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Abstract—The spectrum sensing accuracy has been improved
by the introduction of cooperative spectrum sensing (CSS)
strategies where the spatial diversity is exploited among non-
legacy users. However, these CSS strategies also bring new
impairments, such as the interference from other sources that
severely degrade the sensing performance. In this paper, we
evaluate experimentally our recent proposal for CSS based on
kernel canonical correlation analysis (KCCA), where the effect of
an interferer is also modeled. The experiments are conducted on
a cognitive radio platform composed of several Universal Radio
Peripheral (USRP) nodes, and the measurements show that our
scheme is able of implicitly learning the surrounding environment
by only exploiting the non-linear correlation among the receiver
signals of each SU. Eventually, we provide comparative results
where a considerable gain over a conventional energy detector
is obtained in spite of the impairments provoked by external
interferers.

Index Terms—Cooperative Spectrum Sensing, Kernel Canon-
ical Correlation, Cognitive Testbed, USRP.

I. I NTRODUCTION

Due to the enormous growth of wireless services, an effi-
cient use of the spectral resources is required [1]. Cognitive
Radio (CR) systems allows sharing the spectrum between
incumbent or (PU) and non-legacy users or (SU). This technol-
ogy relies on a spectrum sensing process that allows detecting
exploitable holes in the spectrum that can be filled by subse-
quently transmissions of SU. A more reliable spectrum sensing
is attained by CSS strategies that exploit the diversity among
SU [2], and thus mitigating common impairments found in a
local spectrum sensing such as multipath fading, shadowing
and receiver uncertainty issues.

Although a SU may combine information from a database
and local sensing to further decrease missed detections, these
CSS strategies also brings new challenges to be overcome
during the time that the channel remains idle. Interference,
for instance, may come from local unintentional or intentional
users as it is cataloged in [3]. The effect of misalignment
among SU and impulsive noise during the sensing period are
also studied in [4], and [5] respectively. Moreover, an energy
detector is severely degraded in presence of interference [6],
and its performance has been been recently improved by the
introduction of machine learning techniques [7], where a set
of feature vectors composed of energy levels is employed to
train a classifier, after which it labels each new energy level
as channel available or unavailable.

Despite of several approaches, few of them are also eval-
uated by means of experimental measurements [8]–[11]. In
this paper, we extend some initial simulation results presented
in [12], and present the experimental evaluation of a KCCA
detector for CSS scenario, where the effect of external interfer-
ence is also taken into account. The proposed scheme is able to
learn the regions of decisions for the detection of the primary
signal during a learning stage. It exploits the possible non-
linear correlation among the measurements of energy reported
by each SU, after which our KCCA detector applies them for
online detection. It does not involve any parameter setting,
and the detector can be retrained periodically to adapt itself
to a changing environment. The measurements are conducted
in platform consisting of several USRP nodes that emulate an
scenario composed of a PU and several SUs, and the results
shows that in spite of the interference caused by some SUs,
the detection performance turns out to be more robust when
employing our proposal.

The rest of the paper is organized as follows: In Section II,
we give an overview of the CSS problem, a brief description
of our KCCA detector is given in Section III. The scenario
and the measurement setup are described in Section IV. We
present the experimental results in Section V and finally, the
paper concludes with a discussion of the obtained results in
Section VI.

II. COOPERATIVESPECTRUMSENSING

Let us considering a scenario withM secondary users, in
which interference is present under the null hypothesis. This
problem can be formulated as,

H1 : p(r|H1) 6=

M
∏

i=1

pi(ri|H1)

H0 : p(r|H0) =

M
∏

i=1

pi(ri|H0)

whereri denotes the received signal at eachi-th SU, andr is a
vector signal composed of all observations. We assume thatri
is conditionally independent under the null hypothesis, and not
under the alternative hypothesis. In this way, a more general
setting where a local and uncorrelated interference coming
from different sources can be considered, while the primary
signal under the alternative hypothesis may cover a large area
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Fig. 1. A CSS in a heterogeneous network where interference from neighbour
cells degrade the sensing performance.

where all SU are able to detect it. Notice that, the primary and
interference signal may follow any distribution, since we do
not make any assumption about it. In this paper, we consider a
distributed configuration where SU do not communicate with
each other and only report their local sensing to a central
processor known as fusion center (FC) [2], where according
to a fusion rule a final decision is taken, and ultimately this
decision is broadcast to all cooperating CR users. A particular
scenario where the described assumptions can be applied is
depicted in Fig.1, where a small cell (shadow one) within
a heterogeneous network receives interference from neighbor
cells during the time that the channel is considered quiet.

III. K ERNEL CANONICAL CORRELATION ANALYSIS FOR

CSS

Under the described assumptions, a local test problem at
each SU given bypi(ri|H1)/pi(ri|H0) is addressed by our
KCCA scheme. It correctly provides the channel availability
under interference by exploiting the correlation among the
received signals at the FC. For this purpose, the energy of
the received signal is employed which allow us to make no
assumptions about the primary signal. We denotexin, as the
energy of the received signalri calculated overNs samples
during then-th sensing period. In the following subsections,
we briefly describes our KCCA scheme that consists of a
learning stage, after which a detector is obtained and applied
for online detection.

Learning Stage

During this stage, a set of data composed ofN values, that is
{xi1, xi2, ...xiN}, is collected at the FC and for eachi-th SU.
KCCA allow us to find the transformation of these set of data
with the maximal correlation, and non-Linear transformations
will take them from its input space to a high-dimensional space
xin → Φ(xin), where it is more likely that the problem can
be solved in a linear manner. This is calculated without the
explicit knowledge of the non-linear transformationΦ(xin) by
employing a kernel function on pairs of data points in the input
space whose corresponding Gram matricesKi (or “kernel”

matrices) can be calculated as,

Ki( j , k) = Φi(xij)
⊤Φi(xik) = κi(xij , xik), (1)

In short, KCCA provides the projections of the transformed
data sets,zi = Kiαi, that have maximal correlation [13]. For
reasons of simplicity, we consider an scenario withM = 2
SUs. Thus, the canonical correlation between the transformed
data sets corresponding to a maximum variance (MAXVAR)
formulation, is given byρ = z

⊤

1 z2 = α
⊤

1 K1K2α2. The
solution of the KCCA problem can be found by solving the
following generalized eigenvalue problem (GEV) [13].

1

M
Rα = βDα, (2)

whereR, is defined as,

R =

[

K1K1 K1K2

K2K1 K2K2

]

(3)

andD as,

D =

[

K1(K1 + cI) 0

0 K2(K2 + cI)

]

. (4)

In this caseα = [α⊤

1 ,α
⊤

2 ]
⊤ and β = 1+ρ

2
, the canonical

weights αi are retrieved as the eigenvector corresponding
to the largest eigenvalue of the GEV problem (2). For a
more detailed description, the reader may refer to [12], and
references therein.

KCCA Detector

After a learning stage where the canonical weights are
obtained, our detector is given by the projection of the
transformed data,

Ti(xin) =
N
∑

j=1

αijκi(xin, xij)

whereαij refers to thej-th element of the canonical vector
αi. Notice thatκi utilizes both the training data set and the
energy levelxin over which it will make a decision.

IV. T ESTBEDDESCRIPTION

A cognitive radio platform has been built by integrating
USRP devices. Each of these nodes work with a universal
hardware driver (UHD) as a host driver which includes a set
of Application Programming Interface (API) functions. We
have developed our own Universal Software Architecture for
Software Defined Radio (USASDR), this third-party applica-
tion employs the set of API function, by including them into
higher level instructions from Matlab. In addition, it allow us
to control simultaneously several USRP nodes, by means of
a unique controller identified by an IP address that receives
instructions from a remote PC. Both the transmitters and
the receivers are composed of N210 USRP nodes, and the
Radio Frequency (RF) part is equipped with a XCVR2450
daughterboard, which allows us to operate in the industrial,
scientific, and medical (ISM) band of 4.9GHz to 5.9GHz, thus
avoiding any device transmitting in the same band, a more
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Fig. 2. Two SU as sensing nodes, an interfering node (INT), a PU, and a
FC in the middle of them. All USRP are synchronized by a pulse persecond
signal (PPS) provided by Signal Generator.

detailed description of these devices can be found in [10],
[14]. We employ four USRP nodes for the considered scenario,
as it is shown in Fig. 2, where a PU, two SU nodes and an
interfering node are configured and synchronized in time by a
pulse per second (PPS) signal for simultaneous transmission
and reception during the measurement procedure.

A. Measurement Procedure

All the measurements were tested in an indoor channel
at 5.6 GHz. Under this stationary environment, two SU will
start sensing simultaneously the wireless channel while being
randomly interfered by the interfering node. With this aim,we
emulate interference to each SU independently by allowing
the interfering node to randomly transmit on two different
channels of frequency, that is,2–4MHz and 4–6MHz. Each
of these bands of frequency is only sensed by a SU, and the
PU transmit a signal whose bandwidth covers both bands of
frequency (2–6MHz). In this configuration, both SUs, only one
of them, or neither of them will be affected by the interference,
while both of them are able to detect a busy channel when the
PU is present. The transmission/sensing cycle is shown in Fig.
3, where the transmitted signal is an orthogonal frequency
division multiplexing (OFDM) waveform, that follows the
standard IEEE 802.11a. This waveform is generated with a
rate of 9 Mbps using BPKS symbols, and up-sampled to
modify the bandwidth of the signal so as to accomplish the
described configuration. After sensing several times, a set
of data{xi1, xi2, ...xiN}, composed of the estimated energy
levels are collected in a central PC acting as a FC. After which
the canonical weightsαi are calculated and included in the
statisticTi whose performance is evaluated during an offline
process.

V. EXPERIMENTAL RESULTS

In this section, we describe the results obtained by the
mentioned procedure, and highlight more challenging cases
where the interference is present during the sensing period.
The following results were obtained forM = 2, Ns = 50,
and N = 300. For the KCCA detector, a Gaussian kernel
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Fig. 3. Measurement procedure: the PU transmits using two bands of
frequency channels represented by two colors (2–4MHz & 4–6MHz), whereas
a SU (interferering node) transmits randomly on any of these bands, and the
other SUs sense one of these bands of frequency.

function of the formki(xin, xim) = exp(−(xin−xjn)
2/2w2)

is selected and the kernel widthw is fixed according to a
Silverman’s rule [15]. We study the decision functions given
by Ti, and its detection performance by showing the Receiving
Operating Characteristic (ROC) curves.

A. Decision functions for KCCA

In Figs. 4(a) and 4(b) the probability density function (PDF)
of the measured energy levels are shown for each SU under
both hypothesis, and these curves are superimposed over the
decision functionTi. It can be observed that the primary, the
noise and the interfering signal follow chi-square distributions,
and the decision function (the projection of the transformed
data set) obtained by KCCA is able to separate them by
assigning negative values to the primary signal, whereas more
positive values are assigned to the noise and interfering signal.
A more interesting case is depicted in Figs. 5(a) and 5(b), for
which a more non-linear decision functions are required to
detect the primary signal placed between the noise and the
interfering signal. Although, few lower and higher values are
mapped around a zero value, the sensing performance is not
severely degraded, and it can be attributed to the shape of the
decision function composed of Gaussian functions.

B. Receiver Operating Characteristics

The corresponding ROC curves for the described examples
are depicted in Fig. 4(c), and Fig. 5(c) respectively. We
compare the results obtained by a KCCA and an energy
detector, for each SU and both SU. For our KCCA detector,
the results at each local SU are obtained after exploiting the
non-linear correlation among the received signal at the FC and
broadcasting the obtained decision functions to each localSU.
On the other hand, the performance results for both detectors at
the FC are obtained by the sum of their statistics as a fusion
rule. The Fig. 4(c) shows that the obtained performance of
both detector are quite similar at each SU, whereas a slight
gain is attained by the KCCA detector at the FC, which can
be explained from the fact our proposal exploit information
of correlation from the other SU during the learning stage.
In Fig. 5(c), we observe that the energy detector is clearly
outperformed by the KCCA detector since it is unable to
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Fig. 4. Scenario 1: KCCA decision function and PDF for the primary, the interfering and noise signal. (a) at SU 1. (b) at SU 2,both of them with an
estimated SINR≈ 0.63 dB, (c) ROC Curves for the KCCA and energy detector.
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Fig. 5. Scenario 2: KCCA decision function and PDF for the primary, the interfering and noise signal. (a) at SU 1 with an estimated SINR≈ -6.32 dB, (b)
at SU 2 with an estimated SINR≈ -5.12 dB (c) ROC Curves for the KCCA and energy detector.

distinguish between the primary signal and the impairments,
whereas the interference diversity is exploited by our proposal
to obtain a considerable advantage.

VI. CONCLUSIONS

In this paper we have experimentally evaluated a KCCA
detector for a CSS problem where not only noise, but also
interference is considered. Our proposal blindly learns during
a learning stage the required decision functions to correctly
detect the primary signal, and the experimental results shows
that under interference our KCCA detector obtains a consid-
erable gain over an energy detector.
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