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Abstract. We report on the meeting Interpolation and Banach
space constructions, recently held in Castro Urdiales, and collect
the questions proposed by the participants during the open prob-
lems session.

The conference “Interpolation and Banach space constructions” was
held in Castro Urdiales (Spain), during the first week of June 2014. It
was the eleventh edition of a series of meetings about Banach spaces
and operator theory organised by the Universities of Extremadura and
Cantabria.

The invited speakers of the conference were Pandelis Dodos (Uni-
versity of Athens), Valentin Ferenczi (Universidade de São Paulo),
Jordi López Abad (Instituto de Ciencias Matemáticas) and Richard
Rochberg (Washington University in St. Louis). There were also sev-
eral sessions of short communications and plenty of discussion time.
The venue of the conference was the Centro Cultural y de Congresos
“La Residencia”, close to the fishing port of Castro Urdiales, which is
the customary venue of the activities of the Centro Internacional de
Encuentros Matemáticos (CIEM), a joint initiative of the University of
Cantabria and the City Council of Castro Urdiales. The organisers of
the conference were Jesús M. F. Castillo (Badajoz), Manuel González
(Santander) and Javier Pello (Madrid). They acknowledge financial
support from the University of Cantabria, from the town council of
Castro Urdiales and from the Ministerio de Economı́a y Competitivi-
dad.

For additional information we refer to the official web page of the con-
ference: http://www.ciem.unican.es/encuentros/banach/2014/

Here we collect the questions that were posed and discussed during
the Open Problems Session of the conference, and describe the solu-
tion obtained to one of the problems raised during the 2013 Castro
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Urdiales Meeting [7]. We thank the participants for their interest and
enthusiasm, which provided a stimulating working environment.

1. Hyperplanes and complex structure
Valentin Ferenczi (Universidade de São Paulo)

In the sequel, X is always a real Banach space. We say that X has
complex structure if there exists a bounded operator J acting on X
such that J2 = −IX , where IX is the identity on X. In this case we
can see X as a complex space with the law (r + is) · x = rx + sJx,
where r, s ∈ R [11, Section 1.3].

Definition 1. [12, Definition 1] A real Banach space X is said to be
even if it has complex structure but its hyperplanes do not; it is said to
be odd if it does not have complex structure but its hyperplanes do.

Even Banach spaces are a generalisation of finite-dimensional spaces
of even dimension, and can be seen as a complex Banach spaces.

A long-standing open problem is whether the Kalton-Peck space Z2

from [22] is isomorphic to its hyperplanes. The following conjecture
would give a negative answer to this problem.

Conjecture 1. Z2 is even.

Gowers and Maurey [16] constructed the first example of an infinite-
dimensional Banach space not isomorphic to its hyperplanes, and now
there are plenty of examples in the literature.

Suppose that X is a Banach space not isomorphic to its hyperplanes.
Then there are four possibilities with respect to having complex struc-
ture:

(1) X is even;
(2) X is odd;
(3) neither X nor its hyperplanes have complex structure;
(4) both X and its hyperplanes have complex structure.

The complex Gowers-Maurey space GM(C) is an even space, while
its hyperplanes are odd [12]. The Gowers-Maurey space GM is an
example of a space without complex structure whose hyperplanes also
lack complex structure, but there are no known examples of the fourth
category.

Question 1. Does there exist a space not isomorphic to its hyper-
planes and having complex structure whose hyperplanes also have com-
plex structure?
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Constructing such a space is difficult, because there must be a com-
plex structure J onX and a complex structureK on its hyperplanesH,
but no isomorphism between X and H.

There are other questions regarding the direct sum of spaces having
complex structure. If X and Y are even and totally incomparable, then
it is known that X ⊕ Y is also even.

Question 2. Is this true in general?

Question 3. Is being even a 3-space property?

Question 4. Is having complex structure a 3-space property?

2. Optimal retractions
Kazimierz Goebel (Maria Curie-Sklodowska University)

Let X be a Banach space, let B be its unit ball and let S be its unit
sphere. A retraction from B to S is a continuous mapping R : B → S
such that R is the identity on S. It is well known that there are no
retractions from B to S in a finite-dimensional space. They do exist,
however, in infinite-dimensional spaces [21], and such a retraction can
always be found as a Lipschitzian mapping [6],

∥Rx−Ry∥ ≤ K∥x− y∥,
for some universal constant K. This leads to the question of finding
the best Lipschitz constant k for a retraction on a given space,

k0(X) = inf{ k > 0 : there exists R : B → S retraction, R ∈ Lip(k) }
Every retraction R : B → S satisfies R(0) ∈ S and R(−R(0)) =
−R(0) ∈ S, so any such constant must be at least 2. In fact, it is
known that k0(X) ≥ 3 for every space X [15], and sharper bounds
have been found for certain spaces [8, 1, 15, 4]:

4 ≤ k0(ℓ1) ≤ 8

4.55 ≤ k0(ℓ2) < 29

There is a very simple proof of such a bound, quoted by Benyamini
and Lindenstrauss [5, page 65], for C[0, 1].

Theorem 1. There exists a Lipschitz retraction from BC[0,1] to SC[0,1]

with Lipschitz constant at most 70.

The proof is as follows: Define A : C[0, 1] → C[0, 1] as Af(t) =
|f(t)+1−2(1−∥f∥)t|−1+2(1−∥f∥)t; then A ∈ Lip(5), A is the identity
on SC[0,1] and ∥Af∥ ≥ 1/7 for every f ∈ BC[0,1]. This means that
R(f) = Af/∥Af∥ is a retraction from BC[0,1] to SC[0,1] with Lipschitz
constant at most 70.



4 M. GONZÁLEZ AND J. PELLO

3. On Banach lattices
Pedro Tradacete (Universidad Carlos III de Madrid)

Let X be a Banach lattice, and let T : X → Y be an operator. T
is said to be lattice-strictly singular (LSS) if it is not an isomorphism
when restricted to any sublattice of X. T is said to be disjointly strictly
singular if it is not an isomorphism when restricted to any subspace
of X spanned by a disjoint sequence.

We are interested in the problem of whether LSS ̸= DSS. For this,
we need to find a pair of basic sequences (xn)n∈N, (yn)n∈N ⊆ X such
that the difference sequence zn := xn − yn satisfies:

(1) (zn)n∈N is unconditional;
(2) ∥

∑
n∈N anzn∥ ≃ max{∥

∑
n∈N anxn∥, ∥

∑
n∈N anyn∥};

(3) (zn)n∈N does not contain any unconditional positive blocks, i.e.,
no sequence of the form

wn =
∑
j∈An

ajxj +
∑
j∈Bn

bjyj, aj, bj ≥ 0

can be unconditional.

A somewhat related question is the following one. Let us say that a
disjoint sequence is complemented if it spans a complemented subspace.

Question 5. [13] Let E be a (reflexive) separable Banach lattice. Does
there exist a disjoint sequence in E which is complemented?

The answer is positive in many cases: every disjoint sequence is com-
plemented when E = Lp, and has a complemented subsequence when
E = Lp,q or some other Lorentz spaces. For rearrangement-invariant
spaces, the expectation operator defines a continuous projection onto
the subspace spanned by a disjoint sequence of characteristic functions,
and a similar result is valid for Banach spaces with an unconditional
basis.

4. On Kottman’s constant
Jesús M. F. Castillo (Universidad de Extremadura)

The Kottman’s constant of a Banach space X, with unit ball BX and
unit sphere SX , is defined as follows:

K(X) = sup{σ > 0 : ∃(xn)n∈N ⊆ BX , ∀n ̸= m, ∥xn − xm∥ ≥ σ }.

It was introduced and studied by Kottman [24, 25]. It is clear that
K(X) = 0 if and only if X is finite-dimensional. A well-known, al-
though highly non-trivial, result of Elton and Odell [10] (see also [9,
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p. 241]) establishes that K(X) > 1 for every infinite-dimensional Ba-
nach space. Kottman’s constant has been considered in several papers
and its exact value has been found for a number of classical Banach
spaces.

A variation of the Kottman constant is the symmetric separation
constant :

Ks(X) = sup{σ > 0 : ∃(xn)n∈N ⊆ BX , ∀n ̸= m, ∥xn ± xm∥ ≥ σ }.
Equality between K and Ks holds in several classical spaces such as

ℓp spaces, where K(ℓp) = Ks(ℓp) = 21/p for 1 ≤ p < ∞; or c0, where
Ks(c0) = 2 as the sequence xn = en+1 −

∑n
j=1 ej shows. A natural

question is:

Problem 1. Does the Elton-Odell theorem hold for Ks? Precisely, is
it always Ks(X) > 1 for every infinite-dimensional Banach space?

The questions that we are mostly interested in are:

Problem 2. Does K(X∗∗) = K(X) hold for every Banach space?

Problem 3. Does Ks(X∗∗) = Ks(X) hold for every Banach space?

Since both Ks(c0) = K(c0) = 2 = K(ℓ1) = Ks(ℓ1), and a Banach
space containing an isomorphic copy of either of those spaces also con-
tains an almost-isometric copy, it is clear that a Banach space such
that K(X) < K(X∗∗) or Ks(X) < Ks(X∗∗), if it exists, cannot con-
tain either c0 or ℓ1, hence it cannot have an unconditional basis.

5. Ultratypes
Jesús M. F. Castillo (Universidad de Extremadura)

The following notion was introduced by Henson and Moore [19,
p. 106].

Definition 2. We say that two Banach spaces X and Y are ultra-
isomorphic, or have the same ultratype, if there is an ultrafilter U such
that XU and YU are isomorphic.

It can be shown that “having the same ultratype” is en equivalence
relation. Recall that a Banach space is an L∞-space if and only if some
(or every) ultrapower is. The question of the classification of L∞-spaces
was posed in [19, p. 106] and [17, p. 315] and was considered in [18].

Question 6. How many ultratypes of L∞-spaces are there?

Currently it is known that there are at least two different ultra-
types of L∞: that of C(K)-spaces and that of Gurarĭı space. More
precisely [3]:
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Theorem 2. All C(K)-spaces and all complemented subspaces of a
C(K)-space which are isomorphic to their square are ultra-isomorphic.

Theorem 3. No ultrapower of Gurarĭı space is isomorphic to a com-
plemented subspace of a C(K)-space.

6. Four special Banach spaces
Jesús M. F. Castillo (Universidad de Extremadura)

Consider this property for a Banach space X: If X is a subspace
of Z such that Z/X is isomorphic to X, then X is complemented in Z.
Currently, there are four known examples of spaces with this property:

• c0, by Sobczyk’s theorem [29];
• injective spaces, by their very definition;
• L1(µ) spaces, by Lindenstrauss’s lifting [26];
• C(N∗) [2].

Problem 4. Find more examples of spaces with this property.

Problem 5. Characterise those compact sets K such that C(K) has
this property.

7. Classical spaces
Valentin Ferenczi (Universidade de São Paulo)

While it is known that ℓp contains a continuum of non-isomorphic
subspaces for 1 ≤ p < 2, for p > 2 it is only known that there are
uncountably many.

Question 7. Does ℓp contain a continuum of non-isomorphic subspaces
for p > 2?

Define SB as the set of all separable Banach spaces, which amounts
to the set of subspaces of C[0, 1]. This set is Borel and has topological
structure. Define ≃ℓ2 as the set of all spaces isomorphic to ℓ2, which is
a subset of SB and is Borel.

Question 8. Is there any other example of a Borel isomorphism class?

Question 9. Is the set of all spaces isomorphic to ℓp a Borel set for
p ̸= 2?

Question 10. Characterise ℓp by local properties.

It is known that Lp contains uncountably many non-isomorphic sub-
spaces.

Question 11. Does Lp contain a continuum of non-isomorphic sub-
spaces?



OPEN PROBLEMS IN BANACH SPACE THEORY 2014 7

8. RUD/RUC bases in Banach spaces
Pedro Tradacete (Universidad Carlos III de Madrid)

A series
∑

n xn in a Banach space is randomly unconditionally con-
vergent when

∑
n εnxn converges almost surely on signs (εn)n∈N with

respect to the Haar probability measure on {−1, 1}N.
A Schauder basis (en)n∈N in a Banach space X is called (RUC) if the

expansion
∑∞

i=1 e
∗
i (x)ei of every x ∈ X is randomly unconditionally

convergent. This is equivalent to the existence of a constant K such
that, for every x ∈ X,

sup
n

∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)e
∗
i (x)ei

∥∥∥∥ dt ≤ K∥x∥.

It is therefore natural to say that the basis (en)n∈N is (RUD) (for
random unconditionally divergent) if it satisfies the converse inequality:
There exists a constant K such that, for every x ∈ X,

∥x∥ ≤ K

∫ 1

0

∥∥∥∥ n∑
i=1

ri(t)e
∗
i (x)ei

∥∥∥∥ dt.
RUC and RUD bases in Banach spaces were studied in [27].

Any RUC basis in ℓ1 is equivalent to its unit vector basis.

Question 12. Is every basis of ℓ1 RUD?

Any sequence which is both RUC and RUD is unconditional.

9. Converse Aharoni problem
Pandelis Dodos (University of Athens)

It is known that any Banach space that embeds into c0 must itself
contain a copy of c0. This means that c0 is a small space in a linear
sense, but what happens from a non-linear point of view?

Aharoni proved that every separable Banach space is Lipschitz-iso-
morphic to a subset of c0, and Kalton, Godefroy and Lancien [14]
proved that any space X that is Lipschitz-isomorphic to a subspace
of c0 must be isomorphic to a subspace of c0.

We will say that a Banach space Y is an Aharoni space if every
separable Banach space is Lipschitz-isomorphic to a subspace of Y .

Conjecture 2. Does every separable Aharoni space contain a linear
copy of c0?

Conjecture 3. Let f : Sc0 → R be a uniformly continuous map, where
Sc0 = A ∪ B, and let ε > 0. Then there exist infinitely many block
subspaces Z of c0 such that SZ ⊆ Aε.



8 M. GONZÁLEZ AND J. PELLO

Let X ̸= ∅ a finite set. A collection A of subsets of X is said to be
an antichain if for every A, B ∈ A with A ̸= B, we have A ̸⊆ B and
B ̸⊆ A. The simplest example of an antichain is the set

(
X
k

)
= {Y ⊆

X : |Y | = k } of all subsets of X of cardinality k.

Theorem 4. (Spenner’s lemma) Let A be an antichain in [n] :=
{1, 2, . . . , n}. Then |A| ≤

(
n

n/2

)
.

Since
(

n
n/2

)
∼ 2n/

√
n, this means that any set F of cardinality greater

that 2n/2 cannot be an antichain.

Conjecture 4. Given 0 < δ ≤ 1, there exists n0(δ) ∈ N such that for

every n ≥ n0 and every collection A of subsets of [n]2 with |A| ≥ δ2n
2
,

there are A, B ∈ A such that (i) A ⊆ B, (ii) B \ A = X2 for some
X ⊆ [n].

10. Answer to a problem in [7]
Manuel González and Javier Pello

Amir-Bahman Nasseri formulated the following question during the
open problems session of the 2013 Meeting in Castro Urdiales [7]:

(1) Let T : L1(0, 1) −→ L1(0, 1) be a bounded operator. Suppose
that for each subspace M of L1(0, 1) isometric to ℓ1, the restric-
tion T |M is an isomorphism. Is T itself an isomorphism?

(2) Let T : ℓ∞ −→ ℓ∞ be a bounded operator with dense range. Is
T surjective?

It is possible to show that both problems are equivalent, and recently
they received a negative answer [20].
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los, E-28933 Móstoles, Spain

E-mail address: javier.pello@urjc.es


