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Abstract

This paper analyses the capacity of the Line Mettmgrovide evaluations of the

apparent fracture toughness, which is the fractesestance exhibited by materials in
notched conditions. With this aim, the experimemedults obtained in 555 fracture
tests are homogeneously presented and comparée tarte Method evaluations. It is

remarked that the Line Method provides adequatenasts of the apparent fracture
toughness, and also that it conveniently addresephysics of the notch effect. All

this makes the Line Method a valuaBlgentific and engineering tool for the fracture
assessment of materials containing notches.

Keywords: Line Method, Theory of Critical Distances, apparéacture toughness,
notch

1. Introduction

The load-bearing capacity of structural compon&higenerally conditioned by
the presence of stress risers such as cracks,esotelelded joints, corners. These stress
risers take very different forms, and different eggches have been proposed to deal
with the structural integrity of such componentbisTpaper is focused on the notch-
type defects (particularly, U-shaped notches), tWwhimay appear in structural
components due to design details, mechanical dgncag®sion defects or fabrication

defects.

When notches are blunt, it is overly conservatveroceed on the assumption

that they behave like sharp cracks and to applgtéra Mechanics criteria (i.e., such an
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assumption may lead to unnecessary repairs or ceplents, or to structural

oversizing). In fact, as has been widely showrhmliterature (e.g., [1-9]), components
with non-sharp defects or notches exhibit an appdracture toughness that is greater
than that obtained for cracked components. Thiegdly has direct consequences on
the load-bearing capacity of the structural comptsmeand also on their structural

integrity assessments [4].

The literature (e.g., [7,8]) shows that there ave tain failure criteria in the
notch theory: the global criterion and the locatecra. The global criterion is analogous
to the ordinary fracture mechanics approach, atabkshes that fracture takes place
when the notch stress intensity factor,)iKeaches a critical value (%, where K
defines the stress and strain fields in the vigioit the notch tip, whereas, Klefines
such fields in the crack tip. This approach is afjuestionable significance, but its
application is very limited because of the lackamfalytical solutions for Kor/and

standardized procedures for the experimental difinof K.°.

Meanwhile, local criteria are based on the stréssrsfield at the notch tip. The
most important ones are the Point Method (PM) dadliine Method (LM), both of
them being methodologies of the Theory of Critibaétances (TCD) that can easily
generate evaluations of the apparent fracture toesggh exhibited by notched
components. The resulting expression of the LMagigularly simple, and provides
similar predictions to those generated by the PM {Berefore, for the sake of

simplicity, the analysis here is focused on the édimations.

In any case, the evaluations provided by the LMtlterPM) have been validated
for different materials (a sound review may be fum[9]), but such predictions have

not been treated homogeneously and, therefore,aheyot directly comparable. The



aim of this paper is to provide a homogenous aislysa high number of apparent
fracture toughness tests (555) performed on notapetimens under very different
conditions (different materials, notch radii, tagtispecimens, testing temperatures,
parameter calibration processes, etc.), providingeeral validation of the LM. This
allows general conclusions to be made concernirguse and the validity of the
apparent fracture toughness evaluations obtaired fine LM.

2. Theoretical background: the Line Method and apparen fracture toughness
evaluations

The Theory of the Critical Distances (TCD) compsisegroup of methodologies
with a common aspect: they all use a characteristterial length parameter (the
critical distance) when performing fracture assesg#s1[9,10]. The origins of the TCD
are located in the middle of the twentieth cenfurd,12], but in the last two decades
this theory has had a wider development, providingwers to different scientific and
engineering problems (e.g., [3,6, 13-20]).

The above-mentioned length parameter is generaifgrred as the critical
distance, L, and in fracture analyses it follows ¢gguation[9]:

L:l(ij )

m\ o,

where Knat is the material fracture toughness obtained facked specimens, amdg is

a characteristic material strength parameter, nathedinherent strength. The last
parameter dp) is usually larger than the ultimate tensile sitbn(c,) and must be
calibrated, althoughsy coincides witho, in those situations where there is a linear-
elastic behaviour at both the micro and the macates (e.g., fracture of ceramics and

certain rocks).



There are different methodologies, within the TGowing fracture analyses
to be performed [9], such as the Point Method (Pt¥§ Line Method (LM), the
Imaginary Crack Method (ICM) and the Finite FraetiMiechanics (FFM). In any case,
the evaluations made by these methodologies ayesuailar [9], and both the PM and
the LM are particularly simple. Therefore, from nan, this theoretical overview is

focused on these two methodologies.

The PM establishes that fracture occurs when ttesstreaches the inherent
strength,co, at a distance from the defect tip equal to L/2,21222]. Therefore, the

failure criterion is:

a@ = g, @

The LM assumes that fracture occurs when the aeesa@ss along a certain

distance, 2L, reaches the inherent strenggfil 1, 22-24]. Therefore, the LM expression

_=[olr)ar =g, 3)

Moreover, both the PM and the LM provide expressidar the apparent
fracture toughness (k) exhibited by notched components. In the case -shaped
notches (as those analysed in this paper) bothPtde and LM may be applied
considering the linear-elastic stress distribuadthe notch tip provided by Creager and
Paris [25], which is equal to that ahead of theki# but displaced a distance equal to
p/2 along the x-axis, which is located in the notshliplane and has its origin at the

crack tip [9,25] :



_K, 2(r+p)
= 4
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where K is the stress intensity factor for a crack wite fame size as the notphs the
notch radius and r is the distance from the notphtd the point being assessed.
Equation (4) was derived for long thin notches. (m®tch depth >> notch radius) and is

only valid for small distances from the notch tig<€ notch depth).

If the PM is applied, Equation (2) may be combinath Equation (4), giving
[9]:

3/2
KN =K, . L

N )
=)
L
By considering the LM , Equation (3), together wiuation (4), we get [9]:

KN, =K, . 1+2 6
mee = Koy 147, (6)

This has implications from a practical point of wiegiven that it reduces the
fracture analysis of a notched component to anvatpnt situation of a cracked
component, with the only particularity of consideyi KNna instead of Iae Thus,

fracture occurs when:
K, =K (7)

Analogously, the authors have demonstrated [4,26}t thotches may be
analysed by using Failure Assessment Diagrams @stisiting Kna; with KNpac in the

definition of the K coordinate of the assessment point, which is ddfias the ratio



between the applied stress intensity factqy &80d the material fracture resistancg,{K

for cracks and K4 for notches) [27-29].

Both Equation (5) and Equation (6) have been vaddian a number of papers

(many of them are summarized in Ref. [9]), coveangide range of materials.

However, the corresponding observations have beemse or contradictory. In
some cases a critical radius has been found beloehvihe notch effect is negligible
[39,40], whereas in other cases such a criticausalas not been detected[6,38]. On
some occasions, the apparent fracture toughnessnmempproximately constant above
a certain notch radius [6,9,39], and the experiademsults differ from the LM or PM
predictions (which predict a monotonically increesifracture resistance when
increasing the notch radius), whereas in other scag® experimental results
continuously increase with the notch radius [9,8B,40me results of the apparent
fracture toughness are conservative [2,9], whetbas predictions for other cases
perfectly fit the experimental results or are namservative [3,6,9]. All this makes it
necessary to undertake a sound analysis of the:Kvaluations provided by the PM
and the LM, providing a homogeneous treatment efekperimental data in order to

find an answer to the above mentioned issues.

Finally, as discussed in Ref.[9], equations (5) &B) provide similar Ria
evaluations. For this reason, the analysis sholowbis focused on the LM predictions
of KN mnat (Equation (6)), although similar developments daegsily be derived from the

PM (Equation (5)).

3. Materials and methods

In the last few years, the present authors havdighgldl a number of papers

showing the application of the LM to a wide randematerials: polymer PMMA [3],



aluminium alloy AlI7075-T651 with two different ong&tions (LT and TL) [6], two
common rocks (granite and oolitic limestone) [3}d four structural steels (S275JR,
S355J2, S460M and S690Q) [2,31,32]. Moreover, siebls have been tested at 3
different temperatures of their corresponding Dedb-Brittle Transition Zone (DBTZ)
and, in case of steels S275JR and S355J2, at tatapes equal to their Lower Shelf.
Thus, the resulting experimental programme herdecield comprises 20 different
mechanical behaviours, which are summarized in€lablThe total number of tests is
555, with fracture toughness values (cracked cirdi} ranging from 0.72 MPaffup

to 157.4 MPa-f¥, and L values varying from 0.0028 mm up to 6.04 r&ome of the
materials (e.g., PMMA, granite, limestone) preséraeritical radius (larger than 4 mm
for granite) below which the notch effect was ngiplie, whereas other materials (e.g.,
S275JR at five different temperatures) presentetta notch effect (higher apparent
fracture toughness) for the smallest analysed n@tdius (0.15 mm). In the same way,
some materials presented pure brittle behaviogy.,(8275JR at -120 °C, S355J2 at -
196°C, granite, limestone), whereas other matepigsented limited ductile behaviour
before the onset of cleavage fracture (e.g., the $teels at the different temperatures

belonging to their corresponding DBTZ).

In all cases, the fracture toughness tests (irkexhspecimens) and the apparent
fracture toughness tests (in notched specimens) performed following well-known
standards [33,34] or procedures [35], whereas thliflerent methodologies were
employed for the calibration of the material caticlistance (L). PMMA and Al7075-
T651 were calibrated by using the Finite Elementhm@ and obtaining the stress fields
at rupture in two specimens with different valudsnotch radius: applying the PM
definition, both curves cross each other at a degtdrom the notch tip equal to L/2 [9].

The granite and the limestone were calibrated kydihect application of equation (1),



assuming that the inherent strengty, is equal to the ultimate tensile strengsh,
Finally, the L value of the four steels at the eiéint temperatures was calibrated by a

least squares fitting of the experimental results.

Therefore, it is clear that the experimental resugathered here, and the
corresponding application of the LM, represent atemsive range of situations. To
perform a homogeneous analysis representing theesi in a single graph (instead of
20 different graphs, one per mechanical behavibe) variables being represented need
to be normalised. Usually, apparent fracture toeghliresults and LM evaluations are

1/2

represented in a % againsip’? plot. However, Equation (6) may be re-written ie th

following way:

N
K _ 1+1(pj (8)
K 4\ L

mat

This immediately suggests a normalized represemtatif the experimental

results in a (Rna/Kmajagainst /L)*?

plot. That is, the apparent fracture toughness
values are normalized by the fracture toughnessirdd in cracked conditions, and the

notch radii are normalized by the correspondintjcati distance.

4. Results and discussion

Figure 1 shows the normalized representation ob8tetests, together with the
LM prediction provided by Equation (8), which hdsaabeen represented multiplied by
1.2 and 0.8 in order to visually capture the scaifethe results. Note that the scatter
obtained in fracture tests is generally significagpecially in steels tested within the
DBTZ. As an example, the experimental results olein steel S275JR at -90 °C show
that the apparent fracture toughness of specimeits 220 mm notch radius

((p/L)**=18) varies between 3.61 and 13.23 times the quoreting fracture toughness



obtained in cracked conditions. That is, the sammenal tested with identical
specimens under the same conditions presents amaaxivalue of apparent fracture
toughness which is 13.23/3.61=3.66 times the mimnobtained value.

From the results shown in Figure 1, the followirngervations can be made:

(1) The LM captures the physics of the notch effegiven that the LM
prediction adequately follows the tendency of tkpegimental results, which
have been obtained for a wide variety of matemald conditions. This occurs
not only for the materials for which the L valueshzeen best fitted through least
squares methodology, but also for the material® wie L value obtained by
using FE modelling or by directly applying equatid). Equation (8) may be

expressed in a more general form as:

Er'f\l\at = 1+1(pj 9)

where M is a coefficient that may be experimentfitted and whose theoretical
value (when following the LM together with the @ger-Paris stress
distribution) is 4. Now, if the least squares noelblogy is applied to the 555
experimental results in order to obtain the valoe M that best fits

Equation (9), the result is M = 4.02. This, olrse, is influenced by the fact
that many of the tests (those performed on the $teels being analysed) had
been previously fitted through the least squanesder to calibrate L. However,
even if only the tests performed in PMMA, Al707650, granite and limestone
are considered (161 tests, those which have rewt balibrated by using the least
squares methodology), the value of M providing thest fit is 5.07. This

difference is not very significant in practice taking into account that the term

containing M is squared.



Figure 2 shows the difference between the LM ptexhidollowing equation (8)
and the LM predictions when M is 5.07. It can lbserved that the differences
are not substantial, and also that, in both casi®s, LM provides good

evaluations of the experimental apparent fradioughness results.

Note that the LM has provided good estimations deenthose situations
where the Creager-Paris equation has exceededhetsretical limits. For
example, the steels tested within the DBTZ pregskn a certain  (limited)
plasticity, whereas Creager-Paris equations isivelgr from linear-elastic
conditions, and certain notches were not long.,(arg the two rocks, the
condition "notch depth >> notch radius” is nofillield for the larger values of

radius).

(2) The notch effect is negligible as long as t@orp/L is lower than one. That
is, provided that the radius of the notch beingys®al is lower than the material
critical distance, the notch behaves as a cracks Ty have significant
consequences. For examplep€L the notch can be analysed by using ordinary
fracture mechanics and employing,dK(the fracture toughness obtained from
cracked specimens) as the fracture resistance psganfuther, precracking
processes may be avoided if it is ensured thatabeis of the corresponding
machined notch is lower than L (e.g., in granitecmned notches with a radius
lower than 6.04 mm would be enough). Finally, thet that no critical radius is
observed on some occasions may be caused by tpiegieason that the radius
of the analysed notch is higher than L. As an examp order to detect the
critical radius in steel S460M at -140°C, it wobkel necessary to machine notch

radii below 0.0028 mm, something not feasible iactical terms.



(3) The LM provides good evaluations for high valwép/L. Such a ratio, also
known as the Neuber number [36] was proposed byrdtadet al. [6] as a
tentative criterion to limit the validity of the LMand PM) apparent fracture
predictions, given that it was observed that théctlire parameter tended to
remain constant in Al7075-T651 fpfL>100. This was also related to the shift
from plane strain conditions to the plane stressebmwhen the notch radius
increases, following the arguments provided by d@ay©O] to explain the
experimental observations obtained by Irwin [374ujT et al. [38], Wilshaw et
al. [39], and Yokobori and Konosu [40]. The 555ules gathered here do not
reveal any weakening of the notch effect, with aticmous increase of the
apparent fracture toughness ot values as high as 714 (steel S460M at -
140°C), and 112 tests wipiiL ratio values higher than 100.

(4) If the LM evaluations are to be used in strealtuntegrity assessments,
although Equation (8) captures the physics of thtemeffect adequately, it may
be unsafe on many occasions, given that it somstpnavides apparent fracture
toughness values higher than those measured exqedhy (as is shown in
Figure 1, roughly one half of the results are ledabelow the LM curve). In
order to provide a fracture analysis tool to beduge structural integrity
assessments, it is necessary to propose an expréat is capable of providing
safe predictions of the apparent fracture toughn®ggh this purpose, an
experimental M value equal to 20 is proposed heeecorresponding prediction
curve being shown in Figure 2.

Moreover, in order to capture the scatter obtaimedatracked conditions, a
normal distribution has been considered for tH&Kma: results atp/L=0

(cracked specimens). The standard deviation ofhgy/Kma results obtained



for cracked specimens is 0.1616, and then tAg.#ma value associated
to a 95% confidence level is 0.73 (when a normatribution is assumed, the
corresponding 95% level is equal to the mean, HeBe minus 1.645 times
the standard deviation). The corresponding LM jotexh is also shown in

Figure 2, which arises from equation (10):

N
&: 073 1+1(pj (10)
K 20( L

6. Conclusions

The aim of this paper is to provide an extensivildation of the Line Method
apparent fracture toughness evaluations throughhtimogeneous treatment of 555
fracture tests performed on notched specimens. fHs¢s include 20 different
mechanical behaviours, covering rocks, polymersrarthls. The experimental values
of the apparent fracture toughness'{k) have been normalized by the corresponding
fracture toughness @) obtained in cracked conditions, whereas the noadius p)
has been normalized by the corresponding criticdhdce (L). Thus, the 555 tests may

be represented in a singleMi/K ma)-(p/L) >

plot. The results demonstrate the capacity
of the LM to capture the physics of the notch dffaad to provide adequate estimations
of the apparent fracture toughness. This adequaextensible to very high values of
the p/L ratio (over 700). It has also been shown that itotch effect is negligible as
long as the notch radius is lower than the materiéical distance, something that may
be important in the fracture characterization otemals with high values of L, which
could avoid precracking processes. Finally, diffiérexperimentally-fitted expressions

based on the LM have been proposed in order tageamonservative evaluations of the

apparent fracture toughness to be used in struchiegrity assessments.
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NOMENCLATURE

Ou

(o]

DBTZ

FE

LM

LS

PM

material fracture toughness

apparent fracture toughness

stress intensity factor

notch stress intensity factor

critical notch stress intensity factor

material critical distance

fitting parameter in equation (9)

distance from the notch tip

notch radius

applied stress

ultimate tensile strength

material strength parameter (the inherent sthgng

Ductile-to-brittle Transition Zone

Finite Elements method

Line Method

Lower Shelf

Point Method



TCD Theory of Critical Distances

us Upper Shelf



Tables

Table 1. Summary of the experimental results analysedisygaper (LS: Lower Shelf;
DBTZ: Ductile-to-Brittle Transition Zone; FE: FimitElement method).

Material Number of | Notch radii K mat . L Calibration
tests (mm) (MPa-m"%) | (mm) | method (L)
PMMA 32 0-2.5 2.04 0.1050 FE
Al7075-T651 LT 23 0-2.0 27.01 0.0150 FE
Al7075-T651 TL 24 0-2.0 26.65 0.0215 FE
Granite 41 0-10 1.24 6.04 Eqg. (1)
Limestone 41 0-10 0.72 2.71 Eq. (1)
S275JR (-120°C, LS) 23 0-2.0 48.80 0.0137 Best f
S275JR (-90°C, LS) 24 0-2.0 62.72 0.0062 Best fit
S275JR (-50°C, DBTZ2) 24 0-2.0 80.60 0.0049 Best fit
S275JR (-30°C, DBTZ) 24 0-2.0 100.7 0.0061 Best fit
S275JR (-10°C, DBTZ) 34 0-2.0 122.8 0.0083 Best fit
S355J2 (-196°C, LS) 24 0-2.0 31.27 0.0198 Best fit
S355J2 (-150°C, DBTZ 21 0-2.0 60.56 0.0084 Best fit
S355J2 (-120°C, DBTZ 22 0-2.0 146.6 0.0168 Best fit
S355J2 (-100°C, DBTZ 35 0-2.0 157.4 0.0140 Best fit
S460M (-140°C, DBTZ) 24 0-2.0 45.60 0.0028 Best fit
S460M (-120°C, DBTZ) 24 0-2.0 88.29 0.0075 Best fit
S460M (-100°C, DBTZ) 33 0-2.0 88.58 0.0053 Best fit
S690Q (-140°C, DBTZ) 24 0-2.0 69.11 0.0069 Best fit
S690Q (-120°C, DBTZ) 24 0-2.0 103.8 0.0131 Best fit
S690Q (-100°C, DBTZ) 34 0-2.0 125.4 0.0170 Best fit
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Figure 1. Normalised representation of the 555 fracturestasti comparison to the LM
predictions.
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Figure 2. Normalised representation of the 555 fracturestasti comparison to the LM
predictions when using equation (8), equation {34.02, M=5.07 and M=20) and

equation (10).



