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Abstract

Much of the recent work on multiantenna spectrum sensing in cognitive radio (CR) networks
has been based on generalized likelihood ratio test (GLRT) detectors, which lack the ability to
learn from past decisions and to adapt to the continuously changing environment. To overcome
this limitation, in this paper we propose a Bayesian detector capable of learning in an efficient
way the posterior distributions under both hypotheses. These posteriors summarize, in a compact
way, all information seen so far by the cognitive secondary user. Our Bayesian model places pri-
ors directly on the spatial covariance matrices under both hypothesis, as well as on the probability
of channel occupancy. Specifically, we use inverse-gamma and complex inverse-Wishart distri-
butions as conjugate priors for the null and alternative hypothesis, respectively; and a binomial
distribution as the prior for channel occupancy. At each sensing period, Bayesian inference is
applied and the posterior for the channel occupancy is thresholded for detection. After a suitable
approximation, the posteriors are employed as priors for the next sensing frame, which forms
the basis of the proposed Bayesian learning procedure. We also include a forgetting mechanism
that allows to operate satisfactorily on time-varying scenarios. The performance of the Bayesian
detector is evaluated by simulations and also by means of CR testbed composed of universal
radio peripheral (USRP) nodes. Both the simulations and our experimental measurements show
that the Bayesian detector outperforms the GLRT in a variety of scenarios.

Keywords:
Bayesian Inference, Bayesian Forgetting, Cognitive Radio, Generalized Likelihood Ratio Test
(GLRT), Multiantenna Spectrum Sensing.

1. Introduction

Cognitive Radio (CR) networks [1],[2],[3] rely on spectrum sensing as a key operation that
secondary users (SU) must perform in order to identify whether a wireless communication chan-
nel is in use by a licensed primary user (PU) or not [4]. A reliable spectrum sensing stage is
crucial to detect spectrum holes that can be subsequently filled with transmissions from SU [5].
To this end, detectors employing multiple antennas have received increased attention recently
because they do not require prior knowledge about the PU signalling scheme and are able to
work with asynchronously sampled signals [6, 7, 8, 9, 10, 11, 12]. These multiantenna detectors
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exploit the fact that under the null hypothesis (only noise) the signals received at the different an-
tennas are spatially uncorrelated, whereas the presence of a PU induces some correlation and/or
additional structure in the spatial covariance matrix.

Since the binary hypothesis testing problem involves some unknown parameters (e.g., noise
variance and channel), the generalized likelihood ratio test (GLRT) approach has been typically
followed to find one-shot detectors in several scenarios [6], [7], [9], [12]. A limitation of GLRT
detectors, however, is that they are unable to learn from the environment or to track the smooth
changes in the characteristics of the channel or the noise that can be expected between consecu-
tive sensing frames. More precisely, it is reasonable to assume that the time scale of variation of
the statistical parameters involved in the detection problem (for instance, noise variance or space-
time PU activity pattern) are much longer than the sensing period. For instance, channel access
patterns for primary users have been characterized as slowly time-varying in [13] and more re-
cently in [14]. It is clear that detectors able to learn from past decisions would provide improved
performance in these slowly time-varying scenarios. With this goal in mind, in this paper we
propose an adaptive Bayesian framework for multiantenna sensing and evaluate its performance
both by simulations and by means of a CR testbed.

Bayesian detectors for cognitive radios have been previously proposed in [15, 16, 17, 18,
19]. Typically, these works assume a prior distribution for the unknown parameters and apply
Bayesian inference to come up with improved parameter estimates and, consequently, more reli-
able detectors. Nevertheless, they are still one-shot detectors without any learning or adaptation
capability. In comparison to these Bayesian approaches, our work presents two main novel-
ties: first, our Bayesian detector places priors directly on the spatial covariance matrices under
both hypotheses; and second, it includes learning and forgetting steps that allow to track smooth
variations of the channel and noise characteristics.

Specifically, our Bayesian model uses inverse-gamma and complex inverse-Wishart distri-
butions as conjugate priors for the null and alternative hypothesis, respectively; and a binomial
distribution as the prior for channel occupancy. The reason for choosing these priors being that
under Gaussian noise they are the conjugate priors for this problem and, therefore, the calcu-
lations are simplified making exact Bayesian inference tractable. At each sensing period, after
applying exact Bayesian inference, the posterior is approximated within the family of the prior
to keep the sensing process simple and scalable. Since the posteriors summarize the information
gathered so far about the actual CR scenario, they are used as priors for the next sensing pe-
riod: this represents the learning stage. Furthermore, the procedure is equipped with a forgetting
mechanism based on [20] that allows to work on non-stationary environments.

In this paper, we extend some initial results about this Bayesian approach which were pre-
sented in [21] and [22]. In particular, we consider the optimal approximation of the posterior ac-
cording to the Kullback-Leibler (KL) distance, and compare its performance and computational
cost with the simple approximation based on thresholding which was discussed in [21]. Also, we
present a more in depth study of the proposed CR detector performance for different number of
receive antennas, observations and channel conditions. Finally, we also evaluate experimentally
the performance of the proposed detector, in comparison to conventional GLRT-based detec-
tors, using to this end a cognitive radio hardware platform based on Universal Software Radio
Peripheral (USRP) devices [23].

The rest of the paper is organized as follows. The detection problem for the CR network is
formulated in Section II. The Bayesian inference procedure for a single sensing frame is pre-
sented in Section III, where two different approximations of the posterior are derived. The
learning and forgetting procedure for dealing with multiple sensing frames will be discussed
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in Section IV. In Section V, we analyze the simulation results for different settings including both
stationary and non-stationary environments, whereas the results obtained with the CR testbed are
presented in Section VI. Finally, our main conclusions are summarized in Section VII.

2. Preliminaries

Notation

In this paper, we use bold-face lower case and bold-face upper case letters for column vectors
and matrices, respectively; and light-face lower case letters for scalar quantities. The superscripts
(·̂) and (·̆) refer to the parameters of the posterior and prior distributions, respectively; and (·̃) is
used for estimated matrices and scalars. The determinant of a matrix A is denoted as |A|, its trace
as trace(A), the operator diag(A) refers to a diagonal matrix formed with the elements along the
main diagonal of A, [A]i j denotes the i j element of the matrix, and the superscript (·)H denotes
Hermitian. Finally, x ∼ CN(µ,R) indicates that x is a complex circular Gaussian random vector
of mean µ and covariance matrix R.

2.1. Problem Statement and GLRT detectors

We consider a cognitive receiver equipped with L antennas that wants to detect whether the
channel is occupied by a primary user or not. During the t-th sensing frame, the cognitive receiver
acquires n = 1, . . . ,N snapshots denoted by xt[n] ∈ CL. The signal received during the whole
sensing period is stacked in a matrix: Xt = [xt[1], . . . , xt[N]]. The spectrum sensing problem can
be formulated as a binary hypothesis test as follows

H1 : xt[n] = Htst[n] + vt[n], (1)
H0 : xt[n] = vt[n],

where xt[n] is the acquired snapshot at time n, st[n] ∈ CP is the primary signal vector, which
might represent the signal emitted by a single PU with P antennas or the signals emitted concur-
rently by P single-antenna PUs (see Fig. 1), Ht ∈ CL×P describes the multiple-input multiple-
output (MIMO) channel between the PU and the cognitive receiver, and vt[n] is modeled as zero-
mean additive white Gaussian cicular noise. The distributions of the vector-valued observations
under each hypothesis H1 and H0, follow a CN(0,Rt) and CN(0,Dt), respectively. Therefore,
without any additional prior knowledge about the modulation format or signalling scheme used
by the PU, the spectrum sensing problem amounts to testing between two different structures for
the covariance matrix of xt[n]:

H1 : xt[n] ∼ CN(0,Rt), n = 0, . . . ,N − 1. (2)
H0 : xt[n] ∼ CN(0,Dt), n = 0, . . . ,N − 1.

where we assume that Rt is an arbitrary positive definite covariance matrix and Dt is a diagonal
covariance matrix.

Notice also that the likelihood under each hypothesis depends on unknown parameters and
therefore the hypotheses are composite. The most typical approach to solve this kind of testing
problems is the generalized likelihood ratio test (GLRT). When the noise is independent and
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CR (secondary user)  
with L antennas  

Figure 1: CR detection model: a cognitive user with L antennas tries to detect the presence of P ≥ 1 single-antenna PUs
or, equivalently, a single P-antenna PU.

identically distributed (iid) at each antenna (Dt = σ2I) and P ≥ L − 1, the GLRT is the well-
known sphericity test [24],1 which is given by

LS =
|St |

1/L

(1/L) trace(St)
(3)

where St = XtXH
t /N is the sample covariance matrix.

A more general testing problem that can accommodate calibration uncertainties in the differ-
ent antenna front-ends, takes into account a generic diagonal noise covariance matrix underH0.
This GLRT in this case is the Hadamard ratio [25] and is given by

LH =
|St |∏L

i=1[St]ii
. (4)

3. Bayesian inference on a single sensing frame

The Bayesian approach proposed in this paper assigns prior distributions to the covariance
matrices under both hypotheses, as well as to the probability of channel occupancy. After dis-
cussing which priors should be used for this problem, in this section we perform exact Bayesian
inference over a single sensing frame to derive the posteriors for the unknown parameters.
Specifically, the posterior for the channel occupancy is the statistic used to decide whether the
SU should transmit or not.

3.1. Prior distributions

Let us first introduce zt as a binary hidden random variable that indicates whether a transmit-
ter is present (zt = 1) or not (zt = 0). Let us also remind that all our information about Rt and
Dt is that they are some unknown covariance matrices, respectively full Hermitian and diagonal.

1For rank-deficient signal covariance matrices the GLRT is, in general, more complicated, as it was shown in [9].
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Following a proper Bayesian treatment, prior distributions on all the unknown parameters of the
model (zt, Rt and Dt) must be placed. We will use the following:

p(zt) = Bernoulli(zt |π̆t) = π̆zt
t (1 − π̆t)1−zt (5a)

p(Rt) = CW−1(Rt |n̆t, R̆t)

=
|R̆t |

n̆t
2 |Rt |

−
n̆t+L+1

2 exp(− 1
2 trace(R−1

t R̆t))

2
n̆t L
2 ΓL( n̆t

2 )
(5b)

p(Dt) = G−1
L (Dt |m̆t, D̆t)

=

L∏
l=1

G−1([Dt]ll|m̆t/2, [D̆t]ll/2)

=
|D̆t |

m̆t
2 |Dt |

−
m̆t+L+1

2 exp(− 1
2 trace(D−1

t D̆t))

2
m̆t L

2 ΓL( m̆t
2 )

(5c)

where we have included the definitions of the Bernoulli distribution, the complex inverse-Wishart
(CW−1) and the product of L independent inverse-gamma (G−1

L ). Note the difference between
ΓL(·) (used to denote the multivariate gamma function) and ΓL(·) (the standard gamma function
raised to the L-th power). We denote the parameters of the prior distributions as π̆t, n̆t, R̆t, m̆t and
D̆t. When the SU starts sensing the environment (i.e., at t = 0), the prior parameters should be
as uninformative as possible. They will be learnt over time as new sensing frames are acquired
according to the mechanism that will be described in Section 4.

The main argument for the choice of these priors is analytical tractability: The complex
inverse-Wishart distribution placed on Rt, and the product of univariate inverse-gamma distribu-
tions placed on Dt are the conjugate priors for the distribution of full-rank covariance matrices
and diagonal covariance matrices, respectively, when the observations follow a complex mul-
tivariate Gaussian distribution. As we will see in the next subsection, these conjugate priors
allow us to exactly perform a Bayesian inference which is very convenient to avoid resorting to
numerical integration methods.

3.2. Exact posterior distribution of zt, Rt and Dt

Since the noise is assumed to be Gaussian, the likelihood of Rt and Dt given Xt can be written
as

p(Xt |zt = 0,Dt) =

N∏
n=1

CN(x[n]|zt = 0,Dt), (6a)

p(Xt |zt = 1,Rt) =

N∏
n=1

CN(x[n]|zt = 1,Rt). (6b)

Given the hidden variable, zt, priors are conjugate and therefore posterior distributions have
the same form as the prior, but with different parameters. When zt is marginalized, each posterior
is a convex combination of the posteriors for each hypothesis, yielding

p(zt |Xt) = Bernoulli(zt |π̂t) (7a)

p(Rt |Xt) = π̂tCW
−1(Rt |n̂t, R̂t) + (1 − π̂t)CW−1(Rt |n̆t, R̆t) (7b)

p(Dt |Xt) = π̂tG
−1
L (Dt |m̆t, D̆t) + (1 − π̂t)G−1

L (Dt |m̂t, D̂t). (7c)
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The posterior parameters are given by

n̂t = n̆t + N (8a)

R̂t = R̆t + St (8b)
m̂t = m̆t + N (8c)

D̂t = D̆t + diag(St) (8d)

π̂t =
p(Xt |zt = 1)p(zt = 1)

p(Xt |zt = 1)p(zt = 1) + p(Xt |zt = 0)p(zt = 0)
(8e)

Recall that we use a breve (˘) to denote the parameters of the prior distribution, whereas we use
a hat ( ˆ ) to denote the parameters of the posterior distribution. Finally, the marginal likelihood
p(Xt |zt) can be obtained analytically as

p(Xt |zt = 1) =

∫
p(Xt |zt = 1,Rt)p(Rt)dR

=
|R̆t |

n̆t
2 ΓL( n̂t

2 )

π
NL
2 |R̂t |

n̂t
2 ΓL( n̆t

2 )
(9a)

p(Xt |zt = 0) =

∫
p(Xt |zt = 0,Dt)p(Dt)dD

=
|D̆t |

m̆t
2 Γ( m̂t

2 )L

π
NL
2 |D̂t |

m̂t
2 Γ( m̆t

2 )L
. (9b)

After the posterior has been computed, the probability of a transmitter being present given ob-
servations Xt is simply p(zt = 1|Xt) = π̂t. Thus, we can occupy the channel when the collision
probability π̂t is below some desired threshold.

4. Bayesian inference over multiple frames

4.1. Learning from past sensing frames

The posteriors after processing the t-th frame summarizes all statistical information observed
so far. Therefore, a natural learning mechanism is to use them as priors for the next sensing
frame, as depicted in Fig. 2. More specifically, the proposed learning procedure is as follows: at
each sensing frame the cognitive receiver updates the posterior distribution for Rt and Dt from
priors existing at t and the likelihood obtained from Xt; then, these posteriors become the priors
to be used at the sensing period t + 1. The procedure is started with uninformative priors at t = 0.

A problem with a direct application of this idea is that, after applying Bayesian inference,
the posterior distributions for Rt and Dt are convex combinations of the posteriors under each
hypotheses, see Eqs. (7b) and (7c); and therefore the posterior does not belong to the same
family distribution of the prior. For instance, the prior for Rt is a complex inverse-Wishart and
the posterior is a linear combination of two complex inverse-Wisharts. To keep the process
simple and scalable, it would be convenient to find an approximation of the posteriors within the
family of each respective prior. In the next subsections we describe two possible approximations
that can be applied to this end.
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sensing period t: tX
]1[tx ][Ntx

sensing period t+1:
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111 ˆ)|1( tttzp X

Figure 2: A Bayesian framework for spectrum sensing: the posteriors obtained after processing a sensing frame are
employed as priors for the next sensing frame.

4.1.1. Thresholding-based approximation
A simple approximation to the posterior that falls within the same family as the prior can be

obtained by truncating π̂t to either 0 or 1, whichever it is closer. When this is done, Eq. (7b)
and (7c) directly yields a posterior in the same family as the prior. In that case, when H1 is
more probable, the posterior is obtained by performing only updates (8a) and (8b), whereas in
the opposite case, only updates (8c) and (8d) are needed.

4.1.2. Kullback-Leibler approximation
A more rigorous approach is to find the approximation of the posteriors within the family

of the priors that minimize the Kullback-Leibler distance. More precisely, the exact posteriors
(reproduced here for convenience) are given by

p(Rt |Xt) = π̂tCW
−1(Rt |n̂t, R̂t) + (1 − π̂t)CW−1(Rt |n̆t, R̆t),

p(Dt |Xt) = π̂tG
−1
L (Dt |m̆t, D̆t) + (1 − π̂t)G−1

L (Dt |m̂t, D̂t).

Our problem consists in finding the approximations of these posteriors

q(Rt |Xt) = CW−1(Rt |ñt, R̃t), (11a)

q(Dt |Xt) = G−1
L (Dt |m̃t, D̃t), (11b)

that minimize the Kullback-Leibler (KL) divergence. Therefore, we have to solve the following
optimization problems

{m̃t, D̃t} = argmin
m̃t ,D̃t

KL(p(Dt |Xt)||q(Dt |Xt)) (12a)

{ñt, R̃t} = argmin
ñt ,R̃t

KL(p(Rt |Xt)||q(Rt |Xt)). (12b)

Fortunately, each of these minimization problems can be solved analytically except for a
line search. The details of the derivation are relegated to Appendix A, in the following we
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(

m̃t
2

)
versus m̃t for different number of antennas L.

summarize the solution. In order to find {m̃t, D̃t} and {ñt, R̃t}, we first compute the following
auxiliary quantities

KD = π̂tm̆tD̆
−1
t + (1 − π̂t)m̂tD̂

−1
t (13a)

KR = π̂tn̂tR̂
−1
t + (1 − π̂t)n̆tR̆

−1
t (13b)

kD = − ln |KD| + π̂t

(
Lψ

( m̆t

2

)
− ln |D̆t |

)
+ (1 − π̂)

(
Lψ

( m̂t

2

)
− ln |D̂t |

)
(13c)

kR = − ln |KR| + π̂t

(
ψL

( n̂t

2

)
− ln |R̂t |

)
+ (1 − π̂)

(
ψL

( n̆t

2

)
− ln |R̆t |

)
(13d)

where ψ(·) is the digamma function, and ψL(·) =
∑L

l=1 ψ(· + (1 − l)/2) defines the multivariate
digamma function.

We then have to solve the following non-linear equations using, for instance, a few iterations
of the Newton-Raphson method

kD + L ln(m̃t) − Lψ
( m̃t

2

)
= 0, (14a)

kR + L ln(ñt) − ψL

( ñt

2

)
= 0. (14b)

As an example, Fig. 3 depicts the nonlinear equation (14a) for different values of L. In all
cases the function is smooth and its zero can be easily found. Finally, the covariance matrices D̃t

and R̃t for the best approximation according to the KL distance are given by m̃tK−1
D and ñtK−1

R ,
respectively. These values are taken as the new parameters of the posterior distributions, that is
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D̃t → D̂t, (15a)

R̃t → R̂t, (15b)
ñt → n̂t, (15c)
ñt → m̂t. (15d)

4.2. Forgetting in non-stationary environments

Since the channel may vary between consecutive frames, it is interesting to introduce a mech-
anism within the Bayesian framework to forget past data and hence be able to operate in a non-
stationary environment. We assume here that no additional knowledge about the dynamical
evolution of the channel, PU spectrum usage pattern or noise statistics is available. Therefore,
we resort to the idea of Bayesian λ-forgetting [20] that allows to forget in a principled Bayesian
manner with minimal assumptions. The basic idea of Bayesian forgetting is to use as prior
distributions for frame t + 1 a “smoothed” version of the posterior distributions obtained after
processing frame t and the original prior distributions for Rt and Dt given by (5), i.e.,

p(Dt+1|Xt) ∝ p(Dt |Xt)λp(D0)1−λ, (16a)

p(Rt+1|Xt) ∝ p(Rt |Xt)λp(R0)1−λ. (16b)

Observe that according to this definition, when λ = 0, all the information obtained from previous
data is forgotten and the process considers each frame independently (as the GLRT does), which
is reasonable if abrupt changes occur in Rt and Dt between frames. When λ = 1, no forgetting
occurs and the new posterior corresponds to the standard Bayesian posterior when Dt and Rt are
constant across frames Dt = D, Rt = R ∀t, which is reasonable under stationary conditions.
Values of λ ∈ [0, 1] are therefore appropriate to model different evolution speeds in the channel,
without having to define a concrete dynamical model. In another perspective, Eqs. (16) represent
a change of the posterior in the direction of the prior: this has also been named as “back-to-the-
prior” forgetting in [26].

With this forgetting step, the parameters of the prior distributions to be used for Bayesian
inference at t + 1 are given by

n̆t+1 = λn̂t + (1 − λ)n̆0 (17a)

R̆t+1 = λR̂t + (1 − λ)R̆0 (17b)
m̆t+1 = λm̂t + (1 − λ)m̆0 (17c)

D̆t+1 = λD̂t + (1 − λ)D̆0. (17d)

4.3. The proposed algorithm

The whole process is summarized in Algorithm 1. Since the algorithm only requires updating
and storing R̂t, n̂t, D̂t, m̂t from one frame to the next, it requires a fixed amount of memory and
computation per sensing frame, which is O(L2).
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Algorithm 1 Online Bayesian Multiantenna Sensing

1: Initialize Parameters: λ, R̆0, n̆0, D̆0, m̆0
2: for Frame t = 1, 2, . . . do
3: Sense the medium N times through L antennas to get Xt

4: Exact posterior: Compute R̂t, n̂t, D̂t, m̂t and π̂t using (8) and (9)
5: Output π̂t, probability of a PU being present during t
6: Compute the approximated posterior parameters using KL minimization or thresholding
7: Forget: Compute R̆t, n̆t, D̆t, m̆t using Eqs. (17)
8: end for

5. Simulation results

In this section, we compare the performance of the proposed Bayesian detector with that
of a GLRT-based detector (given by (4)) in different environments by means of Monte Carlo
simulations. Unless otherwise stated, we assume a probability of channel occupancy given by
π̆t = 0.5, a primary transmitter with P = 5 antennas and a secondary cognitive receiver with
L = 5 antennas. The MIMO channel matrix is assumed to be constant during the t-th sensing
frame with i.i.d. entries distributed as CN(0, 1). On the other hand, the channel evolves from
frame to frame as Ht+1 = λchHt + (1 − λch)Pt+1 [27], with 0 ≤ λch ≤ 1, and Pt+1 a complex
Gaussian noise matrix also with i.i.d. entries distributed as CN(0, 1). For λch = 1 we have a
stationary channel, whereas for λch = 0 it changes independently from frame to frame according
to a block-fading model.
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Figure 4: PD for the Bayesian detector (Bayes-KL and Bayes-T) and the GLRT vs. the number of sensing frames in a
time-invariant channel, L = 5, P = 5, N = 50, SNR = −8 dB and PFA = 0.1.
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5.1. PD versus number of sensing frames

In this subsection, we study how the performance of the Bayesian detector evolves over
time in stationary, slowly time-varying and fast time-varying environments. We start at t = 0
with an uninformative prior and then after each sensing frame we update the posterior (learning
step), approximate the posterior using either truncation (denoted as Bayes-T in the plots) or
KL minimization (denoted as Bayes-KL) and finally forget moving the approximated posterior
towards the original uninformative prior with a forgetting factor λ. As a figure of merit we plot
the detection probability PD versus the number of sensing frames. We consider a fixed false
alarm probability of PFA = 0.1, and in each sensing frame the number of observations is N = 50.
For comparison we include the results obtained with the GLRT. In all examples we use a a
signal-to-noise ratio SNR= −8 dB.

5.1.1. Stationary channel
We first consider a static scenario for which the channel remains constant over all sensing

frames (i.e., λch = 1). The results in Fig. 4 show that in this scenario, after just a few sensing
frames, the Bayesian multiantenna detector provides a much higher PD than the GLRT for differ-
ent values of the forgetting parameter λ. After observing a sufficient number of frames the best
results are obtained when using λ = 1 (which means no forgetting at all), as could be expected
for this static environment. Interestingly, however, to forget a little (λ = 0.9) can be beneficial
during the first sensing frames. This is explained because during the first sensing frames detec-
tion errors are more likely to occur and, consequently, the parameters of the posterior are not
updated correctly. In this situation, it would be better not to trust so much on the observed data
and apply the forgetting step. Finally, we also compare in the figure the performance of the two
approximations of the posterior proposed in the paper. As expected, the KL-based approximation
provides a better performance at the cost of a higher computational complexity.
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Figure 5: PD for the Bayesian detector (Bayes-KL and Bayes-T) and the GLRT vs. the number of sensing frames in a
slowly time-invariant channel. L = 5, P = 5, N = 50, SNR = −8 dB, PFA = 0.1 and λch = 0.9.
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Figure 6: PD for the Bayesian detector (Bayes-KL and Bayes-T) and the GLRT vs. the number of sensing frames in a
fast time-varying channel. L = 5, P = 5, N = 50, SNR = −8 dB, PFA = 0.1, and λch = 0.1.

5.1.2. Slowly time-varying channel
We now consider a non-stationary environment created by a slowly time-varying channel

with λch = 0.9. The results in Fig. 5 show again that the Bayesian detector outperforms the
GLRT after just a few sensing frames. The optimal value of the forgetting factor for this scenario
seems to be close to λ = 0.97, 2 and using a value of λ = 1 (no forgetting) strongly affects the per-
formance. It is also clear that the convergence now is slower, since it takes more sensing frames
to effectively learn and track the covariance matrices under both hypotheses. Finally, regarding
the impact of the posterior approximation on the performance of the detector, we observe that in
non-stationary environments it is better to use the coarse approximation of the posterior obtained
by truncation. In non-stationary environments, the importance of obtaining at each step an accu-
rate approximation diminishes since the performance is limited by the variations observed from
frame to frame.

5.1.3. Fast time-varying channel
In Fig. 6, we finally consider the case of a fast time-varying environment with λch = 0.1. Re-

markably, even in this highly non-stationary environment, the Bayesian detector outperforms the
GLRT detector. This improvement can be attributed to the fact that the covariance matrix under
H0 remains almost constant from frame to frame (only the channel changes) and, therefore, it can
be learnt by the Bayesian detector. This improved estimate of the noise-only covariance matrix
translates into a better PD in comparison to the GLRT. For the reasons explained before, the sim-
ple truncation of the posterior performs better than the most accurate KL-based approximation
in this rapidly varying scenario.

2Let us point out that this value has no direct relationship with λch.
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5.2. Receiver Operating Characteristic

In this subsection, we obtain the receiver operating characteristic (ROC) curve of the de-
tector after convergence, i.e., after processing a sufficient number of frames to reach the steady
state. We study the ROC curve for different number of observations per sensing frame (N =

{50, 30, 15}). We also concentrate on the results provided by the approximation of the posterior
referred to as Bayes-T; since, as we haven seen previously, the approximation based on the KL
distance is computationally more costly and does not show any improvement in time-varying
environments.

Fig.7(a) shows the results for the stationary channel, with λ = 1 and SNR = −8 dB. As we
see, in steady-state the proposed Bayesian detector with only 15 snapshots per sensing frame
outperforms the GLRT with 50 snapshots, which means a reduction of more than three times in
the sensing time per frame. Fig. 7(b) and Fig. 7(c) show the results for slowly (using λch =

0.90) and fast (using λch = 0.10) time-varying environments, respectively; from which similar
conclusions can be drawn.

Finally, we fix the detection threshold and evaluate the probability of detection, PD, and false
alarm, PFA, for different SNRs and in different scenarios. The number of samples per sensing
frame is fixed to N = 50 and the rest of parameters is the same as in the previous section. The
results are shown in Fig. 8(a), Fig. 8(b) and Fig. 8(c) for stationary, slowly and fast time-varying
scenarios.

5.3. Detection performance for a rank-P PU

In Fig. 9, we compare the probability of missed detection, PM , for the Bayesian and GLRT
detectors when the spatial rank of the PU signal varies. For the GLRT detector we have used
the results in [9]. We consider an scenario with L = 6, N = 50, PFA = 0.1, P = {1, ..., 6} and
SNR = −8 dB. In general, the performance of both detectors degrade for an increasing P, since
as P increases the covariance matrix under H1 has less structure to be exploited. Nevertheless,
the Bayesian approach consistently provides better results than the GLRT, which validates again
its ability to learn from the environment even when the actual model does not match exactly the
presumed one.

6. Experimental Evaluation

In this section, we further validate the simulations by means of experimental measurements
on a low-cost hardware cognitive platform. Specifically, our platform is composed of several
N210 Universal Software Radio Peripheral (USRP) devices [23], each of them consists of a
USRP motherboard and a Radio Frequency (RF) daughterboard (the XCVR2450 daughterboard
based on a MAX2829 IC is able to cover ISM bands of 2.4GHz to 2.5GHz, and 4.9GHz to
5.8GHz). Basically, the motherboard consists of dual analog-to-digital converters (ADC) and
digital-to-analog (DAC) converters connected to a Field Programmable Gain Array (FPGA). On
the other hand, the daughterboard is a modular front-end used for analog operations such as
up/down conversion.

In order to implement a multiantenna cognitive node, the N210 USRP includes a specific
expansion port that allows coherent synchronization of two USRP2 units, as it is depicted in Fig.
10. Since the same clock (oscillators) and time reference are shared, both USRP nodes can start
transmitting/receiving at the same time, thus avoiding any synchronization problem.
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Figure 7: ROC curves for the Bayesian and GLRT detector with L = 5, P = 5 and different number of snapshots
per sensing frame. (a) Stationary channel with SNR = −8 dB and λ = 1.0. (b) Slowly time-varying channel with
SNR = −8 dB, λ = 0.97 and λch = 0.90. (c) Fast time-varying channel with SNR = −8 dB, λ = 0.97 and λch = 0.10.
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Figure 8: PD and PFA vs SNR with L = 5 antennas, and N = 50. (a) In a time-invariant channel (λ = 1 and λch = 1). (b)
In a slowly time-varying channel, (λ = 0.97 and λch = 0.95. (c) In a fast time-varying channel (λ = 0.95 and λch = 0.10).
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a slowly time-varying channel with λ = 0.97 and λch = 0.90, and a fast time-varying channel with λ = 0.97 and
λch = 0.10.

Figure 10: N210 Ettus devices with the XCVR2450 daugtherboard installed. A two-antenna cognitive receiver is com-
posed of two N210 boards connected through a MIMO cable.
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We have considered a simple scenario where a single-antenna PU access the channel accord-
ing to a predefined pattern and a cognitive receiver with two antennas senses periodically the
medium and applies different detection procedures. The platform is controlled from a central
PC, which allows us to define a pattern of spectrum occupancy as well as the sensing periods
(see Fig. 11). Therefore, at each sensing period we know exactly the true hypothesis and hence
we can estimate PD and PFA for given threshold.

PU

SU

Time

Busy Idle Busy Idle Busy

N N N N N
Time

Figure 11: A PU transmits according to a preestablished sequence of states, and the SU senses periodically the wireless
channel.

The PU transmits an orthogonal frequency division multiplexing (OFDM) 802.11a signal
at a carrier frequency of 5.6GHz, although during the detection stage the modulation format is
assumed to be unknown by the SU. The experiments were conducted in the laboratory of the
Signal Processing Group at the University of Cantabria, with a clear line of sight (LOS) between
the PU and the cognitive receiver in a rather static environment. For each experiment, the SNR is
controlled by the transmitter power and measured from the received signal at baseband. For the
example shown in this section the measured SNR was −7.3 dB, the number of samples acquired
by the SU during each sensing frame was N = 50, the number of SU antennas is L = 2 and the
number of PU antennas is P = 1. In Fig. 12, we compare the ROC obtained by the proposed
Bayesian detector working with a forgetting factor of λ = 0.99 and the GLRT detector for this
setup. This figures corroborates the validity of the simulations carried out in Section 5. For a full
detailed description of the experimental evaluation, the reader is referred to [22] and [28], where
a procedure to emulate time-varying scenarios is also described.

7. Conclusion

We have derived a new Bayesian framework for the problem of multiantenna spectrum sens-
ing. We assume that the observations follow a Gaussian distribution under both hypotheses,
which allows us to choose conjugate priors and thereby to perform the exact Bayesian inference
with closed-form expressions. Moreover, our Bayesian framework is able to exploit previous
statistical information obtained from past sensing frames. To that end, we propose a forgetting
mechanism where the posterior densities on the covariance matrices summarize this past infor-
mation and the next Bayesian inference takes these posteriors as suitable priors. We evaluate
the derived Bayesian framework in different scenarios, that is, stationary and non-stationary en-
vironments. The comparison between the Bayesian framework and GLRT detector under these
scenarios as well as experimental evaluations shows that the Bayesian detector outperforms the
GLRT. The most interesting findings are provided under a time-varying environment, where we
showed that the Bayesian detector is able to efficiently learn the posterior.
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GHz.
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Appendix A. Derivation of KL approximation

In this appendix we find the pdf approximation that is closest in terms of the KL distance to
the exact posterior. For notational simplicity, we omit the subindex t which refers to the sensing
frame. We will only consider the approximation under H1, since the derivations under the null
hypothesis are exactly the same. More precisely, underH1 the exact posterior is given by

p(R|X) = π̂CW−1(R|n̂, R̂) + (1 − π̂)CW−1(R|n̆, R̆), (A.1)

and we want to find the approximation

q(R|X) = CW−1(R|ñ, R̃), (A.2)

that minimizes the KL divergence. Than is, we want to solve

{ñ, R̃} = argmin
ñ,R̃

KL(p(R|X)||q(R|X)) (A.3)

where,

KL(p(R|X)||q(R|X)) =

∫
p(R|X) ln(p(R|X))dR −

∫
p(R|X) ln(q(R|X))dR. (A.4)
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The first term in the right hand side of (A.4) is the negative of the differential entropy of the
exact posterior and hence does not depend on {ñ, R̃}. Therefore, minimizing the KL is equivalent
to solving the following maximization problem

{ñ, R̃} = argmax
ñ,R̃

∫
p(R|X) ln(q(R|X))dR. (A.5)

Now, by substituting (A.1) and (A.2) into (A.5), we have∫
p(R|X) ln(q(R|X))dR =

∫
π̂ ln(CW−1(R|ñ, R̃))CW−1(R|n̂, R̂)dR.

+

∫
(1 − π̂) ln(CW−1(R|ñ, R̃))CW−1(R|n̆, R̆)dR. (A.6)

Integrating the first term on the right-hand side of Eq. (A.6) we get∫
π̂ ln(CW−1(R|ñ, R̃))CW−1(R|n̂, R̂)dR

= π̂

∫ ln(
|R̃| ñ2

2−
ñL
2 ΓL( ñ

2 )
)CW−1(R|n̂, R̂)dR

 + π̂

[
−

ñ + L + 1
2

∫
ln(|R|)CW−1(R|n̂, R̂)dR

]
+ π̂

[
−

1
2

∫
trace(R−1R̃)CW−1(R|n̂, R̂)dR

]
= π̂

[ ñ
2

ln |R̃| −
ñ
2

L ln(2) − ln ΓL(
ñ
2

)
]

+ π̂

[
−

ñ + L + 1
2

(ln |R̂| − L ln(2) − ψL(
n̂
2

))
]

+ π̂

[
−

1
2

trace(n̂R̂−1R̃)
]

where in the last step, we have used the fact that3 E[ln |R|] = ln(|R̂|) − L ln(2) − ψL( n̂
2 ) and

E[R−1] = n̂R̂−1
. By the same procedure, the second term on the right-hand side of Eq. (A.6) is

given by∫
(1 − π̂) ln(CW−1(R|ñ, R̃))CW−1(R|n̆, R̆)dR

= (1 − π̂)
[ ñ
2

ln |R̃| −
ñ
2

L ln 2 − ln(ΓL(
ñ
2

))
]

+ (1 − π̂)
[
−

ñ + L + 1
2

(ln |R̆| − L ln(2) − ψL(
n̆
2

)
]

+ (1 − π̂)
[
−

1
2

trace(n̆R̆−1R̃)
]

Combining the two terms yields
∫

p(R|X) ln(q(R|X))dR. In order to obtain the parameters that
maximize this function, we have to take derivatives with respect to ñ and R̃ and equate them to
zero. We first derive

∫
p(R|X) ln(q(R|X))dR with respect to R̃, that is

π̂

[
ñ
2

R̃−1
−

n̂
2

R̂−1
]

+ (1 − π̂)
[
−

ñ
2

R̃−1
−

n̆
2

R̆−1
]

= 0

where we have applied the identities ∂ ln |Σ1|/∂Σ1 = (Σ1
T )−1 and ∂ trace(Σ2Σ1)/∂Σ1 = Σ2

T . By

defining KR =

(
π̂n̂R̂−1

+ (1 − π̂)n̆R̆−1
)−1

, it readily follows that R̃ = ñK−1
R .

3Recall that ψL(a) = ∂
∂a ln(ΓL(a)) =

∑L
l=1 ψ(a + (1 − l)/2).

19



Now we take the derivative of
∫

p(R|X) ln(q(R|X))dR with respect to ñ, which is given by

π̂

[
1
2

ln |R̃| −
L
2

ln(2) −
1
2
ψ(

n̆
2

)
]
− π̂

[
1
2

ln |R̂| −
L
2

ln(2) −
1
2
ψL(

n̂
2

)
]

+(1−π̂)
[
1
2

ln |R̃| −
L
2

ln(2) −
1
2
ψ(

n̆
2

)
]
− (1 − π̂)

[
1
2

ln |R̆| −
L
2

ln(2) −
1
2
ψL(

n̆
2

)
]

= 0

Finally using R̃ = ñK−1
R , and defining kR = − ln |KR| + π̂(ψL( n̂

2 − ln |R̂|) + (1 − π̂)(ψL( n̆
2 − ln |R̆|),

the non-linear equation kR + L ln ñ − ψL( ñ
2 ) = 0 is obtained. The same approach is followed to

compute its counterpart under the hypothesisH0.
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spectrum sensing detectors using a cognitive radio testbed, in: Proc. of IEEE International Symposium on Signals
Systems and Electronics (ISSSE), Potsdam, Germany, 2012.

[23] Ettus Research LLC. Universal Software Radio., URL http://www.ettus.com/, 2012.
[24] J. W. Mauchly, Significance test for sphericity of a normal n-variate distribution, The Annals of Mathematical

Statistics 11 (2) (1940) 204–209.
[25] S. S. Wilks, On the independence of k sets of normally distributed statistical variables, The Annals of Mathematical

Statistics 3 (3) (1935) 309–326.
[26] S. Van Vaerenbergh, M. Lazaro-Gredilla, I. Santamaria, Kernel recursive least-squares tracker for time-varying

regression, IEEE Transactions on Neural Networks and Learning Systems 23 (8) (2012) 1313–1326.
[27] K. Baddour, N. Beaulieu, Autoregressive modeling for fading channel simulation, IEEE Transactions on Wireless

Communications 4 (4) (2005) 1650–1662.
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