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Abstract

Given a bounded linear operator T acting on a complex Banach space, we obtain
a spectral condition implying that each non-scalar operator in the commutant of
T has a hypercyclic multiple, and we show several examples of operators satisfying
this condition. We emphasize that for some of these examples we do not have a
description of the commutant of T .

Key words: Hypercyclic operator, Hypercyclic commutant, Cesàro operator,
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1 Introduction

A bounded linear operator T on a Banach space is called hypercyclic if it
has a dense orbit. A vector x for which the orbit {T nx} is dense is called a
hypercyclic vector for T . We refer to the books [2] and [9] for information on
hypercyclic operators.
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When we sometimes abusively say that an operator T has a hypercyclic com-
mutant, what we really mean is that each non-scalar operator in the commu-
tant has a hypercyclic multiple (a non-scalar operator is an operator which is
not a multiple of the identity). The study of operators with hypercyclic com-
mutant was originated by Godefroy and Shapiro in their seminal 1991 paper
[7]. Their work suggests that operators behaving like backward shifts tend
to transfer hypercyclicity to “appropiate” operators in their commutant. The
word ”appropiated” means that we must discard from the commutant some
operator that can never be hypercyclic, like the multiples of the identity or
the contractions.

In their work, Godefroy and Shapiro use some descriptions of the commu-
tants of the involved operators acting on Hilbert spaces which are not valid
in the Banach space setting, and they also consider some bilateral weighted
shifts and composition operators. Later, Herzog and Schmoeger [11] extended
Godefroy and Shapiro’s results to general operators T on Banach spaces. Us-
ing the holomorphic functional calculus, they transfer the hypercyclicity to
operators φ(T ) under certain spectral conditions on T . This work was im-
proved by Bermúdez and Miller [2]. Since the holomorphic functional calculus
does not cover the whole commutant, the following general question arises:
Given a hypercyclic operator T , when T has a hypercyclic commutant? Re-
cently, V. Müller [13] improved the results of [11,2], and discovered that these
results become stronger if we consider operators with closed range. His study
allows to prove that any non-scalar operator in the commutant of a general-
ized backward shift (acting on certain Banach spaces) is supercyclic, solving
a longstanding question posed by Godefroy and Shapiro.

In this paper we study Banach space operators T with hypercyclic commutant.
To characterize the commutant of T is a really complicated problem even for
well known operators in Hilbert spaces. However we show that, under certain
spectral conditions and without a description of the commutant of T , it is
possible to ensure that T has a hypercyclic conmutant.

The paper is structured as follows. In Section 2 we prove our main result
(Theorem 2.1) that gives a sufficient spectral condition for an operator T to
have a “hypercyclic commutant”. Section 3 is devoted to give examples of op-
erators satisfying that spectral condition: Bilateral weighted shifts, unilateral
weighted backward shifts, the adjoint of the discrete Cesàro operator acting
on the sequence spaces ℓp, the continuous Cesàro operator acting on Lp(0, 1),
and the adjoint of the Cesàro operator acting on the Hardy spaces Hp(D).
We also show that some composition operators acting on the Hardy spaces,
which are induced by linear fractional self-maps of the unit disk D, fail both
the hypothesis and the thesis of Theorem 2.1. The results of the paper suggest
some questions which will be formulated in the last section.
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2 Main Theorem

In this section we give a general theorem for Banach space operators T assert-
ing that, under certain spectral conditions, each operator in the commutant
of T different from λI has a hypercyclic multiple.

Theorem 2.1 Let T be a bounded operator on a (complex) Banach space X.
Suppose that the spectrum of T contains a non-empty connected open subset
U such that the following conditions are satisfied:

(1) Every λ ∈ U is a simple eigenvalue of T ,
(2) span{Ker(T − λI) : λ ∈ U} is dense in X,
(3) there exists a holomorphic function x : λ ∈ U → x̂(λ) = xλ ∈ X such

that 0 ̸= xλ ∈ ker(T − λI).

Then every operator in the commutant of T different from λI has a hypercyclic
multiple.

Proof. First let us see that given a non-empty open subset V ⊂ U , the set

span{Ker(T − λI) : λ ∈ V }

remains dense in X. Otherwise, there exists 0 ̸= x⋆ ∈ X⋆ such that x⋆(x̂(λ)) =
0 for all λ ∈ V . By the analyticity condition (3) we have that x⋆(x̂(λ)) = 0
for all λ ∈ U , and by (1) and (2) x⋆ = 0, a contradiction.

Let A ∈ L(X) in the commutant of T with A ̸= µI. For each λ ∈ U we have
Txλ = λxλ, hence TAxλ = λAxλ. Thus by condition (1) we haveAxλ = a(λ)xλ

for some complex number a(λ). So we get a function a : U → D. Boundedness
of the operator A provides boundedness of a(λ) on U , and A ̸= µI implies
that a is non-constant. Let us see that a : U → D is a holomorphic function.

For each y⋆ ∈ X⋆, our function a satisfies

a(λ) =
y⋆(Axλ)

y⋆(xλ)
.

Thus it is holomorphic on U \ Z, where Z = {λ : y⋆(xλ) = 0} is a discrete
subset of U . But for λ0 ∈ Z we can take u⋆ ∈ X⋆ such that u⋆(xλ0) ̸= 0. This
implies that our function

a(λ) =
u⋆(Axλ)

u⋆(xλ)

is holomorphic also on λ0, hence a(λ) is holomorphic on U .

Since a(λ) is non-constant, a(U) is an open subset of the complex plane. Then
for some m ∈ C the set m · a(U) intersects the unit circle. To prove that mA
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is hypercyclic, let us see that the subsets

span{ker (µA− λI) : |λ| < 1} and span{ker (µA− λI) : |λ| > 1}

are dense in X, and the hypercyclicity of mA will follow from the Godefroy-
Shapiro Criterion (see Corollary 1.10 in [2]).

Indeed, span{ker (µA− λI) : |λ| < 1} = span{ker(T−λI) : λ ∈ (m ·a)−1(D)}
is dense by the considerations at the beginning of the proof, and a similar
argument is valid for the other set. 2

Remarks 2.2 The hypothesis of Theorem 2.1 implies that

(a) the space X is infinite dimensional and separable, and
(b) the operator T fails the single valued extension property (see [1]).

3 Some applications

In this section we show that several concrete examples of operators satisfy the
hypothesis of Theorem 2.1.

3.1 Bilateral weighted shifts.

Let us consider a bilateral weighted shift W on the complex Hilbert space of
sequences ℓ2(Z), that is defined by

Wen = wnen+1,

where n runs through the set of all integers Z, {en : n ∈ Z} is the natural
orthonormal basis of ℓ2(Z), and (wn) is a bounded sequence of strictly positive
numbers, the sequence of weights. We follow the notation used in the survey
by Allen L. Shields [18].

We consider the quantities

r+3 (W ) := lim sup
n→∞

(w0 · · ·wn−1)
1/n

and
r−2 (W ) := lim inf

n→∞
(w−1 · · ·w−n)

1/n.

It turns out (see [18] Theorem 9) that when r+3 (W ) < r−2 (W ) the set

U := {λ ∈ C : r+3 (W ) < |λ| < r−2 (W )}
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is contained in the point spectrum of W , that every λ ∈ U is a simple eigen-
value of W and that a corresponding eigenvector is given by the following
expression:

xλ = e0 +
∞∑
n=1

w0 · · ·wn−1

λn
en +

∞∑
n=0

λn

w−1 · · ·w−n

e−n. (1)

Clearly the function f(λ) = xλ is analytic on U . Let us see that the set
span{xλ : λ ∈ U} is dense in ℓ2(Z). Indeed, given (yi) ∈ ℓ2(Z) we have

⟨xλ, (yi)⟩ = y0 +
∞∑
n=1

w0 · · ·wn−1

λn
yn +

∞∑
n=0

λn

w−1 · · ·w−n

y−n.

Therefore if ⟨xλ, (yi)⟩ = 0 for all λ ∈ U , then yi = 0 for all i ∈ Z. Thus W
satisfies the conditions of Theorem 2.1 and we have the following result.

Theorem 3.1 Let W be an injective bilateral shift with r+3 (W ) < r−2 (W ).
Then every operator in the commutant ofW different from λI has a hypercyclic
multiple.

Remarks 3.2 It is not difficult to see that Theorem 3.1 remains valid for
bilateral weighted shifts acting on ℓp(Z), 1 ≤ p < ∞.

3.2 The unilateral weighted backward shift.

Here we consider a unilateral weighted shift U on the complex Hilbert space
of sequences ℓ2, that is defined by

Uen = wnen−1, n ≥ 2 Ue1 = 0

where n runs through the set of all positive integers N, {en : n ∈ N} is the
natural orthonormal basis of ℓ2, and (wn) is a bounded sequence of strictly
positive numbers, the sequence of weights. The relevant quantity to describe
the spectrum of U is

r2(U) = lim inf
n→∞

(w1 · · · · · wn)
1/n.

If r2(U) > 0 then Up = {λ |λ| < r2(U)} ⊂ σp(U) and consists of simple
eigenvalues (see [18] Theorem 8).

A similar argument to the one given in Subsection 3.1 provides the following
result.
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Theorem 3.3 Let U be an unilateral weighted backward shift with r2(U) > 0.
Then every operator in the commutant of U different from λI has a hypercyclic
multiple.

3.3 The adjoint of the Cesàro operator on the sequences spaces

The Cesàro operator C : ℓp → ℓp (1 < p < ∞) is given by

C((xn)) =
(
x1 + · · ·+ xn

n

)

and has norm equal to q, where 1/p+ 1/q = 1.

The adjoint of the Cesàro operator C⋆ : ℓq → ℓq is given by

C⋆en =
e1 + · · ·+ en

n
.

Let us denote Uq = {λ ∈ C : |λ − q/2| < q/2}, and let us consider the
sequences x̂(λ) = (xn(λ))

∞
n=1, where

x1(λ) = 1 and xn(λ) =
n−1∏
j=1

(
1− 1

jλ

)
n > 1.

Then x̂(λ) ∈ Ker(C⋆ −λI) for λ ∈ Uq and Uq consists of simple eigenvalues of
C⋆ (see [8] for proper references).

Note that that xn(1/k) ̸= 0 if and only if n ≤ k, and that the sequence (1/k) is
contained in Uq. Hence span{Ker(C⋆−λI) : λ ∈ Uq} is dense in ℓq. Moreover
it is not difficult to show that the map x̂ : λ ∈ Uq → x̂(λ) ∈ ℓq is analytic.

Therefore the conditions of Theorem 2.1 are fully satisfied by C⋆, and as in
the previous examples we conclude that every operator in the commutant of
C different from λI has a hypercyclic multiple.

Remarks 3.4 The Cesàro operator C is also bounded in the space c0 of se-
quences converging to 0. In this case the adjoint C⋆ : ℓ1 → ℓ1 satisfies the
same conditions that C⋆ on ℓq with U1 = {λ ∈ C : |λ− 1/2| < 1/2}. Thus it
satisfies the hypothesis of Theorem 2.1.
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3.4 The Cesàro operator on spaces of integrable functions

The Cesàro operator C : Lp(0, 1) →: Lp(0, 1) (1 < p < ∞) is given by

Cf(x) =
1

x

∫ 1

0
f(s) ds

and has norm equal to q, where 1/p + 1/q = 1. Moreover, it was proved by
Leibowitz (see [12]) that the point spectrum of C is the set

Up = {λ ∈ C : |λ− q/2| < q/2} = {λ ∈ C : Re(1/λ) > 1/q},

that Up consists of simple eigenvalues of C, and that for every λ ∈ Up, the
function gλ(x) = x−1+1/λ satisfies Cgλ = λgλ.

Obviously, the function λ ∈ Up → gλ ∈ Lp(0, 1) is analytic. Moreover, since
f1/n(x) = xn−1 for all n ≥ 1, the set span{fλ : λ ∈ Up} is dense in Lp(0, 1).
Therefore the conditions of Theorem 2.1 are fully satisfied by C, and we can
conclude that every operator in the commutant of C different from λI has a
hypercyclic multiple.

3.5 The adjoint of the Cesàro operator on Hardy spaces of analytic functions

The Cesàro operator acting on the space H(D) of analytic functions on the
unit disk D is defined formally by

Cf(z) =
∞∑
n=0

(
1

n+ 1

n∑
k=0

ak

)
zn

where f(z) =
∑∞

k=0 akz
k. The operator C is bounded on several Banach spaces

of analytic functions on D. Boundedness of C on the Hardy space Hp(D) was
proved by Hardy for p = 2, and by A. Siskakis for 1 ≤ p < ∞ ([19]). It is not
bounded acting on H∞(D). For further examples we refer to [14].

We will need the following properties provided by Persson [14, Theorem B].

Theorem 3.5 Let 1 < p < ∞, and let C be the Cesàro operator acting on
the Hardy space Hp(D).

(1) σ(C) = {λ ∈ C : |λ− p/2| ≤ p/2}
(2) For |λ − p/2| < p/2, the range of C − λI is a closed subspace of Hp(D)

of codimension 1.
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Let us denote Up := {λ ∈ C : |λ− p/2| < p/2} = {λ ∈ C : Re(1/λ) > 1/p}.
It follows from part (2) of Theorem 3.5 that each λ ∈ Up is a simple eigenvalue
of the adjoint operator C⋆.

For each λ ∈ Up we consider the function fλ defined on the unit disk D by

fλ(z) = (1− z)
1
λ
−1 .

Proposition 3.6 Let 1 < p < ∞ and let q such that 1/p+ 1/q = 1.

(1) For each λ ∈ Up, fλ ∈ Hq(D).
(2) The function λ ∈ Up → fλ ∈ Hq(D) is analytic.

Proof. Once we establish (1), part (2) is immediate.

As usual, we identify Hq(D) with the subspace of functions in Lq(T) whose
Fourier coefficients satisfy f̂(n) = 0 for n < 0.

To prove (1), it is enough to note that λ ∈ Up implies Re(1/λ) − 1 > −1/q;
therefore |fλ(z)|q ≤ const|1− z|α with α > −1, hence fλ ∈ Hq(D). 2

Recall that for 1 < p < ∞, Hp(D) is a complemented subspace of Lp(T). As a
consequence, the dual space Hp(D)⋆ is isomorphic to Hq(D). In fact, for every
G ∈ Hp(D)⋆ there exists g ∈ Hq(D) such that for each f ∈ Hp(D),

⟨G, f⟩ = 1

2π

∫
T
g(t)f(t) dt.

In this way, given the Cesàro operator C acting on Hp(D) (1 < p < ∞), we
can see C⋆ as an operator acting on Hq(D).

With this identification, each f ∈ Hp(D) has the form f(θ) =
∑∞

n=0 ane
inθ,

the action of C is given by

(Cf)(θ) =
∞∑
n=0

1

n+ 1

(
n∑

k=0

ak

)
einθ,

and it easy to check that the action of the adjoint C⋆ on the elements einθ of
Hq(D) is given by C⋆einθ = (n+ 1)−1∑n

k=0 e
ikθ.

Therefore, if
∑∞

n=0 bne
inθ ∈ Hq(D), then

C⋆(
∞∑
n=0

bne
inθ) =

∞∑
n=0

bn
n+ 1

(
n∑

k=0

eikθ
)
=

∞∑
k=0

( ∞∑
n=k

bn
n+ 1

)
eikθ.

Proposition 3.7 As an operator acting on Hq(D), C⋆ satisfies C⋆fλ = λfλ
for each λ ∈ Up.
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Proof. It is easy to check that for each λ ∈ Up\{1/n : n ∈ N}, the derivatives
of fλ satisfy

f
(n)
λ (0)

n!
=

n∏
j=1

(
1− 1

jλ

)
.

Proceeding as in the proof of Theorem 2 in [5], we get C⋆fλ = λfλ.

The case λ ∈ {1/n : n ∈ N} is easy. In fact, denoting Fn the subspace
generated by {eikθ : 0 ≤ k ≤ n}, we have that C⋆Fn ⊂ Fn for n ∈ N ∪ {0},
hence {f1/n : n ∈ N} generates a dense subspace of Hq(D). 2

As a consequence we obtain the following result.

Theorem 3.8 Let C be the Cesàro operator acting on Hp(D), 1 < p < ∞.
Then every operator in the commutant of C⋆ different from λI has a hyper-
cyclic multiple.

3.6 Composition operators without a “hypercyclic commutant”

Here we analyze some examples of operators T which do not satisfy the hy-
pothesis of Theorem 2.1, and also fail to have a hypercyclic commutant.

(a) In the absence of an open set contained in the point spectrum, an oper-
ator does not satisfy the hypothesis of Theorem 2.1. This is the case for the
following example studied by Godefroy and Shapiro (see [7] Section 3.7).

Let B be a compact unilateral weighted backward shift on the sequence space
ℓp, 1 ≤ p < ∞. By a result of Salas (see [15]), I + B is hypercyclic. However
λB is hypercyclic for no λ ∈ C because λB is quasinilpotent and the orbit of
each vector is bounded.

(b) Next we consider some examples of operators for which the eigenvalues
are not simple, and they do not have hypercyclic commutant.

Let φ denote a linear fractional selfmap of the unit disc, and let Cφ be the
composition operator induced by φ acting on the Hardy space H2(D). Its
action is given by Cφf = f ◦φ. The linear dynamics of such composition oper-
ators was studied by Bourdon and Shapiro ([4]). A comprehensive treatment
on dynamics of composition operators is carried out in the books [4] and [16].

Theorem 3.9 Let φ be a linear fractional self map of the unit disk, and let
Cφ denote the associated composition operator. Then there exists an operator
T in the commutant of Cφ such that λT is hypercyclic for no λ ∈ C.
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Proof. The only cases which is necessary to check are those in which Cφ is
hypercyclic, namely, when φ is a hyperbolic or parabolic automorphism (see
[16] Chapter 7). In these cases, the point spectrum of Cφ contains the point 1
(see [6] Chapter 7, or [17] Theorems 4.1.1 (ii), 4.1.2 and 4.1.3).

Let f be a non-zero function such that Cφf = f . The the analytic Toeplitz
operator Tf commutes with Cφ and Tf has not a hypercyclic multiple because
σp(T

⋆
f ) is non-empty. 2

4 Concluding remarks

To understand the influence of hypercyclic operators in linear dynamics it
would be desirable to characterize operators with a hypercyclic commutant.

Let us denote by H an infinite dimensional complex Hilbert space. Using the
ideas of D. A. Herrero in [10] (see also [13] Section 4) together with Theorem
2.1 we obtain the following result.

Corollary 4.1 Let us denote by R(H) the set of hypercyclic operators acting
on H with a hypercyclic commutant. Then the closure of R(H) in the norm
topology is equal to the norm-closure of the set of all hypercyclic operators.

Thus, although the set of operators with a hypercyclic commutant is invari-
ant under similarity, it does not seem that this class can be characterized in
spectral terms. To understand the nature of this phenomenon we suggest to
analyze the following question.

Problem 4.2 Let T be a unilateral (respectively bilateral) weighted backward
shift with weight sequence {wn} defined on ℓp, (respectively ℓp(Z)) 1 ≤ p < ∞.

Is it be possible to characterize when T has a hypercyclic commutant in terms
of the sequence {wn} ?

The Cesàro operator is also bounded on other spaces of analytic functions
on the unit disc (see [14]) such as the Bergman spaces Lp

a, p > 1, weighted
Bergman spaces Lp,α

a and Dirichlet spaces D2,α. From the results of Persson it
follows that the adjoint C⋆ of the Cesàro operator on these spaces has an open
set of set of simple eigenvalues. However we do not know a good representation
on the dual space of such spaces.

Conjecture 4.3 The adjoint C⋆ of the Cesàro operator C acting on Lp
a, L

p,α
a

or D2,α has a hypercyclic commutant.
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