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Abstract. Using rational functions to generate pseudorandom number se-
quences is a popular research topic. In this paper, we study bounds on additive
character sums of a new explicit generator based on rational functions with
small p�weight degree. This extends the class of functions where a nontrivial
character sum bound is known.

1. Introduction

Let p be a prime, n an integer with n � 2, q = p

n and denote by F
q

the finite
field of q = p

n elements. Let {�1, . . . , �n} be an ordered basis of F
q

over F
p

. For
any 0  i  q � 1 we define the sequence (⇠

i

) by

(1) ⇠

i

= i1�1 + · · ·+ i

n

�

n

where
i = i1 + i2p+ · · ·+ i

n

p

n�1
, i1, . . . , in 2 {0, . . . , p� 1}.

This sequence is extended using the relation ⇠
i

= ⇠

i mod q

for any integer i, and it
is called the additive order. For any function A(X) from F

q

to F
q

, we define the p

-ary sequence (s
i

) by

(2) s

i

= TrFq/Fp
(A(⇠

i

)), i = 0, 1, 2 . . .

where TrFq/Fp
(A(⇠

i

)) is the trace of A(⇠
i

) 2 F
q

over F
p

. (s
i

) is called a sequence
generated by TrFq/Fp

(A(X)) via the additive order and the pseudorandom number
generator. (A(⇠

i

)).

The additive order is related with the Counter (CTR) mode encryption of block
ciphers, see [8]. The additive order is di↵erent from the conventional order in
sequence design, and the randomness properties of the sequences from this order
are hard to determine. On the other hand, not any A(X) generates a sequence (s

i

)
with good pseudorandom properties, see [5].

For A(X) defined for x 2 F
q

,

A(x) =

(
(↵x+ �)�1 if ↵x+ � 6= 0,

0 otherwise.

(A(⇠
i

)) is the digital explicit inversive pseudorandom number generator of period
q for some ↵, � 2 F

q

, and ↵ 6= 0. In [11], Niederreiter and Winterhof introduced
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this generator and studied exponential sums

(3)
q�1X

i=0

 

� s�1X

j=0

µ

j

A(⇠
i

+ ⇠

j

)
�
,

where s is a positive integer, (µ0, . . . , µs�1) 2 Fs

q

� (0, . . . , 0) and  is a non trivial
additive character of F

q

. Chen in [1] provided a bound on character sums with two
arbitrary lags 0  d0 < d1 < q, i. e.

q�1X

i=0

 

�
µ0A(⇠

i+d0) + µ1A(⇠
i+d1)

�
, where µ0, µ1 2 F

q

, and not both zero

and later this result was generalized in [2] for any number of lags. In the same arti-
cle, the authors proved bounds on linear complexity profile and correlation measure
of order k of binary sequences derived from this generator. For more results about
this class of generators see [12, 13, 14].
In this paper, we obtain a bound on some additive character sums of sequences
generated by a class of functions A(X), which will be introduced in Section 2.

The layout of the paper is the following. The first section is devoted to the pre-
liminaries needed. The main theorem is presented in Section 3 where we prove a
bound for the discrepancy and the last part is left for conclusions.

2. Preliminaries

It is clear that the properties of (s
i

) are the translation of the properties of
(A(⇠

i

)). One example is the Erdös-Turan-Koksma inequality, which relates the
discrepancy of a pseudorandom number sequence with character sums defined by
the pseudorandom number generator, see [4].

For a non-negative integer m, we define its p -weight as the sum of the coe�cients
in its p-adic expansion:

�

p

(m) = m1 + . . .+m

l

,where m = m1 +m2p+ . . .+m

l

p

l�1
,

and 0  m1, . . . ,ml

 p� 1.
Now, given a univariate polynomial f(X) 2 F

q

[X], the p -weight degree of the
polynomial f(X), !

p

(f(X)), is equal to

!

p

(f(X)) = max{�
p

(e1), . . . ,�p(er)},

where f(X) = �1X
e1 + . . .+ �

r

X

er and all the coe�cients are non-zero.

Through the rest of the paper, the trace function TrFq/Fp
will be of maximum

importance. The trace is defined by the following polynomial,

TrFq/Fp
(X) = X +X

p + . . .+X

p

n�1

.

Additive characters of F
q

are defined through TrFq/Fp
and the additive characters

of F
p

are described in the following way,

 

↵

(x) = e

2⇡iTrFq/Fp (↵x)/p
,

for many applications and properties of additive characters and the trace function,
we recommend the reader to consult [7].

For ↵ = 0, this character is called the trivial one and for ↵ = 1 the canonical
character. For simplicity, we will denote this character by  1 =  .
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In [6], the authors studied the nonlinear recursive pseudorandom number gener-
ators and proved a bound on character sums of the following form:

X

⇠2Fq

 

↵

(f(⇠)), ↵ 6= 0

where f(X) is a polynomial with low p -weight degree and satisfies

(4) f(X) = �X

d + f(X), with � 6= 0, !
p

(f(X)) < �

p

(d).

We start generalizing this result for rational functions, for which a similar condition
as (4) is required for the numerator. We follow the strategy in [3, 6] and define the

traced and the normalized polynomial.

Definition 1. Let f(X) 2 F
q

[X], {�1, . . . , �n} be an ordered basis of F
q

over F
p

and let F (X1, . . . , Xn

) be the multivariate polynomial

F (X1, . . . , Xn

) = f(X1�1 + . . .+X

n

�

n

) mod (Xp

1 �X1, . . . , X
p

n

�X

n

).

We define the traced polynomial F

R

(X1, . . . , Xn

) as the only polynomial such that:

F

R

(X1, . . . , Xn

) = TrFq/Fp
(F (X1, . . . , Xn

)) mod (Xp

1 �X1, . . . , X
p

n

�X

n

).

And, we define the normalized polynomial of f(X),

F

N

(X1, . . . , Xn

) =
n�1Y

i=0

(F (X1, . . . , Xn

))p
i

mod (Xp

1 �X1, . . . , X
p

n

�X

n

).

Notice that the degree on each variable is less than p in both multivariate
polynomials F

R

(X1, . . . , Xn

) and F

N

(X1, . . . , Xn

). Also, it is easy to prove that
F

N

(X1, . . . , Xn

) has coe�cients over the prime field F
p

. The following result shows
that its degree is n times the p -weight degree of f(X) if this number is strictly
less than p.

Lemma 1. Let f(X) 2 F
q

[X], then the following holds,

• F

R

(X1, . . . , Xn

) 2 F
p

[X1, . . . , Xn

] and the degree of the transformed poly-

nomial is at most !

p

(f(X)),
• F

N

(X1, . . . , Xn

) 2 F
p

[X1, . . . , Xn

] and if n!

p

(f(X)) < p then the degree of

is n!

p

(f(X)).

Proof. The first bullet of this lemma was proved in [6]. For the second part, we
start noticing that

n�1Y

i=0

(F (X1, . . . , Xn

))p
i

=
nY

i=1

(F (X1, . . . , Xn

))p
i

mod (Xp

1 �X1, . . . , X
p

n

�X

n

) =

F

N

(X1, . . . , Xn

)p mod (Xp

1 �X1, . . . , X
p

n

�X

n

),

which clearly implies that F
N

(X1, . . . , Xn

) 2 F
p

[X1, . . . , Xn

]. The only thing that
remains is to calculate the degree of F

N

(X1, . . . , Xn

). Clearly, if p > n!

p

(f(X)),
then the degree of

f(X1�
p

i

1 + · · ·+X

n

�

p

i

n

) = F (X1, . . . , Xn

)p
i

mod (Xp

1 �X1, . . . , X
p

n

�X

n

)

is !
p

(f(X)) and the degree of F
N

(X1, . . . , Xn

) is n!
p

(f(X)). ⇤
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The interest of the traced polynomial relies on the fact that, under certain as-
sumptions, the total degree of the traced polynomial of a given one coincides with
the p -weight degree of the original polynomial f(X).

We consider the following property of a positive integer D < q:

(5) For all t | n with t < n, =) q � 1

p

t � 1
6 | D.

This is equivalent to F
q

= F
p

(⇠D) for some ⇠ 2 F
q

.
We have introduced the necessary tools to prove bounds on the following char-

acter sum,
X

⇠2Fq

 

↵

✓
f(⇠)

g(⇠)

◆
, ↵ 6= 0

with some restrictions on f(X), g(X) and for that we cite [6, Lemma 3], which
appeared in [3] and an additive character sum bound from [9].

Lemma 2. Let f(X) 2 F
q

[X] be of the form (4) with D = d < q satisfying (5).
Then, the degree of the transformed polynomial F

R

(X1, . . . , Xn

) is �
p

(d).

Theorem 1. Let  
p

be a nontrivial additive character of F
p

, and let f(X)/g(X)
be a rational function over F

p

that is not constant. Let v be the number of distinct

roots of the polynomial g(X) in the algebraic closure of F
p

, then

������

X

⇠2Fp, g(⇠) 6=0

 
p

✓
f(⇠)

g(⇠)

◆������
 (max(deg(f), deg(g)) + v

⇤ � 2) p1/2 + �,

where v

⇤ = v and � = 1 if deg(f)  deg(g), otherwise v

⇤ = v + 1 and � = 0.

The following lemma is a technical result about the existence of a special trans-
formation.

Lemma 3. Let F (X1, . . . , Xn

), G(X1, . . . , Xn

) 2 F
p

[X1, . . . , Xn

] with
deg(F (X1, . . . , Xn

)) = d < p/2 and deg(G(X1, . . . , Xn

)) = d

0
< p/2, there exist

a1, . . . , an�1 2 F
p

such that

F (X1, X2 + a1X1, . . . , Xn

+ a

n�1X1) = ⇠X

d

1 + F (X1, . . . , Xn

),

G(X1, X2 + a1X1, . . . , Xn

+ a

n�1X1) = ⇠

0
X

d

0

1 +G(X1, . . . , Xn

)

where ⇠, ⇠

0 6= 0 and the degree of F (X1, . . . , Xn

) and G(X1, . . . , Xn

) in X1 are

strictly smaller than d, d

0
respectively.

Proof. We introduce the new variables Z1, . . . , Zn�1 and consider the following
polynomials,

F (X1, Z1X1 +X2, . . . , Zn�1X1 +X

n

), G(X1, Z1X1 +X2, . . . , Zn�1X1 +X

n

).

Represented as a polynomial in the variable X1,

F (X1, Z1X1 +X2, . . . , Zn�1X1 +X

n

) =

F1(Z1, . . . , Zn�1)X
d

1 + F2(Z1, . . . , Zn�1, X1, . . . , Xn

)
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where the degree of F1(Z1, . . . , Zn�1) is at most d and the degree in the variable
X1 of F2 is strictly less than d. The same applies for

G(X1, Z1X1 +X2, . . . , Zn�1X1 +X

n

) =

G1(Z1, . . . , Zn�1)X
d

0

1 +G2(Z1, . . . , Zn�1, X1, . . . , Xn

).

Notice that the degree of the product G1(Z1, . . . , Zn�1)F1(Z1, . . . , Zn�1) is at most
d+ d

0, strictly less than p. Therefore, there exists a1, . . . , an�1 2 F
p

such that,

G1(a1, . . . , an�1)F1(a1, . . . , an�1) 6= 0.

In other words, F (X1, X2 + a1X1, . . . , Xn

+ a

n�1X1) has degree d in the variable
X1. Notice also that the polynomial has total degree d, it means that

F (X1, X2 + a1X1, . . . , Xn

+ a

n�1X1) = ⇠X

d

1 + F (X1, . . . , Xn

),

where the degree on X1 of F (X1, . . . , Xn

) is strictly less than d. A similar argument
applies to G(X1, X2 + a1X1, . . . , Xn

+ a

n�1X1) and this finishes the proof. ⇤
We are ready to prove the following result.

Lemma 4. Let  
↵

be a nontrivial additive character of F
q

, and f(X), g(X) 2 F
q

[X]
gcd(f(X), g(X)) = 1 with deg(f(X)), deg(g(X)) < q/2 and satisfying

(6) f(X) = g(X)Xd + f(X), with !

p

(f(X)) < �

p

(d) + !

p

(g(X)),

and d = D satisfying (5). Then,

������

X

⇠2Fq

 

↵

✓
f(⇠)

g(⇠)

◆������
 (max(�

p

(d),!
p

(g(X))) + n !

p

(g(X))� 1) pn�1/2 + 1.

Proof. Without loss of generality, we can suppose that

(7) max(�
p

(d),!
p

(g(X))) + n !

p

(g(X))� 1  p

1/2
.

The strategy to follow is to transform our initial sum in order to apply the result
in Theorem 1.

We start from the definition of our sum and transform it to a sum in several
variables,
������

X

⇠2Fq

 

↵

✓
f(⇠)

g(⇠)

◆������
=

������

X

x1,...,xn2Fp

 
p

✓
TrFq/Fp

✓
↵

F (x1, . . . , xn

)

G(x1, . . . , xn

)

◆◆������
=

������

X

x1,...,xn2Fp

 
p

 
TrFq/Fp

(↵F (x1, . . . , xn

)G(x1, . . . , xn

)p+p

2+...+p

n�1

)

G

N

(x1, . . . , xn

)

!������
,

where  
p

is the canonical additive character of F
p

.
We transform this sum to the same type as the one that appears in Theorem 1

for variable x1. Now, f(X) = g(X)Xd + f(X), so

TrFq/Fp
(↵F (X1, . . . , Xn

)G(X1, . . . , Xn

)p+p

2+...+p

n�1

)

G

N

(X1, . . . , Xn

)
=

E

R

(X1, . . . , Xn

) +
TrFq/Fp

(↵F (X1, . . . , Xn

)G(X1, . . . , Xn

)p+p

2+...+p

n�1

)

G

N

(X1, . . . , Xn

)
,
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where E

R

(X1, . . . , Xn

) is the traced polynomial of ↵Xd. The traced polynomial is
not the zero polynomial, otherwise

E

R

(X1, . . . , Xn

)G
N

(X1, . . . , Xn

) =

� TrFq/Fp
(↵F (X1, . . . , Xn

)G(X1, . . . , Xn

)p+p

2+...+p

n�1

).

By Lemma 2, the degree of E
R

(X1, . . . , Xn

) is �
p

(d) and by Lemma 1 and Equa-
tion (7), n!

p

(g(X)) + �

p

(d) is is strictly greater than the degree of the traced

polynomial of ↵F (X1, . . . , Xn

)G(X1, . . . , Xn

)p+p

2+...+p

n�1

. Let’s call

F

R

(X1, . . . , Xn

) = TrFq/Fp
(↵F (X1, . . . , Xn

)G(X1, . . . , Xn

)p+p

2+...+p

n�1

).

Selecting a1, . . . , an�1 as in Lemma 3 and for x1, . . . , xn

2 F
p

we have that

F

R

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1) =

⇠

00
x

�p(d)+n!p(g(X))
1 + F

R

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1),

where ⇠00 6= 0, F
R

has degree in variable X1 strictly less than �

p

(d) + n!

p

(g(X))
and

G

N

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1) =

⇠

000
x

n !p(g(X))
1 +G

N

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1),

where ⇠00 6= 0, G
N

has degree in variable X1 strictly less than n !

p

(g(X)). Now,

������

X

x1,...,xn2Fp

 
p

 
TrFq/Fp

(↵F (x1, . . . , xn

)G(x1, . . . , xn

)p+p

2+...+p

n�1

)

G

N

(x1, . . . , xn

)

!������
=

������

X

x1,...,xn2Fp

 
p

✓
F

R

(x1, . . . , xn

)

G

N

(x1, . . . , xn

)

◆������
=

������

X

x1,...,xn2Fp

 
p

✓
F

R

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1)

G

N

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1)

◆������


X

x2,...,xn2Fp

������

X

x12Fp

 
p

✓
F

R

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1)

G

N

(x1, x2 + a1x1 . . . , xn

+ a

n�1x1)

◆������

Applying Theorem 1 for all fixed selections of x2, . . . , xn

, we have finished. ⇤

3. Main Result

In this Section, we give a bound on the following additive character sum,

NX

i=0

 

↵

(A(⇠
i

))

where A(X) = f(X)/g(X), satisfying the conditions in Equation (6). Before prov-
ing the main result, we recall the following result.
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Lemma 5. Suppose {�1, . . . , �n} is a fixed basis of F
q

over F
p

and (⇠
i

) is the

sequence defined in Equation (1), then

X

�2Fq

�����

NX

i=0

 

↵

(��⇠
i

)

�����  n

2
q log p.

The proof of this Lemma can be found in [1].

Theorem 2. Suppose that A(X) = f(X)/g(X), satisfies the conditions in Equa-

tion (6) with d satisfying (5) and �
p

(d) � 2. The following bound

�����

NX

i=0

 

↵

(A(⇠
i

))

�����  (n2 log p)(max(�
p

(d),!
p

(g(X))) + n !

p

(g(X))� 1)pn�1/2
,

holds for any 1  N  q.

Proof. We start with the definition of the sum,

�����

NX

i=0

 

↵

(A(⇠
i

))

����� =

������

X

x2Fq

 

↵

(A(x))

0

@1

q

NX

i=0

X

�2Fq

 

↵

(�(x� ⇠

i

))

1

A

������

=
1

q

������

NX

i=0

X

�2Fq

 

↵

(��⇠
i

)
X

x2Fq

 

↵

(A(x) + �x)

������

 1

q

X

�2Fq

�����

NX

i=0

 

↵

(��⇠
i

)

�����⇥max
�2Fq

������

X

x2Fq

 

↵

(A(x) + �x)

������
.

Notice that A(X) + �X = f(X)0/g(X), where

f(X)0 = f(X) + �Xg(X) = g(X)Xd + f(X) + �Xg(X).

still satisfies Equation (6). This is because

max{!
p

(f(X)),!
p

(�Xg(X))} < max{�
p

(d) + !

p

(g(X)), 2 + !

p

(g(X))}
So, for the right term of the product, we can apply Lemma 4 and for the left term
of the product, we can apply Lemma 5.

Writing everything together, we have

1

q

X

�2Fq

�����

NX

i=0

 

↵

(��⇠
i

)

�����⇥max
�2Fq

������

X

x2Fq

 

↵

(A(x) + �x)

������


(n2 log p)(max(�
p

(d),!
p

(g(X))) + n !

p

(g(X))� 1)pn�1/2
.

This finishes the proof. ⇤
Now, we estimate the discrepancy of the elements of the sequence

S

i

=
s

i

p

2 [0, 1), i = 0, . . . , N.

We recall that the discrepancy of the points S0, . . . , SN

denoted by D

N

is defined
by

D

N

= sup
[↵,�)⇢[0,1)

����
A([↵,�), N)

N

� � + ↵

����
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where A([↵,�), N) is the number of points S0, . . . , SN

which are contained in the
interval [↵,�) and the supremum is taken over all such intervals, see [10].

Doing straightforward calculations (see the proof of Theorem 1 of [2]) and using
Theorem2, it is easy to prove the following theorem.

Theorem 3. Let s0, . . . , sN the sequence defined by (2). The discrepancy D

N

can

is of order

n

4(log p)2(max(�
p

(d),!
p

(g(X))))pn�1/2

N

where the implied constant is absolute.

4. Conclusions

In this paper we have started the study of a new pseudorandom generator via
additive order. We have given a non trivial bound on sequences of the type (2).
Apart from that, Lemma 4 generalizes [6, Lemma 4], when g(X) = 1.

It would be certainly interesting to study the following more general character
sum

NX

i=0

 

↵

(↵1A(⇠
i+1) + . . .+ ↵

⌧

A(⇠
i+⌧

)),

where ↵1, . . . ,↵⌧

2 F
q

, not all equal to zero. However, in this case, it is necessary to
show that the transformed polynomial is not constant so one can apply Lemma 4.
Also, the necessity of (5) for polynomials of the form (4) has been shown in [6].
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