

# Structural transitions in alumina nanoparticles by heat treatment

Nirmal Kaur, Atul Khanna, Banghao Chen, and Fernando González

Citation: AIP Conference Proceedings **1731**, 030027 (2016); doi: 10.1063/1.4947632 View online: http://dx.doi.org/10.1063/1.4947632 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1731?ver=pdfcov Published by the AIP Publishing

## Articles you may be interested in

Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment Appl. Phys. Lett. **93**, 192504 (2008); 10.1063/1.2995996

Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes

J. Appl. Phys. 102, 074317 (2007); 10.1063/1.2794731

Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids Appl. Phys. Lett. **89**, 153107 (2006); 10.1063/1.2360892

Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer Appl. Phys. Lett. **83**, 3374 (2003); 10.1063/1.1619206

Uniform deposition of ultrathin polymer films on the surfaces of Al 2 O 3 nanoparticles by a plasma treatment Appl. Phys. Lett. **78**, 1243 (2001); 10.1063/1.1352700

# Structural Transitions in Alumina Nanoparticles by Heat Treatment

Nirmal Kaur<sup>1</sup>, Atul Khanna<sup>1\*</sup>, Banghao Chen<sup>2</sup> and Fernando González<sup>3</sup>

 <sup>1</sup>Glass Physics and Sensors Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
<sup>2</sup>Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
<sup>3</sup>Department of Chemistry and Process & Recourse Engineering, University of Cantabria, Santander-39005, Spain.
\*Email: atul.phy@gndu.ac.in

**Abstract.**  $\gamma$ -alumina nanoparticles were annealed sequentially at 800°C, 950°C and 1100°C and structural transitions as a function of heat treatment were studied by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and <sup>27</sup>Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS–NMR) methods.. XRD studies found that  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is stable upto a temperature of at least 950°C and transforms to the thermodynamically stable  $\alpha$ -phase after annealing at 1100°C. MAS–NMR revealed that  $\gamma$ -alumina contains AlO<sub>4</sub> and AlO<sub>6</sub> structural units in the ratio 1: 2, while  $\alpha$ -phase contains only AlO<sub>6</sub> units. DSC confirmed that  $\gamma$ - $\alpha$  transition initiates at 1060°C.

Keywords: Alumina nanoparticles, XRD, DSC, MAS–NMR. PACS: 61.46.Df, 61.05.cp, 65.60.+a, 76.60.-k

## INTRODUCTION

Aluminum oxide commonly known as alumina  $(Al_2O_3)$ , is one of the most interesting ceramic materials both for its numerous applications and excellent physical properties [1]. Alumina exists in a several metastable polymorphs, the so-called transition alumina (such as  $\gamma$ ,  $\delta$ ,  $\theta$ ,  $\chi$  and  $\kappa$ ) as well as its thermodynamically stable  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> phase [2].

The metastable alumina polymorphs show structural transitions upon heating, with transformation sequence irreversibly ending in the  $\alpha$ -phase at temperatures in the range of 1100 to 1200°C. The  $\alpha$ -alumina transformation temperature is however, relatively high, and it is possible to form many of the metastable phases at synthesis conditions between room temperature and 1000 °C [3].

The metastable phases such as  $\gamma$ -alumina find use in numerous applications. The low surface energy and therefore the inherent high surface areas of  $\gamma$ -alumina have made it useful for catalysis applications. Furthermore, thin films of amorphous alumina have proved to be very useful as optical coatings and as a dielectric layers in microelectronics devices [4]. In this work, we report the study of phase transformations in  $\gamma$ -alumina nanoparticles. Nanoparticles were annealed at three temperatures and characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and <sup>27</sup>Al MAS-NMR.

#### **EXPERIMENTAL METHODS**

 $\gamma$ -alumina nanopowder (Aldrich Inc., 99.9% particle size <50 nm) weighing 2 g was taken as a starting material. The powder was ground in an agate motor-pestle and subjected to heat treatment in the temperature range of 800-1100°C. X-ray diffraction and <sup>27</sup>Al MAS-NMR were performed after each annealing treatment to study the phase transformation properties. The initial sample (labelled as  $\gamma$ -Alumina-RT) was analysed by DSC to determine the temperature of structural transitions. Details of heat treatment of nanoparticles are given in Table 1.

X-ray diffraction studies were performed on Bruker D8 Focus X-ray diffractometer with Cu K<sub>a</sub> radiation ( $\lambda$  =1.54056 Å) in the 2 $\theta$  range of 10°-70°. Thermal studies were performed on the initial  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> sample on SETARAM SETSYS Evolution-1750 system in the temperature range of 200-1500°C at a heating rate of 10°C m<sup>-1</sup> and airflow rate of 20 ml m<sup>-1</sup> in Pt pans. <sup>27</sup>Al

DAE Solid State Physics Symposium 2015 AIP Conf. Proc. 1731, 030027-1–030027-3; doi: 10.1063/1.4947632 Published by AIP Publishing. 978-0-7354-1378-8/\$30.00 MAS-NMR spectra were collected with a 3.2 mm Varian MAS probe at room temperature on a Varian NMR spectrometer operating at 16.4 T corresponding to the Larmor frequency of 182.42 MHz for <sup>27</sup>Al nuclei. Chemical shifts was referenced to 1 M Al(NO<sub>3</sub>)<sub>3</sub> (aq).

#### **RESULTS AND DISCUSSION**

Figure 1 shows XRD patterns of alumina nanoparticles annealed upto a maximum temperature of 1100°C.



**FIGURE 2.** DSC thermogram of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>-RT sample.

**TABLE 1**: Details of annealing treatment of  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> powder and fraction of <sup>[4]</sup>Al, <sup>[5]</sup>Al and <sup>[6]</sup>Al species as measured by <sup>27</sup>Al MAS-NMR.

| Sample Code    | Annealing Temperature<br>[°C] | <sup>[4]</sup> Al | <sup>[5]</sup> Al | <sup>[6]</sup> Al |
|----------------|-------------------------------|-------------------|-------------------|-------------------|
| γ–Alumina-RT   | -                             | 0.330             | 0.022             | 0.646             |
| γ–Alumina–800  | 800                           | 0.343             | 0.020             | 0.635             |
| γ–Alumina–950  | 950                           | 0.357             | 0.017             | 0.625             |
| γ-Alumina-1100 | 1100                          | 0                 | 0.022             | 0.978             |



**FIGURE 1.** XRD patterns of initial  $\gamma$ -alumina powder (Sample Code:  $\gamma$ -Alumina-RT) and annealed samples.

XRD pattern of the initial Al<sub>2</sub>O<sub>3</sub> powder ( $\gamma$ -Alumina-RT) shows two prominent but broad peaks centered at 45.9° and 67.1° corresponding to  $\gamma$ -alumina [5]. XRD patterns of the samples annealed at 800°C and at 950°C, do not show any significant changes and match with those of the initial  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> sample (Figure 1), whereas after annealing at 1100°C, sharp peaks are detected due to its transformation to  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> [6]. Peak positions in the XRD patterns of all samples are presented in Table 2.

DSC studies confirm that transition of  $\gamma$ -alumina into  $\alpha$ -phase occurs at 1240°C with onset point of 1064°C. Hence the transformation to  $\alpha$ -phase after heat treatment at 1100°C can be understood [Figure 2]. <sup>27</sup>Al MAS-NMR spectra are shown in Figure 3. The spectra consist of four peaks centered at ~8, 14, 35 and 70 ppm. Peaks at ~8 ppm and ~14 ppm are due to AlO<sub>6</sub> structural units, AlO<sub>5</sub> and AlO<sub>4</sub> produce resonance peaks at ~35 and 70 ppm respectively [7]. The initial sample ( $\gamma$ -Alumina-RT) has two peaks at ~8 and 70 ppm due to  $\gamma$ -phase, that is normally formed by thermal decomposition of aluminum oxy-hydroxide at 400°C [7]. The fractions of tetra, penta and hexa coordinated Al-O units are determined from the tatios of areas under the resonance peaks and their values are given in table 1.



**FIGURE 3.** <sup>27</sup>Al MAS-NMR spectra of  $\gamma$ -alumina powder heat-treated upto 1100°C.

| Sample no.    | 20 [°] | Crystalline |
|---------------|--------|-------------|
| 41 : DT       | 20.7   | phases      |
| γ-Alumina-RT  | 32.7   | γ           |
|               | 36.8   | γ           |
|               | 39.5   | γ           |
|               | 45.4   | γ           |
|               | 67.2   | 7<br>27     |
|               | 84.6   | r<br>v      |
|               | 100.7  | Ŷ           |
| -Alumina-1100 | 25.6   | α           |
|               | 35.2   | α           |
|               | 37.8   | α           |
|               | 43.4   | a           |
|               | 52.6   | Ω<br>Ω      |
|               | 57.5   | u           |
|               | 61.3   | α           |
|               | 66.5   | α           |
|               | 68.2   | α           |
|               | 76.9   | α           |
|               | 77.1   | α           |
|               | //     | 00          |

**Table 2:** XRD peak positions of  $\gamma$ -Alumina-RT and the sample annealed at 1100°C. Corresponding crystalline phases are also listed

From the data given in table 1, it can be concluded that the initial  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> nanoparticles contain 33% of AlO<sub>4</sub> units and 66% of six-coordinated, AlO<sub>6</sub> units. On annealing  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> powder upto 950°C, no significant changes take place in the concentration of short-range structural units. After annealing at 1100°C, the sample contains ~98% of AlO<sub>6</sub> units. Hence, the initial  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> powder transforms almost completely to the rhombohedral  $\alpha$ -phase of Al<sub>2</sub>O<sub>3</sub> with heat treatment at 1100°C for 6 h.

## **CONCLUSIONS**

 $\gamma$ -Alumina nanoparticles were heated in the temperature range of 800-1100°C. Phase transitions after heat treatment at 800, 950 and 1100°C are studied by XRD and <sup>27</sup>Al MAS-NMR. Sharp peaks in XRD pattern of the sample annealed at 1100°C confirm the transformation to the thermodynamically stable  $\alpha$ -phase. The fraction of AlO<sub>6</sub> units is maximizes in this sample. The exothermic peak at ~1240°C in the DSC thermogram is due to  $\gamma \rightarrow \alpha$  transition.

#### REFERENCES

- A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Huntz, P. Roy and R. Tétot, Journal of Solid State Chemistry 182, 1171-1176 (2009).
- S. Cava, S.M. Tebcherani, I.A. Souza, S.A. Pianaro, C.A. Paskocimas, E. Longo and J.A. Varela, Materials Chemistry and Physics 103, 394-399 (2007).

- S. Kim, C. Kim and Y. Oh, Journal of Materials Science Letters 16, 257-259 (1997).
- L.D. Laude, K. Kolev, M. Brunel and P. Deleter, Applied Surface Science 86, 368-381 (1995).
- 5. PDF File # 10-0425, ICDD: Newtown Street, PA, USA.
- 6. PDF File # 10-0173, ICDD: Newtown Square, PA, USA.
- L.A. O'Dell, S.L.P. Savin, A.V. Chadwick and M.E. Smith, Solid State Nuclear Magnetic Resonance 31, 169-173 (2007).