
Article No. ectj??????
Econometrics Journal (2013), volume 10, pp. 1–33.

Direct Semiparametric Estimation of Fixed Effects Panel

Data Varying Coefficient Models

Juan M. Rodriguez-Poo† and Alexandra Soberon‡

†Departament of Economics, Universidad de Cantabria,

Avda. Los Castros s/n, E-39005, Santander, Spain

E-mail: rodrigjm@unican.es, soberonap@unican.es

Received: July 2012

Summary In this paper we present a new technique to estimate varying coefficient models

of unknown form in a panel data framework where individual effects are arbitrarily correlated

with the explanatory variables in an unknown way. The estimator is based in first differences

and then a local linear regression is applied to estimate the unknown coefficients. To avoid a

non-negligible asymptotic bias, we need to introduce a higher dimensional kernel weight. This

enables us to remove the bias at the price of enlarging the variance term and hence, achieving

a slower rate of convergence. To overcome this problem we propose a one step backfitting

algorithm that enables the resulting estimator to achieve optimal rates of convergence for this

type of problems. It exhibits also the so called oracle efficiency property. We also obtain the

asymptotic distribution. Since the estimation procedure depends on the choice of a bandwidth

matrix, we also provide a method to compute this matrix empirically. Monte Carlo results

indicates good performance of the estimator in finite samples.

Keywords: Varying coefficients model, fixed effects, panel data, local linear regression, oracle

efficient estimator.

1. INTRODUCTION

This paper is concerned with the estimation of varying coefficient panel data models. This type

of specification consists in a linear regression model where regression coefficients are assumed to

be varying depending on some exogenous continuous variables proposed by economic theory. For

example, in the so called problem of returns to education, when estimating elasticity of wages

to changes in education, it has been pointed out (see Schultz (2003)) that marginal returns to

education might vary with the level of working experience. Therefore, conditionally on a level of

education, the elasticity is going to change according with the level of working experience.

Within this context, the issue of potential misspecification of the functional form of the varying

coefficients has motivated in empirical studies the use of nonparametric estimation techniques. In

most part of cases, the estimation of the functional form of the coefficients has been performed

through standard techniques such as spline smoothers, series estimators or local polynomial

regression estimators (see Su and Ullah (2011)). Although in most cases, a direct application of

the previous techniques rends correct inference results, it is true that not much attention has been

paid to the asymptotic behavior of these estimators under non-standard settings. Unfortunately,

some of these settings are rather relevant in empirical analysis of panel data models. One clear
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2 J.M. Rodriguez-Poo and A. Soberon

example is presence in the econometric model of some unobserved explanatory variables that,

although not varying along time, can be statistically correlated with other explanatory variables

in the model (fixed effects). The presence of heterogeneity of unknown form that is correlated

with some explanatory variables is not an easy problem to deal with. In fact, under this type

of heterogeneity any estimation technique suffers of the so called incidental parameters problem

(Neyman and Scott (1948)).

In order to obtain a consistent estimator of the parameters of interest one possible solution

is to transform the model in order to remove the heterogeneity of unknown form. To be more

precise, consider a linear panel data model where the heterogeneity µi is arbitrarily correlated

with the covariates Xit and/or Zit:

Yit = XT
itm (Zit) + µi + υit, i = 1, · · · , N ; t = 1, · · · , T. (1.1)

Furthermore, the function m (z) is unknown and needs to be estimated and the υit are random

errors. It is clear that, any attempt to estimate directly m(·) through standard nonparametric

estimation techniques will rend inconsistent estimators of the underlying curve. The reason is

that E (µi|Xit = x, Zit = z) 6= 0. A standard solution to this problem is to remove µi from

(1.1) by taking a transformation and then, estimate the unknown curve through the use of a

nonparametric smoother. There exists several approaches to remove these effects. The simplest

one is probably to take first differences, i. e.

∆Yit = XT
itm (Zit)−XT

i(t−1)m
(
Zi(t−1)

)
+ ∆υit, i = 2, · · · , N ; t = 2, · · · , T. (1.2)

Direct nonparametric estimation of m (·) has been till now considered as rather cumbersome (see

Su and Ullah (2011)). The reason is that, for each i, the conditional expectation E
(

∆Yit|Zit, Zi(t−1),

Xit, Xi(t−1)

)
in (1.2) contains a linear combination of XT

itm (Zit) for different t. This can be con-

sidered as an additive function with the same functional form at a different times.

In some special cases consistent estimation of the quantities of interest have been provided

in the literature. For the unrestricted model XT
itm (Zit) ≡ m (Xit, Zit), (1.2) becomes a fully

nonparametric additive model

∆Yit = m (Xit, Zit)−m
(
Xi(t−1), Zi(t−1)

)
+ ∆υit, i = 2, · · · , N ; t = 2, · · · , T.

In this case, Henderson et al. (2008) propose an iterative procedure based in a profile like-

lihood approach whereas in Mammen et al. (2009) is considered the consistent estimation of

nonparametric additive panel data models with both time and individual effects via a smoothed

backfitting algorithm. Furthermore, for XT
itm (Zit) ≡ g (Zit) + X̃T

itβ0, where Xit =
(

1, X̃T
it

)T
and m (Zit) = (g (Zit) , β0)

T
for some real valued g(·) and a vector β0, the regression function in

(1.2) becomes a semiparametric partially additive model

∆Yit = βT0 ∆X̃it + g (Zit)− g
(
Zi(t−1)

)
+ ∆υit, i = 2, · · · , N ; t = 2, · · · , T.

Qian and Wang (2012) consider the marginal integration estimator of the nonparametric additive

component resulting from the first differencing step, i.e. G
(
Zit, Zi(t−1)

)
= g (Zit)− g

(
Zi(t−1)

)
.

The estimation procedure that we introduce in our paper mainly generalizes the previous re-

sults to a rather general varying coefficient model as the one specified in (1.1) in a framework
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Direct Semiparametric Estimation of Fixed Effects 3

where N →∞ but T remains fixed. It is based in applying a local approximation to the additive

function XT
itm (Zit)−XT

i(t−1)m
(
Zi(t−1)

)
. The same idea was proposed in a completely different

context in Yang (2002). Since the estimator is based in local approximation properties, we inves-

tigate the behavior of the bias remainder term under fairly general conditions. This term, which

is negligible in standard local linear regression techniques (see Fan and Gijbels (1995b)), requires

much more attention when dealing with first difference estimators. In fact, as it has been already

pointed out in Lee and Mukherjee (2008), direct application of local linear regression techniques

to first differencing transformations in panel data models rends to biased estimators and the

bias does not degenerate even with large samples. Using a higher dimensional kernel weight,

our estimation technique overcomes the problem of non-vanishing bias although, as expected,

the variance term becomes larger. The same phenomena appears also in Henderson et al. (2008)

where their final estimator already shows even a larger variance.

In order to obtain the standard rates of convergence for this type of problems, that is, to reduce

the variance holding the bias constant, we propose to use the developments introduced in Fan and

Zhang (1999). Their core idea was that the variance can be reduced by further smoothing, but

bias can not be reduced by any kind of smoothing. We apply these ideas to our problem by using

a one step backfitting algorithm. Since it has the form of an additive model we also show that

our estimator is oracle efficient, that is, the variance-covariance matrix of any of the components

of our estimator is the same asymptotically as if we would know the other component. Finally,

we also propose a data driven method to select the bandwidth parameter.

As it was already pointed out before, to remove the heterogeneous effects other transformations

are available in the literature. To our knowledge, for model (1.1), estimation of m(·) has been

proposed in Sun et al. (2009) by the use of the so called Least Squares Dummy Variable Approach.

They estimate m(·) through the following alternative specification

Yit = XT
itm (Zit) +

N∑
j=1

µidij + υit, i = 1, · · · , N ; t = 1, · · · , T, (1.3)

where dij = 1 if i = j and 0 otherwise. Based in this model they propose a least-squares

method combined with a local linear regression approach that produces a consistent estimator

of the unknown smoothing coefficient curves. Compared to our method, their estimator exhibits

a larger bias. In fact, their bias presents two terms. One results from the local approximation of

m(·). It is also present in our estimator. The second term results from the unknown fixed effects

and it is zero only in the case that they add the additional (strong) restriction that
∑
i µi = 0.

This type of restrictions is also used in Mammen et al. (2009).

The rest of the paper is organized as follows. In Section 2 we set up the model and the estima-

tion procedure. In Section 3 we study its asymptotic properties and we propose a transformation

procedure that provides an estimator that is oracle efficient and achieves optimal rates of conver-

gence. Section 4 shows how to estimate the bandwidth matrix empirically and finally in Section

5 we present some simulation results. Finally, Section 6 concludes the paper. The proofs of the

main results are collected in the Appendix.
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2. STATISTICAL MODEL AND ESTIMATION PROCEDURE

To illustrate our technique we start by the univariate case and further we will present our results
for the multivariate case. Then consider (1.2) with d = q = 1. In this case, for any z ∈ A, where
A is a compact subsect in a nonempty interior of IR, one has the following Taylor expansion

Xitm (Zit)−Xi(t−1)m
(
Zi(t−1)

)
≈ m (z) ∆Xit +m′ (z)

[
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

)]
+

1

2
m′′ (z)

[
Xit (Zit − z)2 −Xi(t−1)

(
Zi(t−1) − z

)2]
+ · · ·+ 1

p!
m(p) (z)

[
Xit (Zit − z)p −Xi(t−1)

(
Zi(t−1) − z

)p]
≡

p∑
λ=0

βλ
[
Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1) − z

)λ]
,

which suggests that one estimates m (z), m′ (z), · · · , m(p) (z) by regressing the ∆Yit’s on the

terms Xit (Zit − z)λ−Xi(t−1)

(
Zi(t−1) − z

)λ
with kernel weights. Then, the quantities of interest

can be estimated using a locally weighted linear regression (see Fan and Gijbels (1995b), Ruppert

and Wand (1994) or Zhan-Qian (1996)),

N∑
i=1

T∑
t=2

{
∆Yit − β0∆Xit − β1

[
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

)]}2
Kh (Zit − z)Kh

(
Zi(t−1) − z

)
,

(2.4)

where K is a bivariate kernel such that K(u, v) = K(u)K(v), where for each u, v,∫
K(u)du = 1 and Kh(u) =

1

h
K (u/h) ,

and h is a bandwidth. Denote by β̂0 and β̂1 the minimizers of (2.4). The above exposition suggests

as estimators for m(·) and m′ (·), m̂h(z) = β̂0 and m̂′h(z) = β̂1 respectively.

In particular, for the case of a local constant approximation (p = 0) (i.e. Naradaya-Watson

kernel regression estimator) the estimator for m(z) has the following closed form

β̂0 =

∑N
i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z)∆Xit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z) (∆Xit)

2
, (2.5)

and in the local linear regression case (p = 1) we have(
β̂0

β̂1

)
=

(∑
it

Kh(Zit − z)Kh(Zi(t−1) − z)Z̃itZ̃Tit

)−1∑
it

Kh(Zit − z)Kh(Zi(t−1) − z)Z̃it∆Yit

(2.6)

where Z̃it is a 2× 1 vector such that

Z̃Tit =
(

∆Xit, Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

) )
, i = 1, · · · , N ; t = 2, · · · , T. (2.7)

Note that in (2.4) we propose a bivariate kernel that also contains Zi(t−1) instead of considering

only Zit. The reason is that, if we consider only a kernel around Zit, the transformed regression

equation (1.2) would be originally localized around Zit without considering all other values.

Consequently, the distance between Zis (for s 6= t) and z cannot be controlled by the fixed

bandwidth parameter and so that the transformed remainder terms cannot be negligible. The

consequence of all that would be a nondegenerated bias in this type of local linear estimators that

it is removed by considering a local approximation around the pair
(
Zit, Zi(t−1)

)
. In Theorem
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3.1 we will show that the local linear estimator with the bivariate kernel shows the same rate as

standard local linear smoothers estimators. That is, with a bias of order O(h2). Unfortunately,

the well known trade-off between bias and variance term appears and, although the introduction

of this bivariate kernel drops the bias out, it enlarges the variance term that becomes of order

O( 1
NTh2 ). This is also emphasized in Theorem 3.1. Of course this affects the achievable rate of

convergence for this type of problems that slows down at the rate
√
NTh.

In order to recover the desirable rate of
√
NTh we propose a transformation that is basically

a one step backfitting algorithm. Let us denote by ∆Y
(1)
it the following expression

∆Y
(1)
it = ∆Yit +m(Zi(t−1))Xi(t−1), i = 1, · · · , N ; t = 2, · · · , T. (2.8)

By substituting (1.2) into (2.8) we get

∆Y
(1)
it = m(Zit)Xit + ∆vit, i = 1, · · · , N ; t = 2, · · · , T. (2.9)

As it can be realized from (2.9), estimation of m (·) is now a one dimensional problem, and

therefore we can use again a local linear least squares estimation procedure with univariate

kernel weights. However, there is still a problem that needs to be solved. In (2.8) the term

m(Zi(t−1)) is unknown. Then, we replace it by the initial local linear regression estimator, i.e.

∆Ỹ
(1)
it = ∆Yit + m̂h

(
Zi(t−1)

)
Xi(t−1), having the following regression model

∆Ỹ
(1)
it = m(Zit)Xit + νit, i = 1, · · · , N ; t = 2, · · · , T, (2.10)

where

νit =
{
m̂h

(
Zi(t−1)

)
−m

(
Zi(t−1)

)}
Xi(t−1) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T.

By doing so, we can estimate m (·) through the following weighted local linear regression:

N∑
i=1

T∑
t=2

{
∆Ỹ

(1)
it − γ0Xit − γ1Xit (Zit − z)

}2

Kh̃ (Zit − z) . (2.11)

Let γ̃0 and γ̃1 be the minimizers of (2.11). Then, as before, we propose as estimators for m(·)
and m′(·), m̃h̃(z) = γ̃0 and m̃′

h̃
(z) = γ̃1 respectively.

Now, once our estimation procedure has been fully explained for the univariate case, we proceed

to extend our results for the multivariate case. That is for d 6= q 6= 1 in (1.1). In this case, the

quantities of interest can be estimated using a multivariate locally weighted linear regression,

N∑
i=1

T∑
t=2

{
∆Yit − Z̃Titβ

}2

KH (Zit − z)KH

(
Zi(t−1) − z

)
, (2.12)

where we denote by

Z̃Tit =
[
∆XT

it , XT
it ⊗ (Zit − z)T −XT

i(t−1) ⊗ (Zi(t−1) − z)T
]

a 1× d(1 + q) vector, K is now a q-variate kernel such that∫
K(u)du = 1 and KH(u) =

1

|H|1/2
K
(
H−1/2u

)
,

where H is a q × q symmetric positive definite bandwidth matrix and finally, we denote by

© Royal Economic Society 2013



6 J.M. Rodriguez-Poo and A. Soberon

β̂ =
(
β̂T0 β̂T1

)T
a d(1+q)-vector that minimizes (2.12). Again, the above exposition suggests as

estimators for m(z) and Dm (z) = ∂m(z)
∂z , m̂(z;H) = β̂0 and vec

(
D̂m(z;H)

)
= β̂1 respectively.

Dm(z) is a d × q-matrix of partial derivatives of the d-function m(z) with respect the elements

of the the q × 1 vector z.

It is easy to verify that the solution to the minimization problem in (2.12) can be written in

matrix form as (
β̂0

β̂1

)
=
(
Z̃TWZ̃

)−1

Z̃TW∆Y, (2.13)

where

W = diag
{
KH(Z12 − z)KH(Z11 − z), ...,KH(ZNT − z)KH(ZN(T−1) − z)

}
,

∆Y = [∆Y12, ...,∆YNT ]T ,

and

Z̃ =


∆XT

12 XT
12 ⊗ (Z12 − z)T −XT

11 ⊗ (Z11 − z)T
...

...

∆XT
NT XT

NT ⊗ (ZNT − z)T −XT
N(T−1) ⊗ (ZN(T−1) − z)T

 .
The local weighted linear least squares estimator of m(z) is then defined as

m̂(z;H) = eT1

(
Z̃TWZ̃

)−1

Z̃TW∆Y, (2.14)

where e1 = (Id
...0dq×d) is a d(1 + q)× d selection matrix, Id is a d× d identity matrix and 0dq×d a

dq×d matrix of zeros. Note that the dimensions of W and Z̃ are respectively N(T−1)×N(T−1)

and N(T − 1)× d(1 + q).

Finally, there are several reasons to chose local linear least squares estimators against other can-

didates. First, the form in (2.14) suggests that this estimator is found by fitting a plane to the data

using weighted least squares. The weights are chosen according to the kernel and the bandwidth

matrix H. As it is already discussed in Ruppert and Wand (1994) if a Gaussian kernel with (pos-

sibly) compact support is chosen, then the weight given to Zit is the value of the Gaussian density

with mean Zit − z which has an ellipsoidal contour of the form (Zit − z)T H−1 (Zit − z) = c,

for c > 0. Clearly, the farther from z is Zit the less weight it receives. However, H controls

both the size and orientation of the ellipsoids at a given density level and therefore it controls

also the amount and direction of the weights. Often, instead of taking a matrix H, we adopt a

simpler form H = diag{h2
1, · · · , h2

q}. If we have a diagonal bandwidth matrix, this means that

the ellipsoids have their axes in the same direction as the coordinate axes, whereas for a general

H matrix they will correspond to the eigenvectors of H and, depending on the shape of m(·),
there are situations where having a full bandwidth matrix is advantageous. Another important

advantage of local linear least squares kernel estimators is that the asymptotic bias and variance

expressions are particularly appealing and appear to be superior to those of Naradaya-Watson or

other nonparametric estimators. In particular, Fan (1993) shows that the local linear least squares

estimator has an important asymptotic minimax property. Furthermore, unlike the Naradaya-
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Watson or other nonparametric estimators, the bias and variance of (2.14) near the boundary of

the density of Z are of the same order of magnitude as in the interior. That is a very interesting

property because, in applications, the boundary region might comprise a large proportion of the

data.

3. ASYMPTOTIC PROPERTIES AND THE ORACLE EFFICIENT ESTIMATOR

In this section we investigate some preliminary asymptotic properties of our estimator. In order

to do so, we need the following assumptions

Assumption 3.1. Let (Yit, Xit, Zit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically dis-

tributed IRd+q+1-random variables in the subscript i for each fixed t and strictly stationary

over t for fixed i. They are a sample following (1.1). Furthermore, let fZ1t
(·), fZ1t,Z1(t−1)

(·, ·),

fZ1t,Z1(t−1),Z1(t−2)
(·, ·, ·) be respectively the probability density functions of Z1t,

(
Z1t, Z1(t−1)

)
and(

Z1t, Z1(t−1), Z1(t−2)

)
. All density functions are continuously differentiable in all their arguments

and they are bounded from above and below in any point of their support.

Assumption 3.2. The random errors vit are independent and identically distributed, with zero

mean and homoscedastic variance, σ2
v < ∞. They are also independent of Xit and Zit for all i

and t. Furthermore, E |vit|2+δ
<∞, for some δ > 0.

Assumption 3.3. µi can be arbitrarily correlated with both Xit and Zit with unknown correlation

structure.

Assumption 3.4. Let ‖A‖ =
√
tr (ATA), then E

{
‖XitX

T
it‖2

∣∣Zit = z1, Zi(t−1) = z2

}
is bounded

and uniformly continuous in its support. Furthermore, let Xit =
(
XT
it XT

i(t−1)

)T
and ∆Xit =(

∆XT
it ∆XT

i(t−1)

)T
. Also, the following matrix functions E

(
XitX Tit

∣∣Zit = z1, Zi(t−1) = z2

)
,

E
(
XitX Tit

∣∣Zit = z1, Zi(t−1) = z2, Zi(t−2) = z3

)
, E

(
∆Xit∆X Tit

∣∣Zit = z1, Zi(t−1) = z2

)
and

E
(
Xit∆X Tit

∣∣Zit = z1, Zi(t−1) = z2, Zi(t−2) = z3

)
are bounded and uniformly continuous in their

support.

Assumption 3.5. The function E
[
∆Xit∆X

T
it

∣∣Zit = z1, Zi(t−1) = z2

]
is positive definite for any

interior point of (z1, z2) in the support of fZit,Zi(t−1)
(z1, z2).

Assumption 3.6. For some δ > 0, the functions E
{
|Xit∆vit|2+δ

∣∣Zit = z1, Zi(t−1) = z2

}
,

E
{
|Xi(t−1)∆vit|2+δ

∣∣Zit = z1, Zi(t−1) = z2

}
and E

{
|∆Xit∆vit|2+δ

∣∣Zit = z1, Zi(t−1) = z2

}
are

bounded and uniformly continuous in any point of their support.

Assumption 3.7. Let z be an interior point in the support of fZ1t . All second-order derivatives

of m1 (·) ,m2 (·) , · · · ,md (·) are bounded and uniformly continuous.

Assumption 3.8. The Kernel functions K are compactly supported, bounded kernel such that

© Royal Economic Society 2013



8 J.M. Rodriguez-Poo and A. Soberon∫
uuTK(u)du = µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0 are scalars

and I is the q × q identity matrix. In addition, all odd-order moments of K vanish, that is∫
uι11 · · ·u

ιq
q K(u)du = 0, for all nonnegative integers ι1, · · · , ιq such that their sum is odd.

Assumption 3.9. The bandwidth matrix H is symmetric and strictly definite positive. Further-

more, each entry of the matrix tends to zero as N →∞ in such a way that N |H| → ∞.

As the reader may notice, all assumptions are rather standard in nonparametric regression

analysis of panel data models. Assumption 3.1 establishes standard features about the sample

and data generating process. The individuals are independent and for a fixed individual we allow

for correlation along time. Also other possible time series structures might be considered such as

strong mixing conditions (see Cai and Li (2008)) or nonstationary time series data (see Cai et al.

(2009)). Mixing conditions are usually taken into account to make the covariances of the estimator

tend to zero at a faster rate. In our case this was no needed because our asymptotic analysis

is performed for fixed T . On the other side, nonstationary processes we believe they exceed the

scope of this paper. Note also that marginal densities are assumed to be bounded from above and

below. This assumption can be relaxed at the price of increasing the mathematical complexity

of the proofs.

Assumption 3.2 is also standard for first difference estimators (see Wooldridge (2002) for the

fully parametric case). Furthermore, independence between the vit-errors and the Xit-variables

and/or the Zit-variables is assumed without loss of generality. We could relax this assumption

by assuming some dependence based on second order moments. For example, heteroskedasticity

of unknown form can be allowed and in fact, under more complex structures in the variance-

covariance matrix a transformation of the estimator proposed in You et al. (2010) can be de-

veloped in our setting. This type of assumption also rules out the existence of endogenous ex-

planatory variables and imposes strict exogeneity conditions. If this would be the case then an

instrumental variable approach such as the one proposed in Cai and Li (2008) or Cai and Xiong

(2012) is needed. Assumption 3.3 imposes the so called fixed effects. Note that this assumption

is much weaker than the one introduced in (Sun et al. (2009)) for their Least Squares Dummy

Variable approach to work. Basically they impose a smooth relationship between heterogeneity

and explanatory variables and, to avoid an additional bias term they need
∑
i µi = 0.

Assumptions 3.4 and 3.5 are some smoothness conditions on moment functionals. Assumption

3.6 is the equivalent to a standard rank condition for identification of this type of models.

Assumptions 3.7 to 3.9 are standard in local linear regression estimators (see Ruppert and Wand

(1994)). Finally, all our results hold straightforwardly for the random coefficient setting.

Under these assumptions we now establish some results on the conditional mean and the

conditional variance of the local linear least squares estimator.

© Royal Economic Society 2013



Direct Semiparametric Estimation of Fixed Effects 9

Theorem 3.1. Assume conditions 3.1-3.9 hold, then as N tends to infinity and T is fixed we

obtain

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z)

=
1

2
eT1

(
Z̃TWZ̃

)−1

Z̃TW {Sm1 (z)− Sm2 (z)}

=
1

2
B−1

∆X∆X(z, z)
[
µ2 (Ku)B∆XX(z, z)− µ2 (Kv)B∆XX−1

(z, z)
]
diagr {tr {Hmr (z)H}} id + op (tr {H}) ,

where for r = 1, · · · , d, Hmr (z) is the Hessian matrix of the rth component of m(·), while for

` = 1, 2 the ith element of Sm` is{
Xi(t+1−`) ⊗

(
Zi(t+1−`) − z

)}T Hm(z)
(
Zi(t+1−`) − z

)
.

Furthermore, if µ2 (Ku) = µ2 (Kv) the bias term becomes

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT }−m(z) =
1

2
µ2 (Ku) diagr {tr {Hmr (z)H}} id+op (tr {H}) .

The variance is

V ar {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } =
2σ2

vR (Ku)R (Kv)

NT |H|
B−1

∆X∆X (z, z) {1 + op(1)} ,

where

B∆XX (z, z) = E
[
∆XitX

T
it

∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z) ,

B∆XX−1
(z, z) = E

[
∆XitX

T
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z) ,

B∆X∆X (z, z) = E
[
∆Xit∆X

T
it

∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z) ,

diagr {tr {Hmr (z)H}} stands for a diagonal matrix of elements tr {Hmr (z)H}, for r = 1, · · · , d,

and id is a d× 1 unit vector.

The proof of this result is done in the Appendix. Just to illustrate the asymptotic behavior of

our estimator, we give a result for the case when d = q = 1 and H = h2I. In this case, the above

result can be written as

Corollary 3.1. Assume conditions 3.1-3.8 hold, then, if h→ 0 in such a way that Nh2 →∞
as N tends to infinity and T is fixed we get

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z)

=
1

2
c(z, z)m

′′
(z)h2 + op

(
h2
)
.

where

c(z, z) =
µ2 (Ku)E

[
∆XitXit|Zit = z, Zi(t−1) = z

]
− µ2 (Kv)E

[
∆XitXi(t−1)

∣∣Zit = z, Zi(t−1) = z
]

E
[(
Xit −Xi(t−1)

)2∣∣∣Zit = z, Zi(t−1) = z
] .

Furthermore, if µ2 (Ku) = µ2 (Kv) then the bias term has the following expression

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z) =
1

2
m
′′

(z)h2 + op
(
h2
)
.
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The variance is

V ar {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT }

=
2σ2

vR (Ku)R (Kv)

NTh2fZit,Zi(t−1)
(z, z)E

[(
Xit −Xi(t−1)

)2∣∣∣Zit = z, Zi(t−1) = z
] {1 + op(1)} .

Note that in the standard case that µ2 (Ku) = µ2 (Kv) then we obtain a nice result for the bias.

In fact, the resulting asymptotic bias has the same expression as in the standard local linear

estimator.

As it has already been pointed out in other works the leading terms in both bias and variance

do not depend on the sample and therefore, we can consider such terms as playing the role of

the unconditional bias and variance. Furthermore, we believe that the conditions established on

H are sufficient to show that the other terms are op(1) and therefore it is possible to show the

following result for the asymptotic distribution of m̂(z;H):

Theorem 3.2. Assume conditions 3.1-3.9 hold. Then,√
NT |H| {m̂ (z;H)−m (z)} →d N (b(z), υ(z)) ,

as N tends to infinity and T is fixed, where

b(z) =
1

2
µ2 (Ku) diagr

{
tr
{
Hmd (z)H

√
NT |H|

}}
ıd,

υ(z) = 2σ2
vR (Ku)R (Kv)B−1

∆X∆X (z, z) .

The proof of this result is shown in Appendix.

Note that the rate at which our estimator converges is NT |H|. Under the conditions estab-

lished in the propositions, our estimator is both consistent and asymptotically normal. However,

its rate of convergence is sub-optimal since the lower rate of convergence for this type of estima-

tors is NT |H|1/2. As we already indicated in the previous section, in order to achieve optimality

we propose to reduce the dimensionality of the problem by redefining ∆Yit as in (2.10), now for

the multivariate case,

∆Ỹ
(1)
it = XT

itm (Zit) + νit, i = 1, · · · , N ; t = 2, · · · , T,

where

νit = XT
i(t−1)

{
m̂(Zi(t−1);H)−m

(
Zi(t−1)

)}
+ ∆υit, i = 1, · · · , N ; t = 2, · · · , T. (3.15)

In expression (3.15), m̂(Zi(t−1);H) is the first-step local linear estimator obtained in (2.14). Now

we propose to estimate m (Zit) using a multivariate locally weighted linear regression,

N∑
i=1

T∑
t=2

{
∆Ỹ

(1)
it −

(
XT
itγ0 +XT

it ⊗ (Zit − z)T γ1

)}2

KH̃(Zit − z), (3.16)

where H̃ is a q × q symmetric positive definite bandwidth matrix.
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If we define Z̃
(1)T
it =

[
XT
it XT

it ⊗ (Zit − z)T
]

as a 1× d(1 + q) vector, (3.16) can be written as

N∑
i=1

T∑
t=2

{
∆Y

(1)
it − Z̃

(1)T
it γ

}2

KH̃(Zit − z), (3.17)

where we denote by γ̃ =
(
γ̃T0 γ̃T1

)T
the d(1 + q)-vector that minimizes (3.17). Following the

same reasoning as before we may write

m̃(z; H̃) ≡ γ̃0 = eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)∆Ỹ (1), (3.18)

where ∆Ỹ (1) =
[
∆Ỹ

(1)
12 , ...,∆Ỹ

(1)
NT

]T
, W (1) = diag{KH(Z12 − z), ...,KH(ZNT − z)} and

Z̃(1) =


∆XT

12 XT
12 ⊗ (Z12 − z)T

...
...

∆XT
NT XT

NT ⊗ (ZNT − z)T

.

In order to show the asymptotic properties of this estimator we need to assume the following

about the bandwidth H̃ and its relationship with H:

Assumption 3.10. The bandwidth matrix H̃ is symmetric and strictly definite positive. Fur-

thermore, each entry of the matrix tends to zero as N tends to infinity in such a way that

N
∣∣∣H̃∣∣∣→∞.

Assumption 3.11. The bandwidth matrices H and H̃ must fulfill that N |H|
∣∣∣H̃∣∣∣ / log (N)→∞,

and tr (H) /tr
(
H̃
)
→ 0 as N tends to infinity.

In general for the kernel function and conditional moments and densities we need both smooth-

ness and boundedness conditions already established in assumptions 3.1 to 3.8. They are required

to use uniform convergence results as the ones established in Masry (1996). It is then possible

to show the following result

Theorem 3.3. Assume conditions 3.1-3.8 and 3.10-3.11 holds, then, as N tends to infinity and

T is fixed we get

E
{
m̃(z; H̃)|X11, ..., XNT , Z11, ..., ZNT

}
−m(z) =

1

2
µ2 (Ku) diagr

{
tr
{
Hmr (z) H̃

}}
ıd+op

(
tr
{
H̃
})

and

V ar
{
m̃(z; H̃)|X11, ..., XNT , Z11, ..., ZNT

}
=

2σ2
vR (Ku)

NT
∣∣∣H̃∣∣∣1/2B−1

XX (z) {1 + op(1)} ,

where diagr

{
tr
{
Hmr (z) H̃

}}
stands for a diagonal matrix of elements tr

{
Hmr (z) H̃

}
, for

r = 1, · · · , d, and id is a d× 1 unit vector.
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The proof of the Theorem 3.3 is done in the Appendix.

Finally, focusing on the relevant terms of bias and variance of Theorems 1 and 2 and following

Ruppert and Wand (1994) it can be highlighted that each entry of Hm(z) is a measure of the

curvature of m (·) at z in a particular direction. Thus, we can intuitively conclude that the bias is

increased when there is a higher curvature and more smoothing is well described by this leading

bias term. Meanwhile, in terms of the variance we can conclude that it will be penalized by a

higher conditional variance of Y given Z = z and sparser data near z.

4. BANDWIDTH SELECTION

As the reader can realize from previous sections, the bandwidth matrix H plays a crucial role in

the estimation of the unknown quantity m (·). In fact, as we have learned from the asymptotic

expressions, when choosing H there exists a trade off between the bias and the variance of our

estimator. Consider the simplest case, H = h2I. If we choose h very small, then according to

Corollary 3.1 the bias of our estimator will be reduced (it is of order h2) but at the price of

enlarging the variance (the order of this term is 1/NTh2). This trade off should be solved by

choosing a bandwidth matrix H that minimizes the Mean Square Error (MSE), that is the sum

of the squared bias and variance. There exists many different measures of discrepancy between

the estimator m̂ (·;H) and the function m (·;H). In Härdle (1990), Chapter 5, it can be found a

comprehensive discussion of these measures. For the sake of simplicity, and taking into account

the data generating process in (1.1) we propose the following measure of discrepancy,

MSE (H) = E
[
XT (m̂(Z;H)−m(Z))

]2
.

In this MSE, the expectation is taken over Z1, · · · , Zq; X1, · · · , Xd and m̂(Z;H) is the estimator

defined in (2.14). Therefore, for our problem, we can define the optimal bandwidth matrix Hopt

as the solution to the following minimization problem,

Hopt = arg min
H

MSE (H) = arg min
H

E
[
XT (m̂(Z;H)−m(Z))

]2
.

If Z1, · · · , Zq; X1, · · · , Xd are random variables that are independent of the observed sample

D = (X11, Z11, · · · , XNT , ZNT )
T

, but they share the same distribution with (X11, Z11) it is

straightforward to show that

MSE (H) = E
[
bT (Z) Ω(Z)b (Z) + tr {Ω (Z)V (Z)}

]
, (4.19)

where

b(Z) = E {m̂(Z;H)|D, Z} −m(Z),

V (Z) = Var {m̂(Z;H)|D, Z} , and

Ω(Z) = E
(
XXT |Z

)
.

As it can be realized from the expression above, it has been now formalized the idea of choosing a

bandwidth matrix H that minimizes the MSE, that is the sum of the squared bias and variance.
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Note that, the way we have defined the measure of discrepancy determines, in our case, the

choice of a global bandwidth. That is, we will choose a bandwidth that remains constant with

the location point. Of course, another possibility would be to choose a bandwidth that varies

locally according to this location point. i.e. H (z). In this case, the local MSE criteria would be

MSE (z;H) = E
[
XT (m̂(z;H)−m(z))

]2
,

where now the expectation is taken over X. Müller and Stadtmüller (1987) discussed the issue

of local variable bandwidth for convolution-type regression estimators. Furthermore, Fan and

Gijbels (1992) propose a variable bandwidth for the estimation of local polynomial regression. In

our case, we propose to choose a global bandwidth. The reason is twofold. First, all components in

our model have been assumed to have the same degree of smoothness and second, the use of local

bandwidths, except for the case where the curve presents a rather complicated structure, increases

the computational burden without much improvement in the final results. This is probably due

to the local adaptation property that already exhibits local linear regression smoothers.

Unfortunately, the selection of Hopt does not solve all problems in bandwidth selection. In fact,

as it can be realized, the MSE depends on some unknown quantities and therefore, our optimal

bandwidth matrix can not be estimated from data. There are several alternative solutions to

approximate the unknown quantities in the MSE. One alternative is to replace in (4.19) both

bias and variance terms by their respective first order asymptotic expressions that were obtained

in Theorem 3.1. This is the so called ‘plug-in’ method (see for details Ruppert et al. (1995)).

Another possibility is, as suggested in Fan and Gijbels (1995a), to replace directly in (4.19) bias

and variance by their exact expressions. That is

E {m̂(Z;H)|D, Z} −m(Z) = {E {m̂(z;H)|D} −m(z)|z=Z (4.20)

Var {m̂(Z;H)|D, Z} = Var {m̂(z;H)|D}|z=Z , (4.21)

where clearly, according to Theorem 3.1

E {m̂(z;H)|D} −m(z) = eT1

(
Z̃TWZ̃

)−1

Z̃TWτ (4.22)

Var {m̂(z;H)|D} = eT1

(
Z̃TWZ̃

)−1

Z̃TWVWZ̃
(
Z̃TWZ̃

)−1

e1,

τ is a N(T − 1) vector such that, for i = 1, · · · , N , t = 2, · · · , T ,

τit = XT
itm (Zit)−XT

i(t−1)m
(
Zi(t−1)

)
−
{
XT
itDm (z) (Zit − z)−XT

i(t−1)Dm (z)
(
Zi(t−1) − z

)}
and V is a N(T − 1)×N(T − 1) matrix that contains the Vij ’s matrices,

Vij = E(∆vi∆v
T
j |Xi1, ..., XiT , Zi1, ..., ZiT ) =


2σ2

v , for i = j, t = s,

−σ2
v , for i = j, |t− s| < 2,

0, for i = j, |t− s| ≥ 2.

(4.23)

In order to estimate both bias and variance we need to calculate τ and V. Note that for τ , devel-

oping a fifth order Taylor expansion of both m (Zit) and m
(
Zi(t−1)

)
around z a local polynomial

regression of order five would guarantee that the proposed bandwidth selection procedure will be
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14 J.M. Rodriguez-Poo and A. Soberon
√
N -consistent for the local linear fit (see Hall et al. (1991) for details). However, for the sake of

simplicity a local cubic polynomial regression would be close to a
√
N -consistent selection rule

and it will lead to a nice reduction in the computational effort. In this case (for d = q = 1), the

vector τ̂ will contain the (estimated) expressions for the second and third order derivatives of the

local cubic polynomial regression of the terms ∆Yit onto Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1) − z

)λ
,

λ = 0, 1, · · · , 3.

On the other side, in order to estimate V, note that, because of assumption 3.2, estimation of

V is tantamount to the estimation of σ2
υ. In order to estimate this last quantity note that under

the homoskedastic assumption we can consistently estimate this by

σ̂2
υ =

1

2N(T − 1)

N∑
i=1

T∑
t=2

{
∆Yit −∆XT

itm̂
−i(Zit;H) + ∆XT

i(t−1)m̂
−i(Zi(t−1);H)

}2

. (4.24)

Note that both τ̂ and σ̂2
υ depend on a bandwidth matrix H that needs to be determined from

data. A suitable pilot bandwidth matrix H∗ that can be used for these computations can be

obtained using the global RSC procedure proposed in Fan and Gijbels (1995a). Furthermore, we

denote by m̂−i(Zit;H) the leave-one-out estimator of m (Zit). That is, when estimating m (Zit)

using (2.14) we use all data except those that belong to the i-th subject. Note that once we have

estimated τ and σ2
υ we can now provide an estimator for b (H), V (H) and Ω (H). Mainly,

b̂ (Zit) = E
{
m̂−i (Zit;H) |D

}
−m (Zit) = eT1

(
Z̃TWZ̃

)−1

Z̃TWτ̂,

V̂ (Zit) = Var
{
m̂−i (Zit;H) |D

}
= eT1

(
Z̃TWZ̃

)−1

Z̃TW V̂WZ̃
(
Z̃TWZ̃

)−1

e1,

Ω̂ (Zit) =

∑
j 6=i,tXjtX

T
jtKH (Zjt − Zit)KH

(
Zj(t−1) − Zi(t−1)

)∑
j 6=i,tKH (Zjt − Zit)KH

(
Zj(t−1) − Zi(t−1)

) .

The corresponding estimator of the MSE(H), according with (4.19) will be

M̂SE (H) =
1

N(T − 1)

∑
it

[
b̂T (Zit) Ω̂ (Zit) b̂ (Zit) + tr

{
Ω̂ (Zit) V̂ (Zit)

}]
. (4.25)

Then, we define the estimator of Hopt, Ĥopt as the solution to the following problem,

Ĥopt = arg min
H

M̂SE (H) .

Although we do not provide theoretical properties of this bandwidth, in Zhang and Lee (2000)

they have been studied in detail for the local MSE case and we believe it is straightforward to

analyze them for the global MSE case that we present here. Finally, we propose to use the same

procedure to estimate the bandwidth matrix H when estimating the oracle efficient estimator.

5. MONTE CARLO EXPERIMENT

In this section we report some Monte Carlo simulation results to examine whether the proposed

estimators perform reasonably well in finite samples when µi are fixed effects.

We consider the following varying-coefficient nonparametric models,

Yit = µi +XT
ditm (Zqit) + vit, i = 1, · · · , N ; t = 1, · · · , T ; d, q = 1, 2
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Direct Semiparametric Estimation of Fixed Effects 15

where Xdit and Zqit are scalars random variables; vit is an i.i.d.N(0,1) random variable; and m(.)

is a pre-specified function to be estimated. The observations follow a data generating process

where Zqit = wqit +wqi(t−1), being wqit an i.i.d. uniformly distributed [0,Π/2] random variable;

and Xdit = 0.5Xdi(t−1) + ξit, with ξit being an i.i.d.N(0,1).

We consider three different cases of study,

(1) Yit = X1itm1 (Z1it) + µ1i + vit

(2) Yit = X1itm1 (Z1it, Z2it) + µ2i + vit

(3) Yit = X1itm1 (Z1it) +X2itm2 (Z2it) + µ1i + vit,

where the chosen functionals form arem1 (Z1it) = sin (Z1itΠ),m1 (Z1it, Z2it) = sin ((Z1it, Z2it) Π)

and m2 (Z1it) = exp
(
−Z2

1it

)
; and we experiment with two specifications for the fixed effects,

a. µ1i depends on Z1it, where the dependence is imposed by generating µ1i = c0Z1i. + ui for

i = 2, · · · , N and Z1i. = T−1
∑
t Z1it

b. µ2i depends on Z1it, Z2it through the generating process µ2i = c0Zi. + ui for i = 2, · · · , N
and Zi. = 1

2

(
Z1i. + Z2i.

)
,

where in both cases ui is an i.i.d.N (0, 1) random variable and c0 = 0.5 controls de correlation

between the unobservable individual heterogeneity and some of the regressors of the model.

In the experiment we use 1000 Monte Carlo replications (Q). The number of period (T ) is fixed

at three, while the number of cross-sections (N) is varied to be 50, 100 and 200. In addition,

the Gaussian kernel has been used and, as Henderson et al. (2008), the bandwidth is chosen as

H = σ̂z(N(T − 1))−1/5, where σ̂z is the sample standard deviation of {Zqit}N,Ti=1,t=1.

We report estimation results for both proposed estimators and as measure of their estima-

tion accuracy we use the Mean Squared Error (MSE). Thus, denoting the subscript r the rth

replication,

MSE {m̂l (z;H)} =
1

Q

Q∑
l=1

E

{ d∑
r=1

(m̂lr (z;H)−mlr(z))Xit,lr

}2


which can be approximated by the Averaged Mean Squared Error (AMSE)

AMSE {m̂ (z;H)} =
1

Q

Q∑
l=1

1

NT

N∑
i=1

T∑
t=2

{
d∑
r=1

{m̂lr(z;H)−mlr(z)}Xit,lr

}2

,

The simulations results are summarized in the following figures.

We further carried out a simulation study to analyze the behavior in finite samples of the

multivariate locally estimator with kernels weights, m̂ (z;H), and the oracle estimator, m̃
(
z; H̃

)
,

proposed in Sections 2 and 3. Looking at Figures 1, 2 and 3 we can highlight the following.

On one hand, as the proposed estimators are based on a first difference transformation, the

bias and the variance of both estimators do not depend on the values of the fixed effects so their

estimation accuracy are the same for different values of c0.

On the other hand, from Figures 1, 2 and 3 we can see that both estimators carry out quite
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Figure 1. AMSE for d=1 and q=1.

Figure 2. AMSE for d=1 and q=2.

Figure 3. AMSE for d=2 and q=1.

well. For all T, as N increases the AMSE of both estimators are lower, as we expected. This is due

to the asymptotic properties of the estimators described previously. In addition, these results also

allow us to test the hypothesis that the oracle estimator generates an improvement in the rate

of convergence. Specifically, for the univariate case, Figures 1 and 3, we may appreciate that the

achievement of both estimators are quite similar while, on the contrary, in the multivariate case,

Figure 2, the rate of convergence of the oracle estimator is faster that the multivariate locally

estimator as we expected. In addition, as we can see in Figure 2 results of the local polynomial

estimator reflect the “curse of dimensionality” property given that as the dimensionality of Zit

increases the AMSE is greater. Thus, the backfitting estimator has an efficiency gain over the

local polynomial estimator, as we suspect.

6. CONCLUSION

This paper introduces a new technique that estimates varying coefficient models of unknown

form in a panel data framework where individual effects are arbitrarily correlated with the ex-

planatory variables in an unknown way. The resulting estimator is robust to misspecification in

the functional form of the varying parameters and we have shown that it is consistent and asymp-

totically normal. Furthermore we have shown that it achieves the optimal rate of convergence for
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this type of problems and it exhibits the so called oracle efficiency property. Since the estimation

procedure depends on the choice of a bandwidth matrix, we also provide a method to compute

this matrix empirically. Monte Carlo results indicates good performance of the estimator in finite

samples.
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APPENDIX

Proof of Theorem 3.1

Taking assumption 3.2, conditional expectations in (2.14) and noting that

E(vit|X11, ..., XNT , Z11, ..., ZNT ) = 0, t = 2, · · · , T, i = 1, · · · , N

then

E{m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } = eT1 (Z̃TWZ̃)−1Z̃TWM (A. 1)

where M =
[
XT

12m(Z12)−XT
11m(Z11), ..., XT

NTm(ZNT )−XT
N(T−1)m(ZN(T−1))

]T
.
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Taylor’s Theorem implies that

M = Z̃

[
m(z)

vec {Dm(z)}

]
+

1

2
Qm(z) +R(z), (A. 2)

where

Qm(z) = Sm1(z)− Sm2(z), (A. 3)

Sm1(z) = [STm1,12(z), ..., STm1,NT (z)]T ,

Sm2(z) = [STm2,11(z), ..., STm2,N(T−1)(z)]
T

and

Sm1,it(z) =
[
{Xit ⊗ (Zit − z)}T Hm(z)(Zit − z)

]
,

Sm2,i(t−1)(z) =
[
{Xi(t−1) ⊗ (Zi(t−1) − z)}THm(z)(Zi(t−1) − z)

]
.

We denote by

Hm(z) =


Hm1(z)

Hm2(z)
...

Hmd(z)

 ,

a dq × q matrix such that Hmd(z) is the Hessian matrix of the d-th component of m (·).
The remainder term can be written as

R(z) = R1(z)−R2(z), (A. 4)

R1(z) = [RT1,12(z), ..., RT1,NT (z)]T ,

R2(z) = [RT2,11(z), ..., RT2,N(T−1)(z)]
T

and

R1,it(z) =
[
{Xit ⊗ (Zit − z)}T R (Zit; z) (Zit − z)

]
,

R2,i(t−1)(z) =
[
{Xi(t−1) ⊗ (Zi(t−1) − z)}TR

(
Zi(t−1); z

)]
.

We denote by

R(Zit; z) =


R1(Zit; z)

R2(Zit; z)
...

Rd(Zit; z)

 ,R(Zi(t−1); z) =


R1(Zi(t−1); z)

R2(Zi(t−1); z)
...

Rd(Zi(t−1); z)

 ,

and

Rd(Zit; z) =

∫ 1

0

[
∂2md

∂z∂zT
(z + ω (Zit − z))−

∂2md

∂z∂zT
(z)

]
(1− ω) dω,

Rd(Zi(t−1); z) =

∫ 1

0

[
∂2md

∂z∂zT
(
z + ω

(
Zi(t−1) − z

))
− ∂2md

∂z∂zT
(z)

]
(1− ω) dω. (A. 5)

© Royal Economic Society 2013



20 J.M. Rodriguez-Poo and A. Soberon

We first analyze the bias term. In order to do this, note that substituting (A. 2) into (A. 1)

and noting that vec {Dm(z)} in (A. 2) vanishes because

eT1

(
Z̃TWZ̃

)−1

Z̃TWZ̃

[
m(z)

vec {Dm(z)}

]
= eT1

[
m(z)

vec {Dm(z)}

]
= m(z), (A. 6)

then,

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z) =
1

2
eT1 (Z̃TWZ̃)−1Z̃TWQm(z) +

eT1 (Z̃TWZ̃)−1Z̃TWR(z). (A. 7)

We will first analyze the asymptotic behavior of 1
2e
T
1 (Z̃TWZ̃)−1Z̃TWQm(z). Later in the paper

we will do the same with the second term. For the sake of simplicity let us denote

Kit =
1

|H|1/2
K
(
H−1/2 (Zit − z)

)
,

now, define the symmetric block matrix

(NT )−1Z̃TWZ̃ =

(
A11
NT A12

NT

A21
NT A22

NT

)
(A. 8)

where,

A11
NT = (NT )−1

∑
it

∆Xit∆X
T
itKitKi(t−1),

A12
NT = (NT )−1

∑
it

∆Xit

{
XT
it ⊗ (Zit − z)T −XT

i(t−1) ⊗ (Zi(t−1) − z)T
}
KitKi(t−1),

A21
NT = (NT )−1

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
∆XT

itKitKi(t−1),

A22
NT = (NT )−1

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
×{

XT
it ⊗ (Zit − z)T −XT

i(t−1) ⊗ (Zi(t−1) − z)T
}
KitKi(t−1).

We first show that as N tends to infinity

A11
NT = B∆X∆X(z, z) + op(1), (A. 9)

where

B∆X∆X(z, z) = E
[
∆Xit∆X

T
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z).

In order to do so, note that under the stationarity assumption and using iterated expectations

E
(
A11
NT

)
=

∫ ∫
E
[
∆Xit∆X

T
it |Zit = z +H1/2u, Zi(t−1) = z +H1/2v

]
×fZit,Zi(t−1)

(Zit = z +H1/2u, Zi(t−1) = z +H1/2v)K(u)K(v)dudv.

Furthermore, under assumptions 3.1 and 3.4 and a Taylor expansion, as N tends to infinity, (A.

9) holds. All what we need to close the proof is show that Var
(
A11
NT

)
→ 0, as the sample size
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tends to infinity. Note that under the assumption 3.1,

Var
(
A11
NT

)
=

1

NT
Var

(
∆Xit∆X

T
itKitKi(t−1)

)
+

1

NT 2

∑
t=3

(T − t)Cov
(
∆Xi2∆XT

i2Ki2Ki1,∆Xit∆X
T
itKitKi(t−1)

)
.

Under assumptions 3.4 to 3.6

Var
(
∆Xit∆X

T
itKitKi(t−1)

)
≤ C

NT |H|
,

and

Cov
(
∆Xi2∆XT

i2Ki2Ki1,∆Xit∆X
T
itKitKi(t−1)

)
≤ C ′

N |H|
.

Then if both NT |H| and N |H| tend to infinity the variance tends to zero and (A. 9) holds.

Similarly one can show that

A12
NT = DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

(z, z) (Id ⊗ µ2 (Kv)H) + op(H). (A. 10)

DB∆XX(Z1, Z2) and DB∆XX−1
(Z1, Z2) are respectively d× dq gradient matrices defined as

DB∆XX(Z1, Z2) =


∂b∆XX11 (Z1,Z2)

∂ZT1
· · · ∂b∆XX1d (Z1,Z2)

∂ZT1
...

. . .
...

∂b∆XXd1 (Z1,Z2)

∂ZT1
· · · ∂b∆XX

dd′ (Z1,Z2)

∂ZT1

 ,

and

b∆XXdd′ (Z1, Z2) = E
[
∆XditXd′it|Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .

The other gradient matrix is

DB∆XX−1
(Z1, Z2) =


∂b

∆XX−1
11 (Z1,Z2)

∂ZT1
· · · ∂b

∆XX−1
1d (Z1,Z2)

∂ZT1
...

. . .
...

∂b
∆XX−1
d1 (Z1,Z2)

∂ZT1
· · · ∂b

∆XX−1
dd (Z1,Z2)

∂ZT1

 ,

and

b
∆XX−1

dd′ (Z1, Z2) = E
[
∆XditXd′i(t−1)

∣∣Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .

Finally,

A22
NT = BXX(z, z)⊗ µ2(Ku)H + BX−1X−1

(z, z)⊗ µ2(Kv)H + op(H). (A. 11)

where

BXX(z, z) = E
[
XitX

T
it

∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z) ,

BX−1X−1
(z, z) = E

[
Xi(t−1)X

T
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z) .

Using the results shown in (A. 9), (A. 10) and (A. 11) we obtain

NT
(
Z̃TWZ̃

)−1

=

(
C11 C12

C21 C22

)
, (A. 12)
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where

C11 = B−1
∆X∆X(z, z) + op(1),

C12 = −B−1
∆X∆X(z, z)

[
DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1(z, z) (Id ⊗ µ2 (Kv)H)

]
×
([
BXX(z, z)⊗ µ2 (Ku)H + BX−1X−1(z, z)⊗ µ2 (Kv)H

])−1
+ op(1),

C21 =
([
BXX(z, z)⊗ µ2 (Ku)H + BX−1X−1(z, z)⊗ µ2 (Kv)H

])−1

×
[
DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1(z, z) (Id ⊗ µ2 (Kv)H)

]T B−1
∆X∆X(z, z)

+op(1),

C22 =
([
BXX(z, z)⊗ µ2(Ku)H + BX−1X−1(z, z)⊗ µ2(Kv)H

])−1
+ op

(
H−1) .

Also it is straightforward to show that the terms in

(NT )−1Z̃TWSm1(z)

=

 (NT )−1
∑
it ∆Xit

{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)KitKi(t−1)

(NT )−1
∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)KitKi(t−1)


are asymptotically equal to

(NT )−1
∑
it

∆Xit

{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)KitKi(t−1) (A. 13)

= µ2 (Ku)E
[
∆XitX

T
it

∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z)× diagr {tr {Hmr (z)H}} id + op (tr {H}) ,

where diagr {tr {Hmr (z)H}} stands for a diagonal matrix of elements tr {Hmr (z)H}, for r =

1, · · · , d, and id is a d× 1 unit vector.

(NT )−1
∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)KitKi(t−1)

=

∫
BXX (z, z)⊗

(
H1/2u

)(
H1/2u

)T
Hm (z)

(
H1/2u

)
K (u)K (v) dudv (A. 14)

−
∫
BX−1X (z, z)⊗

(
H1/2v

)(
H1/2u

)T
Hm (z)

(
H1/2u

)
K (u)K (v) dudv + op

(
H3/2

)
= Op

(
H3/2

)
.

Finally, the terms in

(NT )−1Z̃TWSm2(z) =

(
(NT )−1∑

it ∆Xit
{
XT
i(t−1) ⊗ (Zi(t−1) − z)T

}
Hm(z)(Zi(t−1) − z)KitKi(t−1)

(NT )−1∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}{
XT
i(t−1) ⊗ (Zi(t−1) − z)T

}
Hm(z)(Zi(t−1) − z)KitKi(t−1)

)
are of order

(NT )−1
∑
it

∆Xit

{
XT
i(t−1) ⊗ (Zi(t−1) − z)T

}
Hm(z)(Zi(t−1) − z)KitKi(t−1) (A. 15)

= µ2 (Kv)E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z
]
fZit,Zi(t−1)

(z, z)× diagr {tr {Hmr (z)H}} id + op (tr {H}) ,
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and

(NT )−1
∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}{
XT
i(t−1) ⊗ (Zi(t−1) − z)T

}
Hm(z)(Zi(t−1) − z)KitKi(t−1)

=

∫
BXX−1 (z, z)⊗

(
H1/2u

)(
H1/2v

)T
Hm (z)

(
H1/2v

)
K (u)K (v) dudv (A. 16)

−
∫
BX−1X−1 (z, z)⊗

(
H1/2v

)(
H1/2v

)T
Hm (z)

(
H1/2v

)
K (u)K (v) dudv + op

(
H3/2

)
= Op

(
H3/2

)
.

The second term for the bias expression is eT1 (Z̃TWZ̃)−1Z̃TWR(z). We already know what is

the asymptotic expression for (Z̃TWZ̃)−1 so now we proceed to analyze the asymptotic behavior

of Z̃TWR(z). According to (A. 4) and (A. 5) note that

(NT )−1Z̃TWR(z) =

(
E1(z)

E2(z)

)
,

where

E1(z) =
1

NT

∑
it

∆Xit (A. 17)

×
[
{Xit ⊗ (Zit − z)}T R(Zit; z)(Zit − z)−

{
Xi(t−1) ⊗ (Zi(t−1) − z)

}T R(Zi(t−1); z)(Zi(t−1) − z)
]
KitKi(t−1)

and

E2(z) =
1

NT

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
× (A. 18)[

{Xit ⊗ (Zit − z)}T R(Zit; z)(Zit − z)−
{
Xi(t−1) ⊗ (Zi(t−1) − z)

}T R(Zi(t−1); z)(Zi(t−1) − z)
]
KitKi(t−1).

E1(z) = E11(z) + E12(z), (A. 19)

where

E11(z) =
1

NT

∑
it

KitKi(t−1)∆Xit × (A. 20)[
{Xit ⊗ (Zit − z)}T R(Zit; z)(Zit − z)−

{
Xi(t−1) ⊗ (Zi(t−1) − z)

}T R(Zit; z)(Zi(t−1) − z)
]

and

E12(z) =
1

NT

∑
it

KitKi(t−1)∆Xit × (A. 21)[{
Xi(t−1) ⊗ (Zi(t−1) − z)

}T {R(Zit; z)−R(Zi(t−1); z)
}

(Zi(t−1) − z)
]
.

We will show now that, as N tends to infinity

E {E1(z)} = op (tr {H}) . (A. 22)

In order to prove this note that

E {E11(z)} =

∫ ∫
K(u)K(v)

{
B∆XX(z +H1/2u, z +H1/2v)⊗

(
H1/2u

)T}
R
(
z +H1/2u; z

)(
H1/2u

)
dudv

−
∫ ∫

K(u)K(v)

{
B∆XX−1

(z +H1/2u, z +H1/2v)⊗
(
H1/2v

)T}
R
(
z +H1/2u; z

)(
H1/2v

)
dudv.
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By (A. 5) and assumption 3.7

|Rd
(
z +H1/2u; z

)
| ≤

∫ 1

0

ς
(
ω‖H1/2u‖

)
(1− ω)dω,∀d,

where ς (η) is the modulus of continuity of ∂2mr
∂zi∂zj

(z). Hence by boundedness of f , B∆XX and

B∆XX−1

|E {E11(z)} | ≤ C1

∫ ∫ ∫ 1

0

|
(
H1/2u

)T
||ς
(
ω‖H1/2u‖

)
||H1/2u|K(u)K(v)dωdudv

+C2

∫ ∫ ∫ 1

0

|
(
H1/2v

)T
||ς
(
ω‖H1/2u‖

)
||H1/2v|K(u)K(v)dωdudv.

And E {E11(z)} = op (tr {H}) follows by dominated convergence.

Similarly,

E {E12(z)} =

∫ ∫
K(u)K(v)

{
B∆XX−1

(z +H1/2u, z +H1/2v)⊗
(
H1/2v

)T}
×{

R
(
z +H1/2u; z

)
−R

(
z +H1/2v; z

)}(
H1/2v

)
dudv.

Therefore,

|E {E12(z)} | ≤ C3

∫ ∫ ∫ 1

0

|
(
H1/2v

)T
| ×

|ς
(
ω‖H1/2u‖

)
||H1/2v|K(u)K(v)dωdudv + C4

∫ ∫ ∫ 1

0

|
(
H1/2v

)T
| ×

|ς
(
ω‖H1/2v‖

)
||H1/2v|K(u)K(v)dωdudv.

Then, proceeding as in the proof of the previous result we get also that E {E12(z)} = op (tr {H}).
Now, for E2(z) note that

E2(z) = E21(z) + E22(z), (A. 23)

where

E21(z) =
1

NT

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
× (A. 24)[

{Xit ⊗ (Zit − z)}T R(Zit; z)(Zit − z)−
{
Xi(t−1) ⊗ (Zi(t−1) − z)

}T R(Zit; z)(Zi(t−1) − z)
]

and

E22(z) =
1

NT

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
× (A. 25)[{

Xi(t−1) ⊗ (Zi(t−1) − z)
}T {R(Zit; z)−R(Zi(t−1); z)

}
(Zi(t−1) − z)

]
.

Following the same lines as for the proof of (A. 22) it is easy to show that

E {E2(z)} = op

(
H3/2

)
. (A. 26)

Substituting (A. 12), (A. 13), (A. 15) and (A. 22) into (A. 7), the asymptotic bias can be written
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as

E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } −m(z)

=
1

2
eT1

(
Z̃TWZ̃

)−1

Z̃TW {Sm1
(z)− Sm2

(z)}

=
1

2
B−1

∆X∆X(z, z)
[
µ2 (Ku)B∆XX(z, z)− µ2 (Kv)B∆XX−1

(z, z)
]
diagr {tr {Hmr (z)H}} id + op (tr {H}) .

To obtain an asymptotic expression for the variance let us first define the (N(T − 1) × 1)-

vector ∆v = (∆v1, · · · ,∆vN )
T

where ∆vi = (∆vi2, ...,∆viT )
T

and let E
(
∆v∆vT

)
= V be a

N(T − 1)×N(T − 1) matrix that contains the Vij ’s matrices

Vij = E(∆vi∆v
T
j |Xi1, ..., XiT , Zi1, ..., ZiT ) =


2σ2

v , for i = j, t = s,

−σ2
v , for i = j, |t− s| < 2,

0, for i = j, |t− s| ≥ 2.

(A. 27)

Then, taking into account that

m̂(z;H)− E {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } = eT1

(
Z̃TWZ̃

)−1

Z̃TW∆v, (A. 28)

the variance of m̂ (z;H) can be written as

V ar {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT }

= eT1 (Z̃TWZ̃)−1Z̃TWVWT Z̃(Z̃TWZ̃)−1e1. (A. 29)

Based on assumption 3.2 and the fact that the vit are i.i.d. then, the upper left entry of
1
NT Z̃

TWVWT Z̃ is

2σ2
v

NT

∑
it

∆Xit∆X
T
itK

2
itK

2
i(t−1) −

σ2
v

NT

∑
i

T∑
t=3

∆Xit∆X
T
i(t−1)KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

∆Xit∆X
T
i(t−2)KitKi(t−1)Ki(t−2)Ki(t−3)

=
2σ2

vR (Ku)R (Kv)

|H|
B∆X∆X(z, z) {1 + op(1)} , (A. 30)

because

σ2
v

NT

∑
i

T∑
t=3

∆Xit∆X
T
i(t−1)KitK

2
i(t−1)Ki(t−2) =

σ2
vR (Kv)

|H|1/2
B∆X∆X−1 (z, z, z) {1 + op(1)}

(A. 31)

and

σ2
v

NT

∑
i

T∑
t=4

∆Xit∆X
T
i(t−2)KitKi(t−1)Ki(t−2)Ki(t−3) = σ2

vR (Kv)B∆X∆X−2
(z, z, z, z) {1 + op(1)} .

(A. 32)
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The upper right block is

2σ2
v

NT

∑
it

∆Xit

{
XT
it ⊗ (Zit − z)T −XT

i(t−1) ⊗ (Zi(t−1) − z)T
}
K2
itK

2
i(t−1)

− σ2
v

NT

∑
i

T∑
t=3

∆Xit

{
XT
i(t−1) ⊗ (Zi(t−1) − z)T −XT

i(t−2) ⊗ (Zi(t−2) − z)T
}
KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

∆Xit

{
XT
i(t−2) ⊗ (Zi(t−2) − z)T −XT

i(t−3) ⊗ (Zi(t−3) − z)T
}
KitKi(t−1)Ki(t−2)Ki(t−3)

= I1 − I2 − I3. (A. 33)

I1 =
σ2
v

|H|

∫ {
B∆XX

(
z +H1/2u, z +H1/2v

)
⊗
(
H1/2u

)T
−B∆XX−1

(
z +H1/2u, z +H1/2v

)
⊗
(
H1/2v

)T}
K2(u)K2(v)dudv {1 + op(1)}

= Op (|H|) , (A. 34)

I2 =
σ2
v

|H|1/2

∫ {
B∆XX−1

(
z +H1/2u, z +H1/2v, z +H1/2w

)
⊗
(
H1/2v

)T
−B∆XX−2

(
z +H1/2u, z +H1/2v, z +H1/2w

)
⊗
(
H1/2w

)T}
K(u)K2(v)K(w)dudvdw {1 + op(1)}

= Op

(
|H|1/2

)
,

and

I3 = σ2
v

∫ {
B∆XX−2

(
z +H1/2u, z +H1/2v, z +H1/2w, z +H1/2s

)
⊗
(
H1/2w

)T
−B∆XX−3

(
z +H1/2u, z +H1/2v, z +H1/2w, z +H1/2s

)
⊗
(
H1/2s

)T}
×K(u)K(v)K(w)K(s)dudvdwds {1 + op(1)}

= Op (1) , (A. 35)

where

B∆XX (z, z)

fZit,Zi(t−1)
(z, z)

= E
[

∆XitX
T
it

∣∣∣Zit = z, Zi(t−1) = z
]
,

B∆XX−1 (z, z)

fZit,Zi(t−1)
(z, z)

= E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z
]
,

B∆XX−1 (z, z, z)

fZit,Zi(t−1),Zi(t−2)
(z, z, z)

= E
[

∆XitX
T
i(t−1)

∣∣∣Zit = z, Zi(t−1) = z, Zi(t−2) = z
]
,

B∆XX−2 (z, z, z)

fZit,Zi(t−1),Zi(t−2)
(z, z, z)

= E
[

∆XitX
T
i(t−2)

∣∣∣Zit = z, Zi(t−1) = z, Zi(t−2) = z
]
,

B∆XX−2 (z, z, z, z)

fZit,Zi(t−1),Zi(t−2),Zi(t−3)
(z, z, z, z)

= E
[

∆XitX
T
i(t−2)

∣∣∣Zit = z, Zi(t−1) = z, Zi(t−2) = z, Zi(t−3) = z
]
,

B∆XX−3 (z, z, z, z)

fZit,Zi(t−1),Zi(t−2),Zi(t−3),Zi(t−4)
(z, z, z, z)

= E
[

∆XitX
T
i(t−3)

∣∣∣Zit = z, Zi(t−1) = z, Zi(t−2) = z, Zi(t−3) = z, Zi(t−4) = z
]
.
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Finally, the lower-right block is

2σ2
v

NT

∑
it

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}{
XT
it ⊗ (Zit − z)T −XT

i(t−1) ⊗ (Zi(t−1) − z)T
}
K2
itK

2
i(t−1)

− σ2
v

NT

∑
i

T∑
t=3

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
×
{
XT
i(t−1) ⊗ (Zi(t−1) − z)T −XT

i(t−2) ⊗ (Zi(t−2) − z)T
}
KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

{
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

}
×
{
XT
i(t−2) ⊗ (Zi(t−2) − z)T −XT

i(t−3) ⊗ (Zi(t−3) − z)T
}
KitKi(t−1)Ki(t−2)Ki(t−3)

= I1 − I2 − I3, (A. 36)

where

I1 =
2σ2

vµ2

(
K2
)
R (Kv)

|H|
BXX (z, z)⊗H +

2σ2
vµ2

(
K2
)
R (Ku)

|H|
BX−1X−1 (z, z)⊗H + op

(
|H|−1

H
)
,

I2 =
σ2
vµ2

(
K2
)

|H|1/2
BX−1X−1

(z, z, z)⊗H + op

(
|H|−1/2

H
)
,

I3 = op (H) .

So now, substituting (A. 12), (A. 30), (A. 33) and (A. 36) into (A. 29) we obtain

V ar {m̂(z;H)|X11, ..., XNT , Z11, ..., ZNT } =
2σ2

vR (Ku)R (Kv)

NT |H|
B−1

∆X∆X (z, z) {1 + op(1)} .

Proof of Theorem 3.2

Let

m̂ (z;H)−m (z) = {m̂ (z;H)− E [m̂ (z;H)|X11, · · · , XNT , Z11, · · · , ZNT ]}

+ {E [m̂ (z;H)|X11, · · · , XNT , Z11, · · · , ZNT ]−m (z)} ≡ I1 + I2.

Now we show that √
NT |H|I1 → N

(
0, 2σ2

vR (Ku)R (Kv)B−1
∆X∆X (z, z)

)
, (A. 37)

as N tends to infinity.

In order to show this let

m̂ (z;H)− E {m̂ (z;H)|X11, · · · , XNT , Z11, · · · , ZNT } = eT1

(
Z̃TWZ̃

)−1

Z̃TW∆v, (A. 38)

where ∆v = [∆v11, · · · ,∆vNT ]T . We are going to show the asymptotic normality of

1√
NT

Z̃TW∆v. (A. 39)

Since (A. 39) is a multivariate vector we define a unit vector d ∈ IRd(1+q) in such a way that

1√
NT

dT Z̃TW∆v =
1√
NT

∑
i

∑
t

λit, (A. 40)
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where

λit = |H|1/2dT Z̃itKitKi(t−1)∆vit, i = 1, · · · , N t = 2, . . . , T

and

Z̃it =

(
∆Xit

Xit ⊗ (Zit − z)−Xi(t−1) ⊗
(
Zi(t−1) − z

) ) . (A. 41)

By Theorem 3.1 and conditions thereof we have that

Var (λit) = (A. 42)

2σ2
vd
T

(
R (Ku)R (Kv)B∆X∆X(z, z) 0

0 µ2

(
K2
)
R (Kv)BXX (z, z)⊗H + µ2

(
K2
)
R (Ku)BX−1X−1 (z, z)⊗H

)

×d {1 + op(1)}

and

∑
t

|Cov (λi1, λit) | = op(1).

Define now, λ∗n,i = T−1/2
∑T
t=1 λit. For fixed T , the

{
λ∗n,i

}
are independent random variables.

Therefore, to show (A. 37) it suffices to check Liapunov’s condition. By Minkowski’s inequality

E
∣∣λ∗n,i∣∣2+δ ≤ CT

2+δ
2 E |λit|2+δ

.

Because of (A. 41) we split λit into two components λ1it and λ2it and we analyze them by

separate.

E |λ1it|2+δ ≤ |H|
2+δ

2 E
∣∣dT∆XitKitKi(t−1)∆vit

∣∣2+δ

= |H|
2+δ

2 E
[
E
{∣∣dT∆Xit∆vit

∣∣2+δ
∣∣∣Zit, Zi(t−1)

}
K2+δ
it K2+δ

i(t−1)

]
= |H|−δ/2

∫
E
{∣∣dT∆Xit∆vit

∣∣2+δ
∣∣∣Zit = z +H1/2u, Zi(t−1) = z +H1/2v

}
×fZit,Zi(t−1)

(
z +H1/2u, z +H1/2v

)
K2+δ(u)K2+δ(v)dudv

= |H|−δ/2E
{∣∣dT∆Xit∆vit

∣∣2+δ
∣∣∣Zit = z, Zi(t−1) = z

}
fZit,Zi(t−1)

(z, z)

∫
K2+δ(u)K2+δ(v)dudv

+op

(
|H|−δ/2

)
.
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E |λ2it|2+δ ≤ |H|
2+δ

2 E
∣∣dT {Xit ⊗ (Zit − z)−Xi(t−1) ⊗

(
Zi(t−1) − z

)}
KitKi(t−1)∆vit

∣∣2+δ

≤ |H|
2+δ

2 E
∣∣dTXit ⊗ (Zit − z)KitKi(t−1)∆vit

∣∣2+δ
+ |H|

2+δ
2 E

∣∣dTXi(t−1) ⊗
(
Zi(t−1) − z

)
KitKi(t−1)∆vit

∣∣2+δ

= |H|
2+δ

2 E
[
E
{∣∣dTXit∆vit

∣∣2+δ
∣∣∣Zit, Zi(t−1)

}
⊗ |Zit − z|2+δ

K2+δ
it K2+δ

i(t−1)

]
+ |H|

2+δ
2 E

[
E
{∣∣dTXi(t−1)∆vit

∣∣2+δ
∣∣∣Zit, Zi(t−1)

}
⊗
∣∣Zi(t−1) − z

∣∣2+δ
K2+δ
it K2+δ

i(t−1)

]
= |H|E

{∣∣dTXit∆vit
∣∣2+δ

∣∣∣Zit = z, Zi(t−1) = z
}
fZit,Zi(t−1)

(z, z)⊗
∫
|u|2+δ

K2+δ(u)K2+δ(v)dudv

+ |H|E
{∣∣dTXi(t−1)∆vit

∣∣2+δ
∣∣∣Zit, Zi(t−1)

}
fZit,Zi(t−1)

(z, z)⊗
∫
|v|2+δ

K2+δ(u)K2+δ(v)dudv + op (|H|) .

Therefore, (NT )−
2+δ

2

∑N
i=1E

∣∣λ∗n,i∣∣2+δ ≤ C (N |H|)−δ/2. This indeed tends to zero when N |H| →
∞ and therefore Lyapunov’s condition holds and (A. 37) follows. D has been already defined in

(A. 42). Finally, using (A. 12) and applying the Cramer-Wold device the proof is done.

Using the bias expression computed in Theorem 3.1 we can then write

E {m̂ (z;H)|X11, · · · , XNT , Z11, · · · , ZNT } −m(z)

=
1

2
µ2 (Ku) diagr {tr {Hmr (z)H}} id +Op

(
H3/2

)
+ op (tr {H}) . (A. 43)

Note that by the law of iterated expectations,

E {m̂ (z;H)} =

∫
E {m̂ (z;H)|X11, · · · , XNT , Z11, · · · , ZNT } dF (X11, · · · , XNT , Z11, · · · , ZNT ) .

The leading term in (A. 43) does not depend on the sample and then, the proof is closed.

Proof of Theorem 3.3

The proof of this result follows the same lines as in the proof of Theorem 3.1. Let

m̃(z; H̃) = eT1

(
Z̃(1)TW (1)Z̃(1)

)
)−1Z̃(1)TW (1)∆Ỹ (1). (A. 44)

Then proceeding as before in the proof of Theorem 3.1 we get

E
{
m̃(z; H̃)|X11, ..., XNT , Z11, ..., ZNT

}
= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)
[
M (1) +M (2)

]
,

(A. 45)
where

M (1) =

[{
XT

12m(Z12)
}T

, · · · ,
{
XT
NTm(ZNT )

}T ]T
,

M (2) =

[{
XT

11 {E {m̂(Z11;H)|X11, ..., ZNT } −m(Z11)}
}T

, · · · ,

{
XT
N(T−1)

{
E
{
m̂(ZN(T−1);H)|X11, ..., ZNT

}
−m(ZN(T−1))

}}T ]T
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are N(T − 1)× 1 vectors. We can approximate M (1) through a Taylor’s expansion, i.e.

M (1) = Z̃(1)

[
m(z)

vec {Dm(z)}

]
+

1

2
Q(1)
m (z) +R(z),

where

Q(1)
m (z) =

[
S

(1)T
m,12(z), · · · , S(1)T

m,NT (z)
]T

and

S
(1)
m,it(z) =

{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z).

Using assumption 3.1 we get

eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)R(z) = op

(
tr
{
H̃
})

,

and therefore,

E
{
m̃(z; H̃)|X11, ..., XNT , Z11, ..., ZNT

}
−m(z)

= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)

{
1

2
Q(1)
m (z) +M (2)

}
+ op

(
tr
{
H̃
})

. (A. 46)

To obtain an asymptotic expression for the bias we first calculate

1

NT
Z̃(1)TW (1)Z̃(1) =(

(NT )−1
∑
itXitX

T
itKit (NT )−1

∑
itXit

{
XT
it ⊗ (Zit − z)T

}
Kit

(NT )−1
∑
it {Xit ⊗ (Zit − z)}XT

itKit (NT )−1
∑
it {Xit ⊗ (Zit − z)}

{
XT
it ⊗ (Zit − z)T

}
Kit

)
.

Using standard properties of kernel density estimators, under conditions 3.1 to 3.9 and as N

tends to infinity,

(NT )−1
∑
it

XitX
T
itKit = BXX (z) + op(1),

(NT )−1
∑
it

Xit

{
XT
it ⊗ (Zit − z)T

}
Kit = DBXX (z)

(
Id ⊗ µ2 (Ku) H̃

)
+ op

(
H̃
)
,

(NT )−1
∑
it

{Xit ⊗ (Zit − z)}
{
XT
it ⊗ (Zit − z)T

}
Kit = BXX (z)⊗ µ2 (Ku) H̃ + op

(
H̃
)
.

Note that BXX (z) and DBXX (z) are defined as in the proof of Theorem 3.1 but the moment

functions now are taken conditionally only to Zit = z.

Using the previous results,

NT
(
Z̃(1)TW (1)Z̃(1)

)−1

=

(
C(1)

11 C(1)
12

C(1)
21 C(1)

22

)
, (A. 47)

where

C(1)
11 = B−1

XX (z) + op(1),

C(1)
12 = −B−1

XX (z)
[
DBXX (z)

] (
B−1
XX (z)⊗ Iq

)
+ op(1),

C(1)
22 =

(
BXX (z)⊗ µ2 (Ku) H̃

)−1

+ op

(
H̃−1

)
.
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Furthermore the terms in

(NT )−1Z̃(1)TW (1)Q(1)
m (z) = (A. 48)(

(NT )−1
∑
itXit

{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)Kit

(NT )−1
∑
it {Xit ⊗ (Zit − z)}

{
XT
it ⊗ (Zit − z)T

}
Hm(z)(Zit − z)Kit

)
are of order

µ2 (Ku)E
[
XitX

T
it

∣∣Zt = z
]
fZit(z)× diagr{tr

{
Hmd (z) H̃

}
}id + op

(
tr
{
H̃
})

and Op

(
H̃3/2

)
, respectively. In order to evaluate the asymptotic bias of the last term we have

to calculate

(NT )−1Z̃(1)TW (1)M (2) = (A. 49)(
(NT )−1

∑
itXitX

T
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

(NT )−1
∑
it {Xit ⊗ (Zit − z)}XT

i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

)
.

It is straightforward to show that

(NT )−1
∑
it

XitX
T
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit = op

(
tr
{
H̃
})

,

as N tends to infinity, and

(NT )−1
∑
it

{Xit ⊗ (Zit − z)}XT
i(t−1)

(
E
{
m̂(Zi(t−1))

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
−m(Zi(t−1))

)
Kit

= op

(
tr {H} tr

{
H̃
})

,

as N tends to infinity. Under assumptions 3.1 to 3.9, the bias is op (tr{H}), and the rate is

uniform in z (see Masry (1996) for details).

Now substitute the asymptotic expressions for (A. 47), (A. 48) and (A. 49) into (A. 46) apply

that tr{H} → 0 tr{H̃} → 0 in such a way that N |H| → ∞, N
∣∣∣H̃∣∣∣ → ∞ and we have shown

that the asymptotic bias in m̃
(
z; H̃

)
is of the same order as it was in the first step.

For the variance term, recall that

m̃(z; H̃)− E
{
m̃(z; H̃)|X11, ..., XNT , Z11, ..., ZNT

}
= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)∆v

+eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)v̂,

where v̂ = (v̂1, · · · , v̂N )
T

is a (N(T − 1)× 1)-vector, such that

v̂i =

({
XT
i0r (Zi0;H)

}T
, · · · ,

{
XT
i(T−1)r

(
Zi(T−1);H

)}T)T
,

i = 1, · · · , N , and

r
(
Zi(t−1);H

)
= m̂

(
Zi(t−1);H

)
− E

{
m̂
(
Zi(t−1);H

)
|X11, ..., XNT , Z11, ..., ZNT

}
,

i = 1, · · · , N ; t = 2, · · · , T .

Then, the variance of m̃
(
z; H̃

)
takes the form

Var
{
m̃
(
z; H̃

)∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}

(A. 50)
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= eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)VW (1)T Z̃(1)
(
Z̃(1)TW (1)Z̃(1)

)−1

e1

+ eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)E
{
v̂v̂T

∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
W (1)T Z̃(1)

(
Z̃(1)TW (1)Z̃(1)

)−1

e1

+ 2eT1

(
Z̃(1)TW (1)Z̃(1)

)−1

Z̃(1)TW (1)E
{
v̂∆vT

∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
W (1)T Z̃(1)

(
Z̃(1)TW (1)Z̃(1)

)−1

e1.

≡ I1 + I2 + I3.

Following exactly the same lines as in the proof of the variance term in Theorem 3.1 we get, as

N tends to infinity,

I1 =
2σ2

vR (Ku)

NT
∣∣∣H̃∣∣∣1/2B−1

XX (z) {1 + op(1)} . (A. 51)

In order to calculate the asymptotic order of I2, we just need to calculate

1

NT
Z̃(1)TW (1)E

{
v̂v̂T

∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
W (1)T Z̃(1). (A. 52)

The upper left entry is

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}
Xi(s−1)X

T
isKitKis.

(A. 53)

Applying the Cauchy-Schwarz inequality for covariance matrices then (A. 53) is bounded by

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)vec1/2

{
diag

(
E
{
r
(
Zi(t−1);H

)
r
(
Zi(t−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
})}

×vec1/2
{

diag
(
E
{
r
(
Zi(s−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
})}T

Xi(s−1)X
T
isKitKis.

Now, note that under the conditions of the Theorem 3.1

vec
{

diag
(
E
{
r (z;H) r (z;H)

T
∣∣∣X11, · · · , XNT , Z11, · · · , ZNT

})}
= Op

(
logNT

NT |H|

)
,

uniformly in z, and therefore (A. 53) is of order Op

(
logNT

NT |H||H̃|1/2

)
.

Following the same lines, it is easy to show that the upper right entry of (A. 52) is

(NT )−1
∑
i

∑
ts

XitX
T
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}

×Xi(s−1) {Xis ⊗ (Zis − z)}T KitKis = op

 logNT

NT |H|
∣∣∣H̃∣∣∣1/2

 ,

and finally the lower right entry of (A. 52) is

(NT )−1
∑
i

∑
ts

{Xit ⊗ (Zit − z)}XT
i(t−1)E

{
r
(
Zi(t−1);H

)
r
(
Zi(s−1);H

)T ∣∣∣X11, · · · , XNT , Z11, · · · , ZNT
}

×Xi(s−1) {Xis ⊗ (Zis − z)}T KitKis = Op

 logNT

NT |H|
∣∣∣H̃∣∣∣1/2

 .

Now, combining results in (A. 47) and (A. 52) we show that I2 = op

(
logNT

NT |H||H̃|1/2

)
. Finally
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a standard Cauchy-Schwarz inequality is enough to show that I3 = op

(√
logNT

NT |H||H̃|

)
and then

the proof of the result is closed.
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