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Abstract—This paper focuses on a linear model with noisy
inputs in which the performance of the conventional Total Least
Squares (TLS) approach is (maybe surprisingly) far from satis-
factory. Under the typical Gaussian assumption, we obtain the
maximum likelihood (ML) estimator of the system response. This
estimator promotes a reasonable balance between the empirical
and theoretical variances of the residual errors, which suggests
the name of Balanced Least Squares (BLS). The solution of the
associated optimization problem is based on its reformulation as a
rank constrained semidefinite program (SDP), for which we show
that the relaxation is tight with probability one. Both TLS and
BLS can be seen as regularized LS estimators, but the (possibly
negative) regularization in BLS is softer than its TLS counterpart,
which avoids the inconsistency of TLS in our particular model.

Keywords—Balanced Least Squares (BLS), Errors in Variables
(EIV), Total Least Squares (TLS), Semidefinite Programming
(SDP), Rank Constrained Optimization.

I. INTRODUCTION: ERRORS IN VARIABLES AND TOTAL
LEAST SQUARES

Let us consider a general linear model with m real1 inputs
x = [x1, . . . , xm]T ∈ Rm×1 and one output y related as

y = (x + u)Th + n, (1)

where x is known, h ∈ Rm×1 is deterministic unknown, u ∼
N (0,Cu) represents the input noise, and n ∼ N (0, σ2) is the
measurement noise, which is assumed to be independent of u.
We also assume that both n and u are temporally white. This
model can be seen as a particular case of the structural Errors
In Variables (EIV) model [1], and it is of particular importance
in signal processing, communications, and econometrics. For
instance, in wireless communications, it represents the training
sequence transmitted from a multiantenna amplify and forward
relay and observed by a single antenna receiver [2], or the
observations of an eavesdropper in a discriminatory channel
estimation scenario [3], [4].

A classical problem in EIV consists in the estimation of the
unknown parameter vector h from a set of N independent ob-
servations y = [y1, . . . , yN ]T . Unfortunately, the estimation of
h results in difficult non-convex optimization problems, which
translates into local minima problems for typical approaches
such as the Expectation Maximization (EM) algorithm [5]. A
well known approach to parameter estimation in EIV models
consists in the application of the Total Least Squares (TLS)
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1All the results in this paper can be easily extended to the complex case.

method [6]–[9]. In particular, for the model in (1), the posterior
pdf of U = [u1, . . . ,uN ]T can be written as

p(U|y;h) ∝ e
− ‖y−(X+U)h‖2

2σ2
− 1

2

∥∥∥∥UC
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2
u

∥∥∥∥2

,

where X = [x1, . . . ,xN ]
T . Therefore, an hybrid2 maximum

likelihood (ML) - maximum a posteriori (MAP) approach for
the joint estimation of h (ML) and U (MAP) reduces to

minimize
U,h

‖y − (X + U)h‖2

σ2
+
∥∥∥UC
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2

u

∥∥∥2 , (2)

whose solution is given by the TLS algorithm [8], [9]. Specif-
ically, the TLS solution can be obtained from the following
generalized eigenvalue problem (GEV)

Rh̃ = λTLSCh̃, (3)

where λTLS is the smallest generalized eigenvalue,

R =

[
ry −rTxy
−rxy Rx

]
, C =

[
σ2 0
0 Cu

]
, (4)

and

ry =
yTy

N
, rxy =

XTy

N
, Rx =

XTX

N
, (5)

can be seen as sample correlation matrices. Once obtained
the minor generalized eigenvector h̃ = [h̃1, . . . , h̃m+1]

T , the
estimate of h is recovered as ĥ = [h̃2, . . . , h̃m+1]

T /h̃1.

At this point, we need to note some important facts related
to the model in (1), including two important drawbacks of
the TLS approach which motivate the research on alternative
estimation approaches.

Remark 1: In order to identify h, we need a tall full
column rank matrix X, or equivalently, a positive definite
matrix Rx, which implies N ≥ m. Otherwise, the smallest
generalized eigenvector in (3) is λTLS = 0, and the associated
eigenvector h̃ has its first component equal to zero, which
translates into a non-generic TLS problem [8], [10]. Therefore,
from now on, we will assume Rx � 0.

Remark 2: It is well known [9] that the TLS estimate can
be written as ĥ = (Rx − λTLSCu)

−1rxy with λTLS ≥ 0. That
is, the TLS estimate can be seen as the result of a regularized

2Note than in other related models, the TLS approach can be simply
formulated as the ML estimator. A typical scenario with a satisfactory TLS
performance is that with y = xTh + n, where x is unknown and we have
access to the reference vector z = x+ u.
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least squares (LS) problem with a negative regularization
factor.

Remark 3: In the assymptotic regime (N → ∞) we have
rxy = Rxh, and the TLS estimate is given by ĥ = (Rx −
λTLSCu)

−1Rxh. Moreover, assuming C � 0 it is easy to
prove that λTLS > 0, and therefore the TLS estimate ĥ is not
consistent.

Remark 4: The GEV in (3) allows us to see the TLS
estimate as the solution of the following optimization problem

minimize
h

1
N ‖y −Xh‖2

σ2 + hTCuh
. (6)

That is, TLS aims to minimize the ratio between the empirical
residual variance 1

N ‖y−Xh‖2 and its theoretical value σ2 +
hTCuh. However, this fact can be seen as a drawback of
the TLS approach for the model considered in this paper. In
particular, it seems reasonable to think that a good estimate of
h should result into similar empirical and theoretical residual
variances. Instead of that, TLS promotes solutions with small
empirical and large theoretical variances, which might result in
overfitting. This can be also interpreted as a direct consequence
of estimating a large number of nuisance variables U ∈ RN×m
when we are only interested in h ∈ Rm×1.

II. BALANCED LEAST SQUARES (BLS)

Due to the problems pointed out in the previous section,
we follow true ML approach to estimate h. In particular,
the maximization of the log-likelihood function yields the
following non-convex optimization problem

minimize
h

1
N ‖y −Xh‖2

σ2 + hTCuh
+ log

(
σ2 + hTCuh

)
. (7)

Remark 5: As can be seen, the proposed approach intro-
duces a logarithmic regularization term which promotes similar
values of the empirical and theoretical residual variances. In
particular, if we were free to choose the theoretical variance for
a fixed value of the empirical variance, the solution would be
given by σ2+hTCuh = 1

N ‖y−Xh‖2. Although the coupling
of both terms by means of h results into different values of the
variances at the solution of the optimization problem in (7),
it is clear that the proposed approach will result into a better
balance than TLS.

A. Reformulation as a Convex Optimization Problem

In order to solve the optimization problem in (7), we start
by rewriting it as

minimize
h̃

h̃TRh̃

h̃TCh̃
+ log

(
h̃TCh̃

h̃21

)
, (8)

where h̃ = [h̃1, . . . , h̃m+1]
T = c[1,hT ]T and c is an arbitrary

scaling factor. Moreover, taking into account the invariance of
the cost function in (8) to scalings of h̃, we can focus on the
equivalent problem

minimize
h̃

h̃TRh̃− log
(
h̃21

)
subject to h̃TCh̃ = 1.

(9)

Althoug the above problem is still non-convex, it is already in
a form suitable for its reformulation as a semidefinite program
(SDP). Thus, defining

M = h̃h̃T =

[
M1,1 MT

2,1

M2,1 M2,2

]
, (10)

with M1,1 ∈ R1×1, M2,1 ∈ Rm×1, and M2,2 ∈ Rm×m, we
can rewrite (9) as

minimize
M�0

trace(RM)− log (M1,1)

subject to trace(CM) = 1

rank(M) = 1,

(11)

and since the only non-convexity is due to the last constraint,
we propose to solve the relaxed problem

minimize
M�0

trace(RM)− log (M1,1)

subject to trace(CM) = 1.
(12)

B. Solution of the BLS Problem

The optimization problem in (12) is convex and satisfies the
Slater’s constraint qualification [11]. Therefore, strong duality
holds and we can obtain its solution by means of standard
convex optimization tools such as CVX [12]. Moreover, the
following lemma shows that the relaxation from (11) to (12)
is tight.

Lemma 1: The convex optimization problem in (12) has (at
least) one rank-one global solution, which provides the solution
of the ML estimation problem in (7).

Proof: The proof reduces to consider a global solution
(M∗) not necessarily with rank one. Obviously, the solutions
of

minimize
M�0

trace(RM)

subject to trace(CM) = 1

M1,1 = M∗
1,1

(13)

are also solutions of the problem in (12). However, the above
problem is a real linear SDP with only two linear constraints,
which admits at least one rank-one solution [11].

Although the previous lemma shows that the relaxation is
tight, it does not provide a specific algorithm for finding the
solution of (7), and it seems to suggest that in general one
needs a purification technique following the lines in [11], [13].
In order to shed some light on these facts, we will solve the
dual problem of (12). Let us start by writing the Lagrangian
as

L(M;λ,Θ) = trace(RM)− log (M1,1)

+ λ [trace(CM)− 1]− trace(ΘM), (14)

whose gradient is given by

∇ML(M;λ,Θ) = R−
[
M−1

1,1 0
0 0

]
+ λC−Θ. (15)

Thus, equating the gradient to zero yields

M1,1 = (ry + λσ2 −Θ1,1)
−1, (16)

Θ2,1 = −rxy, (17)
Θ2,2 = Rx + λCu, (18)



where the partition for Θ is defined analogously to (10). This
allows us to write the dual problem as

maximize
λ,Θ1,1

log
(
ry + λσ2 −Θ1,1

)
− λ

subject to
[

Θ1,1 −rTxy
−rxy Rx + λCu

]
� 0.

(19)

Here, it is important to note that the semidefinite constraint
requires a null projection of rxy onto the null space of
Rx + λCu. Nevertheless, if Rx + λCu is rank deficient,
the projection of rxy (a random vector from a continuous
distribution) onto its null space will be non-null with prob-
ability one. Therefore, we can claim that the solution of (19)
satisfies Rx+λCu � 0 with probability one. Moreover, taking
into account that the objective function decreases with Θ1,1

we have Θ1,1 = rTxy (Rx + λCu)
−1

rxy , which allows us to
rewrite the dual problem as

maximize
λ

log
(
ry + λσ2 − rTxy (Rx + λCu)

−1
rxy

)
− λ

subject to Rx + λCu � 0,
(20)

or equivalently

maximize
λ≥λmin

log

(
ry + λσ2 −

m∑
k=1

w2
k

1 + λγk

)
− λ (21)

where λmin is the minimum value of λ satisfying λ ≥ −1/γ1
and ry + λσ2 −

∑m
k=1

w2
k

1+λγk
≥ 0, w = [w1, . . . , wm]T =

VTR
− 1

2
x rxy , and

R
− 1

2
x CuR

− 1
2

x = VΓVT (22)

denotes the eigenvalue decomposition with the eigenvalues
Γ = diag([γ1, . . . , γm]) in decreasing order.

Since (21) is a one-dimensional concave optimization prob-
lem, it can be easily solved by means of the Golden Section
Algorithm [14], or bisection in the derivative of the objective
function. This last approach is summarized in Algorithm 1.

Finally, from the complementary slackness [11] condition
ΘM = 0, we get

ĥ = (Rx + λCu)
−1

rxy. (23)

Moreover, the combination of (15) and ΘM = 0 yields

trace (RM)− 1 + λ = 0, (24)

which provides the upper bound λ ≤ 1 − λTLS ≤ 1 used in
Algorithm 1.

C. Further Comments

Let us conclude this section with two important observa-
tions.

Remark 6: Both TLS and BLS can be seen as regularized
LS approaches with different regularization factors. In partic-
ular, while the TLS regularization factor is always negative,
the factor λ of the BLS can be positive or negative. More
specifically, from (3) it is easy to see that the TLS solution
satisfies

ry − λTLSσ
2 − rTxy (Rx − λTLSCu)

−1
rxy = 0, (25)

Algorithm 1 Balanced Least Squares Algorithm.
Input: Observations ry , rxy , parameters Rx, σ2, Cu, and
precision µ.
Output: BLS estimate ĥ and dual variable λ.
Initialize: Obtain w 6= 0 and eigenvalues γ1, . . . , γm. Set
[λmin, λmax = 1] and current value λ = (λmin + λmax)/2.
while λmax − λmin > µ do

if (1− λ)σ2 − ry +
∑m
k=1

w2
k[1+(λ+1)γk]
(1+λγk)2

> 0 then
Set λmin = λ.

else
Set λmax = λ.

end if
Set current value λ = (λmin + λmax)/2.

end while
Set the final estimate ĥ = (Rx + λCu)

−1
rxy .

whereas the BLS solution maximizes

log
(
ry + λσ2 − rTxy (Rx + λCu)

−1
rxy

)
− λ. (26)

That is, BLS never cancels the term inside the logarithm, which
is precisely what TLS does. Since this term increases with
λ, we can easily conclude that λ > −λTLS. In other words,
the (possibly) negative regularization in BLS is always less
aggressive than its TLS counterpart.

Remark 7: Finally, it is easy to prove that, unlike TLS, the
BLS estimate is consistent. In order to prove this, we can relax
the constraint trace(CM) in (12), which is equivalent to fixing
λ = 0. Thus, following the lines in the previous section we
can see that, for N →∞,

Θ =

[
hTRxh −hTRx

Rxh Rx

]
, (27)

M =

[
1
h

]
(hTCuh + σ2)−1

[
1
h

]T
, (28)

which obviously satisfies the constraint trace(CM) = 1.
Therefore, for N →∞ we have λ→ 0, and BLS is consistent
and asymptotically equivalent to the conventional LS.

III. NUMERICAL RESULTS

In this section, the performance of BLS is compared with
that of TLS and LS by means of numerical examples. Our
results are based on the average of 105 independent realizations
of an experiment with N = 25 observations of the output of
a system with m = 10 inputs, h = 1 (the all-ones vector), an
orthogonal matrix X with Rx = 1

mI, and independent zero-
mean Gaussian noises with σ2 = 1, and Cu = η2

m I, where η2
controls the variance of the input noise.

Figure 1 shows the average value of the regularization
factors employed by the BLS and TLS algorithms, which are
shown as a function of the input variance noise in dB scale
(20 log10(η)). As can be seen, there exists a big difference
in the values of the regularization factor, and as previously
pointed out, λ > −λTLS. Note also that, although the difference
in the regularization factor seems to decrease with η2, the final
performance is more sensitive to λ for stronger input noises
(remember that the overall regularization term is λRu).
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Fig. 1. Average regularization factor for the BLS (λ) and TLS (−λTLS)
algorithms. m = 10, N = 25, σ2 = 1.

The previous observation is illustrated in Figures 2 and
3. In particular, Figure 2 shows the averaged variance ratio
1
N ‖y−Xh‖2

σ2+hTCuh
for the BLS, TLS, and LS algorithms, where we

can see that, for large input noise variances, the BLS algorithm
exploits the information related to the expected balance of the
residual error variances, whereas both TLS and LS suffer from
overfitting. This fact is corroborated by the mean square error
(MSE) in the estimation of h, which is illustrated in Figure 3.

IV. CONCLUSIONS

Balanced Least Squares (BLS) is a new estimation algo-
rithm for a simple linear model with input noise, in which the
performance of TLS is far from satisfactory. BLS provides
a reasonable balance between the empirical and theoretical
variances of the residual error and, although it can be used
for any kind of data, it has been derived as the ML estimate
in the case of Gaussian noises. Ongoing work includes the
extension of BLS to the case of multivariate outputs, as well
as the estimation of other parameters such as the covariance
of the input noise.
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