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Abstract

We give an overview of published algorithms by our group and
of current activities and future plans. In particular, we give details
on methods for computing special functions and discuss in detail two
current lines of research. Firstly, we describe the recent developments
for the computation of central and non-central χ-square cumulative
distributions (also called Marcum Q−functions), and we present a new
quadrature method for computing them. Secondly, we describe the
fourth-order methods for computing zeros of special functions recently
developed, and we provide an explicit example for the computation
of complex zeros of Bessel functions. We end with an overview of
published software by our group for computing special functions.
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1 Introduction

Our project on software developments for special functions started in 1997.
Earlier we published a number of papers in this area, and the plan was to
combine all our expertise in order to produce quality software based on a se-
lection of the many methods available for special functions, and by justifying
these methods in particular cases with the help of elements of numerical and
mathematical analysis, such as recurrence relations, numerical quadrature
and asymptotic expansions.

We discuss current activities in two different lines of research. Firstly, we
discuss the computation of χ-square cumulative distributions and, in par-
ticular, we present a new quadrature method for computing the non-central
distribution, also called Marcum’s Q−function. Secondly, we describe in
a unified way two recent methods for computing zeros of special functions
(for real and complex zeros), we give an explicit example of computation for
complex zeros of Bessel functions and discuss plans for software implemen-
tations. We end with an overview of our published software for computing
special functions.

First, we briefly outline the basic methods and principles we consider in
the construction of special function software.

2 Numerical methods and basic principles

Our book [33] “Numerical methods for special functions” appeared in 2007
and describes four basic methods that we have used in writing software.
These methods are: convergent and asymptotic series, Chebyshev expan-
sions, linear recurrence relations and quadrature methods. The book also
describes numerical methods for computing continued fractions, methods
for computing zeros of special functions and the computation with uniform
asymptotic expansions, among other topics. Usually, several of these meth-
ods have to be combined for computing a special function.

2.1 Our principles of designing algorithms

Our approach in making software can be described by the following princi-
ples.

1. The main objective is to develop Fortran 90 codes which produce re-
liable double precision values. We use Maple or Mathematica for ob-
taining coefficients in expansions and for verifying algorithms, but not
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usually in the final product. The exceptions are some codes for com-
puting zeros of special functions.

2. A given special function is usually a special case of a more general
function. Our approach is bottom-up and when a simple but important
function is demanding software, we prefer to start with the “simple”
case. For example: Airy functions are special cases of the more general
Bessel functions, but we have written codes for the Airy functions
themselves.

3. We accept that it is necessary to combine several methods in order to
compute a function accurately and efficiently for a wide range of its
variables.

4. We accept that a theoretical error analysis is usually impossible for
functions with several real or complex variables. We accept more em-
pirical approaches.

5. The accuracy analysis is usually done by using functional relations,
such as Wronskian relations or by comparing with an alternative method
of computation.

6. The selection of methods in different parameter domains is based on
speed and accuracy, where the latter may prevail. For large real or
complex parameters scaling of the result is useful to avoid underflow
or overflow in our finite arithmetic environment.

3 Incomplete gamma functions, Marcum Q−function

As before commented, present interest is focused on distribution functions,
in particular on the incomplete gamma functions (see [38]) and general-
izations. Incomplete gamma functions are the central χ-square cumulative
distributions and are defined by

γ(a, x) =

∫ x

0
ta−1e−t dt, Γ(a, x) =

∫
∞

x
ta−1e−t dt. (3.1)

We concentrate on the ratios

P (a, x) =
1

Γ(a)
γ(a, x), Q(a, x) =

1

Γ(a)
Γ(a, x), (3.2)

where we assume that a and x are positive. We can use the well-known se-
ries expansions, asymptotic expansions, recurrence relations, and a method

3



based on the uniform asymptotic representation of these ratios in terms of
the complementary error function. Apart from the last method, we mainly
use the methods considered in [14, 15], although Gautschi used a different
set of functions and also negative values of a. For applications in mathemat-
ical statistics and probability theory the ratios in (3.2) are more relevant.
Furthermore, [38] in we described algorithms for inverting the incomplete
gamma ratios, and the algorithm improves the one given in [8, 9].

The results of the algorithms for the incomplete gamma ratios are used
in our current project on the the generalized Marcum Q−function, which
is defined in (3.5) and (3.6). A paper with full details of our numerical
computations has been submitted [40]. The relation with the incomplete
gamma functions becomes clear when expanding the Bessel function in its
power series, which gives

Qµ(x, y) = e−x
∞∑

n=0

xn

n!
Q(µ + n, y), (3.3)

and

Pµ(x, y) = e−x
∞∑

n=0

xn

n!
P (µ+ n, y). (3.4)

3.1 A new quadrature method for computing the Marcum

Q-function

As we have explained in [33, Chapter 5], numerical quadrature can be an
important tool for evaluating special functions. In particular, when selecting
suitable integral representations for these functions. In Chapter 12 of our
book we have given several examples, see also §§5.2, 5.3, 5.4. The quadra-
ture methods are usually based on the simple trapezoidal rule, that is very
efficient and accurate for certain integral representations that follow from
contour integrals in the complex plane, for example through the saddle point
of the integrand. We have shown for many cases that the trapezoidal rule
is an effective tool for a large domain of the parameters. Usually we use
the method to overlap power series methods near the origin and asymptotic
methods for large parameters.

In this section we describe the trapezoidal method for a special case, the
Marcum Q−function, and we give all analytical details that are needed for
including the method in a computer program. In fact, this is generally the
way of working: we need quite some analytical preparations before we apply
the simple trapezoidal rule, but the extra work is usually very rewarding.
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We define the generalized Marcum Q−function by using the integral
representation

Qµ(x, y) = x
1
2
(1−µ)

∫ +∞

y
t
1
2
(µ−1)e−t−xIµ−1

(
2
√
xt
)
dt, (3.5)

where x ≥ 0, y ≥ 0, µ > 0 and Iµ(z) is the modified Bessel function. We
also use the complementary function

Pµ(x, y) = x
1
2
(1−µ)

∫ y

0
t
1
2
(µ−1)e−t−xIµ−1

(
2
√
xt
)
dt, (3.6)

and the complementary relation reads

Pµ(x, y) +Qµ(x, y) = 1. (3.7)

The generalized Marcum Q−function, which for µ = 1 reduces to the
ordinary Marcum function, is used in problems on radar detection and com-
munications; see [43]. In this field, µ is the number of independent samples
of the output of a square-law detector. In our analysis µ is not necessarily
an integer number. There is an extensive literature regarding this function,
also from the areas of statistics and probability theory, where they are called
the non central χ-square or the non central gamma distribution. For papers
concentrating on numerical aspects we refer to [2, 3, 10, 41, 42, 46, 47, 52].
As explained earlier in this section, the central gamma distribution is in fact
the incomplete gamma function.

The integrals in (3.5) and (3.6) give stable integral representations, but
we prefer a representation in terms of elementary functions. Also, one im-
portant point for applying the trapezoidal rule efficiently is the vanishing of
the integrand and many (or all) of its derivatives at the finite endpoint of
integration.

In the present case we start with the complex integral representation
(see [54, Eq. (2.3)])

Qµ(x, y) =
e−x−y

2πi

∫

LQ

ex/s+ys

1− s

ds

sµ
, (3.8)

where LQ is a vertical line that cuts the real axis in a point s0, with 0 <
s0 < 1. For the complementary function we have

Pµ(x, y) =
e−x−y

2πi

∫

LP

ex/s+ys

s− 1

ds

sµ
, (3.9)
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now with a vertical line LP that cuts the real axis at a point s0 with s0 > 1.
Both representations follow from each other by shifting the contour across
the pole at s = 1 and picking up the residue.

We use scaled variables x, y and write the representation in (3.8) in the
form

Qµ(µx, µy) =
e−µ(x+y)

2πi

∫

LQ

eµφ(s)

1− s
ds, (3.10)

where LQ is as in (3.8), and

φ(s) =
x

s
+ ys− ln s. (3.11)

The first step in choosing a suitable contour for numerical quadrature is
determining the saddle point of φ(s) and shifting the contour through this
saddle point. We have

φ′(s) = − x

s2
+ y − 1

s
, (3.12)

which vanishes at the point (the negative zero is not relevant here)

s0 =
1 +

√
1 + ξ2

2y
, ξ = 2

√
xy. (3.13)

We want to evaluate the Q−function when y > x+1 (in the scaled variables).
When y < x+ 1 we would compute the P−function instead and use (3.7).

We continue with y > x + 1 with LQ through s0 of (3.13). It is easy
to verify that in that case the saddle point s0 satisfies 0 < s0 < 1. The
next step is to deform this line into a contour (still through s0) on which
ℑφ(s) = ℑφ(s0). This gives the equation

ℑ
(x
r
e−iθ + yreiθ − ln r − iθ

)
= 0, (3.14)

because ℑφ(s0) = 0. Here we have used polar coordinates

s = reiθ, r > 0, −π < θ < π. (3.15)

Solving for r we obtain

r(θ) =
1

2y

(
θ

sin θ
+ ρ(θ, ξ)

)
, ρ(θ, ξ) =

√(
θ

sin θ

)2

+ ξ2. (3.16)

This defines a parabola-shaped contour through s0 given in (3.13) and ex-
tending to ℜs→ −∞ (when θ → ±π).
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On this contour we have

φ(s) = ℜφ(s) = cos θρ(θ, ξ)− ln r(θ). (3.17)

Integrating on the contour with respect to θ gives

Qµ(µx, µy) =
e−µ(x+y)

2πi

∫ π

−π
eµℜφ(s)

r′(θ) + ir

e−iθ − r
dθ, (3.18)

and by evaluating the fraction in the integrand we obtain the real represen-
tation

Qµ(µx, µy) =
e−µ(x+y)

2π

∫ π

−π
eµℜφ(s)f(θ) dθ, (3.19)

where f(θ) is an even function (the odd part does not contribute), and is
defined by

f(θ) =
sin θ r′(θ) + (cos θ − r(θ)) r(θ)

r2(θ)− 2r(θ) cos θ + 1
. (3.20)

This representation has the required form: the integrand vanishes with
all its derivatives at the endpoints of the interval. But this is not the final
representation. The point is, we like to take out the value exp(µℜφ(s0)) at
θ = 0 in order to avoid numerical instabilities for small values of θ. We write

−x− y + φ(s0) = −1
2
ζ2 (3.21)

and we obtain our final representation

Qµ(µx, µy) =
e−

1
2
µζ2

2π

∫ π

−π
eµψ(θ)f(θ) dθ, (3.22)

where

ψ(θ) = cos θρ(θ, ξ)−
√
1 + ξ2 − ln

θ
sin θ

+ ρ(θ, ξ)

1 +
√

1 + ξ2
, (3.23)

with ρ(θ, ξ) defined in (3.16).

3.1.1 Stable computations

It will be clear that for numerical evaluations we need some preparations for
small values of θ. First we observe that

ψ(θ) = −1
2

√
1 + ξ2 θ2

(
1 +

2− 3ξ2

36(1 + ξ2)
θ2 +O

(
θ4
))

, θ → 0, (3.24)
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and we can compute more terms in this expansion. However, these terms
depend on ξ, and it is better to make first a few analytical steps. First we
write

cos θρ(θ, ξ)−
√
1 + ξ2 =

(
θ

sin θ

)2
− 1− θ2 − ξ2 sin2 θ

cos θρ(θ, ξ) +
√

1 + ξ2
, (3.25)

and for (
θ

sin θ

)2

− 1 =
(θ − sin θ)(θ + sin θ)

sin2 θ
(3.26)

we may use the simple expansion

θ − sin θ = 1
6
θ3

(
1 + 6

∞∑

k=1

(−1)k
θ2k

(2k + 3)!

)
. (3.27)

Although the convergence is very fast, in the algorithm we use a Chebyshev
expansion for this quantity.

The logarithmic term in (3.23) needs also some care. We avoid the
straightforward evaluation because when θ is small the argument tends to
unity. In fact, we use a Chebyshev expansion of the function ln(1 + z) that
is accurate for small values of |z|. For this we write

z =

θ
sin θ

+ ρ(θ, ξ)

1 +
√

1 + ξ2
− 1 =

θ − sin θ
sin θ

+ ρ(θ, ξ)−
√

1 + ξ2

1 +
√
1 + ξ2

, (3.28)

which can be written as

z =

θ − sin θ
sin θ

1 +
√

1 + ξ2


1 +

θ
sin θ + 1

ρ(θ, ξ) +
√
1 + ξ2


 . (3.29)

Finally, for the function f(θ) defined in (3.20) we need a stable repre-
sentation of r′(θ). We have from (3.16)

r′(θ) =
sin θ − θ cos θ

2y sin2 θ

(
1 +

θ

ρ(θ, ξ) sin θ

)
, (3.30)

and we write sin θ − θ cos θ = sin θ − θ + 2θ sin2
(
1
2θ
)
.
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3.1.2 Where to use this quadrature method

The function f(θ) defined in (3.20) becomes singular when s = r(θ)eiθ = 1.
This happens if θ = 0, and otherwise for imaginary values of θ. If r(0) = 1,
then y = x + 1, and when |y − x − 1| is small we need many function
evaluations in the quadrature rule, which we like to avoid. When |y−x− 1|
is small we use asymptotic expansions. A safe domain follows from the
asymptotic analysis and is given by

x+ 1− b
√

2/µ
√
2x+ 1 < y < x+ 1 + b

√
2/µ

√
2x+ 1, (3.31)

for some positive number b, say b = 1. Outside this parabolic shaped domain
around the line y = x + 1 we can use for the representation in (3.22) the
trapezoidal rule with great efficiency. It should be observed that, although
the selection of the contour is based on asymptotic analysis, the quadrature
method does not need necessarily large parameters, although it performs
also quite well in that case.

The domain in (3.31) is described in terms of the scaled variables for
Qµ(µx, µy). For the unscaled variables in Qµ(x, y) we use

x+ µ− b
√

4x+ 2µ < y < x+ µ+ b
√

4x+ 2µ. (3.32)

In [41] the trapezoidal rule is used by including the pole at s = 1 in
(3.10) in the function φ(s). That is, by writing (compare (3.11))

φ̃(s) =
x

s
+ ys− ln s− 1

µ
ln(1− s). (3.33)

In that case the saddle point has to be calculated from a cubic polynomial
and the contour follows from ℑφ̃(s) = 0 through that saddle point. Helstrom
used an approximation of this contour by taking a parabola centered at the
saddle point. The tabled results show correct values at the the critical values
y = x+ 1.

It is of interest to see how the method described in [4], in which the
trapezoidal rule is used when a pole is close to the saddle point, can be
applied to the integral in (3.8).

4 Zeros of special functions

There is ongoing work on software developments for the computation of zeros
of special functions. The zeros of special functions are important quantities
appearing in numerous scientific applications.
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The problem we are addressing is, given a (special) function f(x), de-
velop a program for computing with certainty the solutions of f(x) = 0. We
consider real zeros, but we also discuss the extension to complex zeros.

We restrict our attention to functions which are solutions of second-order
differential equations

y′′(x) +B(x)y′(x) +A(x)y(x) = 0. (4.1)

Special cases are, for instance, the classical orthogonal polynomials (for
which the zeros are the nodes of Gaussian quadrature formulas), and Bessel
functions.

Except for some particular cases (like, for instance, the Golub-Welsch
algorithm for orthogonal polynomials, see for instance [33, §5.3.2]) the devel-
opment of software for computing zeros of a function requires that software
for computing the function is available; this is also the case of our algorithms.
In this sense, the computation of zeros of special functions is secondary to
the evaluation of the functions themselves. Most of the software for the
evaluation of special functions is written in Fortran and we consider this
programming language when special function software is available.

Another possibility is using commercial software with built-in special
function commands. Mathematica and Maple are interesting possibilities
with a large span of mathematical functions available We use Maple for
some of our packages; current activities include the development of software
packages for computing real or complex zeros of special functions using the
fourth-order methods of [49, 51].

Next, we describe the basic ingredients for the method introduced in
[49] for real zeros and the status of the software implementations, both in
Fortran and in Maple. Here we motivate the method as a direct consequence
of Sturm’s comparison theorem [53, page 19]. In the second place, we briefly
discuss the extension of the method for the computation of complex zeros
presented in [51], we give some specific examples of application in Maple
and discuss details of the implementation.

4.1 Computation of real zeros

The method introduced in [49] is a fast fourth-order method which is able
to compute all the zeros of any solution of a second-order ODE y′′(x) +
A(x)y(x) = 0 1 in any real interval where A(x) is continuous, provided the

1Any differential equation y′′(x) + B(x)y′(x) + A(x)y(x) = 0 with B(x) differentiable
can be transformed to normal form (no first derivative term) with the change of function
w(x) = exp( 1

2

∫ x
B(ζ)dζ)y(x)

10



monotonicity properties of A(x) in this interval are known in advance. This
method can be motivated as a direct consequence of the following Sturm
theorem:

Theorem 1 (Sturm comparison) Let y(x) and w(x) be solutions of y′′(x)+
Ay(x)y(x) = 0 and w′′(x) + Aw(x)w(x) = 0 respectively, with Aw(x) >
Ay(x) > 0. If y(x0)w

′(x0)− y′(x0)w(x0) = 0 and xy and xw are the zeros of
y(x) and w(x) closest to x0 and larger (or smaller) than x0, then xw < xy
(or xw > xy).

The proof is straightforward. An intuitive explanation is as follows.
The differential equations of the form y′′(x) + A(x)y(x) = 0 have solutions
which may oscillate if A(x) > 0, and the oscillations are more rapid as A(x)
is larger. In the theorem, because Aw(x) > Ay(x) > 0, the solutions of
the second equation oscillate more rapidly and their zeros tend to be closer
together. Now, because we have the hypothesis y(x0)w

′(x0)−y′(x0)w(x0) =
0 we can consider that y(x0) = w(x0) and y

′(x0) = w′(x0), and there is no
loss of generality because a solution of a linear homogeneous ODE can be
multiplied by a constant and it remains a solution of the same ODE with
the same zeros. Therefore, the solutions y(x) and w(x) have the same initial
conditions at x0; but because w(x) oscillates more rapidly than y(x), then
then there is necessarily a zero of w(x) between x0 and any zero of y(x).
This is illustrated graphically in Figure 1, where we consider the simple case
of equations with constant coefficients.

From Sturm’s theorem we can construct a method for the computation
of the zeros of solutions of y′′(x) + A(x)y(x) = 0 when A(x) is monotonic.
If A(x) is a decreasing (increasing) function and A(x) > 0 we compute the
zeros with an increasing (decreasing) sequence; if A(x) < 0 the solutions
have one zero at most. Given a value x0, the zero of y(x) closest to x0 and
larger (smaller) than x0 can be computed with certainty using the following
scheme.

Algorithm 1 (Zeros of y′′(x) +A(x)y(x) = 0, A(x) > 0 monotonic) .
Let x0 < α with y(α) = 0 and such that there is no zero of y(x) between

x0 and α.
Assume that A(x) is decreasing (increasing). Starting from x0, compute

xn+1 from xn as follows: find a non-trivial solution of the equation w′′(x)+
A(xn)w(x) = 0 such that y(xn)w

′(xn)− y′(xn)w(xn) = 0. Take as xn+1 the
zero of w(x) closest to xn and larger (smaller) than xn. Then, the sequence
{xn} converges to α.
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0 1 2 3 4
-1

-0,5

0

0,5

1

y(x)=sin(x)
w(x)=Csin(1.5 x + φ)

Figure 1: The function y(x) = sin(x) is a solution of y′′(x)+Ay(x)y(x) = 0,
Ay(x) = 1, and w(x) = C sin(1.5x+φ), C = 0.9153 . . ., φ = −0.3336 . . . is a
solution of w′′(x)+Aw(x)w(x) = 0, Aw(x) = 2.25. The curves are tangent at
x0 = 1, where y(x0)w

′(x0)− y′(x0)w(x0) = 0. Because Aw(x) > Ay(x) > 0,
the zeros of w(x) are closer to x0 = 1 than the zeros of y(x).

This is a direct consequence of Sturm comparison. Consider, for instance,
the case of A(x) increasing; A(xn) > A(x) for x > xn and the solutions
of w′′(x) + A(xn)w(x) = 0 oscillate more rapidly than those of y′′(x) +
A(x)y(x) = 0, and because y(xn)w

′(xn) − y′(xn)w(xn) = 0 we have xn <
xn+1 < α. For increasing A(x) the iterations with the algorithm produce an
increasing sequence with upper bound the zero that is computed; therefore it
converges, and necessarily to the zero because, as we will see, the only fixed
point of the resulting iteration function (Eq. (4.2)) in (xn, α] is precisely α.
The situation is similar to Figure 1 (x > 1), where y(x) would be the special
function and w(x) would provide the next iteration.

Of course, the algorithm can be applied successive times to generate a
sequence of zeros.

Algorithm 2 (Computing a sequence of zeros, A(x) monotonic) .
Let α1, α2 be consecutive zeros of y(x), with α1 < α2.
If A(x) is decreasing and α1 is known, the zero α2 can be computed
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using Algorithm 1 with starting value x0 = α1 (the first iteration being
x1 = α1 + π/

√
A(α1)).

If A(x) is increasing and α2 is known, the zero α1 can be computed
using Algorithm 1 with starting value x0 = α2 (the first iteration being
x1 = α2 − π/

√
A(α2)).

As commented before the sequences generated are increasing (decreas-
ing) if A(x) is decreasing (increasing).

The iteration of Algorithm 1 can be explicitly written as follows:

T (x) = x− 1√
A(x)

arctanj(
√
A(x)h(x)), (4.2)

with h(x) = y(x)/y′(x), j = sign(A′(x)) and

arctanj(ζ) =





arctan(ζ) if jζ > 0,
arctan(ζ) + jπ if jζ ≤ 0,
jπ/2 if ζ = ±∞.

(4.3)

Observe that the only fixed points of T (x) are the zeros of y(x).
The method is of order four which means, roughly speaking, that the

number of correct digits is multiplied by four in each iteration provided the
iterations are close enough to the zero. On the other hand, it has good non-
local behavior (see [49, Definition 4.1]), and once a zero is computed, few
iterations are generally needed to reach a close estimation of the next zero.
The fixed point method depends on an arctangent function but defined with
a different range depending on whether A(x) is decreasing or increasing.
When an iteration close to the zero that is being computed is reached, it is
better to switch to the standard arctangent functions (range (−π/2, π/2)),
which gives a fixed point method continuous at the zero and convergent
around the zero

The algorithms need some a priori analysis: the monotonicity properties
of the coefficient A(x) must be known in advance, because the method has
to be applied separately in those subintervals where A(x) is monotonic. This
analysis has been completed for hypergeometric functions [5].

An excellent benchmark for these methods is Maple, which permits con-
structing algorithms for computing zeros of a large number of special func-
tions; in [49], details on the performance of these methods are given for
a good number of special functions. It is shown that only with three or
four iterations per root, one can attain one hundred digits accuracy. Fol-
lowing these earlier tests, we are currently developing a Maple package for
computing zeros of special functions [19]. By using the method that we are
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describing in the next section, this package will later be extended to complex
zeros.

Recently, we developed Fortran programs for computing zeros of Bessel
functions Cν(x) (solutions of x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0), of their
first derivative and of the combination xCν + γC′

ν(x). In these methods, we
considered the Fortran 77 codes of Amos [1] for computing Bessel functions.
An update to Fortran 90 will be considered, together with new Fortran al-
gorithms for computing zeros of other functions for which Fortran programs
are available, like parabolic cylinder functions [32, 36], Legendre functions
[48], conical functions [39], and modified Bessel functions of imaginary ar-
gument [27].

4.2 Complex zeros

It is possible to extend the previous fourth-order method to zeros in the com-
plex plane, although it is not easy to prove its convergence in full generality.
However, the WKB approximation (also named Liouville approximation)
[44, Chap. 6] motivates why the method for complex zeros works [51].

Let us start by considering the trivial case of A(z) constant. Then the
general solution of y′′(z) +A(z)y(z) = 0 reads

y(z) = C sin
(√

A(z) (z − ψ)
)
,

and the zeros are over the line

z = ψ + e−i
ϕ
2 λ, λ ∈ R, ϕ = argA(z).

In other words, writing z = u+iv we have that the zeros are over an integral
line of

dv

du
= − tan(ϕ/2). (4.4)

Of course, in general A(z) will not be a constant. The method for com-
plex zeros is based on the assumption that the curves where the zeros lie
are also given by (4.4), but with variable ϕ. This assumption is equiva-
lent to considering that the WKB approximation is accurate. The WKB
approximation with a zero at z(0) is

y(z) ≈ CA(z)−1/4 sin

(∫ z

z(0)
A(ζ)1/2dζ

)
.

Then, if z(0) is a zero, other zeros lie over the curve such that

ℑ
∫ z

z(0)
A(ζ)1/2dζ = 0, (4.5)
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and those curves are also given by (4.4). These are the so-called anti-Stokes
lines (ASLs).

The method for computing complex zeros precisely follows the path of
the ASLs and it is similar to the method for real zeros. Given z(0) (y(z(0)) =
0) and assuming that |A(z)| decreases for increasing ℜz, we consider the
following algorithm to compute the next zero z(1):

Algorithm 3 (Basic algorithm for complex zeros; |A(z)| decreasing)
.

1. Take z0 = H+(z(0)) = z(0) + π/
√
A(z(0)).

2. Iterate zn+1 = T (zn) until |zn+1 − zn| < ǫ, with

T (z) = z − 1√
A(z)

arctan

(√
A(z)

y(z)

y′(z)

)
. (4.6)

3. Take as approximate zero z(1) = zn+1.

The algorithm can be repeated in order to compute subsequent zeros. If
|A(z)| is decreasing, the same algorithm can be considered but with the first
line replaced by z0 = H−(z(0)) = z(0) − π/

√
A(z(0)).

Observations:

1. If A(z) has slow variation, the first step could be a good approximation
to z(1). In addition, the step is tangent to the anti-Stokes line (ASL)
at z(0) (that is: the straight line joining z(0) and z0 is tangent at z(0)

to the ASL passing through this point).

2. |z0−z(0)| < L where L is the length of the anti-Stokes arc between z(0)

and the next zero. It is a step by defect, and in the correct direction.

3. T (z) is a fixed point iteration with order of convergence 4. This fact
does not depend on the validity of the WKB approximation.

Figure 2, left, shows the complex zeros of the Bessel function Y10.35(z)
in the first quadrant, the first estimations provided by the method together
with the ASL passing through the zero with largest imaginary part. The
algorithm starts with this zero and computes the following zeros (with suc-
cessively smaller imaginary parts). The zeros are very close to the ASL and
the first estimations are very reasonable with one exception: after comput-
ing the last zero with positive imaginary part, the estimation for the next
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zero (which is on the real line) is not accurate and, furthermore, this zero
appears well separated from the ASL. We conclude that the WKB approx-
imation works initially well, but that it is not accurate for computing the
last zero (although the iteration finally converges to this zero). The problem
with this last zero is that WKB fails as a principal Stokes line is crossed.
We next explain the notion of principal lines.

A Stokes line (SL) passing through z0 for a differential equation y′′(z)+
A(z)y(z) = 0 is given by

ℜ
∫ z

z0

A(ζ)1/2dζ = 0. (4.7)

Compare this with the definition of ASLs (4.5).
Given a point z0 in the complex plane such that A(z0) 6= 0,∞, then

there is one and only one ASL (or SL) passing through z0. The situation is
different if z0 is a zero or a singularity; in particular, if z0 is a zero of A(z)
with multiplicity m, there exist m + 2 ASLs (and SLs) emerging from z0.
We call the ASLs (or SLs) emerging from the zeros of A(z) principal ASLs
(SLs).

For the case of real zeros described in the previous section, the real
interval where the zeros are sought has to be divided in different subintervals
where A(x) is monotonic and the direction of computation is chosen in such
a way that this coefficient decreases. For complex zeros, a similar procedure
has to be implemented, where the position with respect to the principal
lines has to be analyzed. Summarizing, the following strategy proves to be
reliable:

The strategy combines the use ofH(±) = z± π√
A(z)

and T (z) (Eq. (4.6))

following these rules:

1. Divide the complex plane into disjoint domains separated by the prin-
cipal ASLs and SLs and compute separately in each domain.

2. In each domain, start away from the principal SLs, close to a princi-
pal ASL and/or singularity (if any). Iterate T (z) until a first zero is
found. If a value outside the domain is reached, stop the search in
that domain.

3. Proceed with the basic algorithm, choosing the displacements H(±)(z)
in the direction of approach to the principal SLs and/or singularity.

4. Stop when a value outside the domain is reached.
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Figure 2: Left: Zeros of the Bessel function Y10.35(z) in the quadrant ℜz >
0, ℑz > 0 (black circles), and first estimations to the zeros (white circles);
the dotted line is the anti-Stokes line passing through the zero with larger
imaginary part. Right: Principal Stokes (dashed lines) and anti-Stokes
lines (solid lines) for the scaled Bessel equation d2y/dζ2 +λ2(1− ζ−2)y = 0,
λ =

√
ν2 − 1/2, |ν| > 1/2. The lines for Bessel functions of order |ν| > 1/2

correspond to the variable z = λζ, λ =
√
ν2 − 1/2.

No exception has been found (so far tested for Bessel functions, parabolic
cylinder functions and Bessel polynomials).

As an illustration, let us consider the computation of the complex zeros
of Bessel functions, and particularly, of the Bessel function of the second kind
Yν(z). The principal Stokes and ASLs are shown in Fig. 2, right. Because
the zeros follow ASLs, we expect that the zeros could lie over the principal
ASLs (the eye-shaped region and part of the real axis) or inside each of the
domains separated by these lines. The eye-shaped region cuts the imaginary
axis at ζ = ic where c are the real roots of s − 1

2 log((s + 1)/(s − 1) = 0,

s =
√
1 + c2, that is c = ±0.66274321.... In the particular case of Yν(z),

|ν| > 1/2, there are zeros very close to the eye-shaped region, in part of the
positive real axis and close to the negative real axis.

First we discuss the computation of the zeros of Yν(z) for real orders
ν > 1/2; for other Bessel functions and real orders the algorithm will be
essentially the same. For computing the zeros in the region satisfying ℑz ≥ 0
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and |ℜz| < L, with L a given positive number, we can consider the following
steps:

1. Zeros on the positive real line or above the line: take the starting value
z = L+ i, and compute a first zero by iterating T (z). Then, proceed
using Algorithm 3 with H− until a value z with ℜz <

√
ν2 − 1/4 or

ℑz < −ǫ, with ǫ a small positive number, is reached.2

2. Zeros above the negative real axis: take the starting value z = −L+ i
and proceed similarly as for the positive real zeros, but with H+.

3. Zeros on, above or inside the eye-shaped region: start with the esti-
mation z = 0.663

√
ν2 − 1/4, compute a first zero and move to the

right with H+ until a value z such that ℜz >
√
ν2 − 1/4 is reached.

Similarly, with the same starting zero, move to the left with H− until
a value until ℜz < −

√
ν2 − 1/4 is reached. It is also convenient to

have, as for the real zeros, the stopping criterion ℑz < −ǫ.

For the zeros with ℑz < 0, the same strategy as for ℑz > 0 can be used,
mutatis mutandis. This strategy, in fact, works for any Bessel function of
real order, and not only for Yν(z).

As an explicit example, we give some explicit Maple instructions to com-
pute some of these zeros. Let us recall that the coefficient for Bessel functions
is A(z) = 1−(ν2−1/4)/z2, for y(z) = z1/2Yν(z) (or y(z) = z1/2Jν(z) and any
linear combination). For computing the zeros of Yν(z) over the eye-shaped
region in the first quadrant, we consider the following set of instructions.

%% Definition of function and coefficients

%% Parameters: NI, number of iterations;

%% NI:=3 gives more than 20 correct digits

%% a, order of the Bessel function

> restart:NI:=3:Digits:=30:f:=sqrt(z)*BesselY(a,z):

> h:=f/diff(f,z):coef:=sqrt(1-(a^2-0.25)/z^2):

%% Definition of the iteration T and the displacements H+ and H-

> T:=z-1/coef*arctan(coef*h):Hplus:=z+Pi/coef:Hminus:=z-Pi/coef:a:=10.35:

%% Computation of a first real zero close to x=40

> x:=40:

2The initial value z = L also works in this case, but for functions different from Yν(z)
it is preferable to initiate with z = L+ id, d a positive number, in order to compute zeros
above the positive real line.
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> for i from 1 to NI do;

> x:=evalf(subs(z=x,T));

> end do:

> k:=0:

%% Computing the real zeros in decreasing order.

%% The algorithm stops when abs(Re(x))<ll

> ll:=evalf(sqrt(a^2-1/4)):

> while abs(Re(x))>ll do;

> xc[k+1]:=x;k:=k+1;x:=evalf(subs(z=xc[k],Hminus));

> for i from 1 to NI do;

> x:=evalf(subs(z=x,T));

> end do;

> end do:

%% Computing the first zero close to the eye-shaped region

> x:=0.662*sqrt(a^2-0.25)*I:

> for i from 1 to NI do;

> x:=evalf(subs(z=x,T));

> end do:

%% Computing the rest of zeros close to the eye-shaped region

%% The algorithm stops when abs(Re(x))<ll

> while Re(x)<abs(ll) do;

> xc[k+1]:=x;k:=k+1;x:=evalf(subs(z=xc[k],Hplus));

> for i from 1 to NI do;

> x:=evalf(subs(z=x,T));

> end do;

> end do:

%% Values of the first 9 real zeros and zeros on the first quadrant

> for k from 1 to k do;xc[k];end do;

40.8614543431052914942278668204

37.6046889871138442191648203069

34.3245525472278464463325220636

31.0125895901705525894688274748

27.6553314757947377301083091987

24.2295152087835610891741598170

20.6897425044009133146054974078

16.9265377476005389175490477986

12.5006643034017892734448978362

0.751714164454579882038334168282 + 7.02610400031859555166912384150 I

2.52972140044497327028369512294 + 6.74083920492317316987229531276 I
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4.34222349512990658212287934610 + 6.11572064771947423804814026786 I

6.23553025542440261192777888137 + 5.06294427710806101928204374876 I

8.34414329510400851874707241949 + 3.33927403838163677352156909007 I

5 Published algorithms and related papers

In this section we give an overview of our published algorithms and we
mention the papers that explain in detail the methods of computation for
these codes.

A combination of numerical methods is needed for computing function
values. Apart from the use of convergent and asymptotic series, the most
frequent methods are those based on the use of linear recurrence relations
and of numerical quadrature.

The classical reference for the computation using three-term recurrence
relations is [13] and we also describe different computation methods in [33,
Chapter 4]. In the use of recurrences, it is crucial to study the conditioning of
the recursion (depending on the direction) and we have studied this problem
in a series of papers, both in the case of Gauss hypergeometric functions and
in the Kummer case. See [6, 7, 30, 34, 50].

Quadrature methods have been used for Airy and Scorer functions, cer-
tain Bessel and Legendre functions, and parabolic cylinder functions. The
trapezoidal rule is particularly efficient for computing numerically many spe-
cial function integral representations, particularly those arising from saddle
point methods. In §3.1 we have given an example for a finite interval, and we
have given more details in [25], [33, Chapter 5], and in earlier cited papers.

5.1 Airy and related functions

We started this topic with the related functions, also called inhomogeneous
Airy functions or Scorer functions, which are solutions of the differential
equations

d2

dz2
w(z) − z w(z) = ± 1

π
. (5.1)

With the + sign the standard solution is denoted by Gi(z), with − sign
by Hi(z). Standard solutions of the homogeneous equation are denoted by
Ai(z) and Bi(z). For details on these functions we refer to [45].

For the Scorer functions we have described a number of contour integrals
in the complex plane [20] and the corresponding algorithms can be found in
[22]. For the Airy functions we have also used quadrature methods, see for
the analysis [23] and for the algorithms [21]. We have also investigated the
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zeros of the Scorer functions [26] and we have derived asymptotic expansions
of these zeros.

In the same period other publications appeared on using asymptotic
expansions of the Airy functions and the differential equation [12] with al-
gorithms in [11].

5.2 Modified Bessel functions of imaginary order

The modified Bessel functions of the third kind of purely imaginary order
Kia(x) is used in a number of problems from physics, and it is also the kernel
of the Kantorovich-Lebedev transform. The function Iia(x) is not real, but
the function

Lia(x) =
1
2
[I−ia(x) + Iia(x)] , (5.2)

is a real valued numerically satisfactory companion to Kia(x) in the sense
considered in [44, pp. 154–155]. The Wronskian relation for these functions
is W [Kia(x), Lia(x)] = 1/x.

In [24, 28] we have described the analytical details of the algorithms, and
the codes are given in [27]. We have used power series representations for
small values of x, asymptotic expansions for large x, Airy-type asymptotic
expansions for large x near the turning point x = a, and numerical quadra-
ture. Several non-oscillating integral representations have been used that
can be obtained from contour integrals and by using saddle point methods.

5.3 Parabolic cylinder functions

These are solutions of the differential equations

d2

dx2
w(x) −

(
±1

4
x2 + a

)
w(x) = 0. (5.3)

The equation with the plus sign, with U(a, x), V (a, x) as two independent
solutions, has for a < 0 two turning points at z = ±

√
−2a; for large negative

values of a uniform asymptotic representations in terms of Airy functions
are available. Oscillations occur between the turning points. Compare this
with the Hermite polynomial case when a = −n− 1

2 with n = 0, 1, 2, . . .. We
have investigated many stable integral representations of these functions in
[29] for using numerical quadrature. For the corresponding algorithms for
U(a, x), V (a, x) and their derivatives for real parameters we refer to [31, 32].

In [37] we have considered the functions W (a, x) and W (a,−x), which
are two linearly independent real solutions of the differential equation (5.3)
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with the minus sign. In this case the oscillations occur outside the inter-
val [−

√
2a,

√
2a]. In [36] we have given the algorithms for computing the

W−functions and their derivatives.
In the algorithms for the parabolic cylinder functions we have used recur-

sion, quadrature, and series expansions, including Maclaurin, local Taylor,
Chebyshev and Airy-type asymptotic expansions. By factoring the domi-
nant exponential factor, scaled functions could be computed to avoid over-
flow/underflow limitations. In this way rather large parameter domains in
the (a, x) plane could be covered.

5.4 Legendre functions: toroidal and conical

The toroidal functions are Pm
n− 1

2

(x) and Qm
n− 1

2

(x) and appear in the solution

of Dirichlet problems with toroidal symmetry. For these functions we have
used recurrence relations. For the backward recursions we have used starting
values from uniform asymptotic expansions valid for fixed n and largem; the
expansion is uniformly valid for large positive x. For the codes and related
papers we refer to [16, 17, 18].

The conical function Pµ
−1/2+iτ (x) is also an element of the class of as-

sociated Legendre functions, and the combination of the parameters makes
it real for real values of x. This function is the kernel of the Mehler-Fock
transform, which has numerous applications, and this function is also used
in quantum physics, in particular describing the amplitude for Yukawa po-
tential scattering. We have used recurrence relations with respect to µ = m
(integer) and related continued fractions, and we have discussed the use of
forward and backward recursions. For x ∈ (−1, 1) we have used quadrature
methods and uniform expansions for large µ in terms of elementary func-
tions. For x ≥ 1 we have used uniform expansions in terms of modified
K−Bessel functions with purely imaginary order, in particular for describ-
ing the behavior of Pµ

−1/2+iτ (x) near the turning point x =
√
τ2 + µ2/τ .

The methods of computation and the algorithms can be found in [35, 39].
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