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1 Introduction

Since the last ten years, semi-parametric panel data varying coefficient models with fixed effects have become a
very useful tool to handle many statistical problems in empirical studies (see for example Card (2001), Kottaridi and
Stengos (2010) and Kuan and Chen (2013)). If individual effects are assumed to be uncorrelated with the explanatory
variables (random effects), the smooth functions can be estimated turning to standard non-parametric techniques for
panel data models. See Su and Ullah (2011) for an intensive review of this literature. Nevertheless, when the cross-
sectional heterogeneity is correlated with some covariates, as it is in our case, the problem is more complex and direct
estimation with the aforementioned techniques provides estimators that are asymptotically biased. The reason is that
the correlation of the heterogeneity term with some of the explanatory variables causes a non-negligible asymptotic
bias.

Recently, in order to cope with this problem, some new procedures have been developed within the framework of
differencing techniques. By taking differences one can remove the heterogeneity effect and then estimate the resulting
model by standard nonparametric techniques. Unfortunately, this is not as easy as it would look at a first glance since
the model in differences appears, for each individual, as an additive function with same functional form at different
times. That is the main reason why some proposals to estimate this transformed model are closely related to estimation
techniques initially designed for additive models. In Henderson et al. (2008) it is developed an iterative procedure based
on a maximum likelihood approach, whereas in Mammen et al. (2009) it is proposed a smooth backfitting algorithm
(see Buja et al. (1989) for the original idea of the backfitting). Recently, in Qian and Wang (2012) it is developed a
two-step procedure in which in the first-step the whole non-parametric term is estimated through a multivariate non-
parametric estimator and later the function, in each point, is obtained via marginal integration techniques. Su and Lu
(2013) estimate the unknown function as a solution of a second-order Friedholm integral equation. However, despite
the great contributions of these techniques they are not very appealing as they are computationally intensive.

In view of these results, in Rodriguez-Poo and Soberon (2013a,b) it is proposed a direct strategy to estimate the
unknown varying coefficients that can be applied either in the context of first differences or the within transformation.
The basic idea of both estimators is to approximate the unknown additive functions through a local linear regression
technique with higher-dimensional kernel weights. Although the proposed estimation strategies enable us to solve the
non-negligible asymptotic bias problem that it is usual in differencing estimators, they reflect the standard dilemma of
the non-parametric estimates, i.e. any attempt to hold back the bias is offset by an increase of the variance term and
therefore the resulting estimators achieve suboptimal rates of convergence. In order to solve this problem, by exploiting
the additive structure of this model, a one-step backfitting algorithm is proposed. Under fairly general conditions, it
turns out that the resulting estimators show optimal rates of convergence and exhibit the oracle efficiency property.
This is already a well-known result (see Fan and Zhang (1999)): Additional smoothing can reduce the variance without
affecting the asymptotic order of the bias.

Since both estimators are asymptotically equivalent, it is of interest to analyze their behavior in small sample sizes
under a standard panel data setting, that is, fixed number of time observations and increasing number of individuals.
In a fully parametric context, it is well-known that, under strict exogeneity assumptions the performance of both dif-
ferencing estimators is going to depend on the stochastic structure of the idiosyncratic random errors (see Wooldridge
(2002)). Following these ideas, in this paper, we perform a Monte Carlo simulation experiment that is designed to
compare the performance of both the first-differences and the within estimator in finite samples under fairly standard
conditions. Moreover, in the non-parametric setting, apart from the previous issues other factors such as the number
of covariates, the number of time periods, and more importantly the number of individuals, are of great interest. In
particular, we would be interested in learning whether, for different scenaria of the idiosyncratic error terms, which
estimator is more efficient.

Finally, note that differencing techniques are not always suitable to remove heterogeneity individual effects. For
example, in nonseparable panel data models, other estimation strategies need to be undertaken. Altonji and Matzkin
(2005), Bester and Hansen (2009), and Hoderlein and White (2012) focus on both the estimation of the structural
functional itself or the local average derivatives. They also analyze some identification conditions.

The rest of the paper is organized as follows. In Section 2, we present the local linear estimation procedures for
both differencing estimators and we also study their asymptotic properties. As it has been already pointed out before,
the estimators at this stage present different and, in both cases, suboptimal rates of convergence. In Section 3, we
apply a one-step backfitting algorithm to both estimators allowing them to achieve asymptotically optimal rates. In
Section 4, we compare the estimators considered via a Monte Carlo simulation. Finally, we conclude in Section 5.
All assumptions and technicalities required to show the asymptotic behavior of the estimators are relegated to the
Appendix.
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2 Local linear estimation procedure

To illustrate the estimation procedures to be compared in this paper we consider a panel data varying coefficient model
where some regression coefficients are allowed to be varying depending on some exogenous variables of the form

Yit = X>it m(Zit)+µi + vit , i = 1, · · · ,N ; t = 1, · · · ,T, (2.1)

where X and Z are d×1 and q×1 vector of covariates, respectively, m(Z) is a d×1 vector of smooth functions to be
estimated, µi is the unobserved individual heterogeneity and vit the random disturbance. We assume µi is correlated
with X and/or Z with an unknown correlation structure.

As it was already pointed out in the previous section, direct estimation of the unknown function m(·) through
nonparametric standard techniques rends asymptotically biased estimators. One solution to this problem are the so
called differencing techniques. Among the most popular transformations we consider first differences and the within
transformation. Other estimation strategies such as profile likelihood (least squares) techniques are available (see Sun
et al. (2009)). However, conditions for consistency of the parameters (functions) of interest are rather strong and this
is why we focus on estimators based on differencing transformations.

The first differences transformation implies subtracting from time t of (2.1) that of time t−1, i.e.

Yit −Yi(t−1) = X>it m(Zit)−X>i(t−1)m(Zi(t−1))+ vit − vi(t−1), i = 1, · · · ,N ; t = 2, · · · ,T, (2.2)

whereas the within transformation implies subtracting the within-group mean, i.e.

Yit −
1
T

T

∑
s=1

Yis = X>it m(Zit)−
1
T

T

∑
s=1

X>is m(Zis)+ vit −
1
T

T

∑
s=1

vis, i = 1, · · · ,N ; t = 1, · · · ,T. (2.3)

However, as we have stated previously, direct non-parametric estimation of m(·) in both (2.2) and (2.3) has been
considered as a cumbersome task (see Su and Ullah (2011)). The reason is that, for each individual, the right part
of both specifications are linear combinations of X>it m(Zit) for different time periods t. Therefore, to estimate the
unknown function it is necessary to consider m(·) as an additive function whose elements share the same functional
form.

Just to clarify our proposal to solve the previous problem, we will first focus on the univariate regression model
and later we will extend these results to the multivariate case. Consider the first differences transformation in (2.2)
with d = q = 1. In this case, for any z ∈ A, where A is a compact subsect in a nonempty interior of IR, one has the
following Taylor expansion

Xitm(Zit)−Xi(t−1)m
(
Zi(t−1)

)
≈ m(z)∆Xit +m′(z)

[
Xit (Zit − z)−Xi(t−1)m

(
Zi(t−1)

)]
+

1
2

[
Xit (Zit − z)2−Xi(t−1)

(
Zi(t−1)− z

)2
]
+ · · ·+ 1

p!
m(p)(z)

[
Xit (Zit − z)p−Xi(t−1)

(
Zi(t−1)− z

)p]
≡

p

∑
λ=0

βFλ

[
Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1)− z

)λ
]
. (2.4)

Similarly, for the within regression in (2.3), one has the following

Xitm(Zit)−
1
T

T

∑
s=1

Xism(Zis)≈

(
Xit −

1
T

T

∑
s=1

Xis

)
m(z)+

[
Xit (Zit − z)− 1

T

T

∑
s=1

Xism(Zis)

]
m′(z)

+
1
2

[
Xit (Zit − z)2− 1

T

T

∑
s=1

Xis (Zis− z)2

]
m′′(z)+ · · ·+ 1

p!

[
Xit (Zit − z)p− 1

T

T

∑
s=1

Xis (Zis− z)p

]
m(p)(z)

≡
p

∑
λ=0

βWλ

[
Xit (Zit − z)λ − 1

T

T

∑
s=1

Xis (Zis− z)λ

]
. (2.5)

Both expressions (2.4) and (2.5) suggest that we can estimate m(z),m′(z), · · · ,m(p)(z) by regressing, respectively,
∆Yit on the terms Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1)− z

)λ and Ÿi =Yit− 1
T ∑

T
s=1 Yis on Xit (Zit − z)λ − 1

T ∑
T
s=1 Xis (Zis− z)λ ,

for λ = 1, · · · , p, with different kernel weights. The quantities of interest in both cases can be estimated using locally
weighted linear regression (see Fan and Gijbels (1995b)). For (2.4) we have

N

∑
i=1

T

∑
t=1

(
∆Yit −βF0∆Xit −βF1

[
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1)− z

)])2 Kh (Zit − z)Kh
(
Zi(t−1)− z

)
, (2.6)
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and for (2.5) we have

N

∑
i=1

T

∑
t=1

(
Ÿit −βw0

(
Xit −

1
T

T

∑
s=1

Xis

)
−βw1

[
Xit (Zit − z)− 1

T

T

∑
s=1

Xis (Zis− z)

])2

Kh (Zi1− z) · · ·Kh (ZiT − z) , (2.7)

where h is a bandwidth and K is an univariate kernel such that

∫
K(u)du = 1 and Kh(u) =

1
h

K (u/h) .

Let us denote by β̂F0 and β̂F1 the minimizers of (2.6) and by β̂w0 and β̂w1 the minimizers of (2.7). The above expo-
sition suggests as estimators in the first differences case for m(·) and m′(·), m̂h(z) = β̂F0 and m̂′h(z) = β̂F1 , respectively.
For the within regression the estimators will be m̂h(z) = β̂w0 and m̂′h(z) = β̂w1 , respectively.

Note that in (2.6) we propose a bivariate kernel that also contains Zi(t−1) instead of considering only Zit . The reason
is that, if we consider only a kernel around Zit , the transformed regression equation (2.2) would be originally localized
around Zit without considering all other values. Consequently, the distance between Zis (for s 6= t) and z cannot be
controlled by the fixed bandwidth parameter and so that the transformed remainder terms cannot be negligible. The
consequence of all that would be a non-degenerated bias in this type of local linear estimator that it is removed by
considering a local approximation around the pair

(
Zit ,Zi(t−1)

)
. The same can be said for (2.7). Although there, the

non-degenerated bias must be removed by considering a local approximation around the T × 1 vector (Zi1, · · · ,ZiT ).
The difference in the local approximation makes a substantial difference in terms of the asymptotic variance in both
estimators. In fact, in Theorems 1 and 2 it is shown that under similar conditions the order of the bias for the univariate
case will be the same, O(h2), but the variance is for T > 1 rather different. For the first-differences estimator the
variance is of order O(1/NT h2), whereas for the other estimator is of order O(1/NT hT ).

For d 6= q 6= 1, the estimators have the following form. Denote by β̂F =
(

β̂>F0
β̂>F1

)
a d(1+q)-vector that minimizes

(2.6) in the multivariate case, that is

N

∑
i=1

T

∑
t=1

(
∆Yit −∆X>it βF0 −

[
Xit ⊗ (Zit − z)−Xi(t−1)⊗

(
Zi(t−1)− z

)]>
βF1

)2
KH (Zit − z)KH

(
Zi(t−1)− z

)
, (2.8)

where H is a q×q symmetric positive definite bandwidth matrix and K is a q-variate kernel.
Let D(z) = vec(Dm(z)) be a dq× q vector and let Dm(z) = ∂m(z)/∂ z be a d × q matrix of partial derivatives

of the dth component of m(z) with respect to the elements of the q× 1 vector z. Denote Hm(z) = ∂m(z)/∂ z∂ z> a
dq× d matrix of the Hessian matrix of the dth component of m(z). We suggest as estimators of m(z) and Dm(z),
m̂F(z;H) = β̂F0 and vec(D̂Fm(z)(z;H)) = β̂F1 , respectively. Assuming that Z̃>F WF Z̃F is nonsingular, the minimization
problem (2.8) has the following solution in matrix form

(
β̂F0

β̂F1

)
=
(

Z̃>F WF Z̃F

)−1
Z̃>F WF ∆Y, (2.9)

where ∆Y = (∆Y12, · · · ,∆YNT )
> is a N(T −1) vector while WF and Z̃F are N(T −1)×N(T −1) and N(T −1)×

d(1+q) matrix, respectively, of the form

WF = diag
(
KH (Z12− z)KH (Z11− z) , · · · ,KH (ZNT − z)KH

(
ZN(T−1)− z

))
and

Z̃F =


∆X>12 X>12⊗ (Z12− z)>−X>11⊗ (Z11− z)>

...
...

∆X>NT X>NT ⊗ (ZNT − z)>−X>N(T−1)⊗
(
ZN(T−1)− z

)>
 .

Then, the local weighted linear least-squares estimator of m(z) is defined as

m̂F (z;H) = e>1
(

Z̃>F WF Z̃F

)−1
Z̃>F WF ∆Y, (2.10)
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where e1 = (Id
...0dq×d) is a d(1+q)×d selection matrix, Id is a d×d identity matrix and 0dq×d a dq×d matrix of

zeros.
We focus now on the within estimator. Let β̂w = ( β̂>w0

β̂>w1
)> be a d(1+q)- vector that minimizes the expression

(2.5) in the multivariate case, i.e.,

T

∏
`=1

N

∑
i=1

T

∑
t=1

Ÿit −

(
Xit −

1
T

T

∑
s=1

Xis

)>
βw0 −

[
Xit ⊗ (Zit − z)− 1

T

T

∑
s=1

Xis⊗ (Zis− z)

]>
βw1

2

KH (Zi`− z) , (2.11)

where now K is the product of univariate kernels such that K (u1,u2, · · · ,uT ) = ∏
T
`=1 K (u`) and u` is the `th

component of u. We suggest as estimators for m(z) and Dm(z), m̂w(z;H) = β̂w0 and vec(D̂wm(z;H)) = β̂w1 , respectively.
Thus, assuming Z̃>w WwZ̃w is nonsingular, the matrix form of the solution of the minimization problem (2.11) can be
written as

(
β̂w0

β̂w1

)
=
(

Z̃>w WwZ̃w

)−1
Z̃>w WwŸ , (2.12)

where Ÿ =
(
Ÿ11, · · · ,ŸNT

)> is a NT -vector while Ww and Z̃w is a NT ×NT and NT ×d(1+q) matrix, respectively,
such that

Ww = blockdiag

(
KH (Zi1− z)

T

∏
`=2

KH (Zi`− z) , · · · ,KH (ZiT − z)
T−1

∏
`=1

KH (Zi`− z)

)
and

Z̃w =

 Ẍ>11 X>11⊗ (Z11− z)>−T−1
∑

T
s=1 X>1s⊗ (Z1s− z)>

...
...

Ẍ>NT X>NT ⊗ (ZNT − z)>−T−1
∑

T
s=1 X>Ns⊗ (ZNs− z)>

 ,
where Ẍit = Xit − 1

T ∑
T
s=1 Xis.

The local weighted linear least-squares estimator of m(z) for the within regression is then defined as

m̂w (z;H) = e>1
(

Z̃>w WwZ̃w

)−1
Z̃>w WwŸ . (2.13)

Note that for the sake of simplicity we use the same bandwidth matrix for these two estimators. As it is well-known
in the non-parametric literature, the optimal bandwidth matrix H should be obtained using several standard procedures
such as, for example, the residual squares criterion proposed in Fan and Gijbels (1995a). Then, for empirical applica-
tions we must not forget that although the resulting bandwidths are very close, they are different.

Once obtained the non-parametric estimators for both the first-differences and the within transformation, the next
step is to establish the behavior of the two estimators in large samples. Under some standard assumptions collected in
the Appendix, their asymptotic distributions are derived in the next theorems. Conditions for the proof are rather gen-
eral. Assumption A.1 characterizes the data-generating process for a panel data model. Assumption A.2 is a standard
strict exogeneity condition and A.3 imposes the so-called fixed effects. In addition, for conditional moments, densities
and kernel functions we need some smoothness and boundedness conditions that are collected in assumptions A.4-A.9
and A.11-A.12. Finally, assumptions A.10 and A.13 are required to show that Lyapunov conditions hold.

Let X = (X11, · · · ,XNT ,Z11, · · · ,ZNT ) be the observed covariates vector and denote Hmr(z) the Hessian matrix of
the rth component of m(·), for r = 1, · · · ,d, diagd(tr(Hmr(z)H

√
NT |H|)) stands for a diagonal matrix of elements

tr(Hmr(z)H
√

NT |H|) and ıd a d×1 unit vector. Furthermore, R(K) =
∫

K2(u)du, and fZit ,Zi(t−1)(z,z) is the probability
density function of the random variable

(
Zit ,Zi(t−1)

)
and we denote by fZi1,··· ,ZiT (z, · · · ,z) the probability density

functions of (Zi1, · · · ,ZiT ) evaluated at point z.
In this context, in Rodriguez-Poo and Soberon (2013a) it is shown the following result for the locally weighted

least-squares first-differences estimator (2.9):
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Theorem 1 Assume conditions A.1-A.10 hold. Then,

√
NT |H|(m̂F (z;H)−m(z))→d N (bF(z),υF(z)) ,

as N tends to infinity and T is fixed, where

bF(z) =
1
2

µ2 (K)diagd(tr(Hmr(z)H
√

NT |H|))ıd ,

υF(z) = 2σ
2
v R2 (K)B−1

∆X∆X (z,z)

and

B∆X∆X (z,z) = E
[

∆Xit∆X>it
∣∣∣Zit = z,Zi(t−1) = z

]
fZit ,Zi(t−1)(z,z).

On the other hand, for the locally weighted least-squares within estimator (2.12), Rodriguez-Poo and Soberon
(2013b) obtain the following asymptotic properties:

Theorem 2 Assume conditions A.1-A.7 and A.11-A.13 hold, then as N→ ∞ and T remains to be fixed we obtain

√
NT |H|T/2 (m̂w (z;H)−m(z))→d N (bw(z),υw(z)) ,

where

bw(z) =
1
2

µ2(K)diagd(tr(Hmr(z)H
√

NT |H|T/2))ıd ,

υw(z) = σ
2
v RT (K)B−1

Ẍ Ẍ (z, · · · ,z)

and

BẌ Ẍ (z, · · · ,z) = E
[

Ẍit Ẍ>it
∣∣∣Zi1 = z, · · · ,ZiT = z

]
fZi1,··· ,ZiT (z, · · · ,z) .

As we have already pointed out above in Theorems 1 and 2, the use of a higher dimensional kernel weight enables
us to solve the problem of non-negligible asymptotic bias. It provides local linear estimators with a bias term of the
same order as the standard results, O(tr(H)). However, as it is usual in the non-parametric techniques any attempt to
reduce the bias is offset by an enlargement of the variance term. Thus, these two estimators are consistent but exhibit a
suboptimal rate of convergence. Note that the standard rate of this type of problems is NT |H|1/2. The first-differences
estimator exhibits a rate of order NT |H| and the within estimator shows a rate of order NT |H|T/2.

3 One-step backfitting procedure

In this section we analyze alternative procedures to obtain non-parametric estimators that exhibit the optimal rate
of convergence. Firstly, we focus on the first differences transformation. Later we present the corresponding within
estimator. We conclude with a comparison between the asymptotic properties of the resulting estimators.

As it is noted in Fan and Zhang (1999), the variance can be reduced by further smoothing but the bias cannot be
reduced by any kind of smoothing. Thus, in order to achieve optimality we propose to combine previous estimators
with a one-step backfitting algorithm. Therefore, this estimation strategy allows us to exploit the additive structure of
the model in order to cancel asymptotically the additive terms of the model.

Let m̂F (z;H) be the first-step local weighted linear least-squares first-differences estimator (2.8) and define the
variable ∆Y b

it such that

∆Y b
it = ∆Yit +X>it m̂

(
Zi(t−1);H

)
, (3.1)

and replace (2.2) in this previous equation obtaining

∆Y b
it = X>it m(Zit)+∆vb

it , i = 1, · · · ,N ; t = 2, · · · ,T, (3.2)
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where the composed error term has the form

∆vb
it = XT

it
(
m̂
(
Zi(t−1);H

)
−m

(
Zi(t−1)

))
+∆vit .

By the same reasoning as before, the quantities of interest of (3.2) can be estimated as a solution for γF to the
following locally weighted linear regression

N

∑
i=1

T

∑
t=2

(
∆Y b

it −XT
it γF0 −X>it ⊗ (Zit − z)> γF1

)2
KH̃ (Zit − z) , (3.3)

where H̃ is a q× q symmetric positive definite bandwidth matrix of this step. Denote by γ̃F =
(

γ̃>F0
γ̃>F1

)>
a

d(1+q)-vector that minimizes the expression (3.3). Then, assuming Z̃b>
F W b

F Z̃b
F is a nonsingular matrix, we suggest as

estimators of m(z) and Dm(z), m̃F(z; H̃) = γ̃F0 and vec(D̃Fm(z; H̃)) = γ̃F1 , respectively, i.e.

m̃F(z; H̃) = γ̃F0 = e>1
(

Z̃b>
F W b

F Z̃b
F

)−1
Z̃b>

F W b
F ∆Y b, (3.4)

where ∆Y b =
(
∆Y b

12, · · · ,∆Y b
NT
)>, W b

F = diag
(
KH̃ (Zit − z) , · · · ,KH̃ (ZNT − z)

)
and

Z̃b =

 X>12 X>12⊗ (Z12− z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .
On the other hand, and following a similar procedure as before, we propose a backfitting estimator for the within

transformation such as (2.3). Let m̂w (z;H) be the first-step within estimator proposed in (2.11), they define Ÿ b
it =

Ÿit −T−1
∑

T
s=1 X>is m̂w (Zis;H) and replace Ÿit by (2.3) obtaining

Ÿ b
it = X>it m(Zit)+ v̈b

it , i = 1, · · · ,N ; t = 1, · · · ,T, (3.5)

where the error term is

v̈b
it =

1
T

T

∑
s=1

X>is (m̂w (Zis;H)−m(Zis))+ v̈it .

Denote by γ̃w =
(

γ̃>w0
γ̃>w1

)>
the d(1+q)-vector that minimizes the following problem

N

∑
i=1

T

∑
t=1

(
Ÿ b

it −X>it γw0 −X>it ⊗ (Zit − z)> γw1

)2
KH̃ (Zit − z) , (3.6)

we propose as estimator of m(z) and Dm(z), m̃w(z; H̃) = γ̃w0 and vec(D̃wm(z; H̃)) = γ̃w1 , respectively, of the form

m̃w

(
z; H̃
)
= γ̃w1 = e>1

(
Z̃b

wW b
w Z̃b

w

)−1
Z̃b>

w W b
wŸ b, (3.7)

where Ÿ b =
(
Ÿ b

11, · · · ,Ÿ b
NT
)>, W b

w = diag
(
KH̃ (Z11− z) , · · · ,KH̃ (ZNT − z)

)
and

Z̃b
w =

 X>11 X>11⊗ (Z11− z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .
In order to show that these two backfitting estimators achieve optimal rates of convergence and furthermore, they

are oracle efficient, we need the sampling scheme conditions established in Assumptions A.1-A.3 and the smoothness
and boundedness conditions already considered in Assumptions A.4-A.7, A.8-A.9 and A.11-A.12. Furthermore, as
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they are obtained via a one-step backfitting algorithm we need to ensure that both bias and variance rates of the first-
step estimates, m̂F(z;H) and m̂w(z;H), are uniform. Therefore, following Masry (1996) we impose some assumptions
about the bandwidth H̃ and its relationship with H. This is already considered in Assumptions A.14 and A.15.

Let diagd(tr(Hmr (z) H̃)) be the diagonal matrix of elements tr(Hmr (z) H̃) and id a d×1 unit vector, Rodriguez-
Poo and Soberon (2013a) obtain the following asymptotic expressions for the backfitting first-differences estimator
(3.4),

Theorem 3 Assume conditions A.1-A.9 and A.14-A.15 holds, then, as N tends to infinity and T is fixed we get

E(m̃F(z; H̃)|X)−m(z) =
1
2

µ2 (K)diagd(tr(Hmr (z) H̃))ıd +op(tr(H̃))

and

Var(m̃F(z; H̃)|X) = 2σ2
v R(K)

NT
∣∣∣H̃∣∣∣1/2 B−1

XX (z)(1+op(1)) ,

where

BXX (z) = E
[

XitX>it
∣∣∣Zit = z

]
fZit (z).

Under similar conditions, in Rodriguez-Poo and Soberon (2013b) are proved the following asymptotic results for
the backfitting within estimator (3.4):

Theorem 4 Assume conditions A.1-A.7, A.11-A.12 and A.14-A.15 hold, then as N→ ∞ and T remains to be fixed we
obtain

E(m̃w(z; H̃)|X)−m(z) =
1
2

µ2(K)diagd(tr(Hmr(z)H̃))ıd +op(tr(H̃))

and

Var( m̃w(z; H̃)
∣∣∣X) = σ2

v R(K)

NT
∣∣∣H̃∣∣∣1/2 B−1

XX (z)BẌ Ẍ (z)BXX (z)−1 (1+op(1)) ,

where

BXX (z) = E
[

XitX>it
∣∣∣Zit = z

]
fZit (z),

BẌ Ẍ (z) = E
[

Ẍit Ẍ>it
∣∣∣Zit = z

]
fZit (z).

With the aim of itemizing the asymptotic behavior of these two backfitting estimators, m̃F(z; H̃) and m̃w(z; H̃),
we analyze in detail the bias and variance-covariance matrix of Theorems 3 and 4. On one hand, in both cases the
conditional bias is very close to the standard one of the local polynomial regression estimators. Thus, as each en-
try of Hmr(z) is a measure of the curvature of m(·) at z in a particular direction, we can intuitively conclude that
these estimators show a higher conditional bias as far as the unknown function exhibits a higher curvature and more
smoothness. On the other hand, regarding to the conditional variance we observe that both estimators achieve the
optimal rate of convergence, but they show different constants. Thus, while the first-differences estimator exhibits a
variance-covariance matrix which increases when the smoothness becomes lower or the data becomes sparse near z,
the conditional variance of the within estimator is also influenced by the time-demeaned covariates BẌ Ẍ (z).

In this way, it is shown that direct estimation techniques allow obtaining estimators with different rates of con-
vergence that depend on the type of differencing transformation. Meanwhile, one-step backfitting procedures provide
estimators that achieve the optimal rate of convergence for both transformations. In this situation, the rate of con-
vergence should not be used as an efficiency criterion between both backfitting estimators and, in order to analyze
efficiency, it is necessary to study their finite sample behavior.
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4 Monte Carlo experiment

In this section, we conduct an extensive Monte Carlo simulation with the aim of comparing the small sample behavior
of both first-differences and within non-parametric estimators introduced in Sections 2 and 3.

In a fully parametric context, it is well-known that, under strict exogeneity assumptions the performance of both
estimators is going to depend on the stochastic structure of the vit ’s random errors. Furthermore, as it appears in
Theorems 1 and 2, the asymptotic bound for the variance term of the first-differences estimator is O(1/NT |H|),
whereas the corresponding term for the within estimator is O(1/NT |H|T/2). Given that both estimators exhibit the
same expression for the bias, for different values of T , one might expect a different behavior in their Average Mean
Square Error (AMSE). On the opposite, for the one-step backfitting estimators proposed in Section 3 their performance
should be affected by T in the same direction, since both bias and variance terms are now of the same order, i.e.
O(tr(H̃)) and O(1/NT |H̃|1/2), respectively. Finally, the asymptotic bounds in the non-parametric setting reflect other
factors that are also of interest when analyzing the AMSE behavior of both estimators such as the dimension of q or
the rate at which the AMSEs tend to zero as N increases.

In this situation, the main goal that we pursue with this simulation experiment is to establish whether the behavior
of these estimators depends on the stochastic structure of the error term and to determine if these results hold when
facing the curse of dimensionality problem and for different number of time observations. Finally, it is also of interest
to check wether the performance of the one-step backfitting estimator is, as expected, better than the corresponding
for the local linear regression estimator in small samples sizes.

We propose a Monte Carlo experiment in which observations are generated from the following varying coefficient
panel data model:

Yit = X>ditm(Zqit)+µqi + vit , i = 1, · · · ,N ; t = 1, · · · ,T, d,q = 1,2, (4.1)

where Xdit and Zqit are random variables generated such that Xdit = 0.5ζdit +0.5ξdit (ζ1it and ζ2it are i.i.d. N(0,1)),
Zqit = ωqit +ωqi(t−1) (ω1it and ω2it are i.i.d. N(0,1)) and we consider three different cases of study:

(q = 1 d = 1) : Yit = X1itm(Z1it)+µ1i + vit ,

(q = 2 d = 1) : Yit = X1itm(Z1it ,Z2it)+µ2i + vit ,

(q = 1 d = 2) : Yit = X1itm(Z1it)+X2itm(Z1it)+µ1i + v1it ,

where the chosen functional forms are m1 (Z1it)= sin(Z1itΠ), m1 (Z1it ,Z2it)= sin
( 1

2 (Z1it +Z2it)Π
)

and m2 (Z1it)=

exp
(
−Z2

1it
)
.

Treating the cross-sectional heterogeneity as the fixed effect, we allow that the individual effect can be correlated
with one or more of the covariates. In particular, the dependence between µqi and Zqit is imposed by generating
µqi = c0Zi·+ ui and Zi· = (T Q)−1

∑
Q
q=1 ∑

T
t=1 Zqit , where ui is an i.i.d. N(0,1) random variable and i = 2, · · · ,N. The

correlation between the fixed effects and some of the explanatory variables of the model is controlled by c0 = 0.5.
Also, let εit be an i.i.d. N(0,1) and vit a scalar random variable, for each model we work with the following three
different specifications of the error term:

a) vit = εit ;
b) vit follows a random walk, such us vit = 1+ vi(t−1)+ εit ;
c) vit is generated as stationary AR(1) process of the form vit = ρvi(t−1)+ εit .

In each experiment we use 1000 Monte Carlo replications (M). The number of period (T ) is varied to be 3 and 5,
whereas the number of cross-sections (N) takes the values 50, 100 and 150. For the calculations we use a Gaussian
kernel and the bandwidth is chosen as Ĥ = ĥI, and ĥ = σ̂z(NT )−1/5, where σ̂z is the sample standard deviation of{

Zqit
}N,T

i=1,t=1.
In order to state the performance of the first-differences and within estimator, we use the Mean Square Error (MSE)

as a measure of their estimation accuracy. Thus, denoting the ϕth replication by the subscript ϕ ,

MSE(m̂(z; Ĥ)) =
1
M

M

∑
ϕ=1

E

( d

∑
r=1

(m̂ϕr(z; Ĥ)−m`r(z))Xit,ϕr

)2
 ,

which can be approximated by the Averaged Mean Squared Error (AMSE),

AMSE(m̂(z; Ĥ)) =
1
M

M

∑
ϕ=1

1
NT

N

∑
i=1

T

∑
t=1

(
d

∑
r=1

(m̂ϕr(z; Ĥ)−mϕr(z))Xit,ϕr

)2

.



10 Juan M. Rodriguez-Poo, Alexandra Soberón

Simulation results are summarized in Tables 1-9 that are relegated to the Appendix. Specifically, Tables 1-3 contain
the AMSE obtained for each of the three varying coefficient specifications proposed in the simulation when the error
term is i.i.d., Tables 4-6 focus on the results for the random walk case, whereas Tables 7-9 contain the simulation
results when the idiosyncratic errors are generated according to an AR(1) stationary structure. In every table, we
present results for the two differencing estimators, m̂F(z;H) and m̂w(z;H), and for both one-step backfitting estimators.
We consider the cases when T = 3,5 and N = 50,100,150. Note that our asymptotic results hold as N becomes larger
whereas T is kept fixed.

Based on these simulation results, we first try to determine how the structure of the stochastic error term affects
the AMSE behavior of the proposed estimators. Later, we focus on the impact that both curse of dimensionality and
number of time observations have on the behavior of the AMSE. We conclude the analysis by checking whether,
regardless of the structure of the error term, the one-step backfitting estimator exhibits a better performance than the
local linear regression estimator, as we expected from their statistical properties.

According to our theoretical findings and taking into account some standard results in fully parametric settings, in
the i.i.d. case, the within estimator should perform better, in terms of the AMSE, than the first-differences one, whereas
the later should be preferred when the disturbance follows a random walk. A quick look to Table 1 confirms in general
our theoretical findings. As expected, as N increases all AMSEs tend to zero but the rates of convergence are not
similar. In fact, if we look at the relative AMSE, defined as AMSE(m̂F(z; Ĥ))/AMSE(m̂w(z; Ĥ)), we find out that the
rate at which the AMSE of the within estimator converges to zero is faster than the convergence of the first-differences
estimator. Therefore, in this stochastic setting, the within estimator is preferred.

On the other hand, for the random walk case, some standard results for the fully parametric case point out that
first-differences estimator should exhibit a better performance. This is true if we compare the AMSE of the first-
differences estimator in Tables 1−3 against their counterparts in Tables 4−6. In all cases, the AMSE is smaller when
the idiosyncratic errors are generated as a random walk.

Finally, in Tables 7− 9 we find out that when the random errors follow an autoregressive process AR(1), the
within estimator performs better than the first-differences estimator in terms of their AMSE, although its performance
becomes worse if we compare it against other error settings. Moreover, the results of the first-differences estimator are
better than the other ones obtained in the random walk setting. This is somehow unexpected.

Now, to establish the impact of the curse of dimensionality on the performance of the proposed estimators we
compare the AMSE of m̂F(z;H) and m̂w(z;H) when q = 1 (Tables 1, 4 and 7), against their counterparts when q = 2
(Tables 2, 5 and 8). As expected, we point out that when q = 2 the relative performance in terms of the AMSE of the
proposed estimators is worse in all error settings, although the within estimator is the most affected by the curse of
dimensionality. When the idiosyncratic error term is i.i.d. the relative AMSE for N = 150 and T = 3 goes from 4.463
(q = 1) to 1.688 (q = 2), whereas for the random walk case the relative AMSE for N = 150 and T = 3 goes from 3.228
(q = 1) to 1.190 (q = 2). The same can be said when the error term is generated according to an AR(1) stationary
structure. Finally, the results shown in Tables 3, 6 and 9 indicate that the d-dimension of the vector of covariates X
does not affect the asymptotic behavior of the estimators.

On the contrary, if we focus now on the impact of the number of time observations we find out that the within
estimator m̂w(z;H) is much more sensitive to T than the other. As we can realize in all tables, as the number of time
observations (T ) increases the relative performance of m̂w(z;H) becomes worse. In Table 1, for example, if we set
N = 150 its relative AMSE goes from 4.46 (T = 3) to 3.33 (T = 5). This effect can be explained in terms of the
asymptotic bounds of both estimators. In Tables 7−9 we can see that the within estimator is much more sensitive to
the size of T than the first-differences estimator when the random error term follows an autoregressive structure.

As a summary, the results of m̂F(z;H) are much more stable across different specifications of the error term.
The same cannot be said about the m̂w(z;H). In fact, it performs quite well with q = 1 and under i.i.d. or an AR(1)
stationary process, but it shows a much worse performance when the errors are generated following a random walk
process. Therefore, we can conclude that the within estimator is preferred when the idiosyncratic error term is i.i.d.
or exhibits an autoregressive structure, whereas when vit follows a random walk the first-differences estimator has a
better performance.

Finally, in all error settings, the performance of the one-step backfitting estimator is better than its corresponding
local linear regression estimator. However, the improvement is higher for the within estimator. Also, as we expected,
the curse of dimensionality is overridden. This is of course the main reason why we have applied this second stage
estimation procedure. Furthermore, the rate at which the AMSE tends to zero for both estimators seems to be faster,
according to the predictions of the asymptotic results. However, for small sample sizes, although both estimators
do have the same rates of convergence the constants are different. This is considered in simulations under different
scenarios of the error terms. Hence, under the i.i.d. and the AR(1) setting the first-step backfitting algorithm of the
within estimator performs better than the first-differences one. This can be realized by analyzing the relative AMSE.
On the contrary, under the random walk specification, the performance is better in the opposite sense.

We finish this section by highlighting that as N increases, that is, asymptotically, the AMSE tends to converge
for each estimator under different specifications of the error term. For different values of T , the AMSE of the first-
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differences estimator tends to dominate in terms of the AMSE of the within estimator. This can be also observed by
looking at the relative AMSE values.

5 Conclusions

Recently, some new techniques have been proposed for the estimation of semi-parametric within varying coefficient
panel data models. These new techniques fall within the class of the so-called differencing estimators. In particular, we
consider first-differences and within local linear regression estimators. Analyzing their asymptotic properties it turns
out that, keeping the same order of magnitude for the bias term, these estimators exhibit different asymptotic bounds
for the variance. In both cases, the consequences are suboptimal non-parametric rates of convergence. In order to solve
this problem, by exploiting the additive structure of this model, a one-step backfitting algorithm is proposed. Under
fairly general conditions, it turns out that the resulting estimators show optimal rates of convergence and exhibit
the oracle efficiency property. Since both estimators are asymptotically equivalent, it is of interest to analyze their
behavior in small sample sizes. In a fully parametric context, it is well-known that, under strict exogeneity assumptions
the performance of both first-differences and within estimators is going to depend on the stochastic structure of the
idiosyncratic random errors. However, in the non-parametric setting, apart from the previous issues other factors such
as dimensionality or sample size are of great interest. In particular, we would be interested in learning about their
relative Average Mean Square Error under different scenarios. The simulation results basically confirm the theoretical
findings for both local linear regression and one-step backfitting estimators. However, we have found out that within
estimators are rather sensitive to the size of number of time observations.
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Appendix I: assumptions

To analyze the asymptotic distributions of the above estimators we need to establish some assumptions

Assumption A.1 Let (Yit ,Xit ,Zit)i=1,··· ,N;t=1,··· ,T be a set of independent and identically distributed IR1+d+q-random
variables in the subscript i for each fixed t and strictly stationary over t for fixed i.

Assumption A.2 The random errors vit are independent and identically distributed, with zero mean and homoscedas-
tic variance, σ2

v < ∞. They are also independent of Xit and Zit for all i and t. In addition, E |vit |2+δ , for some δ > 0.

Assumption A.3 The unobserved cross-sectional effect, µi, can be arbitrarily correlated with both Xit and/or Zit with
an unknown correlation structure.

Assumption A.4 Let fZ1t (·), fZ1t ,Z1(t−1) (·, ·), fZ1t ,Z1(t−1),Z1(t−2) (·, ·, ·) be respectively the probability density function of
Z1t ,

(
Z1t ,Z1(t−1)

)
and

(
Z1t ,Z1(t−1),Z1(t−2)

)
. All density functions are continuously differentiable in all their arguments

and they are bounded from above and below in any point of their support.

Assumption A.5 Let z an interior point in the support of fZ1t . All second-order derivatives of m1(·),m2(·), · · · ,md(·)
are bounded and uniformly continuous.

Assumption A.6 The q-variate Kernel functions K are compactly supported, bounded kernel such that
∫

uu>K(u)du=
µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0 are scalars and I is the q×q identity matrix. In addi-

tion, all odd-order moments of K vanish, that is
∫

uı1
1 · · ·u

ıq
q K(u)du = 0, for all nonnegative integers ı1, · · · , ıq such that

their sum is odd.

Assumption A.7 The bandwidth matrix H is symmetric and strictly definite positive. Furthermore, each entry of the
matrix tends to zero as N→ ∞ in such a way that N|H| → ∞.

Assumption A.8 Let ‖A‖ =
√

tr (A>A), then E
{
‖XitX>it ‖2

∣∣Zit = z1,Zi(t−1) = z2
}

is bounded and uniformly contin-
uous in its support. Furthermore, let

Xit =
(

X>it X>i(t−1)

)>
and ∆Xit =

(
∆X>it ∆X>i(t−1)

)>
.
Also, the following matrix functions E

(
XitX >

it

∣∣Zit = z1,Zi(t−1) = z2
)
, E
(
XitX >

it

∣∣Zit = z1,Zi(t−1) = z2,Zi(t−2) = z3
)
,

E
(

∆Xit∆X >
it

∣∣Zit = z1,Zi(t−1) = z2
)

and E
(
Xit∆X >

it

∣∣Zit = z1,Zi(t−1) = z2,Zi(t−2) = z3
)

are bounded and uniformly
continuous in their support.
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Assumption A.9 The function E
[

∆Xit∆X>it
∣∣Zit = z1,Zi(t−1) = z2

]
is positive definite for any interior point of (z1,z2)

in the support of fZit ,Zi(t−1) (z1,z2).

Assumption A.10 For some δ > 0, the functions E
{
|Xit∆vit |2+δ

∣∣Zit = z1,Zi(t−1) = z2
}

,
E
{
|Xi(t−1)∆vit |2+δ

∣∣Zit = z1,Zi(t−1) = z2
}

and E
{
|∆Xit∆vit |2+δ

∣∣Zit = z1,Zi(t−1) = z2
}

are bounded and uniformly
continuous in any point of their support.

Assumption A.11 The function E
(

Ẍit Ẍ>it
∣∣Zi1 = z, · · · ,ZiT = z

)
is definite positive for any interior point of (z1,z2, · · · ,zT )

in the support of fZi1,··· ,ZiT (z1,z2, · · · ,zT ).

Assumption A.12 Let ‖A‖=
√

tr (A>A), then E
{
‖XitX>it ‖2

∣∣Zi1 = z, · · · ,ZiT = z
}

is bounded and uniformly continu-

ous in its support. Furthermore, let Xit =
(

X>it X>is
)> the following matrix functions E

(
XitX >

it

∣∣Zi1 = z1, · · · ,ZiT = zT
)
,

E
(

Ẍit Ẍ>it
∣∣Zi1 = z1, · · · ,ZiT = zT

)
and E

(
ẌitX >

it

∣∣Zi1 = z1, · · · ,ZiT = zT
)

are bounded and uniformly continuous in
their support.

Assumption A.13 The functions E
{
|Xitvit |2+δ |Zi1 = z, · · · ,ZiT = z

}
, E
{
|Xisvit |2+δ |Zi1 = z, · · · ,ZiT = z

}
and

E
{∣∣Ẍitvit

∣∣2+δ |Zi1 = z, · · · ,ZiT = z
}

are bounded and uniformly continuous in any point of their support, for some
δ > 0.

Assumption A.14 The bandwidth matrix H̃ is symmetric and strictly definite positive. Furthermore, each entry of the
matrix tends to zero as N tends to infinity in such a way that N

∣∣∣H̃∣∣∣→ ∞.

Assumption A.15 The bandwidth matrices H and H̃ must fulfill that N |H|
∣∣∣H̃∣∣∣/log(N)→∞, and tr (H)/tr

(
H̃
)
→ 0

as N tends to infinity.

Appendix II: Monte Carlo results

The results of the Monte Carlo experiments are summarized in the following figures.
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