Res 1996;35:3915–19.
- Liu C-F, Shih S-M, Tsai-Bang H. Effect of SO₂ on the reaction of calcium hydroxide with CO₂ at low temperatures. Ind Eng Chem Res 2010;49:9052–7.
- Fernández J, González F, Pesquera C, Blanco C, Renedo MJ. Study of CO₂/sorbent interaction in sorbents prepared with mesoporous support and calcium compounds. Ind Eng Chem Res 2010;49:2986–91.
- Renedo MJ, Pesquera C, González F, Fernández J. Use of TG-DSC-MS and gas analyzer data to investigate the reaction of CO₂ and SO₂ by Ca(OH)₂ at low temperature. CET 2013;35:739-44.
- Swift WM, Panek AF, Smith GW, Vogel GJ, Jonke AA. Decomposition of calcium sulfate: a review of the literature Technical Report Number: ANL-76–122, Argone National Lab., IL, USA, 1976.
- Renedo MJ, Pesquera C, González F, Ortiz B, Blanco C, Fernández J. Evolution of the sorbent structure in the simultaneous retention of CO₂ and SO₂ by Ca(OH)₂. In: The 3rd International Congress of GPE, Kuala-Lumpur, (Malaysia), 2011: 229–20.