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Abstract—Alternating minimization and steepest descent are
commonly used strategies to obtain interference alignment (IA)
solutions in the K-user multiple-input multiple-output (MIMO)
interference channel (IC). Although these algorithms are shown
to converge monotonically, they experience a poor convergence
rate, requiring an enormous amount of iterations which sub-
stantially increases with the size of the scenario. To alleviate this
drawback, in this letter we resort to the Gauss-Newton (GN)
method, which is well-known to experience quadratic conver-
gence when the iterates are sufficiently close to the optimum.
We discuss the convergence properties of the proposed GN
algorithm and provide several numerical examples showing that
it always converges to the optimum with quadratic rate, reducing
dramatically the required computation time in comparison to
other algorithms, hence paving a new way for the design of IA
algorithms.

Index Terms—Interference alignment, alternating minimiza-
tion, steepest descent, Gauss-Newton, interference channel.

I. INTRODUCTION

Interference alignment (IA) is a promising technique to
manage interference in wireless networks [1]. The key idea
is to confine the interferences at each receiver into a reduced-
dimensional subspace, thus leaving some receiver dimensions
free of interference. This approach allows to achieve the
maximum degrees-of-freedom (DoF), i.e., the number of data
streams that can be transmitted free of interference, which
asymptotically characterize the sum-rate capacity.

In this letter we consider the K-user multiple-input
multiple-output interference channel (MIMO IC), which is
comprised of K transmitter-receiver pairs that interfere with
one another. More specifically, we restrict our analysis to
the case where no time or frequency symbol extensions are
applied and perfect interference alignment is sought (i.e. zero
interference leakage). Since closed-form IA solutions are not
available for the majority of scenarios, iterative algorithms
are usually applied in order to obtain linear precoding and
decoding matrices that achieve IA. Over the course of the last
years numerous methods have been developed for this task.
The first method, which became specially well-known because
of its simplicity and reliability, is the alternating minimization
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algorithm in [2], [3] which we will abbreviate as AltMin
in this letter. This algorithm regards the IA problem as an
interference leakage minimization, which can be effectively
solved by an alternating optimization procedure. It is shown
to converge monotonically but does not necessarily achieve
a global optimum. Although, to the best of our knowledge,
a rigorous proof has not been provided yet, it has been
experimentally observed that the AltMin algorithm finds the
global solution, attaining zero interference leakage, in all
feasible scenarios. The convergence analysis of the AltMin
algorithm (as well as all its variants) is typically limited to
prove its monotonicity, leaving aside its rate of convergence,
which is a key issue for the convergence speed and, conse-
quently, its applicability. As a result, its main drawback is
its slow convergence rate, which exacerbates as the problem
size (number of users, antennas or streams) increases. Further,
AltMin has given rise to many other variants such as [4]–[9]
which provide performance improvements at the expense of a
higher computational complexity or number of iterations.

Another research line has been that of one-sided algorithms
for which the optimization is conducted at either the trans-
mitter or the receiver side of the links. This is the case of
the algorithms in [10]–[12] which also resort to an alternating
optimization procedure, but pose some issues when dealing
with multiple streams and a large number of users. Another
promising example are the steepest descent (SD) algorithms
[13]–[15] which are guaranteed to converge to a stationary
point of the cost function. Many other algorithms with dif-
ferent cost functions (e.g. MMSE, sum-rate) and optimization
techniques have been developed [16]–[18], but no clear winner
has been found so far, according to recent comparisons [19].

In this letter we propose a method to find IA solutions which
does not rely on alternating minimization or steepest descent.
We will show that the main limitation of the AltMin and SD al-
gorithms stems from their distributed nature and a completely
different approach is needed in pursuit of an improved conver-
gence rate. Our method, instead, is based on the Gauss-Newton
(GN) method, which usually shows a quadratic convergence
rate. In the case of cost functions on R, the theory behind GN
is relatively well-known and understood. Unfortunately, the IA
problem poses the substantial difficulty of requiring precoders
and decoders to stay full rank along Newton iterations in order
to preserve the rank of the desired channels. For the sake
of computational savings, we consider in this work a simple
but widely used approach, consisting on orthonormalizing the
updates at each iteration of the (unconstrained) GN. Given
that the updates are small, the orthonormalization step does not
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jeopardize the convergence properties of the GN. In this letter,
we discuss the convergence properties of the proposed GN
and show through several numerical examples that it always
converges quadratically to a zero interference leakage point
in feasible scenarios. Compared to the well-known AltMin
or SD algorithms, our proposed method provides remarkable
computation time savings.

II. SYSTEM MODEL

We consider a K-user MIMO IC comprised of K
transmitter-receiver pairs equipped with Mi and Ni antennas,
i = 1, . . . ,K, respectively. Also, each transmitter sends
di data streams to its corresponding receiver. Using the
notation introduced in [20], we expressed this system as∏K
i=1(Mi ×Ni, di). The signal at each receiver can be mod-

eled as

zi = UH
i HiiVisi +

∑
i6=j

UH
i HijVjsj + ni , i = 1, . . . ,K ,

(1)
where Ui ∈ CNi×di and Vi ∈ CMi×di are the decoding
and precoding matrices, respectively; Hij ∈ CNi×Mj is the
flat-fading MIMO channel between transmitter j and receiver
i, si ∈ Cdi are the symbols transmitted by user i and
ni ∈ Cdi is the additive white Gaussian noise at the ith
receiver. In order to avoid undesired interference, transmitters
must design their precoders to confine the interference to a
reduced dimensionality subspace in such a way it can be
zero-forced by receivers with their corresponding decoding
matrices. This transmission strategy is known as IA and the
existence of such a precoder design requires the simultaneous
satisfiability of the following conditions:

UH
i HijVj = 0 , ∀ i 6= j , (2)

rank
(
UH
i HiiVi

)
= di, ∀ i . (3)

In fact, condition (3) is almost surely satisfied if the channel
matrices Hij do not have any special structure and both Ui

and Vj are full column rank [2]. Without loss of generality, it
can be assumed that precoders and decoder lie in the Stiefel
manifold, i.e. UH

i Ui = Idi and VH
j Vj = Idj ∀i, j.

III. PROPOSED ALGORITHM

Let us define the vector containing all the optimization
variables, that is, the variables in Vj and Ui as x =
[vec(V1)T , . . . , vec(VK)T , vec(UH

1 )T , . . . , vec(UH
K)T ]T ,

where vec(A) denotes the vector obtained by stacking the
columns of matrix A below one another. Consequently,
x contains the totality of Nv =

∑
i(Mi + Ni)di

variables in the system. Now, we denote as r(x) the
function evaluating the residuals of the equations in (2)
which consists of Ne =

∑
i 6=j didj scalar equations, i.e.,

r(x) = [rT21, . . . , r
T
(K−1)K ]T , where rij = vec(UH

i HijVj).
More formally, r : CNv → CNe where Nv ≥ Ne is
necessary for the system to have a solution. The exact
requirements for the system to be feasible have been studied
in [21] and references therein, but here we will assume
Nv ≥ Ne for simplicity. Under these considerations, the
interference leakage cost function can be expressed as
f(x) = r(x)Hr(x) : CNv → R.

A. Complex Gauss-Newton method

At the nth iteration of Newton-like methods, the variables
are updated according to the rule xn+1 = xn + ∆xn, where
the update vector ∆xn is obtained through the second-order
approximation of the cost function, f(x). Since f(x) is a real-
valued function with complex domain, it is not analytic in x
and hence a Taylor expansion of f(x) at a point x0 cannot
be derived. On the other hand, Wirtinger calculus provides a
framework for complex derivation that allows the existence
of a complex Taylor expansion of such real-valued functions,
by being regarded as a function of the augmented vector
χ , [xT xH ]T . Then, two complex derivatives are defined
by taking the derivative with respect to x while treating x∗

as a constant and the other way around for x∗. For further
details, we refer the reader to [22]. Following these lines,
the second-order approximation of the interference leakage
function, f(χ), around a point χ0 can be written as [22]:

f(χ) ≈ f(χ0) + ∆χT0∇χf(χ0) +
1

2
∆χH0 Hχ0

∆χ0 , (4)

where ∆χ0 = χ−χ0,∇χf(χ0) denotes the complex gradient
of the scalar function f(χ) at χ0 and Hχ0

denotes the
Hessian matrix of f(χ) at χ0. Note that f(χ) is an alternative
representation of f(x) that explicitly shows its dependence on
both x and x∗, and thus f(χ) = f(x). Let us also denote the
Jacobian matrix of the function r(χ) at χ = χ0 by

Jχ0
,
∂r(χ0)

∂χT
=

[
∂r(x0)

∂xT
∂r(x0)

∂xH

]
=
[
Jx0

Jx∗
0

]
. (5)

Given that r(x) is analytic in x, i.e., Jx∗ = 0, the gradient
and the Hessian matrix can be expressed as

∇χf(χ0) =
[
r(χ0)HJx0

r(χ0)TJ∗x0

]T
, (6)

Hχ0
=

(
H̊χ0

H̃χ0

H̃∗χ0
H̊∗χ0

)
, (7)

where

H̊χ0
= JHx0

Jx0 +
∑
k

rk(x0)
∂2r∗k(x0)

∂xT∂x∗︸ ︷︷ ︸
=0

, (8)

H̃χ0
=JHx∗

0
Jx∗

0︸ ︷︷ ︸
=0

+
∑
k

rk(x0)
∂2r∗k(x0)

∂xH∂x∗
, (9)

are the complex and complementary Hessian matrices, respec-
tively, and rk denotes the kth element of r.

In the GN method, the Hessian matrix is approximated by
taking H̃χ = 0, which is a reasonable approximation when
the entries of r are small (we are close to the minimum) or
the function r is mildly non-linear (the second derivatives are
small). As r is a bilinear function, this happens to be a rather
good approximation. Taking this approximation into account,
and using (6)–(9), we can express (4) as a function of x as

f(x) ≈ f(x0) + 2<
{
r(x0)HJx0∆x0

}
+ ∆xH0 JHx0

Jx0∆x0 .
(10)

Note that the approximated Hessian is positive semidefinite,
and thus (10) is actually a convex approximation of f(x) at
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x0. Finally, the GN update is obtained when the derivative of
(10) with respect to ∆x0 equals zero:

∂f(x)

∂∆x0
= 2JHx0

r(x0) + 2JHx0
Jx0

∆x0 = 0. (11)

Given that Jx0
is Ne × Nv and Nv ≥ Ne, (11) simpli-

fies to Jx0
∆x0 = −r(x0), whose infinite solutions can

be parametrized as ∆x0 = −J†x0
r(x0) + (I − J†x0

Jx0
)w,

where (·)† denotes the Moore-Penrose (MP) pseudoinverse
and w is a vector of free parameters. Among all solutions,
it is reasonable to pick the one that is normal to the man-
ifold {x : r(x) = r(x0)} (the set of variables keeping
residuals unchanged) or, equivalently, is orthogonal to the
nullspace of Jx0

. More formally, this is achieved by setting
(I − J†x0

Jx0
)w = 0 which leads to the so-called normal

flow update, i.e. ∆x0 = −J†x0
r(x0) [23]. In practice, it

is recommended not to compute the MP pseudoinverse but,
instead, solve

argmin∆xn
{‖∆xn‖ : Jxn

∆xn = −r(xn)} . (12)

Most of the existing linear algebra routines for solving this
problem cannot exploit the sparse structure of Jxn

or, if they
do, compute a fast basic solution instead of the minimum-norm
solution. A convenient routine fulfilling both requirements
is SPQR_SOLVE which is part of the SuiteSparseQR linear
algebra bundle by Davis [24].

Finally, it is worth pointing out that due to the fact the GN
updates are small, the precoders and decoders obtained after
each iteration should guarantee condition (3). Therefore, both
precoders and decoders can be projected back to the Stiefel
manifold by computing an orthonormal basis of the subspace
spanned by each of them. Given that the interference leakage
function is invariant in the Grassmann manifold, the particular
choice of orthonormal representatives is irrelevant. Therefore,
among all orthonormalization operations, we consider the QR
decomposition as it requires the least computational demands,
and denote the Q factor as qf(·). The complete procedure is
summarized in Algorithm 1.

Remark: The GN method applied to minimize f(x) =
r(x)Hr(x) is identical to the classical Newton’s method
applied to the system of equations r(x) = 0 when the
minimum norm update is chosen [25]. To see this, consider
a first order model of r(x), i.e. r(x) = r(x0) + Jx0

∆x0. In
the classical Newton’s method, the update vector ∆x0 must
satisfy r(x0) + Jx0

∆x0 = 0 thus yielding the update in (12).

B. Some remarks on the convergence properties

Convergence of GN methods is usually difficult to analyze,
hence we provide here some insights based on empirical obser-
vations rather than formal convergence proofs. Nevertheless,
we will observe in Section V through exhaustive simulations
that our intuitions behind the convergence of the method are
in agreement with the experimental results.

1) Stationary points: From (11) it is clear that points sat-
isfying JHx0

r(x0) = 0 are accumulation points, i.e., stationary
points of the method. In a previous work [21] we have proved
that, for a feasible IA system, the matrix Jx is always full-
rank, and therefore the nullspace of JHx is always empty. Thus,

Choose a tolerance level, δ, and the initial point
{Vi,0,Ui,0}Ki=1, lying on the Stiefel manifold.
Set n = 0 .
repeat
1) Construct xn, Jxn and r(xn) and solve (12) for ∆xn .
2) Construct ∆Vi,n and ∆Ui,n from ∆xn and compute

Vi,n+1 = qf(Vi,n + ∆Vi,n) ,

Ui,n+1 = qf(Ui,n + ∆Ui,n) .

3) n = n+ 1.
until f(xn) ≤ δ .

Algorithm 1: GN method for interference leakage minimiza-
tion.

these points correspond to r(x) = 0, i.e., zero interference
leakage. Also, points at which the updates do not change the
subspace of the precoders and decoders are also accumulation
points (recall that the interference leakage is invariant in the
Grassmann manifold), but do not necessarily correspond to
stationary points of the interference leakage. Note, however,
that such points are also present in the AltMin and other IA
algorithms.

2) Non-monotone convergence: It can be seen that the
classical GN direction is a descent direction of the function
f(x) when JHx r(x) is nonzero [25]. In other words, the
scalar product of the direction ∆x over the gradient is always
negative, i.e. r(x)HJx∆x < 0. Intuitively, it is clear that the
interference leakage can always be reduced by diminishing the
transmitted power, thus guaranteeing a monotone convergence.
In general, when a power constraint is added (e.g. by restrict-
ing precoders and decoders to lie in the Stiefel manifold as in
Step 2 of Algorithm 1) monotone convergence does not hold
anymore.

IV. RATE OF CONVERGENCE

A sequence of vectors {xn} is said to converge to x? with
order α if

lim
n→∞

‖xn+1 − x?‖
‖xn − x?‖α

= c , (13)

with 0 ≤ c < ∞. For example, the classical GN method
is known to converge q-quadratically (i.e. α = 2) for small
residual problems, r(x?) ' 0, when the following assumptions
are satisfied [25]: the residuals rk(x) are Lipschitz continu-
ously differentiable (i.e., their second derivative is bounded)
and the Jacobian Jx is full rank for all x in a neighborhood
of the optimum x?. Since both requirements are met in the
IA problem (recall that the Jacobian matrix is always full-
rank for feasible scenarios), GN is expected to converge q-
quadratically in a neighborhood of the optimum. We note that
q-quadratic convergence holds for the classical GN method but
may not hold when additional operations such as the orthonor-
malization in Step 2 of Algorithm 1 are applied. Fortunately,
in a neighborhood of the optimum, the orthonormalization step
can be regarded as a retraction which guarantees superlinear
convergence (α > 1) [26]. Our numerical results suggest the
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Fig. 1. Average convergence of GN, AltMin and SD for the (5× 5, 2)4 and
(12× 12, 4)5 scenarios.
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Fig. 2. CDF of computation times of the GN, AltMin and SD algorithms in
scenarios (5× 5, 2)4 and (12× 12, 4)5.

TABLE I
MEDIAN NUMBER OF ITERATIONS TO REACH AN INTERFERENCE LEAKAGE

OF 10−5 AND AVERAGE TIME PER ITERATION.

Scenario
Median number of iterations Iteration time (ms)

GN AltMin SD GN AltMin SD

(5× 5, 2)4 20 6204 1917 3.9 0.7 7.3
(12× 12, 4)5 42 32190 – 18.5 1.8 28.0

convergence rate is indeed q-quadratic although a rigorous
proof is not available so far.

On the other hand, both alternating-optimization and steep-
est descent algorithms on manifolds are known to converge
q-linearly (that is, α = 1) with 0 ≤ c < 1 (see [27] and
[26], respectively). These algorithms, despite being simple,
lack good rate of convergence properties, making them pro-
hibitively slow. This limitation stems from their distributed
nature, constraining the optimization problem to a subset of
variables at each iteration. Conversely, the GN method takes
advantage of a joint, centralized optimization which enables a
more focused convergence.

V. NUMERICAL RESULTS

In this section we provide several numerical examples to
compare the convergence speed of the proposed GN method
to that of the AltMin [2] and SD [15] algorithms. Our results
are averaged over 100 independent Monte-Carlo simulations,
where the entries of the MIMO channels are independent and
identically distributed complex Gaussian variables with zero
mean and unit variance.

The evolution of the interference leakage with the average
computation time (in an Intel i7 3.2 GHz CPU) for the
scenarios (5 × 5, 2)4 and (12 × 12, 4)5 is depicted in Fig. 1.
The difference in the convergence rate between AltMin and
SD on the one hand and the GN method on the other is
readily observed. More specifically, the use of AltMin against
GN would be only justified when the desired interference
level is still far above 10−2, which is not a sufficiently low
value for the signal-to-noise ratio (SNR) regimes where IA is
meaningful. For the considered scenarios, the SD algorithm
is always slower than AltMin and, in fact, fails to converge
(stagnating in local minima) in the (12× 12, 4)5 scenario. On
the other hand, both AltMin and GN have always converged
to a zero-leakage solution. The CDF of the computation times
and the median number of iterations to reach an interference
leakage of 10−5 are depicted in Fig. 2 and Table I, respectively.

Lastly, we analyze the convergence order of the two algo-
rithms that have always converged in both scenarios: GN and
AltMin. We estimate the convergence order, α, by means of
the formula

α ≈ log(‖xn+1 − xn‖ / ‖xn − xn−1‖)
log(‖xn − xn−1‖ / ‖xn−1 − xn−2‖)

.

The GN method gives α = 2.10 and α = 2.05 for the
scenarios (5 × 5, 2)4 and (12 × 12, 4)5, respectively, thus
showing that the convergence is q-quadratic and corroborating
our arguments in Sections III-B and IV. The estimates of α for
the AltMin algorithm are α = 0.91 and α = 1.01, respectively,
which are also consistent with the q-linear convergence results
in the literature.

VI. CONCLUSION

In this letter we have proposed a new algorithm for the IA
problem in the K-user MIMO IC. The proposed algorithm
is based upon the Gauss-Newton method, which is well-
known for its quadratic convergence rate. We have discussed
the convergence properties of the proposed approach, which
have been validated through exhaustive numerical simulations,
showing that the proposed algorithm does always converge to
the optimal solution and does it quadratically. Consequently,
the computation time is dramatically reduced in comparison to
steepest descent and the widely-used alternating minimization
algorithm. These findings pose a novel approach to obtain IA
solutions, endowed with a remarkable speed of convergence,
which computes (even for very complex scenarios) IA solu-
tions in a fraction of the time required by any other state-of-
the-art algorithm.
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