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Manuel González and Antonio Mart́ınez-Abejón

Abstract. We show that the set T d(L1(0, 1)) of cotauberian operators
acting on L1(0, 1) is not open, and T ∈ T d(L1(0, 1)) does not imply
T ∗∗ cotauberian. As a consequence, the derive that set T (L∞(0, 1))
of tauberian operators acting on L∞(0, 1) is not open, and that T ∈
T (L∞(0, 1)) does not imply T ∗∗ tauberian.

1. Introduction

Tauberian operators were introduced in [13] as those operators T : X → Y
such that the second conjugate satisfies T ∗∗−1(Y ) = X. They have found
many applications in Banach space theory like factorization of operators [5],
preservation of isomorphic properties [16], equivalence between the Radon-
Nikodym property and the Krein-Milman property [18], and refinements of
James’ characterization of reflexive spaces [17]. The cotauberian operators
were introduced by Tacon [19] as those operators T such that T ∗ is tauberian,
and they have found applications in factorization of operators and preserva-
tion of isomorphic properties of Banach spaces (see [8]). The classes T of
tauberian operators and T d of cotauberian operators are semigroups in the
sense of [1] associated to the weakly compact operators [10, Theorem 2]. We
refer to [8] for additional information on the subject.

Let L(X,Y ) denote the set of all (bounded) operators acting between
X and Y . Given a class A of operators, A(X,Y ) := A ∩ L(X,Y ) is the
component of A in L(X,Y ). It was proved in [2] that, in general, T (X,Y )
and T d(X,Y ) are not open subsets of L(X,Y ), and that T ∈ T ̸⇒ T ∗∗ ∈ T
and T ∈ T d ̸⇒ T ∗∗ ∈ T d (see Sections 2.1 and 3.1 in [8]). The corresponding
counterexamples were obtained as operators T : X → X acting on certain
Banach spaces X constructed ad hoc. So it was interesting to know if there
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2 Manuel González and Antonio Mart́ınez-Abejón

are counterexamples among the operators acting between classical Banach
spaces. Applying some properties of the push-out construction for a pair of
operators and a technical result on the gap between subspaces, it was proved
in [9] that the counterexamples for T can be obtained among the operators
acting on C[0, 1].

In this paper we obtain some results on the pull-back construction for
a pair of operators, and applying a technical result on the gap between sub-
spaces we show that the counterexamples for T d can be obtained among the
operators acting on L1(0, 1), ℓ1, or any Banach space Z admitting a quotient
isomorphic to ℓ1. From these results we derive that set T (Z∗) of tauberian
operators acting on the dual Z∗ of the mentioned space Z is not open, and
that T ∈ T (Z∗) does not imply T ∗∗ tauberian. We observe that the results
on tauberian operators acting on Z∗ cannot be derived from the construction
given in [9], because we cannot guarantee that a quotient of Z∗ is isomorphic
to a subspace of Z∗. Indeed, taking as Z the space ℓ1, it follows from the
main result in [3] that the quotient ℓ∞/c0 is not isomorphic to a subspace of
ℓ∞.

Our notation is standard. Capital lettersX, Y , Z denote Banach spaces,
and given a subspace Y of X, the annihilator of Y in X∗ is Y ⊥. The second
dual of X is denoted X∗∗, we identify X with a subspace of X∗∗, and we de-
note by Xco the quotient X∗∗/X. We refer to [4, Section 1.3] for a description
of the push-out construction for a pair of operators.

Given two closed subspaces M and N of Z, we consider the quantity

δ(M,N) := sup
y∈SM

dist(y,N),

where SM := {y ∈ M : ∥y∥ = 1} is the unit sphere of M . The gap between M

and N is defined by δ̂(M,N) := max{δ(M,N), δ(N,M)}. Basic results on
the gap between subspaces can be found in [15, Section 10], and for Banach
space theory we refer to [14].

Operators are always continuous linear maps. The range and the kernel
of an operator T : X → Y are denoted by ran(T ) and ker(T ) respectively,
T ∗ : Y ∗ → X∗ is the conjugate of T , T ∗∗ : X∗∗ → Y ∗∗ is the second conju-
gate of T , and the residuum operator of T (studied in [11]) is the operator
T co : Xco → Y co that maps x∗∗ +X to T ∗∗x∗∗ + Y .

An operator T : X → Y is said to be tauberian if T ∗∗(X∗∗ \ X) ⊂
Y ∗∗ \ Y ; equivalently, if T co is injective [8, Proposition 3.1.8], and T is said
to be cotauberian if T ∗ is tauberian; equivalently, if T co has dense range [8,
Corollary 3.1.12]. The class of all tauberian operators will be denoted by T .
Therefore, given Banach spaces X and Y , the component T (X,Y ) consists
of all tauberian operators in L(X,Y ). In the case X = Y we write T (X)
instead of T (X,X). The class of all cotauberian operators will be denoted
by T d.

Surjective operators belong to T d, and given operators S : X → Y and
T : Y −→ Z, the following assertions are satisfied (see [8, Section 3.1]):

(i) if T ∈ T d and S ∈ T d then TS ∈ T d;
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(ii) if TS ∈ T d then T ∈ T d.

2. The pull-back of a pair of operators

Let X, Y and Z be Banach spaces. Given a pair of operators A : Y → X and
B : Z → X, we consider the operator

A−B : (y, z) ∈ Y ⊕∞ Z −→ Ay −Bz ∈ X,

and denote by PB(A,B) (or simply PB if the operators are clear) the space

PB(A,B) := ker(A−B) = {(y, z) ∈ Y ⊕∞ Z : Ay = Bz}.
Since A − B is continuous, PB(A,B) is a Banach space. It is called the
pull-back space of the pair (A,B).

The operators πA : PB → Z and πB : PB → Y that take (y, z) ∈ PB to
z and y respectively have norm less or equal than 1, and satisfy the identity
AπB = BπA. So we have a commutative diagram

PB Z

Y X

-πA

?

πB

?
B

-
A

(1)

which is called the pull-back diagram of the pair (A,B). Note that the roles
played by A and B in the construction are symmetric.

The following universal property of the pull-back diagram guarantees
that it is unique up to isomorphisms. Its proof is straightforward.

Proposition 2.1 (Universal property). Let A : Y → X and B : Z → X be a
pair of operators. Then for any Banach space U and any pair of operators
pB : U → Y and pA : U → Z such that ApB = BpA there exists a unique
operator π : U → PB such that pA = πAπ and pB = πBπ.

The operator π is given by π(u) =
(
pB(u), pA(u)

)
.

We will need the following properties of the pull-back diagram.

Proposition 2.2. Let A : Y → X and B : Z → X be a pair of operators and
suppose that B is surjective. Then the following assertions are satisfied:

(i) πB is surjective.
(ii) A has dense range if and only if so does πA.

Proof. (i) Let y ∈ Y . Since B is surjective, there exists z ∈ Z such that
Ay = Bz. Thus (y, z) ∈ PB, and πB(y, z) = y.

(ii) Suppose that A has dense range; equivalently that the conjugate A∗

is injective. Since B is surjective, so is the operator A− B. In particular its
range ran(A−B) is closed. Thus

PB∗ =
Y ∗ ⊕1 Z

∗

ker(A−B)⊥
=

Y ∗ ⊕1 Z
∗

ran
(
(A−B)∗

) ,
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where (A−B)∗ : X∗ → Y ∗ ⊕1 Z
∗ is given by (A−B)∗x∗ = (A∗x∗,−B∗x∗).

Note also that π∗
A : Z∗ → PB∗ is given by π∗

Az
∗ = (0, z∗) + ran

(
(A − B)∗

)
.

So suppose that π∗
Az

∗ = 0. Then (0, z∗) = (A∗x∗,−B∗x∗) for some x∗. Since
A∗ is injective we get x∗ = 0, hence z∗ = −B∗x∗ = 0. Thus π∗

A injective,
hence πA has dense range.

Conversely, if the range of πA is dense, then AπB = BπA has dense
range; hence so does A. �

Remark 2.3. By Proposition 2.2, ifB is surjective then πB is also surjective. In
this case we can see the operator πA as a lifting of A. This is the interpretation
in which we are interested in this paper.

From now on, when we say that we can identify two operators or two
diagrams, we mean that we identify them up to bijective isomorphisms.

The following result shows that the action of taking biconjugates and
that of forming pull-backs commute in some cases.

Proposition 2.4. Let A : Y → X and B : Z → X be a pair of operators with
B surjective. Then the second conjugate of the pull-back diagram of (A,B)
can be identified with the pull-back diagram of (A∗∗, B∗∗).

Proof. We have to identify the following diagrams:

PB(A,B)∗∗ Z∗∗ PB(A∗∗, B∗∗) Z∗∗

Y ∗∗ X∗∗ Y ∗∗ X∗∗

-π∗∗
A

?
π∗∗
B

?
B∗∗

-πA∗∗

?

πB∗∗

?
B∗∗

-A∗∗
-A∗∗

where, since A−B has closed range,

PB(A,B)∗∗ = ker
(
(A−B)∗∗

)
= {(y∗∗, z∗∗) ∈ Y ∗∗⊕∞Z∗∗ : A∗∗y∗∗ = B∗∗z∗∗},

and π∗∗
A : PB(A,B)∗∗ → Z∗∗ and π∗∗

B : PB(A,B)∗∗ → Y ∗∗ take (y∗∗, z∗∗) ∈
PB(A,B)∗∗ to z∗∗ and y∗∗ respectively.

The universal property of the pull-back diagram (Proposition 2.1) pro-
vides an operator

π : PB(A,B)∗∗ −→ PB(A∗∗, B∗∗)

given by

π(y∗∗, z∗∗) =
(
π∗∗
B (y∗∗, z∗∗), π∗∗

A (y∗∗, z∗∗)
)
= (y∗∗, z∗∗).

Since obviously π is a bijective isomorphism, the result is proved. �
The following result shows that the action of passing to residuum oper-

ators and that of forming pull-backs commute in some cases.

Proposition 2.5. Let A : Y → X and B : Z → X be a pair of operators with
B surjective. Then the residuum of the pull-back diagram of (A,B) can be
identified with the pull-back diagram of (Aco, Bco).
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Proof. The proof is formally similar to that of Proposition 2.4. We have to
show that we can identify the following diagrams:

PB(A,B)co Zco PB(Aco, Bco) Zco

Y co Xco Y co Xco

-πco
A

?
πco
B

?
Bco

-πAco

?

πBco

?
Bco

-Aco
-Aco

where, since A−B has closed range, we have (see [8, Proposition 3.1.13])

PB(A,B)co = ker
(
(A−B)co

)
= {(yco, zco) ∈ Y co⊕∞Zco : Acoyco = Bcozco},

and πco
A : PB(A,B)co → Zco and πco

B : PB(A,B)co → Y co take (yco, zco) ∈
PB(A,B)co to zco and yco respectively.

The universal property of the pull-back diagram (Proposition 2.1) pro-
vides an operator

π : PB(A,B)co −→ PB(Aco, Bco)

given by

π(yco, zco) =
(
πco
B (yco, zco), πco

A (yco, zco)
)
= (yco, zco).

Since obviously π is a bijective isomorphism, the result is proved. �
The following result is an application of the previous identifications.

Proposition 2.6. Consider the pull-back diagram of (A,B) given in (1) and
assume B is surjective. Then the following assertions are satisfied:

(i) A is cotauberian if and only if so is πA.
(ii) A∗∗ is cotauberian if and only if so is π∗∗

A .

Proof. (i) Assume that A is cotauberian; equivalently, that Aco has dense
range. By Proposition 2.5, the space PB(A,B)co can be identified with
PB(Aco, Bco). The operator Bco is surjective because so is B [8, Proposi-
tion 3.1.15]. Thus using Proposition 2.2 we get that πco

A has dense range,
hence πA is cotauberian.

For the converse, assume that πA is cotauberian. As B is surjective,
BπA = AπB is cotauberian, hence A is cotauberian too.

(ii) Since Proposition 2.4 identifies π∗∗
A with πA∗∗ , the result follows from

(i). �

3. Applications

Here we apply the results of the previous section to show that some counterex-
amples in the theory of tauberian operators obtained in [2] can be realized
as operators acting on L1(0, 1) or ℓ1, or in any Banach space Z admitting a
quotient isomorphic to ℓ1. We will give the results for Z = L1(0, 1), but the
proofs in the general case are identical.
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Theorem 3.1. There exists a cotauberian operator S : L1(0, 1) → L1(0, 1) such
that S∗∗ is not cotauberian.

Proof. It is proved in [2] (see also Theorem 3.1.18 in [8]) that there exists a
separable Banach space Y such that Y co is isomorphic to ℓ1, and an operator
T : Y → Y such that T co can be identified to the operator A : ℓ1 → ℓ1 given
by A(xn) = (xn/n).

The operator A has dense range, hence so does T co, and T is cotaube-
rian. Moreover, since A is compact, the range of A∗∗ is separable, so it is
not dense. Taking into account that we can identify (T co)∗∗ and (T ∗∗)co [8,
Proposition 3.1.11], we conclude that T ∗∗ is not cotauberian.

Since Y is separable, there is a surjective operator B : L1(0, 1) → Y ,
and the space PB(T,B) is separable. So there exists a surjective operator
Q : L1(0, 1) → PB(T,B), and we have the following commutative diagram:

L1(0, 1) PB(T,B) L1(0, 1)

Y Y

-Q -πT

?

πB

?
B

-
T

The remaining of the proof is a repeated application of the properties
of the class T d of cotauberian operators given at the end of the introduction.

On the one hand, by Proposition 2.6, πT is cotauberian. Since Q is
surjective, the operator S : πTQ : L1(0, 1) → L1(0, 1) is also cotauberian.

On the other hand, by Propositions 2.4 and 2.6, π∗∗
T is not cotauberian.

Therefore S∗∗ = π∗∗
T Q∗∗ is not cotauberian. �

Corollary 3.2. There exists a tauberian operator T : L∞(0, 1) → L∞(0, 1)
such that T ∗∗ is not tauberian.

Proof. It is enough to take T = S∗, where S is the operator obtained in
Theorem 3.1. �

Remark 3.3. There exist separable Banach spaces X such that the set T d(X)
is not open in L(X).

Indeed, let Z be a non-reflexive separable Banach space. We consider
the space

ℓ2(Z) := {(xn) ⊂ Z :

∞∑
n=1

∥xn∥2 < ∞}

which endowed with the ℓ2-norm is a Banach space.
We consider the operator T : ℓ2(Z) → ℓ2(Z) that maps (xn) to (xn/n),

and for every positive integer n, we consider the operator Tn : ℓ2(Z) → ℓ2(Z)
that sends each (xn) to(

x1,
x2

2
, . . . . . . ,

xn

n
, 0, 0, . . . . . . . . .

)
.
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It is not difficult to show (see [8, Example 2.1.7]) that ℓ2(Z)co can
be identified with ℓ2(Z

co), that the operators Tn are not cotauberian, that
Tn −→

n
T , and that T is cotauberian. It turns out that T d

(
ℓ2(Z)

)
is not open

in L
(
ℓ2(Z)

)
.

Let X be a Banach space. We denote by BX and SX the closed unit ball
and the unit sphere of X respectively. Moreover, given a nonempty subset S
of X and δ > 0, a subset C of S is called a δ-net in S if for every x ∈ S there
exists y ∈ C such that ∥x− y∥ ≤ δ.

Later we will need the following technical result. It is known, but we
give a proof for the convenience of the reader.

Lemma 3.4. Let (xn) be a (1/2)-net in the unit sphere SX of a Banach space
X, and let T ∈ L(ℓ1, X) the operator defined by Ten := xn (n ∈ N), where
(en) is the unit vector basis of ℓ1. Then T (Bℓ1) contains (1/2)BX . In partic-
ular T is surjective.

Proof. Note that for every r > 0, (rxn) is a (r/2)-net in rSX .
Let x ∈ X with ∥x∥ = 1/2, and set t1 = 1/2. We select xn1 in the

(1/2)-net such that ∥x − t1xn1∥ ≤ 1/4, and set t2 = ∥x − xn1∥. Then we
select xn2 such that ∥x− t1xn1 − t2xn2∥ ≤ 1/8, and set t3 = ∥x−xn1 −xn2∥.

Proceeding in this way we obtain 0 ≤ tk ≤ 1/2k (k ∈ N) and a subse-
quence (xnk

) of the (1/2)-net. Taking a = (an) with ank
= tk and an = 0

otherwise, we obtain a ∈ Bℓ1 such that Ta = x, and the result is proved. �

Let us show that T d
(
L1(0, 1)

)
is not open in L

(
L1(0, 1)

)
.

Theorem 3.5. There exists a cotauberian operator in the boundary of T d
(
L1(0, 1)

)
.

Proof. We write L1 instead of L1(0, 1). Applying the arguments in the proof
of Theorem 3.1 to the operators Tn and T given in Remark 3.3, we obtain
the following push-out diagrams:

L1 PB(T,B) L1 L1 PB(Tn, Bn) L1

ℓ2(Z) ℓ2(Z) ℓ2(Z) ℓ2(Z)

-Q -πT

?
πB

?
B

-Qn -πTn

?
πBn

?
Bn

-T -Tn

The operators Sn := πTnQn are not cotauberian, S := πTQ is cotaube-
rian, and Sn, S belong to L

(
L1(0, 1)

)
. It remains to show that we can arrange

the constructions so that ∥Sn − S∥ −→
n

0.

To shorten the arguments, we denote PB := PB(T,B) and PBn :=
PB(Tn, Bn), and take Bn = B for all n. So PB = ker(T − B) and PBn =
ker(Tn −B) are closed subspaces of ℓ2(Z)⊕∞ L1.

We fix a surjective operator p : L1 → ℓ1, select a dense sequence (uk) in
the unit sphere SPB , and define q : ℓ1 → PB by qek := uk (k ∈ N), where (ek)
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is the unit vector basis of ℓ1. The operator Q := qp : L1 → PB is surjective
(Lemma 3.4).

Since the operators T −B and Tn−B are surjective and ∥Tn−T∥ −→
n

0,

it follows from [15, Theorem 10.17] that the gap between the kernels satisfy

δ̂
(
ker(Tn −B), ker(T −B)

)
−−−−−→

n
0.

Let us denote δn := δ̂
(
ker(Tn − B), ker(T − B)

)
. Given M and N

closed subspaces of a Banach space, for each x ∈ SM we have dist(x, SN ) ≤
2 dist(x,N) [9, Lemma 3.2]. Therefore, for each n ∈ N, we can select a se-
quence (un,k)k∈N in SPBn

such that ∥uk − un,k∥ ≤ 3δn for each k.
We define qn : ℓ1 → PBn by qnek := un,k (k ∈ N), and Qn := qnp : L1 →

PB.

PB

L1(0, 1) L1(0, 1)

PBn

Q
QQs
πT

�
��3Q=qp

Q
QQsQn=qnp �

��3
πTn

We claim that the operator Qn is surjective for n big enough. Indeed,
for each v in SPBn we can find u in SPB such that ∥v − u∥ ≤ 3δn. Since
(uk) is dense in SPB , we can find k ∈ N such that ∥v − un,k∥ ≤ 7δn. Thus
(un,k)k∈N is a 7δn-net in SPBn , and the claim follows from Lemma 3.4.

Let f ∈ L1(0, 1). Then

∥Snf − Sf∥ = ∥πTnQnf − πTQf ≤ ∥Qnf −Qf∥ ≤ ∥qn − q∥ ∥f∥.
Hence ∥Sn − S∥ ≤ ∥qn − q∥ = supk∈N ∥uk − un,k∥ ≤ 3δn −→

n
0. Thus S is a

cotauberian operator in the boundary of T d
(
L1(0, 1)

)
. �

Corollary 3.6. There exists a tauberian operator in the boundary of T
(
L∞(0, 1)

)
.

Proof. It is enough to take the conjugate operator of the operator obtained
in Theorem 3.5. �

Remark 3.7. (a) It was proved in [7] that T
(
L1(0, 1)

)
is open in L

(
L1(0, 1)

)
,

and that T ∈ T
(
L1(0, 1)

)
implies T ∗∗ tauberian.

(b) Since reflexive quotients of L∞(0, 1) are superreflexive [12], it follows
from Proposition 20 and Theorem 22 in [6] that T d

(
L∞(0, 1)

)
is open in

L
(
L∞(0, 1)

)
, and applying [8, Proposition 6.6.5] we get that T ∈ T d

(
L1(0, 1)

)
implies T ∗∗ cotauberian.
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[11] M. González, E. Saksman, H.-O. Tylli. Representing non-weakly compact op-
erators. Studia Math. 113 (1995), 289–303.

[12] H. Jarchow. On weakly compact operators on C∗-algebras. Math. Ann. 273
(1986), 341–343.

[13] N. Kalton, A. Wilansky. Tauberian operators on Banach spaces. Proc. Amer.
Math. Soc. 57 (1976), 251–255.

[14] J. Lindenstrauss, L. Tzafriri. Cassical Banach space I; Sequence spaces.
Springer, 1977.

[15] V. Müller. Spectral theory for linear operators and spectral systems in Ba-
nach algebras, 2nd. ed. Operator Theory: Advances and applications 139.
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Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, E-
33007 Oviedo, Spain
e-mail: ama@uniovi.es


