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ABSTRACT

We propose a new detector of primary users in cognitive radio
networks. The main novelty of the proposed detector in com-
parison to most known detectors is that it is based on sound
statistical principles for detecting cyclostationary signals. In
particular, the proposed detector is (asymptotically) the lo-
cally most powerful invariant test, i.e. the best invariant detec-
tor for low signal-to-noise ratios. The derivation is based on
two main ideas: the relationship between a scalar-valued cy-
clostationary signal and a vector-valued wide-sense stationary
signal, and Wijsman’s theorem. Moreover, using the spectral
representation for the cyclostationary time series, the detector
has an insightful interpretation, and implementation, as the
broadband coherence between frequencies that are separated
by multiples of the cycle frequency. Finally, simulations con-
firm that the proposed detector performs better than previous
approaches.

Index Terms— Cyclostationarity, Hypothesis test, Maxi-
mal invariant, Locally most powerful invariant test (LMPIT),
Toeplitz matrices.

1. INTRODUCTION

Cognitive radio (CR) is one of the most promising technolo-
gies to improve the spectrum usage [1]. Basically, in CR
the cognitive users (secondary users) are allowed to access
the wireless channel, provided that the rightful owners of the
spectrum (primary users) are not using it. Hence, spectrum
sensing (the detection of spectral holes) is a key ingredient
in CR. There are many properties that could be exploited to
detect such unused frequency bands. For instance, detectors
have been proposed based on the presence of known pilots,
energy detection, or exploiting the spatial structure provided
by multi-antenna receivers (see [2] and references therein).

In this work we exploit cyclostationary properties, which
are present in most communication signals [3]. This idea is

not new [2, 4], and there exist some detectors that exploit cy-
clostationarity in the context of CR [5–8]. Most of these de-
tectors are based on the ideas presented in [9–11], which ba-
sically test whether or not the cyclic covariance function or
the cyclic power spectral density are zero. Nonetheless, most
of these detectors are ad-hoc, but imaginative.

Our approach exploits the relationship between a scalar-
valued cyclostationary signal and a vector-valued wide-sense
stationary signal to properly formulate the detection problem.
This idea, proposed in [12] and already used in [13] to de-
rive the generalized likelihood ratio test (GLRT), allows us to
cast the detection problem as a test for the covariance struc-
ture of the observations. Using Wijsman’s theorem [14–16],
in this paper we obtain the locally most powerful invariant test
(LMPIT), which is the best invariant detector for low signal-
to-noise ratios. The use of Wijsman’s theorem provides an
alternative way to derive the LMPIT without the need for ob-
taining the maximal invariant statistic.

2. PROBLEM FORMULATION

In this section we consider the problem of detecting a pri-
mary user (PU) at a single-antenna cognitive user (CU). We
will exploit the fact that most communications signals are cy-
clostationary [3], whereas the noise is wide-sense stationary
(WSS). This leads to the following detection problem:

H1 : u[n] = (h ∗ s)[n] + w[n],
H0 : u[n] = w[n],

(1)

where w[n] is the additive WSS noise, h[n] is the impulse re-
sponse of the wireless channel between the PU and the CU,
and s[n] is the transmitted signal, which is assumed to be
second-order cyclostationary with known cycle period P .

Considering a set of NP samples of u[n], which are col-
lected in the vector

y =
[
u[0] u[1] · · · u[NP − 1]

]T ∈ CNP ,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/147474955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we will formulate the detection problem as a test for the co-
variance structure of y, which we will now determine.

UnderH0, it is clear that the covariance matrix of y is

R0 =


r[0] r[−1] · · · r[−NP + 1]
r[1] r[0] · · · r[−NP + 2]

...
...

. . .
...

r[NP − 1] r[NP − 2] · · · r[0]

 ,
where r[m] = E[u[n]u∗[n −m]] is the correlation sequence
of u[n] underH0, the complex conjugate is denoted by ∗, and
the covariance matrix R0 is a Hermitian Toeplitz matrix. Un-
der H1 the derivation is a bit more involved. Following [13],
we reshape u[n] into blocks of size P to obtain the vector-
valued time series

x[n] =
[
u[nP ] · · · u[(n+ 1)P − 1]

]T
,

which is WSS [12] with matrix-valued covariance sequence
Q[m] = E[x[n]xH [n −m]] ∈ CP×P . Stacking N of these
vectors, x[0], . . . ,x[N − 1], the vector y may be rewritten as

y =
[
xT [0] xT [1] · · · xT [N − 1]

]T
.

Hence, the covariance matrix of y underH1 is

R1 =


Q[0] Q[−1] · · · Q[−N + 1]
Q[1] Q[0] · · · Q[−N + 2]

...
...

. . .
...

Q[N − 1] Q[N − 2] · · · Q[0]

 ,
which is a Hermitian block-Toeplitz matrix with block size P .

Finally, assuming that the transmitted signal and the noise
are Gaussian, the test in (1) becomes

H1 : y ∼ CN (0,R1),
H0 : y ∼ CN (0,R0).

(2)

We are thus testing whether the covariance matrix of y is
Toeplitz or block-Toeplitz with known block-size P . This
hypothesis testing problem is invariant to the transformation
group G = {g : y→ g(y) = αy}, which reparametrizes the
complex normal distributions as

G =
{
g : (R1,R0)→ g(R1,R0) = (|α|2R1, |α|2R0)}.

3. DERIVATION OF THE LMPIT

The derivation of the uniformly most powerful invariant test
(UMPIT) and the LMPIT usually requires the maximal invari-
ant statistic and its distribution under both hypotheses [17].
With a few exceptions, deriving the distributions of the max-
imal invariant statistic is extremely difficult or even impossi-
ble. As an alternative approach, in this work, we use Wijs-
man’s theorem [14, 15], which allows us to obtain the ratio

of the distributions of the maximal invariant statistic with-
out deriving such distributions or even the maximal invariant
statistic. Wijsman’s theorem states that the ratio of the distri-
butions of the maximal invariant statistic may be expressed,
under some mild conditions [18, 19], as

L =

∫
G p(g(y);H1)|det(Jg)|dg∫
G p(g(y);H0)|det(Jg)|dg

,

where p(g(y);Hi) denotes the probability density function of
the transformed observations under Hi, Jg is the Jacobian of
the transformation g(·) and dg is an invariant group measure,
which may be taken as the usual Lebesgue measure. How-
ever, due to the invariances of (2), the UMPIT (or LMPIT)
does not exist. We must therefore first rewrite the problem by
considering the asymptotic case of N →∞.

It is well known that as N → ∞, block-Toeplitz (and
Toeplitz) matrices are equivalent to block-circulant (and cir-
culant) matrices [20, 21]. Moreover, it was proved in [22, 23]
that the likelihood with a block-Toeplitz (or Toeplitz) covari-
ance matrix converges in the mean-square sense to the likeli-
hood with a block-circulant (or circulant) covariance matrix.
This allows us to replace the covariance matrices in (2) by
circulant approximations:

R1 ≈ (FN ⊗ IP )VB(FN ⊗ IP )
H ,

R0 ≈ FNPVDF
H
NP .

Here, FN is the discrete Fourier transform (DFT) matrix of
dimension N × N , VD is a diagonal matrix that contains
the power spectral density (PSD) under H0, i.e. the NP -
points DFT of {r[m]}NP−1m=0 , and VB is a block-diagonal ma-
trix that contains the PSD matrix under H1, that is, the N -
points DFT of {Q[m]}N−1m=0. Let us now transform the data
as z = LNP,NFHNPy, where LNP,N is the commutation (or
stride permutation) matrix.1 This transformation basically ob-
tains the DFT of the sequence {u[n]}NP−1n=0 and rearranges the
frequencies, which yields

H1 : z ∼ CN (0,SB),
H0 : z ∼ CN (0,SD),

(3)

where SB is a positive-definite block-diagonal matrix and SD
is diagonal with nongengative entries. These covariance ma-
trices are linearly related to VB and VD. Due to lack of space,
we omit the details, which will be presented in a forthcoming
journal version of this paper.

To apply Wijsman’s theorem to (3) we need the group of
invariant transformations. We may only consider linear trans-
formations since we must preserve Gaussianity. Moreover, it
is clear that a multiplication by a diagonal matrix (equivalent
to linear filtering of u[n]) does not modify the structure of the
covariance matrices. Finally, the structure is also preserved

1The commutation matrix fulfils vec(A) = LNP,Nvec(AT ), where A
is a P ×N matrix.



L =

∑
PN ,PP

∫
D det(SB)

−M |det(G)2M | exp
[
−M tr

(
S−1B PGŜG∗PT

)]
dG∑

PN ,PP

∫
D det(SD)−M |det(G)2M | exp

[
−M tr

(
S−1D PGŜG∗PT

)]
dG

, (4)

by a matrix that permutes the blocks of SB, and also by a
matrix that permutes the elements within each block of SB.
Hence, the group of invariant transformations is

G = {g : z→ g(z) = PGz,P = PN ⊗PP } ,

where PN ∈ PN , G ∈ D, PN is the set of N -dimensional
permutation matrices, and D is the set of invertible diago-
nal matrices. Assuming M independent and identically dis-
tributed realizations of z, the ratio of the distributions of the
maximal invariant statistic is presented in (4) on top of this
page. In this equation we have summed over all possible per-
mutations since the permutation group is a finite group, and
the sample PSD matrix is

Ŝ =
1

M

M−1∑
n=0

znz
H
n .

In the following, we will show that there does not exist a
UMPIT for the detection problem, although it is possible to
find the LMPIT. Again, due to the lack of space, the proofs
will be presented in the journal version.

Lemma 1 The ratio of the distributions of the maximal in-
variant statistic may be simplified as

L ∝
∑

PN ,PP

∫
D
|det(G)2M |e−αdG, (5)

where

α =M

N∑
k=1

tr
(
S̃kGkĈkG

∗
k

)
, (6)

the coherence matrix is Ĉ = D̂−1/2ŜD̂−1/2 with D̂ =
diag(Ŝ). Here Gk is the kth P × P block on the diagonal of
G, which is also diagonal, Ĉk is the kth P × P block on the
diagonal of Ĉ, and S̃k is a permutation of the kth block on
the diagonal of dimensions P × P of the whitened version of
S−1B , i.e. of diag(S1/2

B )S−1B diag(S1/2
B ).

From Lemma 1, it is clear that L does not depend on the
diagonal elements of Ŝ, which are the estimated PSD. Hence,
the detector will not depend on the PSD, but on a normalized
cyclic PSD, i.e. a coherence. Moreover, L is a function of
the unknown parameters, namely SB, and the UMPIT does
therefore not exist. However, as previously pointed out, it is
still possible to derive the LMPIT. To do so, let us consider
the case of close hypotheses, i.e. low signal-to-noise ratio
(SNR), in which SB is approximately diagonal, and therefore

the whitened covariance matrix is S̃B ≈ I. Thus, using the
second-order Taylor series of e−α, the ratio L becomes

L ∝
∑

PN ,PP

∫
D
β(G)

[
(α− α0)

2 − 2(α− α0)
]
dG,

withα0 =M tr (GG∗) and β(G) = |det(G)2M |e−M tr(GG∗).
Finally, after some tedious algebra, we obtain the asymptotic
LMPIT, which is presented in the following theorem.

Theorem 1 The LMPIT acceptsH0 for small values of

T (y0, . . . ,yM−1) =
N∑
k=1

‖Ĉk‖2.

The LMPIT presented in this theorem is similar to the LMPIT
presented in [7] as both LMPIT are sums of Frobenius norms
of certain matrices. Yet, there are differences between our
approach and [7] regarding the underlying assumptions. The
main difference is that the authors of [7] considered the case
of white noise. Moreover, they did not actually prove that the
detector is the LMPIT.

Finally, let us present a more insightful form and interpre-
tation for the LMPIT.

Remark 1 Let us denote by S
(
ejθ, ej2πc/P

)
the cyclic PSD

at cycle frequency 2πc/P and by S
(
ejθ
)

the PSD. Then, the
LMPIT may be written as

T =

P−1∑
c=1

(P−c)N−1∑
k=0

∣∣S (ejθk , ej2πc/P )∣∣2
S (ejθk)S

(
ej(θk+2πc/P )

) ,
where θk = 2πk/NP . Moreover, as N → ∞, the LMPIT
becomes

T =

P−1∑
c=1

∫ (P−c)2π/P

0

∣∣S (ejθ, ej2πc/P )∣∣2
S (ejθ)S

(
ej(θ+2πc/P )

) dθ
2π
.

Here, one comment is in order. The ratio between the cyclic
PSD and the product of the PSD at frequencies separated
by the cycle frequency was already proposed in [10], which,
however, only used one cycle frequency and one global fre-
quency.

Remark 2 Since the cyclic PSD may be rewritten as [24]

S
(
ejθ, ej2πc/P

) dθ
2π

= E
[
dξ
(
ejθ
)
dξ∗

(
ej(θ−2πc/P )

)]
,

where dξ
(
ejθ
)

is an increment of the complex spectral pro-
cess ξ

(
ejθ
)

for the Loève representation [25], the LMPIT is
just a function of the correlation coefficient (or coherence)
between dξ

(
ejθ
)

and dξ
(
ej(θ−2πc/P )

)
.
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Fig. 1: ROC curve for an experiment with P = 4, M = 5
snapshots, N = 256, and SNR = −5 dB

4. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
detector and compare it to that of previous detectors. In par-
ticular, we compare our approach with those of [9, 11], and
with the GLRT of [13]. For [9, 11], it is necessary to spec-
ify a priori the lag(s) of the cyclic correlation function that
will be used. This, of course, would require a priori knowl-
edge about the cyclic correlation function, which is usually
unknown. To make a fair comparison, for the detector in [11]
we decided to only use the lags 0, 1, 2 and 3 of the cyclic cor-
relation. However, for the detector in [9], which only uses
one lag of the cyclic correlation, selecting the first lag would
result in poor performance (depending on the shaping filter
since it determines the cyclic covariance), so we use the lag
that maximizes the cyclic correlation function, although this
might be unrealistic in some problems. Moreover, we apply
a Kaiser window of length 1025 to estimate the cyclic PSD
required for the detector in [11].

For the simulations, we simulate noise that is a moving
average process of order 19 (20 coefficients at the sampling
rate). The channel is Rayleigh with 40 taps (at the sampling
rate) and an exponential power delay profile with delay spread
7.57 µs, and the transmitted signal is QPSK with rectangular
shaping and a symbol rate of 300 Kbauds/second. Moreover,
the sampling frequency is 1.2 MHz, yielding 4 samples per
symbol, which coincides with the cycle period P = 4. We
consider M = 5 realizations of length N = 256 symbols, so
the total number of available samples is 4 · 5 · 256 = 5120
samples. The noise and channel coefficients were randomly
generated in each Monte Carlo simulation, following a Gaus-
sian distribution.

In the first experiment, we obtain the receiver operating

−10 −8 −6 −4 −2 0
10−4

10−3

10−2

10−1

100

SNR (dB)

p
m

LMPIT
GLRT
Detector in [11]
Detector in [9]

Fig. 2: Probability of missed detection vs. SNR for pfa =
10−3 in an experiment with P = 4, M = 5, and N = 256

characteristic (ROC) curves of the detectors for a signal-to-
noise ratio (SNR) of −5 dB. As can be seen in Figure 1, the
LMPIT presents the best performance, even for this case of
non-Gaussian signals. After the LMPIT, the best detector is
the GLRT. This good behavior of both LMPIT and GLRT may
be explained by the fact that they exploit the broadband co-
herence at all cycle frequencies and all lags, whereas the other
detectors do not. Finally, Figure 2 shows the probability of
missed detection vs. SNR for a fixed pfa = 10−3, where we
can observe a similar behavior.

5. CONCLUSIONS

We derived a detector for cognitive radio based on cyclosta-
tionarity. By exploiting the relationship between a scalar-
valued cyclostationary time series and a vector-valued wide-
sense stationary time series, we reformulated (asymptotically)
the detection problem as a test for diagonality vs. block-
diagonality of the covariance matrix. For this problem, we
derived the LMPIT using Wijsman’s theorem. Numerical re-
sults show the better performance of our detector compared
to previously proposed approaches.
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