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Abstract. D. Gomez, A. Ostafe, A. P. Nicolás and D. Sadornil
have recently shown that for almost all polynomials f ∈ Fq[X] over
the finite field of q elements, their iterations eventually become
reducible polynomials over Fq. Here we combine their method
together with some new ideas to derive series of finer results about
the arithmetic structure of iterations of f . In particular, we prove
that the nth iteration of f has a square-free divisor of degree of
order at least n1+o(1) as n→∞ (uniformly over q).

1. Introduction

For a field K and a polynomial f ∈ K[X] we define the sequence:

f (0)(X) = X, f (n)(X) = f
(
f (n−1)(X)

)
, n = 1, 2, . . . .

The polynomial f (n) is called the nth iterate of the polynomial f .
Following [1, 2, 10, 11, 14], we say that a polynomial f ∈ K[X] is

stable if all iterates are irreducible over K.
Gomez and Nicolás [7], developing some ideas from [15], have proved

that there are O(q5/2(log q)1/2) stable quadratic polynomials over a
finite field of q elements Fq for an odd prime power q, where the implied
constant is absolute. We also note that in [8] an upper bound is given
on the number of stable polynomials of degree d > 2 over Fq.

Here, we continue to study the arithmetic properties of iterated poly-
nomials and obtain several new results about their multiplicative struc-
ture.

First, we combine the method of Gomez and Nicolás [7] with some
new ideas to show that for almost all quadratic polynomials f ∈ Fq[X]
the number rn(f) of irreducible divisors of the nth iterate f (n) grows
at least linearly with n if n is of order up to log q. Using this re-
sult, we prove that the largest degree of the irreducible divisors of f (n)

grows with n as well. Our tools to prove this are resultants of iterated
polynomials, the Stickelberger’s Theorem [18] and estimates of certain
character sums.
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Beyond this threshold, we use a different technique, related to Ma-
son’s proof of the ABC-conjecture in its polynomial version, see [12, 17]
and also a lower bound on the largest degree Dn(f) of the irreducible
divisors of f (n).

Note that our lower bounds onDn(f) are reminiscent of lower bounds
on the largest prime divisor of nonlinear recursive sequences over the
integers, see [4, 10, 16].

The approaches and some results used to derive lower bounds on
rn(f) and Dn(f) are readily combined to obtain the lower bound n1+o(1)

as n→∞ (uniformly over q) on the largest degree of square-free divi-
sors of f (n).

The outline of the paper is the following. In Section 2 we give the
notation used throughout the paper as well as collecting some basic
properties needed in the proofs of the main results. In Section 3, we
collect all results about discriminants and then, in Section 4, we pro-
vide bounds on character sums related with discriminants of iterated
polynomials. In Section 5 we recall the result of Mason [12]. These
preliminary results are used in the follow-up sections. More precisely,
Section 6 contains an estimate of the number of irreducible factors in
the iterations of polynomials. In Section 7 we show that, if f 6= fdX

d,
then there is always an irreducible factor of large degree for high or-
der iterates of the polynomial f . Finally, in Section 8 we combine
both approaches and also use some of the previous results to derive
some nontrivial information about the arithmetic structure of f (n) that
applies to any n.

2. Notation

Let p be an odd prime number and q = ps for some positive integer
s. We denote by Fq the finite field of q elements and χ denotes the
quadratic character of Fq.

We use Fq[X] to denote the ring of polynomials with coefficients in
Fq. Polynomials in this ring are denoted by the letters f , g and h.
We usually use f0, . . . , fd to represent the coefficients of a polynomial
f ∈ Fq[X], that is,

f = fdX
d + . . .+ f1X + f0,

where fd 6= 0 is the leading coefficient of f . As usual, f ′ denotes the
formal derivative of f ∈ Fq[X].

Throughout the paper the implied constants in symbols ‘O’ and
‘ �’ may occasionally, where obvious, depend on the small positive
parameter ε and are absolute otherwise (we recall that A = O(B) and
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B � A is equivalent to |A| 6 cB for some constant c). Also, we write
F (n) = o(G(n)) as n→∞, which means that

lim
n→∞

F (n)

G(n)
→ 0.

3. Discriminants and Iterations of Polynomials

We use the following well known properties of discriminants Disc (f)
and resultants Res (f, g) of polynomials f, g ∈ K[X], see [6, 19], that
hold over any field K.

Lemma 1. Let f, g ∈ K[X] be polynomials of degrees d > 1 and e > 1,
respectively, with leading coefficients fd and ge, and let h ∈ K[X].
Suppose that the derivative f ′ is a polynomial of degree k 6 d− 1 and
denote by β1, . . . , βe the roots of g in an extension field. Then we have:

(i) Disc (f) = (−1)
d(d−1)

2 fd−k−2d Res(f, f ′);
(ii) Res (f, g) = (−1)degde

∏e
i=1 f(βi);

(iii) Res (fg, h) = Res (f, h) Res (g, h).

From the definition of the resultant, it is clear that two polynomials
f and g are co-prime if and only if Res (f, g) 6= 0.

To study the discriminant of iterations of polynomials, it is neces-
sary to have a close formula for the resultant of polynomials under
compositions. In [13], the following chain rule for resultants is proved:

Lemma 2. Let f, g be as in Lemma 1 and let h ∈ K[X] with deg h = `
and leading coefficient h`. Then

Res (f(h), g(h)) = (hde` Res (f, g))`.

It is clear from Lemma 2 that f and g are co-prime if and only if for
any nonconstant polynomial h we have Res (f(h), g(h)) 6= 0 (note that
this is also a consequence of the Euclidean algorithm).

Also, Lemma 2 implies the following formula for the discriminant of
polynomial iterates:

Lemma 3. Let f ∈ Fq[X] be a polynomial of degree d > 2 with leading
coefficient fd and non-constant derivative f ′ of degree k 6 d− 1. Sup-
pose that γi, i = 1, . . . , k, are the roots of the derivative f ′. Then, for
n > 1, we have

Disc
(
f (n)

)
= (−1)d(

d(d−1)
2

+k)f
dn−1
d−1 ((k−1)dn+k dn−d

d−1
+2d)

d ((k + 1)fk+1)
dn

Disc
(
f (n−1))d k∏

i=1

f (n)(γi).
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Proof. Simple calculations show that the leading coefficient of f (n) is

f
dn−1
d−1

d and deg
(
f (n)

)′
= k

dn − 1

d− 1
for n > 2.

Thus, applying Lemma 1(i) we derive

Disc
(
f (n)

)
= (−1)

dn(dn−1)
2 f

dn−1
d−1 (dn−k dn−1

d−1
−2)

d Res
(
f (n),

(
f (n)

) ′)
= (−1)

d2(d−1)
2 f

dn−1
d−1 (dn−k dn−1

d−1
−2)

d Res
(
f (n),

(
f (n)

)′)
.

(1)

Taking into account that
(
f (n)

)′
= f ′ ·

(
f (n−1))′ (f) and applying Lem-

mas 1(iii) and 2, we derive

Res
(
f (n), f (n)′) = Res

(
f (n), f ′ ·

(
f (n−1))′ (f)

)
= Res

(
f (n),

(
f (n−1)) ′(f)

)
Res

(
f (n), f ′

)
=

(
f
kdn−1 dn−1−1

d−1

d Res
(
f (n−1),

(
f (n−1)) ′))d Res

(
f (n), f ′

)
.

(2)

Using Lemma 1(i), we derive

Res
(
f (n−1),

(
f (n−1)) ′)

= (−1)
d2(d−1)

2 f
dn−1−1

d−1

(
−dn−1+k dn−1−1

d−1
+2

)
d Disc

(
f (n−1)) ,(3)

while by Lemma 1(ii) we obtain

(4) Res
(
f (n), f ′

)
= (−1)kd((k + 1)fk+1)

dn
k∏
i=1

f (n)(γi).

Plugging (3) and (4) in (2) and using (1), we finish the proof. �

For a polynomial f = fdX
d + . . . + f1X + f0 ∈ Fq[X] defined as in

Lemma 3, it is convenient to introduce the following notation

Gn(fd, . . . , f0) =
k∏
i=1

f (n)(γi), n > 1,

where γi, i = 1, . . . , k, are the roots of f ′, which is clearly a polynomial
in fd, . . . , f0. We need the following result, which has been proved in [8,
Lemma 5.2]:

Lemma 4. For fixed integers K > 1 and k1, . . . , kµ such that 1 6 k1 <
· · · < kµ 6 K, the polynomial

µ∏
j=1

Gkj(fd, . . . , f0)
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is a square polynomial in the variable f0 up to a multiplicative constant
only for O(d2Kqd−1) choices of f1, . . . , fd.

4. Bounds of Some Character Sums

We assume first that d is even. In this situation, for an integer n, we
consider the following character sum

T1(n) =
∑
f0∈Fq

. . .
∑
fd∈Fq

∣∣∣∣∣
n∑
`=1

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0))

∣∣∣∣∣
2

,

T2(n) =
∑
f0∈Fq

. . .
∑
fd∈Fq

∣∣∣∣∣
n∑
`=1

χ
(
fk`d G`(fd, . . . , f0)

)∣∣∣∣∣
2

,

where χ is a quadratic character and k is as in Lemma 3.

Lemma 5. Let f = fdX
d + . . . + f1X + f0 ∈ Fq[X] be defined as in

Lemma 3. For any integer n > 1, we have the following bound:

T1(n) = O
(
n2dnqd+1/2 + n2d2nqd + nqd+1

)
,

and the same estimate holds for T2(n).

Proof. Squaring and changing the order of summation, we obtain

T1(n) =
n∑

`,m=1

∑
fd∈Fq

. . .
∑
f0∈Fq

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0)

· Gm(fd, . . . , f0)Gm+1(fd, . . . , f0)) .

Fix l,m, f1, . . . , fd and define the following polynomial in d0,

G`,m = G`(fd, . . . , f0)G`+1(fd, . . . , f0)Gm(fd, . . . , f0)Gm+1(fd, . . . , f0).

If G`,m is not a square polynomial in f0 we use the Weil bound (see [9,
Theorem 11.23]) and estimate the sum over f0 as O(dnq1/2). Otherwise,
we use the trivial estimate and that gives q for the sum over f0. For
O(n2) values of ` 6= m and O(qd) choices of f1, . . . , fd, we apply the Weil
bound, so the total contribution from all such terms is O

(
n2dnqd+1/2

)
.

We know that Gm,l is an square polynomial for O(n2d2nqd−1) values
of the fixed parameters f1, . . . , fd by Lemma 4 when m 6= l. Trivially,
there are nqd possible choices for f1, . . . , fd with l = m. Then,

T1(n) = O(qṅ2d2nqd−1 + qṅqd + dnq1/2ṅ2qd),

and first part of the result now follows.
Following the same argument (with some natural simplifications due

to a similar shape of the sum T2(n)), we obtain the same estimate for
T2(n). �
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5. Polynomial ABC-Theorem and Divisors of Iterated
Polynomials

Some of our results are also based on the Mason theorem [12] that
gives a polynomial version of the ABC-conjecture, see also [17].

For a polynomial f ∈ Fq[X] we use rad(f) to denote the product of
all monic irreducible divisors of f .

Lemma 6. Let A, B, C be nonzero polynomials over Fq with A+B+
C = 0 and gcd (A,B,C) = 1. If degA > deg rad(ABC), then A′ = 0.

Recall that we use Dn(f) to denote the largest degree of irreducible
factors of f (n). In order to apply Lemma 6 we need the following simple
statement.

Lemma 7. Let f ∈ Fq[X] be a nonconstant polynomial, then

Dn(f) > Dn−1(f)

for n > 2.

Proof. Now assume that Dn−1(f) = D for some positive integer D. Let
g ∈ Fq[X] be an irreducible divisor of f (n−1) with deg g = D. Then we
obviously have g(f) | f (n). Now, if g(f) has a root α ∈ Fqm then g has
a root f(α) in Fqm too. Because g is irreducible, we have m > deg g.
Thus g(f) has an irreducible factor of degree at least D. �

We denote by ∆n(f) denote the largest degree of square-free divisors
of f (n), that is, ∆n(f) = deg rad(f (n)).

Lemma 8. Let f ∈ Fq[X] be a nonconstant polynomial, then

∆n(f) > ∆n−1(f)

for n > 2.

Proof. Assume that

f (n−1) =
s∏
i=1

gαi
i

where g1, . . . , gs are distinct irreducible divisors of f (n−1) of multiplici-
ties α1, . . . , αs, respectively,

∆n−1(f) =
s∑
i=1

deg gi.

Then

f (n) =
s∏
i=1

gi(f)αi .



ON IRREDUCIBLE DIVISORS OF ITERATED POLYNOMIALS 7

As g1, . . . , gs are relatively prime, we see from Lemma 2 that the poly-
nomials g1(f), . . . , gs(f) are relatively prime. Thus

∆n(f) =
s∑
i=1

deg rad(gi(f)).

As in the proof of Lemma 7 we see that deg rad(gi(f)) > deg gi, i =
1, . . . , s, which concludes the proof. �

6. Growth of the Number of Irreducible Factors under
Iterations for Small n

Let f ∈ Fq[X]. We recall that rn(f) denotes the number of monic
irreducible divisors of f (n). Using the remark after Lemma 2, we have
that if g1, g2 are two different irreducible prime factors of f (n), then
g1(f) and g2(f) are co-prime.

Clearly, this means that rn(f) is a non decreasing function and now,
we show that rn(f) grows at least linearly for n of order up to log q.

Theorem 9. If q is odd then for any fixed ε > 0 for all but o(qd+1)
polynomials f ∈ Fq[X] of degree d, we have

rn(f) > (0.5 + o(1))n,

when n→∞ and L > n, where

L =

⌈(
1

2 log d
− ε
)

log q

⌉
.

Proof. Clearly we can discard qd polynomials f with f(0) = 0.
We consider first the case when d is even. In this case,

χ (G`(fd, . . . , f0)) = χ(Disc
(
f (`)
)
)

Let us apply Lemma 5 with n 6 L. Note that d2n = O(q1−2ε log d) and
thus T1(n) = O

(
nqd+1

)
. Therefore the number of tuples (fd, . . . , f0) ∈

Fd+1
q with ∣∣∣∣∣

n∑
`=1

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0))

∣∣∣∣∣ > n2/3

does not exceed T1(n)n−4/3 = O(qd+1n−1/3) = o(qd+1) when n→∞.
So we discard o(qd+1) polynomials f = fdX

d+. . .+f1X+f0 ∈ Fq[X],
which correspond to such tuples (fd, . . . , f0).

We also discard the polynomials f = fdX
d + . . .+ f1X + f0 ∈ Fq[X]

corresponding to tuples (fd, . . . , f0) for which

(5) G`(fd, . . . , f0) ·G`+1(fd, . . . , f0) = 0
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for some ` = 1, . . . , n. The 0 polynomial is an square polynomial, so
using Lemma 4, we derive that there are O(nd2nqd) = o(qd+1) such
polynomials.

For the remaining polynomials, we have

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0)) 6= 0,

and also ∣∣∣∣∣
n∑
`=1

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0))

∣∣∣∣∣ < n2/3.

Thus, for these polynomials we have

χ (G`(fd, . . . , f0)G`+1(fd, . . . , f0)) = −1

for n/2 + O(n2/3) values of ` = 1, . . . , n. We now see from Lemma 3
that

(6) χ
(
Disc

(
f (`)
))
6= χ

(
Disc

(
f (`+1)

))
for n/2 +O(n2/3) values of ` = 1, . . . , n.

We use now the Stickelberger’s theorem (see [18] or a recent refer-
ence [3]) which says that the number r` of distinct irreducible factors
of f (`) satisfies r`(f) ≡ d` (mod 2) if and only if Disc

(
f (`)
)

is a square
in Fq.

By (6), the fact that the degree is even and using the Stickelberger’s
theorem [18], r`(f) and r`+1(f) are of different parity for n/2+O(n2/3)
values of ` = 1, . . . , n. Since clearly r`(f) is non decreasing, we have
r`+1(f) > r`(f) for such values of `. Thus

rn(f) > n/2 +O(n2/3).

For odd d we note that r`(f) and r`+1(f) are of different parity when
χ
(
fk`d G`(fd, . . . , f0)

)
= −1 and proceed exactly the same way using

Lemma 5. �

7. Lower Bound on the Degree of Irreducible Factors of
Iterates for Large n

Recall that for a polynomial f ∈ Fq[X] we use Dn(f) to denote the
largest degree of irreducible factors of f (n).

We our now ready to prove our main result of this section.

Theorem 10. Let f ∈ Fq[X] be of degree d with gcd(d, q) = 1 and
such that f 6= fdX

d. Then

Dn(f) >
log(dn−1/2)

log q
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Proof. We fix some integer n and define D as the largest integer satis-
fying

(7) 2qD 6 dn−1.

We prove the statement by contradiction, so we suppose that Dn(f) 6
D. By Lemma 7 we have

Dn−1(f) 6 Dn(f).

This means that the polynomial f (n)f (n−1) can be factorized by irre-
ducible polynomials of degree at most D.

Any root of f (n) or f (n−1) belongs to Fqj with j 6 D. Then, the

product f (n)f (n−1) has at most

D∑
j=1

qj 6 2qD

distinct roots.
Clearly, f has a root α 6= 0 in some extension field of Fq, so G|f ,

where G = X − α.
Furthermore, we can write

f (n−1) −G(f (n−1))− α = 0

and apply Lemma 6 with A = f (n−1), B = −G(f (n−1)) and C = −α.
Using that G(f (n−1)) | f(f (n−1)) = f (n) we derive

dn−1 < deg rad(G(f (n−1))f (n−1)) 6 deg rad(f (n)f (n−1)) 6 2qD.

Hence we obtain dn−1 < 2qD, which contradicts the choice of D. �

8. Uniform Bound

Note that Theorem 10 becomes nontrivial for n of about the same
level when Theorem 9 stops working. So they can be combined in the
following result that provides some nontrivial information about the
arithmetic structure of iterations that applies to all n and q. Let, as
before, ∆n(f) denote the largest degree of square-free divisors of f (n).

Theorem 11. If q is odd and gcd(d, q) = 1 then, for any fixed ε > 0,
for all but o(qd+1) polynomials f ∈ Fq[X] of degree d, for n > 1, we
have

∆n(f)� n1−ε.
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Proof. First of all, we note that the proof of Theorem 9 and equation (5)
show that for any fixed ε > 0, for all but o(qd+1) polynomials f ∈ Fq[X]
of degree d, n 6 L with

L =

⌈(
1

2 log d
− ε
)

log q

⌉
,

we have Disc
(
f (n)

)
6= 0 and thus ∆n(f) = dn.

Therefore for every n 6 q1/2, since by Lemma 8, we know that ∆n(f)
is monotonic, by Theorem 9 for all but o(qd+1) polynomials f ∈ Fq[X]
of degree d we have

(8) ∆n(f) > min{dn, dL} � n1−ε.

For n > q1/2, by Theorem 10, for all but O(q) = o(qd+1) polynomials
f ∈ Fq[X] of degree d we have

(9) ∆n(f) > Dn(f)� 1

log q
n� n

log n
� n1−ε.

Combining (8) and (9), we conclude the proof. �

9. Comments and Open Questions

We note that an analogue of Theorems 9 and 11 can be obtained for
almost all monic polynomials as well. Probably the most interesting
question is to extend the bound of Theorem 9 to any n (beyond of the
current threshold n = O(log q)).

In [11] the critical orbit of quadratic polynomials f is defined as the
set {f (n)(γ) | n > 2}∪{−f(γ)}, where γ is the root of the derivative.
This coincides with the following set

{Gn(f0, f1, f2) | n > 2} ∪
{
f 2
1

2f0
− f2

}
.

It is certainly interesting to investigate various properties of the se-
quence un = Gn(f0, . . . , fd) for f0, . . . , fd ∈ Fq fixed.

At this moment, most of the known results concern only quadratic
polynomials are known. For example, the sequence un becomes even-
tually periodic when d = 2. If f ′ is a irreducible polynomial of degree
k, then Gn(f0, . . . , fd) = NormF

qk
/Fq(f

(n)(γ)) is the norm of f (n)(γ) in

Fq. Apart from these two cases, very little is known about the sequence
un for general polynomials f .

The sparsity, or number of monomials, is another important char-
acteristic of polynomials and it is certainly interesting to obtain lower
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bounds on the number of monomials of the iterations f (n). For itera-
tions of polynomials and even rational functions over a field of charac-
teristic zero such bounds can be derived from the results of [5].

Finally, we note that similar questions can also be asked for itera-
tions of rational functions, which is yet another challenging direction
of research.
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