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Abstract—In this paper, we consider the feasibility of linear
interference alignment (IA) for multiple-input multiple-output
(MIMO) channels with constant coefficients for any number of
users, antennas and streams per user; and propose a polynomial-
time test for this problem. Combining algebraic geometry tech-
niques with differential topology ones, we first prove a result that
generalizes those previously published on this topic. Specifically,
we consider the input set (complex projective space of MIMO
interference channels), the output set (precoder and decoder
Grassmannians) and the solution set (channels, decoders and
precoders satisfying the IA polynomial equations), not only as
algebraic sets but also as smooth compact manifolds. Using this
mathematical framework, we prove that the linear alignment
problem is feasible when the algebraic dimension of the solution
variety is larger than or equal to the dimension of the input
space and the linear mapping between the tangent spaces of
both smooth manifolds given by the first projection is generically
surjective. If that mapping is not surjective, then the solution
variety projects into the input space in a singular way and the
projection is a zero-measure set. This result naturally yields a
simple feasibility test, which amounts to checking the rank of a
matrix. We also provide an exact arithmetic version of the test,
which proves that testing the feasibility of IA for generic MIMO
channels belongs to the bounded-error probabilistic polynomial
(BPP) complexity class.

Index Terms—Interference alignment, MIMO interference
channel, polynomial equations, algebraic geometry, differential
topology.

I. INTRODUCTION

THE degrees of freedom (DoF) of a wireless interfer-
ence network represent the number of non-interfering

data streams that can be simultaneously transmitted over
the network. Recently, it has been shown that to achieve
the maximum DoF of the K-user multiple-input multiple-
output (MIMO) interference channel, the interference from
other transmitters must be aligned at each receiver in a
lower-dimensional subspace [1]. This is the basic idea of the
interference alignment (IA) technique which first originated
out of the study of the degrees of freedom of the 2-user X
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channel [2], [3], shortly afterwards was extended to the K-user
interference channel [4], and has received a lot of attention
since then.

In this paper we consider the alignment problem for the
K-user MIMO interference channel with constant channel
coefficients. Also, we restrict our attention to IA schemes that
apply linear decoders and precoders without channel or symbol
extensions, which means that the MIMO channel matrices
have no particular structure (e.g., diagonal or block diagonal)1.
For this setting, when all transmitters and receivers have the
same number of antennas, the ratio of total DoF to the single
user DoF is upper bounded by 2, whereas this ratio increases
to K/2 for frequency- or time-varying channels when the
channel extensions are i.i.d. and exponentially long in K
[4], [8]. However, requiring channels to have an unbounded
number of extensions can be a limiting factor in practice and,
consequently, alignment in signal space with constant MIMO
interference channels has been the preferred option for recent
experimental studies on IA [9], [10], [11].

In this paper, we address the feasibility of linear IA for
MIMO interference networks with constant channel coeffi-
cients and no symbol extensions. Our focus is the single chan-
nel use IA feasibility problem, which has recently received a
lot of attention, and results herein do not apply if multiple
channel uses are considered. This problem amounts to solving
a set of polynomial equations and some partial results can be
found in [8], [12], [13]. The first work to study this problem
was [8], where the solvability of the IA polynomial equations
was analyzed using classic results in algebraic geometry like
Bezout’s and Bernstein’s theorems. By counting the number
of equations and variables involved in any subset of zero-
forcing alignment equations, Yetis et al. introduced in [8] the
definition of a proper system. Connections between proper and
feasible systems were established only for the single-beam
case in which each user transmits only one stream of data.
When more than one data stream is transmitted, the genericity
of the polynomial coefficients is destroyed and the equivalence
between proper and feasible systems does not longer hold.
Some information theoretic outer bounds, e.g., [14] and [15],
can be included in the properness definition to further close
the gap between proper and feasible systems, but the precise
connection between both concepts still remains unclear.

In [16], the feasibility of IA was studied by interpreting
the alignment process as a joint transmit-receive zero-forcing
scheme in which each interfering stream can be suppressed

1We do not consider in this paper interference alignment schemes on the
signal scale which are based on the properties of rationals and irrationals [5],
[6], [7].
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at either the transmitter or the receiver sacrificing one degree
of freedom. The proposed feasibility test, however, provides
only necessary conditions and is combinatorial in nature since
it requires to check all possible ways to suppress interfering
streams at both sides of the link and for all users.

More recent work on the feasibility of IA has been presented
in [12] and [13]. Specifically, [12] studies the dimensions
of the algebraic varieties involved in the alignment problem
(input, output and solution variety), and proves a sufficient
and necessary condition of feasibility for the particular case
of symmetric square MIMO interference channels, where all
transmitters and receivers have the same number of antennas,
all users transmit the same number of streams and there are
at least three interfering users (K ≥ 3). For the general case
with arbitrary system parameters, only a necessary condition is
proved in [12]. Similar algebraic tools are used in [13] to prove
general bounds on the tuple of DoF that are achievable through
linear interference alignment. Furthermore, for the particular
case of symmetric systems where the number of transmit and
receive antennas is divisible by the number of streams the
bound is tight and can be achieved through IA.

In this work, we first prove a slight generalization of the
results in [12] and [13] that fully characterizes the feasibility
of linear interference alignment for MIMO channels with
constant coefficients and no symbols extension in arbitrary
settings (for any number of users, antennas and streams per
user, and non necessarily fully-connected networks). To derive
this result, we combine algebraic geometry techniques with
differential topology ones and consider the three sets involved
in the problem (i.e., the input set formed by the Cartesian
product of complex projective matrices, H, the output set
formed by the Cartesian product of precoder and decoder
Grassmannians, S, and the solution variety formed by tuples
of channels, decoders and precoders satisfying the alignment
equations, V), not only as algebraic sets but also as smooth
compact manifolds. Viewing the channels, the decoders and
precoders, and the solution variety as compact manifolds, some
important results stand out from the study of their tangent
spaces. In words, we prove that the linear alignment problem
is feasible when the algebraic dimension of V is larger than or
equal to the dimension of H and the linear mapping between
the tangent spaces of both smooth manifolds given by the first
projection is surjective. If the mapping between the tangent
spaces of V and H is not surjective, then the whole set V
projects into H in a singular way and the projection is a zero-
measure set. This situation explains those systems that are
proper, but infeasible.

This result enables us to derive the main contribution of
this paper, which is a simple feasibility test that amounts to
checking the rank of a certain matrix. We provide floating-
point and exact arithmetic versions of the test, as well as a
detailed complexity analysis which proves that the problem of
deciding infeasibility for generic MIMO channels belongs to
the bounded-error probabilistic polynomial-time (BPP) com-
plexity class in the Turing Machine model of computation.
Using the proposed test we were able to study the feasibility
of systems with a large number of antennas and users and,
from the general trends observed, to put forward a conjecture

on the number of linear DoF of symmetric M × N MIMO
interference channels. Also, the proposed feasibility test can
also be used to obtain the total DoF for any arbitrary K-user
MIMO interference channel without resorting to the existing
inner and outer information-theoretic bounds. Some work
along this line has recently been discussed in [17].

The paper is organized as follows. In Section II, the system
model is introduced and the IA feasibility problem is formally
stated. In Section III we present a result that characterizes
the feasibility of linear interference alignment for MIMO
channels with constant coefficients in arbitrary settings. The
proposed feasibility test, which essentially consists of checking
whether a certain matrix is rank-deficient or not, is presented
in Section IV. In this section we also present floating-point
and exact arithmetic versions of the test, and prove that the
later describes a BPP Turing machine. In Section V, we prove
the main theorems of the paper. In Section VI, we vali-
date our feasibility test in several symmetric and asymmetric
interference channels showing that its results are consistent
with other previously known results. Additionally, we use
our test to establish a conjecture on the DoF of the K-user
symmetric interference channel. Finally, the main conclusions
are summarized in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System model
We consider in this paper the K-user MIMO interference

channel with transmitter j having Mj ≥ 1 antennas and
receiver j having Nj ≥ 1 antennas. Each user j wishes to
send dj ≥ 0 streams or messages. We adhere to the notation
used in [8] and denote this asymmetric interference channel as∏K
k=1 (Mk ×Nk, dk) = (M1 ×N1, d1) · · · (MK ×NK , dK).

The symmetric case in which each user transmits d streams
and is equipped with M transmit and N receive antennas is
denoted as (M ×N, d)

K . In the square symmetric case all
users have the same number of antennas M = N .

The MIMO channel from transmitter l to receiver k is
denoted as Hkl and assumed to be flat-fading and constant
over time. Each Hkl is an Nk × Ml complex matrix (i.e.,
Hkl ∈ CNk×Ml ). All channels are independent of each
other and their entries are also independently drawn from a
continuous distribution (channels generated in this way are
said to be generic). We let Φ ⊆ {1, . . . ,K} × {1, . . . ,K}
be the (nonempty) subset of indexes (k, l), k 6= l such that
Hkl is nonzero, therefore we assume that Hkl is defined for
(k, l) ∈ Φ. Note that if Φ = {(k, l) : k 6= l}, then the
interference channel is fully connected, otherwise the channel
is partially connected, which can be due to path loss or
shadowing [18]. Both scenarios are covered by the results in
this paper. We will denote by ](Φ) the number of elements in
the (finite) set Φ (i.e., the non-zero interference links).

User j encodes its message using an Mj × dj precoding
matrix Vj and the received signal is given by

yj = HjjVjxj +
∑
i6=j

HjiVixi + nj , 1 ≤ j ≤ K (1)

where xj is the dj × 1 transmitted signal and nj is the
zero mean unit variance circularly symmetric additive white
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Gaussian noise vector. The first term in (1) is the desired
signal, while the second term represents the interference space.
The receiver j applies a linear decoder Uj of dimensions
Nj × dj , i.e.,

UTj yj = UTj HjjVjxj+
∑
i 6=j

UTj HjiVixi+U
T
j nj , 1 ≤ j ≤ K,

(2)
where superscript T denotes transpose.

B. Problem statement

The interference alignment (IA) problem consists in finding
the decoders and precoders, Vj and Uj , in such a way that
the interfering signals at each receiver fall into a reduced-
dimensional subspace and the receivers can then extract the
projection of the desired signal that lies in the interference-
free subspace. To this end it is required that the polynomial
equations

UTk HklVl = 0, (k, l) ∈ Φ, (3)

are satisfied, while the signal subspace for each user must
be linearly independent of the interference subspace and must
have dimension dk, that is

rank(UTk HkkVk) = dk, ∀ k ∈ {1, . . . ,K}. (4)

We recall that all matrices Hkl (including direct link matrices,
Hkk) are generic, that is, their entries are drawn from a
continuous probability distribution and are independent of
each other (independence among different links also holds).
Consequently, (4) is satisfied almost surely. Thus, we will
consider that solving the linear IA feasibility problem amounts
to solve the polynomial equations in (3) only.

In this paper we are interested in studying the relationship
between dj ,Mj , Nj ,K such that the linear alignment problem
is feasible. For example, we may want to know: for given K
and dj , which collections of Mj , Nj make the problem feasible
(for every possible choice of the matrices Hkl), or for given
K and Mj , Nj , which are the greatest values for dj that can
be achieved? In the later case, the tuple (d1, . . . , dK) defines
the maximum degrees of freedom (DoF) of the system, that
is the maximum number of independent data streams that can
be transmitted without interference in the channel.

It is well-known that the number of streams transmitted by
all users must satisfy the point-to-point bounds

1 ≤ dj ≤ min(Nj ,Mj), ∀ j ∈ {1, . . . ,K}. (5)

Note that we can exclude the case that some dj = 0 without
loosing generality, because it amounts to removing all pairs
containing the index j from Φ. From a mathematical point of
view, in the general (not necessarily fully connected) case, the
natural substitute of (5) is the following:

1 ≤ dk ≤ Nk, 1 ≤ dl ≤Ml, ∀(k, l) ∈ Φ. (6)

We want to state absolutely general results, which leads us to
consider the two following sets:

ΦR = {k ∈ {1, . . . ,K} : ∃ l ∈ {1, . . . ,K}, (k, l) ∈ Φ},

ΦT = {l ∈ {1, . . . ,K} : ∃ k ∈ {1, . . . ,K}, (k, l) ∈ Φ}.

Note that ΦR (ΦT ) is the first (second) projection of the set
Φ. In words, ΦR indicates the set of receivers which suffer
interference from at least one transmitter, whereas ΦT contains
the set of transmitters which provoke interference to at least
one receiver. Then, (6) is equivalent to

1 ≤ dk ≤ Nk, ∀ k ∈ ΦR, 1 ≤ dl ≤Ml, ∀ l ∈ ΦT .
(7)

Equations (5) and (7) are equivalent if each user interferes at
least one user and it is interfered by at least one user, that is
if ΦR = ΦT = {1, . . . ,K}. In particular, they are equivalent
in the fully–connected case. Note also that if l 6∈ ΦT then the
precoder Vl does not appear in the equations (3) and plays no
role in the problem, thus it consists of free variables. We deem
that it is more appropriate not to consider these free variables
as part of the problem. Hence, if for example we say that the
problem has finitely many solutions we mean that the number
of solutions of the non-free variables is finite (although, if
there is some l 6∈ ΦT , there will be infinitely many ways to
choose Vl). The same can be said if k 6∈ ΦR for some k.

Additionally, note that if user l transmits all possible streams
according to its point-to-point bound, dl = Ml (which implies
that Ml ≤ Nl); then, it is not possible for user k 6= l,
with (k, l) ∈ Φ, to also reach its point-to-point bound with
equality and thus receive dk = Nk desired streams (with
Nk ≤ Mk). This stems from the fact that receiver k has to
leave at least a one-dimensional subspace for the interference,
otherwise the desired signal subspace would not be free of
interference. In other words, the two users of an interference
link cannot reach their point-to-point bounds simultaneously.
Formally, this condition can be stated as the following set of
necessary conditions

NkMl > dkdl, ∀(k, l) ∈ Φ, (8)

which complement the direct link conditions in (7). To derive
our results we only assume that both (7) and (8) hold.

There are other necessary conditions for feasibility that
involve two or more users. Specifically, in [14] it was proved
that for the 2-user MIMO interference channel consisting of
users k and l, if (k, l) ∈ Φ and (l, k) ∈ Φ, the DoF satisfy

dk + dl ≤ min (Ml +Mk, Nl +Nk,

max(Nk,Ml),max(Nl,Mk)) . (9)

For the symmetric K-user MIMO interference channel2, the
following outer bound for the total number of DoF was proved
in [15]

d1 + · · ·+ dK ≤ K min(M,N) I (K ≤ R)

+K
max (M,N)

R+ 1
I (K > R) , (10)

where I (·) represents the indicator function and R =
bmax (M,N) /min (M,N)c.

Our techniques for proving the main results will come from
algebraic geometry and differential topology. Our arguments

2Let us remind again that we are only considering the DoF achievable with
linear alignment schemes and without symbol extensions. When lattice-based
alignment schemes are used, the DoF of interference channels with real and
constant coefficients have been studied in [5], [6], [7].
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are sometimes similar to those in [12], [13], with the difference
that not only the algebraic nature of the objects is used, but
also their smooth manifold structures, as well as the key
property of compactness. We are greatly inspired by Shub
and Smale’s construction for polynomial system solving, see
[19] or [20]. Some basic knowledge of smooth manifolds
is assumed. More advanced results on differential topology
that will also be used during the derivations are relegated to
Appendix A.

To formally state the IA feasibility problem, it is convenient
to first define three tuples: H , U and V . H denotes the
collection of all Hkl, (k, l) ∈ Φ and, similarly, U and V
denote the collection of Uk, k ∈ ΦR and Vl, l ∈ ΦT ,
respectively. Even though for the system model described
in (1) and (2) we have used the symbols Hkl, Uk and Vl
for complex matrices, in the following we will show that
to solve the problem is more convenient to let them live in
different spaces that take into account the invariances of (3).
If (H,U, V ) satisfies (3) then we can multiply each matrix Hkl

in H by a nonzero complex number and (3) will still hold.
Thus, it makes sense to consider our matrices as elements of
the projective space of matrices, i.e., we can think of Hkl

as a whole line in CNk×Ml . Similarly, we can think of each
Uk (equiv. Vl) as a subspace spanned by the columns of a
Nk × dk (equiv. Ml × dl) matrix. From a mathematical point
of view, this consideration permits us to use projective spaces
and Grassmannians (which are both compact spaces) instead
of non-compact affine spaces.

Thus, we consider the projective space of complex channel
matrices, P(CNk×Ml), and the Grassmannians3 formed by the
decoders and precoders. With some abuse of notation we will
refer to their elements as Hkl and Uk, Vl, respectively. More
formally, given ](Φ) elements

Hkl ∈ P(CNk×Ml), (k, l) ∈ Φ,

to solve the IA problem one would like to find a collection of
subspaces

Uk ∈ Gdk,Nk
, k ∈ ΦR, Vl ∈ Gdl,Ml

, l ∈ ΦT

such that the polynomial equations (3) are satisfied. The
(generic) IA feasibility problem consists on deciding whether,
given K,Mj , Nj , dj and Φ, all or almost all choices of Hkl

will admit such Uk, Vl. We have already pointed out that the
IA equations given by (3) hold or do not hold independently
of the particular chosen affine representatives of (H,U, V ).

As in [12], the proof of our main theorems will follow from
the study of the set {(H,U, V ) : (3) holds}. More precisely,
consider the following diagram

V
π1 ↙ ↘ π2

H S
(11)

where
H =

∏
(k,l)∈Φ

P(CNk×Ml)

3For integers 1 ≤ a ≤ b we denote as Ga,b the Grassmannian formed by
the linear subspaces of (complex) dimension a in Cb.

is the input space of interference MIMO channels (here,
∏

holds for Cartesian product),

S =

( ∏
k∈ΦR

Gdk,Nk

)
×

( ∏
l∈ΦT

Gdl,Ml

)
.

is the output space of decoders and precoders (i.e. the set
where the possible outputs exist) and

V = {(H,U, V ) ∈ H × S : (3) holds}

is the so–called solution variety. V is given by certain polyno-
mial equations, linear in each of the Hkl, Uk, Vl and therefore
is an algebraic subvariety of the product space H× S .

Note that, given H ∈ H, the set π−1
1 (H) is a copy of the

set of U, V such that (3) holds, that is the solution set of
the linear interference alignment problem. On the other hand,
given (U, V ) ∈ S, the set π−1

2 (U, V ) is a copy of the set of
H ∈ H such that (3) holds. The feasibility question can then
be restated as, is π−1

1 (H) 6= ∅ for a generic H?

III. CHARACTERIZING THE FEASIBILITY OF LINEAR IA

In this section we present a theorem that characterizes the
feasibility of linear interference alignment for MIMO channels
with constant coefficients for any number of users, antennas
and streams per user. This characterization will allow us to
provide a polynomial-complexity test of feasibility for this
problem which will be detailed in Section IV.

First, let us fix dj ,Mj , Nj and Φ satisfying (7) and (8) and
define s ∈ Z such that

s =

( ∑
k∈ΦR

Nkdk − d2
k

)
+

(∑
l∈ΦT

Mldl − d2
l

)
−

∑
(k,l)∈Φ

dkdl

(12)
which accounts for the difference between the number of vari-
ables and the number of equations in the system of polynomial
equations (3), as first studied in [8]. In [12, Theorem 2] and
[13, Theorem 1], it has been proved that if s < 0 then, for
every choice of Hkl out of a zero–measure subset, the system
of polynomial equations (3) has no solution and, therefore,
the IA problem is infeasible. On the other hand, when s ≥ 0,
which is the scenario of interest for this paper, the IA problem
can be either feasible or infeasible. The situation remains equal
in the partially connected case.

Remark 1: In [8], systems were classified as either proper
or improper. A system was deemed proper if and only if
for every subset of equations in (3), the number of variables
is at least equal to the number of equations in that subset.
This evaluation may be computationally demanding with the
additional limitation that properness is necessary [12], [13] but
not sufficient for a system to be feasible. For that reason, in
this paper we will follow a simpler convention that classifies
a system as proper when s ≥ 0, which only considers the
total set of equations. Our reasoning to define s is based on
dimensionality counting arguments whose proof is similar to
the ones presented in [12, Lemma 7] and which we have
omitted herein to avoid repetitions.
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When s ≥ 0 the following result suggests a practical test to
distinguish if, for a choice of dj ,Mj , Nj ,Φ, the corresponding
linear IA problem is feasible or infeasible.

Theorem 1: Fix dj ,Mj , Nj and Φ satisfying (7) and (8).
Let s be defined by (12) and assume that s ≥ 0. Then, the
following two cases appear

1) for every choice of Hkl out of a zero–measure subset,
the system (3) has no solution and, therefore, the IA
problem is infeasible; or

2) for every choice of Hkl there exists at least one solution
to (3) and for every choice of Hkl out of a zero–measure
set the set of solutions of (3) is a smooth complex alge-
braic submanifold; therefore, the IA problem is feasible.
In this situation, the following claims are equivalent:

a) The system (3) has solution for every choice of
Hkl.

b) For almost every choice of Hkl, and for any choice
of Uk, Vl satisfying (3), the linear mapping

θ :
∏
k∈ΦR

CNk×dk ×
∏
l∈ΦT

CMl×dl →
∏

(k,l)∈Φ

Cdk×dl

({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) 7→
{
U̇Tk HklVl+

UTk HklV̇l

}
(k,l)∈Φ

(13)

is surjective (i.e. it has maximal rank, equal to∑
(k,l)∈Φ dkdl). Here, we note that some affine

representatives Hkl, Uk, Vl have been taken.
c) There exist a Hkl and a choice of Uk, Vl satisfying

(3), such that the linear mapping (13) is surjective.

A. Geometrical insight behind Theorem 1

A clear understanding of Theorem 1 comes from consider-
ing the solution variety already defined as

V = {(H,U, V ) : (3) holds}.

Consider the projection π1 into the first coordinate H . Then, an
instance H has a solution if and only if π−1

1 (H) is nonempty.
It turns out that both the set H of inputs H and the set V
are smooth manifolds. The case s < 0 will correspond to the
dimension of V being smaller than that of H, which intuitively
implies that the projection of V cannot cover the greatest part
of H. The case s ≥ 0 will correspond to the dimension of V
being greater than or equal to that of H. A naive approach
should then tell us that the projection of V will cover “at
least a good portion” (i.e. an open subset) of H. Indeed,
the algebraic nature of our sets and classical results from
differential topology imply that if an open set of H is reached
by the projection, then the whole H is. This will be the case
of item 2) of Theorem 1. But there is another, counterintuitive
thing that can happen: if the whole set V projects into H in a
singular way (more precisely, if every point of V is a critical
point of π1, namely the tangent space above does not cover
the tangent space below), it will still happen that the image of
V is a zero–measure subset of H, which will produce the case
1) of Theorem 1. Geometrically, the reader may imagine V as

a vertical line and H as a horizontal line: the projection of V
into H is just a point, thus a zero–measure set, although both
manifolds have the same dimension. This setting looks such
a particular situation that it is hard to imagine it happening
in real–life examples, but indeed it does happen for many
choices of Mj , Nj , dj ,K that are in case 1). The good news
is that the particular case that all of V projects into H in a
singular way, can be easily detected by linear algebra routines
involving the mapping (13) which is related to the derivative
of this projection. This analysis will produce the feasibility
test proposed in this paper.

B. Extensions and discussion of related results

Let us point out that the model we have used for our
derivations, i.e. diagram (11), is similar to that used in [12,
Section 2]. The only difference is that in our case we let
channels live in the projective space of matrices which is a
compact space instead of the non-compact affine space used
in [12]. The arguments that lead to the proof that a system is
infeasible when s < 0 are based on the dimensionality of the
solution variety [12, Lemmas 7, 8].

The fact that either almost every Hkl admits a solution or
almost every Hkl does not admit a solution, was essentially
proved in [12] and [13]. The constructions of the Zariski
cotangent space in [12], the Jacobian computation in [13]
and the matrix in [21] are strongly related to that of the
mapping (13). One difference is that the derivation of (13)
does not require any particularization or partitioning of the
factors appearing in the alignment equations (3), as done
in [12] and [13], respectively. Instead, it has been derived
(independently of the chosen representatives) as a mapping
between tangent spaces, which endows our approach with the
simple geometrical interpretation provided in Section III-A.

Furthermore, despite the obvious connections with [12] and
[13], the tools and mathematical framework used in this paper
allowed us to prove that, when the system is feasible and s =
0, then the number of IA solutions is finite and constant for
almost all channel realizations. This is formally stated in the
following lemma.

Lemma 1: For almost every H , the solution set in case 2)
of Theorem 1 is a smooth complex algebraic submanifold of
dimension s. If s = 0, then there is a constant C ≥ 1 such that
for every choice of Hkl out of a proper algebraic subvariety
(thus, for every choice out of a zero measure set) the system
(3) has exactly C alignment solutions.

Proof: See Section V.
A practical consequence of Lemma 1 is that affine alignment

solutions (when finite) are grouped in C orbits of equivalent
solutions spanning the same subspace. This fact is automati-
cally captured by the way we have modeled the output space S
that considers precoders and decoders as Grassmannians and
therefore enables us to see those orbits as C isolated solutions.

Remark 2: As pointed out in Section II-B, if some k0

satisfies k0 6∈ ΦR or some l0 satisfies l0 6∈ ΦT , then any
solution ({Uk}k∈ΦR

, {Vl}l∈ΦT
) can be complemented with

any choice of Uk0
and Vl0 and still be a solution of (3), just

because the variables Uk0
and Vl0 do not appear in (3). When
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we say that the number of solutions is a finite number C,
we are not counting these infinitely many possible choices for
Uk0 and Vl0 . We trust that this convention is clear and natural
enough to avoid confusion.

IV. PROPOSED FEASIBILITY TEST

A. A floating-point arithmetic test of feasibility

We now construct a test for checking whether a given choice
of dj ,Mj , Nj ,Φ defines a feasible alignment problem or not.
To develop this test, we first have to choose a point Hkl, Uk, Vl
such that (3) holds. An arbitrary set of channels, decoders and
precoders satisfying the IA equations (3) can be obtained very
easily by solving what we call the inverse IA problem; that is,
given a set of arbitrary (e.g. random) decoders and precoders,
Uk, Vl, find a set of MIMO channels such that (3) holds. This
is totally different from (and much easier to solve than) the
original IA problem, which is given channel matrices Hkl, find
elements Uk, Vl that solve (3). Since the polynomial equations
(3) are linear in Hkl the inverse IA problem is completely
solved by the following Lemma.

Lemma 2: Fix any choice of dj ,Mj , Nj ,Φ satisfying (7)
and (8), and let (U, V ) ∈ S be any element. Then, the set

π−1
2 (U, V ) = {H ∈ H : (H,U, V ) solve (3) } ⊆ H

is a nonempty product of projective vector subspaces and a
smooth submanifold of H of complex dimension equal to ∑

(k,l)∈Φ

NkMl − dkdl

− ](Φ).

In particular, this quantity is greater than or equal to 0.
Proof: See Appendix B.

Lemma 2 shows that we may fix our U and V to be the
ones of our choice and there always exists H forming a valid
element (H,U, V ) ∈ V . If, for that choice, the linear mapping
defined in (13) is surjective, then the alignment problem is
generically feasible by item (2.c) of Theorem 1. If for generic
H that mapping is not surjective the alignment problem is not
generically feasible, namely it can be solved just for a zero–
measure set of Hkl. The proposed feasibility test then has to
perform two tasks:

1) Find an arbitrary Hkl, Uk, Vl such that (3) holds. We
will detail later a simple choice for these elements.

2) To check whether the matrix Ψ (in any basis) defining
the linear mapping (13) satisfies det(ΨΨ∗) 6= 0 (which
is equivalent to mapping θ defined in (13) being surjec-
tive) or not.

Now, we detail the two stages of the proposed IA feasibility
test.

1) Finding an arbitrary IA solution: The first stage requires
finding arbitrary Uk, Vl and their corresponding MIMO chan-
nels Hkl such that (3) holds. Lemma 2 allows us to choose
any Uk and Vl of our choice. Thus, we will consider precoders
and decoders given by

Vl =

(
Idl

0(Ml−dl)×dl

)
, Uk =

(
Idk

0(Nk−dk)×dk

)
, (14)

and MIMO channels with the following structure

Hkl =

(
0dk×dl Akl
Bkl Ckl

)
, (15)

which trivially satisfy UTk HklVl = 0 and therefore belong to
the solution variety. We claim that essentially all the useful
information about V can be obtained from the subset of V
consisting on triples (Hkl, Uk, Vl) of the form (14) and (15).
The reason is that given any other element (H ′kl, U

′
k, V

′
l ) ∈ V ,

one can easily find sets of orthogonal matrices Pk and Ql
satisfying

Uk = PkU
′
k, Vl = QlV

′
l ,

and
0 = U ′

T
kH
′
klV
′
l = UTk (P ∗k )

T
H ′klQ

∗
l Vl,

where the superscript ∗ denotes Hermitian. That is, the trans-
formed channels Hkl = (P ∗k )

T
H ′klQ

∗
l have the form (15), and

the transformed precoders Vl and decoders Uk have the form
(14).

2) Checking the rank of the linear mapping θ: For a
particular element of the solution variety chosen as in (14)
and (15), the linear mapping θ reduces to

θ : ({U̇k}k∈ΦR
, {V̇l}l∈ΦT

) 7→
{
U̇Tk Bkl +AklV̇l

}
(k,l)∈Φ

,

(16)
where U̇k, V̇l have dimensions (Nk − dk) × dk and (Ml −
dl) × dl, respectively. The mapping θ can also be written in
matrix form as

Ψw, (17)

where w is a column vector of dimension
∑
k∈ΦR

(Nk −
dk)dk +

∑
l∈ΦT

(Ml − dl)dl, built by stacking all columns of
{U̇Tk }k∈ΦR

and {V̇ Tl }Tl∈ΦT
, and Ψ is a block matrix with ](Φ)

row partitions (as many blocks as interfering links) and 2K
column partitions (as many blocks as precoding and decoding
matrices). Checking the feasibility of IA then reduces to check
whether matrix Ψ is full rank or not. Vectorization of the
mapping (16) reveals that Ψ is composed of two main kinds
of blocks, Ψ

(A)
kl and Ψ

(B)
kl , i.e.

vec(U̇Tk Bkl +AklV̇l) =

Ψ
(A)
kl︷ ︸︸ ︷

(Akl ⊗ Idk)K(Nk−dk),dk vec(U̇k)

+ (Idl ⊗BTkl)︸ ︷︷ ︸
Ψ

(B)
kl

vec(V̇l),

(18)

where ⊗ denotes Kronecker product and Km,n is the mn ×
mn commutation matrix which is defined as the matrix that
transforms the vectorized form of an m × n matrix into the
vectorized form of its transpose. Block Ψ

(B)
kl has dimensions

dldk×dl(Ml−dl), whereas block Ψ
(A)
kl is dldk×dk(Nk−dk).

For a given tuple (k, l), Ψ
(B)
kl and Ψ

(A)
kl are placed in the row

partition that corresponds to the interfering link indicated by
the tuple (k, l). Ψ

(B)
kl is placed in the l+K-th column partition,

whereas Ψ
(A)
kl occupies the k-th column partition. The rest of
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blocks are occupied by null matrices. The dimensions of Ψ
are therefore∑

(k,l)∈Φ

dkdl ×
∑
k∈ΦR

(Nk − dk)dk +
∑
l∈ΦT

(Ml − dl)dl,

whereas its structure is exactly the same as the incidence
matrix of the network connectivity graph. Remarkably, in
the particular case of s = 0, Ψ is a square matrix of size∑

(k,l)∈Φ dkdl.
Taking the 3-user interference channel as an example, Ψ is

given as in (19), where the blocks Ψ
(B)
kl and Ψ

(A)
kl are given

by (18).
Once Ψ has been built, the last step is to check whether

the mapping is surjective and, consequently, the interference
alignment problem is feasible. This amounts to check if the
rank of Ψ is maximum, that is, equal to

∑
(k,l)∈Φ dkdl. A

simple method consists of generating a random element b ∈
C

∑
(k,l)∈Φ dkdl , computing the least squares solution of Ψw =

b and checking if ‖Ψw−b‖ is below a given threshold µ. With
a high probability in the choice of b this test will determine
if θ is a surjective mapping.

At this point, two questions regarding the practical imple-
mentation of this method may arise. The first one is related
to the scalability of the proposed method. It is obvious that
both the computational and storage requirements grow with the
number of antennas, streams and users in the system. However,
matrix Ψ presents two characteristics which limit, to some
extent, these requirements.
• First, Ψ is a very sparse matrix with only

∑
(l,k)∈Φ(Nk−

dk)dldk +
∑

(k,l)∈Φ(Ml − dl)dkdl non-zero entries, thus
limiting both the computational and the storage require-
ments. Sparsity can be exploited by computing the least
squares solution of Ψw = b from the sparse QR factor-
ization of Ψ, for which efficient algorithms exist [22].

• Recall also that the matrix-vector product Ψw is com-
pletely characterized by the entries of submatrices Akl
and Bkl in (15). Black box iterative algorithms [23]
are able to solve the least squares problem by solely
performing matrix-vector products, i.e. computing the
linear transformation defined by the matrix Ψ. The main
consequence of this is that Ψ does not even need to
be explicitly constructed thus reducing even further the
storage requirements.

These considerations allowed us to evaluate the feasibility of
systems whose resulting Ψ is of dimensions up to 40000 ×
40000. As a rule of thumb, we could say that symmetric
systems with a product Kd up to 200 are computable. As an
example, we were able to check that the system (86×139, 25)8

is feasible. This operating range allowed us to extensively
verify the feasibility of a wide variety of scenarios and even
establish a new conjecture regarding the DoF of symmetric
interference channels which is described in detail in Section
VI.

The second question refers to the reliability of the numerical
results. Floating-point algorithms are always prone to round-
off errors, hence, determining something as simple as the
rank of a matrix may not be that easy, especially for very
large systems. The choice of the threshold µ determines in

the end to which extent our results are reliable. To eliminate
this ambiguity, in Section IV-B we present a Turing machine,
exact arithmetic, version of the proposed test and prove that
checking the IA feasibility belongs to the complexity class of
bounded-error probabilistic polynomial time (BPP) problems.
From a practical point of view, however, the floating point
version of the test described in this section was found to
provide always robust and consistent results when the entries
in Akl, Bkl and w were drawn from a complex normal
distribution with zero mean and unit variance, and the decision
threshold was set to µ = 10−3.

B. Exact arithmetic test and complexity analysis

The test explained after our Theorem 1 has been pro-
grammed in floating point arithmetic, and it is thus sensitive
to floating point errors. Although it is robust enough for many
examples, a Turing machine version of this test (that is, a test
working in exact arithmetic) is in order. Consider the following
algorithm.

1) For k ∈ ΦR and l ∈ ΦT , consider Hkl as in (15). Let
Ckl = 0 for all k, l and let the entries of Akl and Bkl be
chosen (i.i.d uniformly) as a+

√
−1b where 0 ≤ a, b <

h, a, b ∈ Z, and

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

Note thus that the entries of Akl, Bkl are complex
numbers whose real and imaginary parts are integers
of bounded size, chosen at random.

2) Check, using exact linear algebra procedures (such as the
ones available in libraries IML [24] or LinBox [25]), if
the mapping (16) is surjective. Then,
• if the mapping is surjective, answer feasible,
• otherwise, answer infeasible.

The following is our second main result.
Theorem 2: The algorithm above is a Bounded Error Prob-

ability procedure (thus, describes a BPP Turing machine)
whose running time is polynomial in the input parameters
dj ,Mj , Nj , ](Φ):
• if the given parameters define a unfeasible alignment

problem, answers unfeasible.
• if the given parameters define a feasible alignment prob-

lem, with high probability the algorithm answers feasible,
but there is a probability (in the choice of the coefficients
of Akl, Bkl) of at most 1/4 that the algorithm answers
unfeasible.
Proof: See Section V. Here is an outline of the idea of

the proof: if the scenario is feasible, then for every choice
of Hkl out of some zero measure set Z , the mapping (16) is
surjective. Of course, it could happen that every choice of Hkl

with integer, “small” entries is in Z . But, for that to happen,
Z must have a complicated topology (think for example in
a line that touches all points in the xy–plane with integer
coordinates bounded by some h > 0: the line must have quite
a complicated shape). But, the shape of Z is actually very
simple because it is given by a set of multilinear equations of
small degree. Thus, Z cannot contain too many integer points,
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Column partition
Interfering

link
Row

partition 1 2 3 4 5 6

(1, 2)
(1, 3)
(2, 1)
(2, 3)
(3, 1)
(3, 2)

1
2
3
4
5
6



Ψ
(A)
12 0 0 0 Ψ

(B)
12 0

Ψ
(A)
13 0 0 0 0 Ψ

(B)
13

0 Ψ
(A)
21 0 Ψ

(B)
21 0 0

0 Ψ
(A)
23 0 0 0 Ψ

(B)
23

0 0 Ψ
(A)
31 Ψ

(B)
31 0 0

0 0 Ψ
(A)
32 0 Ψ

(B)
32 0


(19)

and as a consequence for “most” integer points, the mapping
in (16) must be surjective.

Note that this kind of algorithm (with a bounded error prob-
ability just in one direction) is very common in mathematics
(the most famous example is Miller–Rabin test for primality
[26], [27]). The use is very simple: if on a given input the
algorithm answers feasible then the alignment is feasible. If
the test is run k times and its answer is unfeasible for all k
tries, then we can conclude that the alignment is unfeasible
unless an extremely unlikely event (probability at most 1/4k)
happened. The upper bound 1/4 on the error probability in
the one–try test can be changed to any ε < 1 by choosing a
different value of h, but according to the previous discussion,
the specific value is irrelevant.

Technically, Theorem 2 asserts that the problem of deciding
if a given choice of dj ,Mj , Nj ,Φ is generically infeasible
is in the complexity class BPP (bounded-error probabilistic
polynomial time).

Remark 3: Some complexity analysis have recently ap-
peared in the literature claiming that to check the feasibility of
IA problems is strongly NP-hard [28], [29]. However, there is
a crucial difference between the problem considered in [28],
[29] and that considered in this paper. The problem in [28]
can be restated informally as follows:

Problem 1: Given dj , Mj and Nj , decide whether there
exists a linear alignment solution for a given set of interference
MIMO channels Hkl.
However, we are considering in this paper a different feasibil-
ity problem:

Problem 2: Given dj , Mj and Nj (and a connectivity graph
or matrix Φ), decide whether there exists a linear alignment
solution for generic interference MIMO channels Hkl.
While Problem 1 is NP-hard, we have just shown that Problem
2 can be solved in polynomial time. The complexity of
Problem 1 is due to the fact the authors in [28], [29] consider
a given realization of Hkl. In fact, to check whether this
channel realization admits a solution, can indeed be NP-
hard. However, by restricting the problem to generic MIMO
channels, e.g., channels with independent entries drawn from
continuous distributions, the IA feasibility problem becomes
much easier. Note also that even if checking the feasibility of
IA can be done with polynomial complexity, finding the actual
decoders and precoders that align the interference subspaces
can still be NP-hard when K is large, as proved in [28].

Remark 4: The IA feasibility problem considered in this
paper, that is, determining if a given stream distribution

(d1, . . . , dK) can be generically achieved with linear IA is
tightly related to that of finding the maximum total DoF (or the
tuple achieving the maximum sum DoF,

∑K
k=1 dk). Although

we have shown that the former belongs to the BPP class, the
complexity of the latter remains uncharacterized. Based on the
proposed test, we have recently presented an algorithm [17] to
compute the maximum DoF in arbitrary networks. Its working
principle is performing an ordered search inside the region of
potential feasible tuples (those which satisfy existing necessary
conditions) until a feasible tuple is found. Unfortunately, for
an arbitrary system, the accurate determination of this region
may be a computationally demanding task. A problem of
similar complexity is that of checking the necessary feasibility
conditions in [12, Theorem 2] or [13, Theorem 1], which
involve an exponential number of constraints.

V. PROOF OF MAIN RESULTS

In what follows we provide a rigorous proof of our results.
Most preliminary details of the proof are relegated to appen-
dices.

A. Dimensions of the algebraic manifolds involved in the
problem

In this subsection we recall the dimensions of the algebraic
sets involved in the problem. Similar results have appeared in
[8], [12] and [13]; therefore and to keep the paper concise,
their proofs are omitted. For the interested reader the proofs
can be deduced following the mentioned references [8], [12],
[13] with a basic knowledge of algebraic geometry tools such
as those described in [30] and [31].

Lemma 3: Both H and S are complex manifolds, and

dimCH =
∑

(k,l)∈Φ

(NkMl − 1),

dimC S =
∑
k∈ΦR

dk(Nk − dk) +
∑
l∈ΦT

dl(Ml − dl).

Lemma 4: The set V is a complex smooth submanifold of
H× S and its complex dimension is

dimC V =

 ∑
(k,l)∈Φ

NkMl − dkdl

+

( ∑
k∈ΦR

Nkdk − d2
k

)

+

(∑
l∈ΦT

Mldl − d2
l

)
− ](Φ).
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B. The critical points and values of π1

We now study the sets of critical points and values of π1.
Lemma 5: Let (H,U, V ) ∈ V be fixed and let θ be

the mapping defined in (13). Then, θ is surjective or not,
independently of the chosen representatives of (H,U, V ).

Proof: See Appendix C.
Proposition 1: Let (H,U, V ) ∈ V . Then, (H,U, V ) is a

regular point of π1 if and only if the mapping θ defined in
(13) is surjective.

Proof: See Appendix D.
Proposition 2: The set Σ′ ⊆ V of critical points of π1 is an

algebraic subvariety of V . The set Σ ⊆ H of critical values of
π1 is a proper (i.e. different from the total) algebraic subvariety
of H.

Proof: See Appendix E.
Corollary 1: H \ Σ is a connected set.

Proof: From Proposition 2, the set Σ is a complex proper
algebraic subvariety, therefore it has real codimension 2 and
removing it does not disconnect the space H.

Corollary 2: Assume that Σ′ is a proper algebraic subvariety
of V (equivalently, π1 : V→H has at least one regular point).
Then, we are in the case 2) of our Theorem 1, that is for
every H ∈ H the set π−1

1 (H) is nonempty, and for H 6∈ Σ
it is a smooth complex manifold of dimension s. Indeed, the
restriction V \ π−1

1 (Σ)
π1→H \ Σ is a fiber bundle.

Proof: From Corollary 1, the set H \ Σ of non-critical
values of π1 is a connected set. Moreover, we have:
• V \ π−1

1 (Σ) is not empty by assumption,
• π1 |V\π−1

1 (Σ) is a submersion (because we have removed
the set of critical points), and

• it is proper: let A ⊆ H\Σ ⊆ H be a compact set. Then,
A is closed as a subset of H and from the continuity of
π1, so is A′ = π−1

1 (A) ⊆ V . Now, A′ is a closed subset
of the compact set V and hence A′ is compact.

Ehresmann’s Theorem then implies that π |V\π−1
1 (Σ) is a fiber

bundle, and in particular it is surjective. This proves that
π−1

1 (H) 6= ∅ for every H ∈ H\Σ, and the Preimage Theorem
implies that π−1

1 (H) is a smooth submanifold of complex
codimension equal to dimCH, thus of complex dimension
equal to dimC V − dimCH = s. Now, let H ∈ Σ and let
Hi, i ≥ 1 be a sequence of elements in H \ Σ such that
limi7→∞Hi = H . Let (H∞, U∞, V∞) be an accumulation
point of (Hi, Ui, Vi) ∈ V , which exists because V is compact.
Then, by continuity of π1 we have that π1(H∞, U∞, V∞) =
H , that is H∞ = H and (H,U∞, V∞) ∈ V . Thus, π−1

1 (H) 6=
∅ and we conclude that for every choice of Hkl there exists
at least one solution to (3) as claimed.

C. Proof of Theorem 1

Recall from Lemma 3 that the complex dimension of H is

dimC(H) =
∑

(k,l)∈Φ

(NkMl − 1) =
∑

(k,l)∈Φ

NkMl − ](Φ).

From this and from Lemma 4, defining s as in (12) we have

s = dimC V − dimCH.

Assume that dimC(H) ≤ dimC(V) (equivalently, s ≥ 0).
There are two cases:

1) if Σ′ = V then every point of V is a critical point of
π1 and hence every element of π1(V) is a critical value
of π1. On the other hand, from Proposition 2, Σ is a
proper algebraic subset of H, thus a zero measure set of
H. This means that π−1(H) = ∅ for every H out of the
zero–measure set Σ, thus we are in case 1) of Theorem
1.

2) otherwise, Σ′ is a proper subset of V , and from Corollary
2 we are in case 2) of Theorem 1.
We now prove each of the following implications:

a)⇒b): assume that π−1
1 (H) 6= ∅ for every H ∈ H . From

Sard’s theorem, for almost every H ∈ H, π1 is
a submersion at every point in π−1

1 (H) and from
Proposition 1 the mapping (13) defines a surjective
linear mapping.

b)⇒c): trivial.
c)⇒a): from Proposition 1, π1 has a regular point, and

from Corollary 2, a) holds.
This finishes the proof.
Finally, the proof of Lemma 1 stating when a feasible IA

problem has a finite number of solutions is as follows: assume
that s = 0, or equivalently dimC(H) = dimC(V), and that we
are still in case 2(b) of Theorem 1. Then, from Corollary 3
(see Appendix A) all the elements in H \ Σ have the same
(finite) number, say C, of preimages by π1. This proves the
assertion of Lemma 1.

Remark 5: It is important for our analysis that the input and
output spaces are defined over the complex numbers, not over
the reals. Indeed, a key property in proving our main results
is that the critical points and values of π1 are algebraic sets.
In the complex case this means they have (real) codimension
2 and hence do not disconnect their ambient spaces. In the
real case, these sets may have real codimension 1 and they
may thus disconnect their ambient spaces. More specifically,
Corollary 1 may fail to hold in the real case. As a consequence,
one cannot apply Ehresman’s Theorem and a more delicate
analysis would be required in this case.

D. Proof of Theorem 2

Assume that parameters dj ,Mj , Nj ,Φ are chosen such
that the associated MIMO scenario is feasible. First, let us
remind from Section IV-A1 that we may choose Uk and Vl as
those in (14), and the MIMO channels as in (15) which, for
convenience, we show again:

Hkl =

(
0dk×dl Akl
Bkl Ckl

)
, (k, l) ∈ Φ.

Now, let h ≥ 1 be an integer number and let those matrices
have coefficients of the form

a

h
+
√
−1

b

h
, (20)

with denominator h and numerators a, b in [0, h) ∩ Z. As
the system is generically feasible, for most choices of these
matrices Akl, Bkl, Ckl, we will have (H,U, V ) 6∈ Σ, that is
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the linear mapping in (16) will be surjective. Moreover, the
mapping in (16) is independent of the entries Ckl, so we can
simply say that for most choices of Akl, Bkl the mapping
will be surjective. The merit of Theorem 2 is to quantify
this “for most”, which we do following the arguments in [20,
Sec. 17.4], which in turn are inspired by a celebrated result
by Milnor bounding the number of connected components of
semi–algebraic sets. We start by studying the set

Z = {(Akl, Bkl) ∈ [0, 1)2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk :

the linear mapping in (16) is not surjective}.

Note that we consider Z as a subset of
[0, 1)2

∑
(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk , that is a real set, by

considering the real and complex parts of each entry of each
Akl and Bkl as a real number in [0, 1).

Lemma 6: Let κ(Z) be the maximum number of connected
components (intervals) of Z∩L where L is some line parallel
to some axis. Then,

κ(Z) ≤ 1.

Proof: Let L be a line parallel to some axis. That is, L
is the set of all (Akl, Bkl), (k, l) ∈ Φ, such that all entries of
Akl and Bkl are fixed save for one of them (the real or the
complex part of some entry, call it λ, of some Akl or some
Bkl). The set Z ∩ L is defined by rank(θ) <

∑
(k,l)∈Φ dkdl,

equivalently it is given by

p(λ) =
∑
J

|det(M)|2 = 0,

where J runs over all the possible minors of maximal size
contained in the matrix of mapping (16) and det(M) are those
minors. This is thus one real, non–negative equation of degree
at most 2 in λ. There are several possibilities:
• Case p(λ) = 0: the set Z ∩ L = L has one connected

component.
• Case p(λ) 6= 0 for all λ ∈ [0, 1): the set Z ∩ L = ∅ has

zero connected components.
• Case p(λ) has a finite number of zeros in [0, 1): As p(λ)

is non–negative of degree 2, it has at most one isolated
zero. Thus, in this case Z ∩ L consists of one point and
thus has one connected component.

In any case, Z ∩ L has at most 1 connected component.
Lemma 7: For any h ≥ 1, the cardinal of the set of values of

Akl and Bkl with entries of the form a
h+
√
−1 bh , 0 ≤ a, b < h

such that the mapping in (16) with Ckl = 0 is not surjective
is at most

Ph =

 2

h

∑
(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk

Qh,

where Qh is the total number of Akl, Bkl with such entries,
that is

Qh = h2
∑

(k,l)∈Φ(Nk−dk)dl+(Ml−dl)dk

Proof: From [20, Th. 3, p. 327] (note the difference in
the notation: our h is 1/h in [20]), we know that

|Ph − vol(Z)Qh| ≤
D

h
κ(Z)Qh,

where vol(Z) = 0 is the volume (Lebesgue measure) of the
proper algebraic variety Z , and D is the (real) dimension of
the set of (Akl, Bkl), which is equal to D = 2

∑
(k,l)∈Φ(Nk−

dk)dl + (Ml − dl)dk. The lemma follows from Lemma 6.
We now prove Theorem 2. Let Akl, Bkl be chosen at random
with i.i.d. entries of the form a+

√
−1b, a, b ∈ Z, 0 ≤ a, b < h.

Then, the mapping in (16) is surjective if and only if the same
mapping but with entries a

h +
√
−1 bh is surjective, because we

are only multiplying each Akl and Bkl by h−1. From Lemma
7, the probability that the linear mapping (16) is not surjective
is at most

Ph
Qh

=
2

h

∑
(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk.

By choosing

h = 8
∑

(k,l)∈Φ

(Nk − dk)dl + (Ml − dl)dk,

we guarantee that with probability at least 3/4 the answer
of the algorithm is feasible. As already mentioned, one can
repeat the test k times to get the probability of having a wrong
answer decreasing as 1/4k. Note that the integers defining the
mapping (13) are of bit length bounded above by 1+log2 h, a
quantity which is logarithmic in ](Φ) and dj ,Mj , Nj . Hence,
the exact arithmetic test can be carried out in time which is
polynomial in the same quantities.

VI. DISCUSSION AND COMPUTER SIMULATIONS

A. Some results for arbitrary interference channels

In this subsection, we first show that the proposed feasibility
test provides consistent results in agreement with those found
in the literature. Moreover, we also discuss scenarios for which
the existing DoF outer bounds are not tight. The feasibility test
has been evaluated on a vast amount of scenarios, including
those covered in [12] and [13], and since its results have
always been consistent with all previously known results, here
we only show a selection of the most representative cases.
Some additional examples can be found in [32].4

Example 1: First, consider the simple (3 × 3, 2)2 system,
which has been already studied in [8]. Although this system
is proper, it is infeasible since it does not satisfy the 2-user
outer bound given by (9). Our test also shows that this system
is infeasible.

Example 2: Consider the 3-user system
∏3
j=1(7 × 13, dj)

where the stream distribution among users is not specified. The
outer bound (10) establishes that total number of DoF cannot
exceed 19.5 in this network, whereas the properness condition
in [8] guarantees that the system is infeasible if more than 5
DoF per user are transmitted (i.e. a total of 15 DoF). However,
the results in [33], [34] provide an even tighter bound which
shows that the system is infeasible if 5 streams per user are
transmitted. Our test indicates that the (7× 13, 5)3 system is
infeasible whereas the system (7×13, 4)(7×13, 5)2 is feasible,

4The reader is invited to test the feasibility of an arbitrary alignment
problem at http://gtas.unican.es/IAtest where the Matlab source code for the
floating point test is also provided.
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which allows us to claim that the maximum total DoF for this
network is 14.

Example 3: The (4×4, 2)(5×3, 2)(6×2, 2) system, which
was studied in [16], satisfies (9) for all 2-user pairs and
satisfies all known outer bounds. The proposed test establishes
that this system is infeasible.

Example 4: A controversial example can also be found
in [16]: the (3 × 4, 2)(1 × 3, 1)(10 × 4, 2) system. The test
proposed in [16] indicates that this system is feasible, while
our test establishes that it is infeasible. In our view, the test
in [16] gives only necessary (but not sufficient) conditions
for feasibility. As our analysis has shown, it is not possible
to solve the feasibility problem just by counting variables in
all subsets of IA equations, a much more subtle analysis is
needed. Similar examples are the (4× 8, 3)3 and (5× 11, 4)3

networks, which are infeasible according to our test (moreover
they violate the outer bound (10)) while the test in [16] states
they are feasible. We also have numerical evidence that this
system is infeasible since iterative algorithms such as [35] [36]
have not been able to find a solution for this scenario5.

Example 5: Now, let us consider the (3×4, 2)(1×3, 1)(10×
4, 2) system studied in [8]. It is proper but infeasible, since
it violates the 2-user cooperative outer bound (it is equivalent
to the (4× 7, 3)(10× 4, 2) network). Our test also shows that
the system is infeasible.

Example 6: Consider the (2 × 2, 1)3(3 × 5, 1) system
also studied in [8]. Checking the properness of this scenario
involves checking the properness of all the possible subsets of
equations. It can be found that the subset of equations which
is obtained by shutting down the fourth receiver is improper,
therefore the system is infeasible. Our test provides the same
result.

Example 7: A final interesting example is the (2×2, 1)(5×
5, 2)2(8 × 8, 4) system, which is feasible according to the
proposed test. This system has been built by taking the
symmetric (5× 5, 2)4 system, which is known to be feasible,
and transferring 6 antennas from the first user to the fourth.
It must noticed that while the total amount of antennas in
the network remains constant, the redistribution of antennas
has allowed to achieve a total of 9 DoF instead of the 8
DoF achieved in the symmetric case. This example gives new
evidence for the conjecture settled in [16], which asserts that
for a given total number of DoF, dtot =

∑
k dk, there exist

feasible asymmetric MIMO interference systems (that is, with
unequal antenna and stream distribution among the links) such
that the total number of antennas,

∑
k(Mk + Nk), is less

than number of antennas of the smallest symmetric system
(Mk = M , Nk = N , and dk = dtot/K that can achieve dtot.

Let us finally point out that, in all cases in which our
feasibility test was positive, we were able to find an IA solution
using the iterative interference leakage minimization algorithm
proposed in [35] [36].

5Notice, however, that alternating minimization algorithms cannot guarantee
convergence to a global minimum, so it cannot be used as a feasibility test.

B. On the DoF of symmetric M × N MIMO interference
channels

We have previously shown that the proposed test is in
agreement with known results, including those which refer
to fully asymmetric systems. Additionally, by using the afore-
mentioned test it is possible to extensively verify conjectures,
disprove them or provide additional insights on how the DoF
for general interference channels should behave. One such
example is the number of linear DoF of the symmetric K-
user M × N MIMO interference channel, (M × N, d)K ,
which is unknown for K ≥ 4. For convenience, we use
the concept of spatially-normalized degrees of freedom, d?,
introduced in [37]. When d? is an integer, we have an exact
DoF characterization. In general it will be a rational number
and the actual DoF without spatial extensions can be obtained
from it as d = bd?c. To understand the concept of spatially-
normalized DoF, let us express d? in its rational form p/q.
Then, scaling the number of antennas by q, we have a
qM × qN MIMO interference channel, for which the value
d? = p is achievable.

We must point out that for the particular case of K = 3
the linear DoF have been recently obtained [33], [37]. In
particular, the DoF characterization comprises a piece-wise
linear mapping with infinitely many linear intervals over the
range of the parameter γ = M/N where M ≤ N is assumed
w.l.o.g. Specifically, the linear DoF are depicted in Fig. 1 and
are described by the following expression:

d? =

{
p

2p−1M, γ′(p) ≤ M
N ≤ γ(p)

p
2p+1N, γ(p) ≤ M

N ≤ γ
′(p+ 1)

p ∈ Z+,

(21)

where γ′(p) = p−1
p and γ(p) = 2p−1

2p+1 .
When K ≥ 4 the exact number of linear DoF is unknown.

However, from an information theoretic perspective, and not
being restricted to any particular alignment scheme, the DoF
have been almost completely characterized by Jafar et al. [38]
as

dIT =



M, 0 ≤ M
N < 1

K
N
K ,

1
K ≤

M
N ≤

1
K−1

(K−1)M
K , 1

K−1 ≤
M
N ≤

K
K2−K−1

(K−1)N
K2−K−1 ,

K
K2−K−1 ≤

M
N ≤

K−1
K(K−2)

MN
M+N ,

K−2
K2−3K+1 ≤

M
N ≤ 1,

(22)

but they are still unknown in the excluded interval, i.e. M
N ∈(

K−1
K(K−2) ,

K−1
K2−3K+1

)
, where they are believed to be MN

M+N as
conjectured in [38]. Obviously, the information theoretic DoF
is a, sometimes tight, upper bound of the linear DoF without
symbol extensions but the extent to which they differ remains
unclear.

In order to shed some light on this issue we have extensively
executed our test for all the scenarios with M,N ∈ [1, 100]
and K ≥ 3. Our results show two different operating
regimes depending on whether MN

M+N ≥ M+N
K+1 or not. In

other words, the regime of operation depends on whether
the ratio γ = M/N is above or below a threshold value
λ = 1/2

(
K − 1−

√
(K − 1)2 − 4

)
. As an example, Fig. 2
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γ (fix N)
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γ+1 (d = MN

M+N )

γ+1
K+1 (d = M+N

K+1 )

λ = 1

Piecewise linear DoF

Fig. 1. Linear degrees of freedom for the 3-user interference channel as proved in [37]: d?/N as a function of γ =M/N . This figure is included to illustrate
the analogy with the results for K ≥ 4 depicted in Fig. 2.
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Fig. 2. Conjectured linear degrees of freedom for the 4-user interference channel: d?/N as a function of γ =M/N . Similar figures are obtained for all K.
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shows the linear DoF values per user normalized by N versus
the ratio γ = M/N for K = 4. Now, we describe the DoF
behaviour for these two regimes in detail for general K.

1) Regime 1 (Piecewise linear DoF), γ ≤ λ:

a) We have verified that the linear DoF are given
by (22) when 0 ≤ γ ≤ (K−1)

K(K−2) which confirms
that in this case the information theoretic DoF can
be achieved by linear alignment without symbol
extensions.

b) More interestingly, when (K−1)
K(K−2) < γ ≤ λ we

have been able to find several counterexamples that
exceed the conjectured value of MN

M+N , which was
believed to be the information theoretic DoF value.
As examples, we enumerate the following feasible
systems (11 × 29, 8)4, (44 × 117, 32)4, (19 ×
71, 15)5 and (29 × 139, 24)6, which clearly ex-
ceed the conjectured DoF per user: 7.975, 31.975,
14.989 and 23.994, respectively. In addition, all
systems in this interval seem to follow the same
piecewise linear DoF trend described before for
the 0 ≤ γ ≤ (K−1)

K(K−2) region and for the 3-user
interference channel. More precisely, the spatially
normalized DoF can be written analogously to (21)
as:

d? =

{
γ(p)+1

γ(p)(K+1)M, γ′(p) ≤ M
N ≤ γ(p)

γ(p)+1
K+1 N, γ(p) ≤ M

N ≤ γ
′(p+ 1)

p ∈ Z+.

(23)

where

γ(p) =

(p−1)∑
k=−(p−1)

λk

p∑
k=−p

λk
and γ′(p) = λ

p−2∑
k=0

λ2k

p−1∑
k=0

λ2k

.

(24)
Intuitively, γ(p) gives the values of M/N for
which there are no antenna redundancies at ei-
ther side of the link whereas γ′(p) gives those
for which there is maximum redundancy6. Both
functions get asymptotically closer as p increases
since limp→∞ γ(p) = limp→∞ γ′(p) = λ. Specific
details on the reasoning leading to (23) are rele-
gated to Appendix F.

It is worth pointing out that (23) generalizes (21) and is
also consistent with the information theoretic bound in
(22). In fact, for the 3-user channel, λ takes its maximum
value, i.e. λ = 1 meaning that the entire γ range,
γ ∈ (0, 1], is covered by this piecewise linear regime
as shown in Fig. 1. For K > 3, the value of λ is strictly
lower than 1, approaching to 0 as K tends to infinity.

2) Regime 2 (Properness-limited DoF), γ ≥ λ: For γ values
above the threshold we have observed that the linear DoF

6If λ 6= 1 (i.e. K 6= 3) both functions can be simplified: γ(p) =

λ 1−λ2p−1

1−λ2p+1 and γ′(p) = λ 1−λ2p−2

1−λ2p .

are always given by

d? =
M +N

K + 1
. (25)

This means the system is limited by the properness
criterion and no proper but infeasible scenarios have
been found in this regime.

To sum up, our numerical results lead us to conjecture that
the linear DoF of the symmetric K-user interference channel
(K ≥ 3) are completely characterized by these two regimes
thus generalizing the existing results for the 3-user channel.
Formally, it can be written as follows.

Conjecture 1: For the K-user (K ≥ 3) M × N MIMO
interference channel, the spatially-normalized DoF value per
user achievable with linear IA and without time/frequency
symbol extensions is given by:

d? =

{
(23), M

N ≤ λ
(25), M

N ≥ λ
, (26)

where λ = 1/2
(
K − 1−

√
(K − 1)2 − 4

)
.

It is worth mentioning that during the review process of
this paper we have been aware of an independent related
work by Liu and Yang [39] on the degrees of freedom of
the symmetric MIMO interference broadcast channel. Their
results for the piecewise-limited regime (MN ≤ λ), although
obtained by totally different means, are in perfect agreement
with ours. Furthermore, their results when M

N ≥ λ are based
on the test proposed herein and lead them to conjecture, as
in (26), that the properness condition is indeed necessary and
sufficient in this regime. This fact still remains unproved.

VII. CONCLUSIONS

This paper gives some new results on the feasibility of inter-
ference alignment on the signal space for the K-user MIMO
channel with constant coefficients. We use the fact that the
input, output and solution variety sets for the IA problem are
smooth compact algebraic manifolds. Of particular importance
and interest is the study of the projection of the solution variety
into its first coordinate and the analysis of their tangent spaces.
We prove that for an arbitrary MIMO interference channel IA
is feasible iff the algebraic dimension of the solution variety
is larger than or equal to the dimension of the input space and
the linear mapping between the tangent spaces of both smooth
manifolds given by the first projection is generically surjective,
and we provide a simple linear algebra routine, with running
time polynomial in the input parameters dj ,Mj , Nj , ](Φ), to
decide if the scenario is feasible. The matrix representing
this linear mapping can be easily obtained and the feasibility
of IA amounts to checking whether this matrix is full rank
or not. Proper but infeasible systems correspond to cases in
which the dimension of the solution variety coincides with the
dimension of the input space, but the mapping is not surjective,
that is, the solution variety is mapped to a zero-measure
set of MIMO interference channels. We have evaluated our
feasibility test on many examples, some of them served to
corroborate known results, others showed the non-tightness of
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existing DoF outer bounds for this setting or provided evidence
on the advantages of unequal antennas and stream distribution
for DoF maximization. Additionally, an extensive execution
of our test on symmetric scenarios allowed us to establish
a conjecture on the DoF of the K-user interference channel
which generalizes already known results for K = 3.

APPENDIX A
REVIEW OF SOME RESULTS FROM ALGEBRAIC GEOMETRY

AND DIFFERENTIAL TOPOLOGY

A key point of our analysis is a subtle use of the notion of
compactness of spaces. We introduce this fundamental mathe-
matical concept in the following lines. Recall that a topological
space X is just a set where a collection τ ⊂ {subsets of X}
of “open subsets” has been chosen, satisfying three conditions:

1) the empty set and the total set X are in τ ,
2) the intersection of a finite number of elements in τ is

again in τ , and
3) the union of any collection of elements in τ is again in

τ .

For example, Rn with the usual definition of “open set” is a
topological space. Any subset A ⊆ Rn (for example, a sphere
or a linear subspace) then inherits a structure of topological
space, with open sets being those obtained by intersecting
an open set of Rn with A. More generally, any (smooth)
manifold is by definition a topological space and any subset
of a manifold inherits a structure of topological space.

A subset A ⊆ X of a topological space is called compact
if the following property holds: given any collection of open
sets of X such that their union contains A, there exist a finite
subcollection which also contains A. This is not a particularly
intuitive definition, but it permits to obtain many results,
notoriously a fundamental result due to Ehressman that will be
recalled below. From the Heine–Borel Theorem, a subset of
Rn or Cn is compact if and only if it is closed (in the usual
definition) and bounded. Thus, the sphere is compact but a
linear subspace is not.

Using the definition, note that a given manifold X is itself
compact if any collection of open subsets whose union is X
has a finite subcollection that covers X . For example, Rn is
not compact (the union for m ≥ 1 of open balls of radius
m covers Rn but no finite subcollection of these balls covers
Rn). It is not obvious but it is true that the projective spaces
P(Rn) and P(Cn) are both compact. We will finally use the
following basic fact: if X is compact and A ⊆ X is closed,
then A is compact as well.

We will also use some basic notions related to regular map-
pings: let ϕ : X→Y be a smooth mapping where X and Y are
smooth manifolds. For every x ∈ X , the derivative is a linear
mapping between the tangent spaces, Dϕ(x) : TxX→Tϕ(x)Y .
A regular point of ϕ is a point such that Dϕ(x) is surjective
(which requires dim(X) ≥ dim(Y )). A critical point is a
x ∈ X which is not regular. Similarly, a regular value of
ϕ is an element y ∈ Y such that for every x ∈ X such that
ϕ(x) = y, x is a regular point. That is, y ∈ Y is a regular value
if every point mapped to y is a regular point. This includes, by

convention, the case ϕ−1(y) = ∅. If y is not a regular value,
we say that it is a critical value. Note that

ϕ{critical points of ϕ} = {critical values of ϕ}.

If x is a regular point of ϕ we say that ϕ is a submersion
at x. If ϕ is a submersion at every point (equivalently, every
x ∈ X is a regular point of ϕ) then we simply say that ϕ is
a submersion.

We now recall a few results from regular mappings; the
reader may find them for example in [40, Ch. 1] or [41]:

Theorem 3 (Preimage Theorem): If Y0 ⊆ Y is a submanifold
such that every y ∈ Y0 is a regular value of ϕ : X→Y
then Z = ϕ−1(Y0) is a submanifold of X of dimension
dim(Z) = dim(X) − dim(Y ) + dim(Y0). Moreover, the
tangent space TxZ at x to Z is the kernel of the derivative
Dϕ(x) : TxX→TyY .

Theorem 4 (Sard’s Theorem): If X and Y are manifolds
and ϕ : X→Y is a smooth mapping, then almost every point
of Y is a regular value of ϕ.

Remark 6: Note that it can happen that every x ∈ X is
a critical point: this simply means that every y ∈ ϕ(X) is
a critical value, which by Sard’s theorem means that ϕ(X)
has zero–measure in Y . This phenomenon is behind case 1 of
Theorem 1.

Another tool that we will use is a celebrated theorem
by Ehresmann, a foundational result in differential topology.
Before writing it, we recall that a fiber bundle is a tuple
(E,B, π, F ) where E,B, F are manifolds and π : E→B is a
continuous surjective mapping that is locally like a projection
B × F→E, in the sense that for any x ∈ E there exists
an open neighborhood U ⊆ B of π(x) such that π−1(U)
is homeomorphic to the product space U × F . For example,
E = R2 \ {0} is a fiber bundle with base space B the unit
circle and fiber F = R, because locally R2 \ {0} is as a
product space of a short piece of the circle and a line (which
goes from 0 to ∞ with no extremes). Fiber bundles are very
useful objects in the study of geometry and they are closely
related to regular values as the following result (see [42] or
[43, Th. 5.1] for a more general version) shows:

Theorem 5 (Ehresmann’s Theorem): Let X,Y be smooth
manifolds with Y connected, let U ⊆ X be a nonempty open
subset of X and let π : U → Y satisfy:
• π is a submersion, and
• π is proper, i.e. the inverse image of a compact set is a

compact set.
Then, π : X→Y is a fiber bundle, and π(U) = Y .
In the precedent theorem, if X is compact and dim(X) =
dim(Y ), then the inverse image of any point is a finite set and
the fact that every point is regular with the Inverse Mapping
Theorem implies that π is actually a covering map, that is
every point y ∈ Y has an open neighborhood V whose
preimage by π which is equal to a finite number of open sets
of X , each of them homeomorphic to V . Thus:

Corollary 3: If in Ehresmann’s Theorem we assume more-
over that X is compact and dim(X) = dim(Y ) then π defines
a covering map. In particular, this implies that every y ∈ Y
has a finite number of preimages, and that number is the same
for all y ∈ Y .
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We recall also some known facts from algebraic geometry.
Our basic references are [30], [44]. Given complex vector
spaces V1, . . . , Vl, the Segre embedding is a mapping from
the product of projective spaces P(V1) × · · · × P(Vl) into a
higher dimensional projective space P(T ) (where T is a high–
dimensional vector space) such that:
• it is a diffeomorphism into its image (more specifically,

it is an embedding), and
• the image of an algebraic subvariety is an algebraic

subvariety and viceversa.
The Segre embedding is useful because it allows us to treat
some objects (for example, products of Grassmannians) as
algebraic subvarieties of a high–dimensional projective space.
We will use this at some point combined with the following
result

Theorem 6 (Main Theorem of Elimination Theory): Let Z ⊆
P(Ca)× P(Cb) be an algebraic variety. Then,

π1(Z) = {x ∈ P(Ca) : ∃ y ∈ P(Cb), (x, y) ∈ Z}

is an algebraic subvariety of X .

APPENDIX B
PROOF OF LEMMA 2

Proof: Let (U, V ), (A,B) ∈ S be two points, and assume
that we have chosen affine representatives that we denote by
the same letters U, V,A,B. Note that there exist nonsingular
square matrices Qj of size Nj and Pj of size Mj such that
Uj = QjAj and Vj = PjBj . Consider the following mapping

π−1
2 (U, V ) → π−1

2 (A,B)
Hkl 7→ QTkHklPl

which is a linear bijection. Thus, π−1
2 (U, V ) is empty or

nonempty for every (U, V ) ∈ S and it suffices to prove the
claim for some (U, V ) ∈ S. If it is nonempty for some (thus,
all) (U, V ), let (U, V ) ∈ S be a regular value of π2. Then, from
the Preimage Theorem π−1

2 (U, V ) is a smooth submanifold of
V of the claimed dimension (the dimension of V is given in
Lemma 4.) Moreover, it is given by the nullset of a set of
linear (in H) equations and is thus a product of projective
vector subspaces as claimed.

We now discard the case that π−1
2 (U, V ) is empty for every

(U, V ) ∈ S (equivalently, V is empty). Note that since we have
assumed (8) holds, the particularly simple element (H,U, V ),
first described in Section IV-A, is in V and hence V 6= ∅.

APPENDIX C
PROOF OF LEMMA 5

Proof: Let θ1 be the mapping of (13) for representatives
(H1, U1, V1) of (H,U, V ), and similarly let θ2 be the mapping
of (13) for representatives (H2, U2, V2) of (H,U, V ). We need
to prove that if θ1 is surjective then so is θ2. Because both
affine points are representatives of the same (H,U, V ), there
exist complex numbers (λkl)(k,l)∈Φ and nonsingular matrices
Qk ∈ Cdk×dk , k ∈ ΦR, and Pl ∈ Cdl×dl , l ∈ ΦT , such that

(H2)kl = λkl(H2)kl, (U2)k = (U1)kQk, (V2)l = (V1)lPl.

Let Ṙ = (Ṙkl)(k,l)∈Φ ∈
∏

(k,l)∈Φ Cdk×dl . If θ1 is surjective,
there exist ({U̇k}k∈ΦR

, {V̇l}l∈ΦT
) such that

U̇Tk (H1)kl(V1)l + (U1)
T
k (H1)klV̇l = λ−1

kl (QTk )−1ṘklP
−1
l .

Then,

(θ2({U̇kQk}k∈ΦR
, {V̇lPl}l∈ΦT

))kl

= QTk U̇
T
k (H2)kl(V2)l + (U2)

T
k (H2)klV̇lPl

= λkl

(
QTKU̇

T
k (H1)kl(V1)lPl +QTk (U1)Tk (H1)klV̇lPl

)
= λklQ

T
k

(
U̇Tk (H1)kl(V1)l + (U1)Tk (H1)klV̇l

)
Pl

= λklQ
T
k

(
λ−1
kl (QTk )−1ṘklP

−1
l

)
Pl = Ṙkl.

Thus, θ2 is surjective as claimed.

APPENDIX D
PROOF OF PROPOSITION 1

Proof: Assume first that θ is surjective, and let (H,U, V )
be some fixed affine representatives. For any tangent vector
Ḣ , let Ṙ = (Ṙkl)(k,l)∈Φ ∈

∏
(k,l)∈Φ Cdk×dl be defined as

Ṙkl = −UTk ḢklVl.

Because θ is surjective, there exists (U̇ , V̇ ) ∈ θ−1(Ṙ), that is
(U̇ , V̇ ) satisfying

U̇Tk HklVl + UTk HklV̇l = −UTk ḢklVl, (k, l) ∈ Φ. (27)

Note that the equations defining V are precisely UTk HklVl = 0,
(k, l) ∈ Φ, and thus from the Preimage theorem we can cover
the tangent space to V at (H,U, V ) with those (Ḣ, U̇ , V̇ ) satis-
fying (27). We conclude that (Ḣ, U̇ , V̇ ) is in the tangent space
to V at (H,U, V ), and thus Dπ1(H,U, V )(Ḣ, U̇ , V̇ ) = Ḣ ,
which means that Dπ1(H,U, V )−1(Ḣ) 6= ∅. As Ḣ was chosen
generically, we conclude that π1 is a submersion at (H,U, V ),
namely (H,U, V ) is a regular point of π1 as wanted. This
finishes the “if” part of the proposition.

The “only if” part is a converse reasoning: assume that
(H,U, V ) is a regular point of π1. This means that for
every Ḣ ∈ THH there exist (U̇ , V̇ ) ∈ T(U,V )S such that
(Ḣ, U̇ , V̇ ) ∈ T(H,U,V )V , which means that these tangent
vectors satisfy (27). Let (Ṙkl)(k,l)∈Φ ∈

∏
(k,l)∈Φ Cdk×dl .

Now, because Uk and Vl are representatives of an element
of the Grassmanian, they are full rank and thus we can write
Ṙkl = −UTk ḢklVl for some Ḣkl. Then, (27) reads

U̇Tk HklVl + UTk HklV̇l = −UTk ḢklVl = Ṙkl, (k, l) ∈ Φ,

that is all such Ṙkl have a preimage by θ, and θ is surjective.

APPENDIX E
PROOF OF PROPOSITION 2

Proof: From Proposition 1, Σ′ can be written as the set of
(H,U, V ) such that all the minors of the matrix defining θ are
equal to 0. Thus, Σ′ is an algebraic subvariety of V . The set
H is a product of projective spaces and hence the associated
Segre embedding defines a natural embedding

ϕ1 : H → P(T1), (28)
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where T1 is a high–dimensional complex vector space.
Let ∧a(Cb) the a–th exterior power of Cb. Then, the

Grassmannian Ga,b can be seen as an algebraic subset of
a complex projective space P(∧a(Cb)), and as a compact
complex manifold of (complex) dimension a(b − a) (see
for example [30, p.42] and [31, p. 175–176]). The Segre
embedding defines a natural embedding

ϕ2 : S → P(T2), (29)

where T2 is a certain (high–dimensional) complex vector
space. Both ϕ1 and ϕ2 define diffeomorphisms between their
domains and ranges, as does the product mapping ϕ1 × ϕ2,
and they preserve algebraic varieties in both ways. We can thus
identify H ≡ ϕ1(H), S ≡ ϕ2(S) and see V as an algebraic
subvariety of the product space

V ≡ (ϕ1 × ϕ2)(V) ⊆ P(T1)× P(T2).

The Main Theorem of Elimination Theory then grants that
Σ = π1(Σ′) is an algebraic subvariety of H. We moreover
have that it is a proper subvariety because by Sard’s Theorem
it has zero–measure in H.

APPENDIX F
DERIVATION OF (24)

The execution of the proposed test for a large number
of scenarios suggests that γ(p) and γ′(p), which we will
indistinctly denote as γ?(p), are given by

γ?(p) =
F ?p
F ?p+1

where F ?p satisfies the recurrence relation F ?p+1 = (K −
1)F ?p − F ?p−1 with initial conditions F1 = 1, F0 = −1
(for γ(p)), and F ′1 = 0, F ′0 = −1 (for γ′(p)). Sequences
satisfying this recurrence equation are known as Lucas Se-
quences because any such a sequence can be represented as a
linear combination of the Lucas sequences of first and second
kind. Lucas sequences are a generalization of other famous
sequences including Fibonacci numbers, Mersenne numbers,
Pell numbers, Lucas numbers, etc. The interested reader can
find a good introduction to Lucas sequences in [45, Chapter
17].

For convenience, we rewrite the recurrence relation in
matrix form f?p = Af?p−1, where(

F ?p+1

F ?p

)
︸ ︷︷ ︸

f?
p

=

(
(K − 1) −1

1 0

)
︸ ︷︷ ︸

A

(
F ?p
F ?p−1

)
︸ ︷︷ ︸

f?
p−1

.

Now, we are interested in writing f?p as a function of the initial
conditions, i.e. f?p = Apf?0 . In order to do so, we first need
the eigenvalue decomposition of A. The eigenvalues are the
roots of the characteristic polynomial

det(A− λI) = λ2 − (K − 1)λ+ 1 = 0,

which are given by

λ± =
1

2
((K − 1)±

√
(K − 1)2 − 4).

Notice that given det(A) = 1, λ− = 1/λ+. Thus, for
convenience we define λ = λ− and factorize Ap = SΛpS−1:

Ap =

(
1/λ λ
1 1

)
︸ ︷︷ ︸

S

(
1/λp 0

0 λp

)
︸ ︷︷ ︸

Λp

(
1 −λ
−1 1/λ

)
λ

1− λ2︸ ︷︷ ︸
S−1

,

where the columns of S are the eigenvectors of A. Then, using
the fact that f?p = SΛpS−1f?0 , it is straightforward to obtain
a compact expression for F ?p :

F ?p = λ−p+1

(
F ?1

p−1∑
k=0

λ2k − F ?0
p−2∑
k=0

λ2k+1

)
. (30)

Finally, when the corresponding initial conditions are substi-
tuted in (30), we can write

γ(p) =
Fp
Fp+1

=

(p−1)∑
k=−(p−1)

λk

p∑
k=−p

λk

and

γ′(p) =
F ′p
F ′p+1

= λ

p−2∑
k=0

λ2k

p−1∑
k=0

λ2k

.

A final observation is that limp→∞ γ(p) = limp→∞ γ′(p) =

limp→∞
F?

p

F?
p+1

= λ and, thus, λ is also a threshold value sep-
arating the so-called piecewise linear and properness-limited
DoF regimes.
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