Cotauberian operators on $L_{1}(0,1)$ obtained by lifting

Manuel González and Antonio Martínez-Abejón

Abstract

We show that the set $\mathcal{T}^{d}\left(L_{1}(0,1)\right)$ of cotauberian operators acting on $L_{1}(0,1)$ is not open, and $T \in \mathcal{T}^{d}\left(L_{1}(0,1)\right)$ does not imply $T^{* *}$ cotauberian. As a consequence, the derive that set $\mathcal{T}\left(L_{\infty}(0,1)\right)$ of tauberian operators acting on $L_{\infty}(0,1)$ is not open, and that $T \in$ $\mathcal{T}\left(L_{\infty}(0,1)\right)$ does not imply $T^{* *}$ tauberian.

1. Introduction

Tauberian operators were introduced in [13] as those operators $T: X \rightarrow Y$ such that the second conjugate satisfies $T^{* *-1}(Y)=X$. They have found many applications in Banach space theory like factorization of operators [5], preservation of isomorphic properties [16], equivalence between the RadonNikodym property and the Krein-Milman property [18], and refinements of James' characterization of reflexive spaces [17]. The cotauberian operators were introduced by Tacon [19] as those operators T such that T^{*} is tauberian, and they have found applications in factorization of operators and preservation of isomorphic properties of Banach spaces (see [8]). The classes \mathcal{T} of tauberian operators and \mathcal{T}^{d} of cotauberian operators are semigroups in the sense of [1] associated to the weakly compact operators [10, Theorem 2]. We refer to [8] for additional information on the subject.

Let $\mathcal{L}(X, Y)$ denote the set of all (bounded) operators acting between X and Y. Given a class \mathcal{A} of operators, $\mathcal{A}(X, Y):=\mathcal{A} \cap \mathcal{L}(X, Y)$ is the component of \mathcal{A} in $\mathcal{L}(X, Y)$. It was proved in [2] that, in general, $\mathcal{T}(X, Y)$ and $\mathcal{T}^{d}(X, Y)$ are not open subsets of $\mathcal{L}(X, Y)$, and that $T \in \mathcal{T} \nRightarrow T^{* *} \in \mathcal{T}$ and $T \in \mathcal{T}^{d} \nRightarrow T^{* *} \in \mathcal{T}^{d}$ (see Sections 2.1 and 3.1 in [8]). The corresponding counterexamples were obtained as operators $T: X \rightarrow X$ acting on certain Banach spaces X constructed ad hoc. So it was interesting to know if there

[^0]are counterexamples among the operators acting between classical Banach spaces. Applying some properties of the push-out construction for a pair of operators and a technical result on the gap between subspaces, it was proved in [9] that the counterexamples for \mathcal{T} can be obtained among the operators acting on $C[0,1]$.

In this paper we obtain some results on the pull-back construction for a pair of operators, and applying a technical result on the gap between subspaces we show that the counterexamples for \mathcal{T}^{d} can be obtained among the operators acting on $L_{1}(0,1), \ell_{1}$, or any Banach space Z admitting a quotient isomorphic to ℓ_{1}. From these results we derive that set $\mathcal{T}\left(Z^{*}\right)$ of tauberian operators acting on the dual Z^{*} of the mentioned space Z is not open, and that $T \in \mathcal{T}\left(Z^{*}\right)$ does not imply $T^{* *}$ tauberian. We observe that the results on tauberian operators acting on Z^{*} cannot be derived from the construction given in [9], because we cannot guarantee that a quotient of Z^{*} is isomorphic to a subspace of Z^{*}. Indeed, taking as Z the space ℓ_{1}, it follows from the main result in [3] that the quotient ℓ_{∞} / c_{0} is not isomorphic to a subspace of ℓ_{∞}.

Our notation is standard. Capital letters X, Y, Z denote Banach spaces, and given a subspace Y of X, the annihilator of Y in X^{*} is Y^{\perp}. The second dual of X is denoted $X^{* *}$, we identify X with a subspace of $X^{* *}$, and we denote by $X^{c o}$ the quotient $X^{* *} / X$. We refer to [4, Section 1.3] for a description of the push-out construction for a pair of operators.

Given two closed subspaces M and N of Z, we consider the quantity

$$
\delta(M, N):=\sup _{y \in S_{M}} \operatorname{dist}(y, N)
$$

where $S_{M}:=\{y \in M:\|y\|=1\}$ is the unit sphere of M. The gap between M and N is defined by $\hat{\delta}(M, N):=\max \{\delta(M, N), \delta(N, M)\}$. Basic results on the gap between subspaces can be found in [15, Section 10], and for Banach space theory we refer to [14].

Operators are always continuous linear maps. The range and the kernel of an operator $T: X \rightarrow Y$ are denoted by $\operatorname{ran}(T)$ and $\operatorname{ker}(T)$ respectively, $T^{*}: Y^{*} \rightarrow X^{*}$ is the conjugate of $T, T^{* *}: X^{* *} \rightarrow Y^{* *}$ is the second conjugate of T, and the residuum operator of T (studied in [11]) is the operator $T^{c o}: X^{c o} \rightarrow Y^{c o}$ that maps $x^{* *}+X$ to $T^{* *} x^{* *}+Y$.

An operator $T: X \rightarrow Y$ is said to be tauberian if $T^{* *}\left(X^{* *} \backslash X\right) \subset$ $Y^{* *} \backslash Y$; equivalently, if $T^{c o}$ is injective [8, Proposition 3.1.8], and T is said to be cotauberian if T^{*} is tauberian; equivalently, if $T^{c o}$ has dense range [8, Corollary 3.1.12]. The class of all tauberian operators will be denoted by \mathcal{T}. Therefore, given Banach spaces X and Y, the component $\mathcal{T}(X, Y)$ consists of all tauberian operators in $\mathcal{L}(X, Y)$. In the case $X=Y$ we write $\mathcal{T}(X)$ instead of $\mathcal{T}(X, X)$. The class of all cotauberian operators will be denoted by \mathcal{T}^{d}.

Surjective operators belong to \mathcal{T}^{d}, and given operators $S: X \rightarrow Y$ and $T: Y \longrightarrow Z$, the following assertions are satisfied (see [8, Section 3.1]):
(i) if $T \in \mathcal{T}^{d}$ and $S \in \mathcal{T}^{d}$ then $T S \in \mathcal{T}^{d}$;
(ii) if $T S \in \mathcal{T}^{d}$ then $T \in \mathcal{T}^{d}$.

2. The pull-back of a pair of operators

Let X, Y and Z be Banach spaces. Given a pair of operators $A: Y \rightarrow X$ and $B: Z \rightarrow X$, we consider the operator

$$
A-B:(y, z) \in Y \oplus_{\infty} Z \longrightarrow A y-B z \in X
$$

and denote by $P B(A, B)$ (or simply $P B$ if the operators are clear) the space

$$
P B(A, B):=\operatorname{ker}(A-B)=\left\{(y, z) \in Y \oplus_{\infty} Z: A y=B z\right\}
$$

Since $A-B$ is continuous, $P B(A, B)$ is a Banach space. It is called the pull-back space of the pair (A, B).

The operators $\pi_{A}: P B \rightarrow Z$ and $\pi_{B}: P B \rightarrow Y$ that take $(y, z) \in P B$ to z and y respectively have norm less or equal than 1 , and satisfy the identity $A \pi_{B}=B \pi_{A}$. So we have a commutative diagram

which is called the pull-back diagram of the pair (A, B). Note that the roles played by A and B in the construction are symmetric.

The following universal property of the pull-back diagram guarantees that it is unique up to isomorphisms. Its proof is straightforward.

Proposition 2.1 (Universal property). Let $A: Y \rightarrow X$ and $B: Z \rightarrow X$ be a pair of operators. Then for any Banach space U and any pair of operators $p_{B}: U \rightarrow Y$ and $p_{A}: U \rightarrow Z$ such that $A p_{B}=B p_{A}$ there exists a unique operator $\pi: U \rightarrow P B$ such that $p_{A}=\pi_{A} \pi$ and $p_{B}=\pi_{B} \pi$.

The operator π is given by $\pi(u)=\left(p_{B}(u), p_{A}(u)\right)$.
We will need the following properties of the pull-back diagram.
Proposition 2.2. Let $A: Y \rightarrow X$ and $B: Z \rightarrow X$ be a pair of operators and suppose that B is surjective. Then the following assertions are satisfied:
(i) π_{B} is surjective.
(ii) A has dense range if and only if so does π_{A}.

Proof. (i) Let $y \in Y$. Since B is surjective, there exists $z \in Z$ such that $A y=B z$. Thus $(y, z) \in P B$, and $\pi_{B}(y, z)=y$.
(ii) Suppose that A has dense range; equivalently that the conjugate A^{*} is injective. Since B is surjective, so is the operator $A-B$. In particular its range $\operatorname{ran}(A-B)$ is closed. Thus

$$
P B^{*}=\frac{Y^{*} \oplus_{1} Z^{*}}{\operatorname{ker}(A-B)^{\perp}}=\frac{Y^{*} \oplus_{1} Z^{*}}{\operatorname{ran}\left((A-B)^{*}\right)}
$$

where $(A-B)^{*}: X^{*} \rightarrow Y^{*} \oplus_{1} Z^{*}$ is given by $(A-B)^{*} x^{*}=\left(A^{*} x^{*},-B^{*} x^{*}\right)$. Note also that $\pi_{A}^{*}: Z^{*} \rightarrow P B^{*}$ is given by $\pi_{A}^{*} z^{*}=\left(0, z^{*}\right)+\operatorname{ran}\left((A-B)^{*}\right)$. So suppose that $\pi_{A}^{*} z^{*}=0$. Then $\left(0, z^{*}\right)=\left(A^{*} x^{*},-B^{*} x^{*}\right)$ for some x^{*}. Since A^{*} is injective we get $x^{*}=0$, hence $z^{*}=-B^{*} x^{*}=0$. Thus π_{A}^{*} injective, hence π_{A} has dense range.

Conversely, if the range of π_{A} is dense, then $A \pi_{B}=B \pi_{A}$ has dense range; hence so does A.

Remark 2.3. By Proposition 2.2, if B is surjective then π_{B} is also surjective. In this case we can see the operator π_{A} as a lifting of A. This is the interpretation in which we are interested in this paper.

From now on, when we say that we can identify two operators or two diagrams, we mean that we identify them up to bijective isomorphisms.

The following result shows that the action of taking biconjugates and that of forming pull-backs commute in some cases.

Proposition 2.4. Let $A: Y \rightarrow X$ and $B: Z \rightarrow X$ be a pair of operators with B surjective. Then the second conjugate of the pull-back diagram of (A, B) can be identified with the pull-back diagram of $\left(A^{* *}, B^{* *}\right)$.

Proof. We have to identify the following diagrams:

where, since $A-B$ has closed range,
$P B(A, B)^{* *}=\operatorname{ker}\left((A-B)^{* *}\right)=\left\{\left(y^{* *}, z^{* *}\right) \in Y^{* *} \oplus_{\infty} Z^{* *}: A^{* *} y^{* *}=B^{* *} z^{* *}\right\}$, and $\pi_{A}^{* *}: P B(A, B)^{* *} \rightarrow Z^{* *}$ and $\pi_{B}^{* *}: P B(A, B)^{* *} \rightarrow Y^{* *}$ take $\left(y^{* *}, z^{* *}\right) \in$ $P B(A, B)^{* *}$ to $z^{* *}$ and $y^{* *}$ respectively.

The universal property of the pull-back diagram (Proposition 2.1) provides an operator

$$
\pi: P B(A, B)^{* *} \longrightarrow P B\left(A^{* *}, B^{* *}\right)
$$

given by

$$
\pi\left(y^{* *}, z^{* *}\right)=\left(\pi_{B}^{* *}\left(y^{* *}, z^{* *}\right), \pi_{A}^{* *}\left(y^{* *}, z^{* *}\right)\right)=\left(y^{* *}, z^{* *}\right) .
$$

Since obviously π is a bijective isomorphism, the result is proved.
The following result shows that the action of passing to residuum operators and that of forming pull-backs commute in some cases.

Proposition 2.5. Let $A: Y \rightarrow X$ and $B: Z \rightarrow X$ be a pair of operators with B surjective. Then the residuum of the pull-back diagram of (A, B) can be identified with the pull-back diagram of $\left(A^{c o}, B^{c o}\right)$.

Proof. The proof is formally similar to that of Proposition 2.4. We have to show that we can identify the following diagrams:

where, since $A-B$ has closed range, we have (see [8, Proposition 3.1.13])
$P B(A, B)^{c o}=\operatorname{ker}\left((A-B)^{c o}\right)=\left\{\left(y^{c o}, z^{c o}\right) \in Y^{c o} \oplus_{\infty} Z^{c o}: A^{c o} y^{c o}=B^{c o} z^{c o}\right\}$, and $\pi_{A}^{c o}: P B(A, B)^{c o} \rightarrow Z^{c o}$ and $\pi_{B}^{c o}: P B(A, B)^{c o} \rightarrow Y^{c o}$ take $\left(y^{c o}, z^{c o}\right) \in$ $P B(A, B)^{c o}$ to $z^{c o}$ and $y^{c o}$ respectively.

The universal property of the pull-back diagram (Proposition 2.1) provides an operator

$$
\pi: P B(A, B)^{c o} \longrightarrow P B\left(A^{c o}, B^{c o}\right)
$$

given by

$$
\pi\left(y^{c o}, z^{c o}\right)=\left(\pi_{B}^{c o}\left(y^{c o}, z^{c o}\right), \pi_{A}^{c o}\left(y^{c o}, z^{c o}\right)\right)=\left(y^{c o}, z^{c o}\right)
$$

Since obviously π is a bijective isomorphism, the result is proved.
The following result is an application of the previous identifications.
Proposition 2.6. Consider the pull-back diagram of (A, B) given in (1) and assume B is surjective. Then the following assertions are satisfied:
(i) A is cotauberian if and only if so is π_{A}.
(ii) $A^{* *}$ is cotauberian if and only if so is $\pi_{A}^{* *}$.

Proof. (i) Assume that A is cotauberian; equivalently, that $A^{c o}$ has dense range. By Proposition 2.5, the space $P B(A, B)^{c o}$ can be identified with $\operatorname{PB}\left(A^{c o}, B^{c o}\right)$. The operator $B^{c o}$ is surjective because so is $B[8$, Proposition 3.1.15]. Thus using Proposition 2.2 we get that $\pi_{A}^{c o}$ has dense range, hence π_{A} is cotauberian.

For the converse, assume that π_{A} is cotauberian. As B is surjective, $B \pi_{A}=A \pi_{B}$ is cotauberian, hence A is cotauberian too.
(ii) Since Proposition 2.4 identifies $\pi_{A}^{* *}$ with $\pi_{A^{* *}}$, the result follows from (i).

3. Applications

Here we apply the results of the previous section to show that some counterexamples in the theory of tauberian operators obtained in [2] can be realized as operators acting on $L_{1}(0,1)$ or ℓ_{1}, or in any Banach space Z admitting a quotient isomorphic to ℓ_{1}. We will give the results for $Z=L_{1}(0,1)$, but the proofs in the general case are identical.

Theorem 3.1. There exists a cotauberian operator $S: L_{1}(0,1) \rightarrow L_{1}(0,1)$ such that $S^{* *}$ is not cotauberian.

Proof. It is proved in [2] (see also Theorem 3.1.18 in [8]) that there exists a separable Banach space Y such that $Y^{c o}$ is isomorphic to ℓ_{1}, and an operator $T: Y \rightarrow Y$ such that $T^{c o}$ can be identified to the operator $A: \ell_{1} \rightarrow \ell_{1}$ given by $A\left(x_{n}\right)=\left(x_{n} / n\right)$.

The operator A has dense range, hence so does $T^{c o}$, and T is cotauberian. Moreover, since A is compact, the range of $A^{* *}$ is separable, so it is not dense. Taking into account that we can identify $\left(T^{c o}\right)^{* *}$ and $\left(T^{* *}\right)^{c o}[8$, Proposition 3.1.11], we conclude that $T^{* *}$ is not cotauberian.

Since Y is separable, there is a surjective operator $B: L_{1}(0,1) \rightarrow Y$, and the space $P B(T, B)$ is separable. So there exists a surjective operator $Q: L_{1}(0,1) \rightarrow P B(T, B)$, and we have the following commutative diagram:

The remaining of the proof is a repeated application of the properties of the class \mathcal{T}^{d} of cotauberian operators given at the end of the introduction.

On the one hand, by Proposition 2.6, π_{T} is cotauberian. Since Q is surjective, the operator $S: \pi_{T} Q: L_{1}(0,1) \rightarrow L_{1}(0,1)$ is also cotauberian.

On the other hand, by Propositions 2.4 and $2.6, \pi_{T}^{* *}$ is not cotauberian. Therefore $S^{* *}=\pi_{T}^{* *} Q^{* *}$ is not cotauberian.

Corollary 3.2. There exists a tauberian operator $T: L_{\infty}(0,1) \rightarrow L_{\infty}(0,1)$ such that $T^{* *}$ is not tauberian.

Proof. It is enough to take $T=S^{*}$, where S is the operator obtained in Theorem 3.1.

Remark 3.3. There exist separable Banach spaces X such that the set $\mathcal{T}^{d}(X)$ is not open in $\mathcal{L}(X)$.

Indeed, let Z be a non-reflexive separable Banach space. We consider the space

$$
\ell_{2}(Z):=\left\{\left(x_{n}\right) \subset Z: \sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty\right\}
$$

which endowed with the ℓ_{2}-norm is a Banach space.
We consider the operator $T: \ell_{2}(Z) \rightarrow \ell_{2}(Z)$ that maps $\left(x_{n}\right)$ to $\left(x_{n} / n\right)$, and for every positive integer n, we consider the operator $T_{n}: \ell_{2}(Z) \rightarrow \ell_{2}(Z)$ that sends each $\left(x_{n}\right)$ to

$$
\left(x_{1}, \frac{x_{2}}{2}, \ldots \ldots, \frac{x_{n}}{n}, 0,0, \ldots \ldots \ldots\right)
$$

It is not difficult to show (see [8, Example 2.1.7]) that $\ell_{2}(Z)^{\text {co }}$ can be identified with $\ell_{2}\left(Z^{c o}\right)$, that the operators T_{n} are not cotauberian, that $T_{n} \underset{n}{\longrightarrow} T$, and that T is cotauberian. It turns out that $\mathcal{T}^{d}\left(\ell_{2}(Z)\right)$ is not open in $\mathcal{L}\left(\ell_{2}(Z)\right)$.

Let X be a Banach space. We denote by B_{X} and S_{X} the closed unit ball and the unit sphere of X respectively. Moreover, given a nonempty subset S of X and $\delta>0$, a subset C of S is called a δ-net in S if for every $x \in S$ there exists $y \in C$ such that $\|x-y\| \leq \delta$.

Later we will need the following technical result. It is known, but we give a proof for the convenience of the reader.

Lemma 3.4. Let $\left(x_{n}\right)$ be a (1/2)-net in the unit sphere S_{X} of a Banach space X, and let $T \in \mathcal{L}\left(\ell_{1}, X\right)$ the operator defined by $T e_{n}:=x_{n}(n \in \mathbb{N})$, where $\left(e_{n}\right)$ is the unit vector basis of ℓ_{1}. Then $T\left(B_{\ell_{1}}\right)$ contains $(1 / 2) B_{X}$. In particular T is surjective.

Proof. Note that for every $r>0,\left(r x_{n}\right)$ is a $(r / 2)$-net in $r S_{X}$.
Let $x \in X$ with $\|x\|=1 / 2$, and set $t_{1}=1 / 2$. We select $x_{n_{1}}$ in the (1/2)-net such that $\left\|x-t_{1} x_{n_{1}}\right\| \leq 1 / 4$, and set $t_{2}=\left\|x-x_{n_{1}}\right\|$. Then we select $x_{n_{2}}$ such that $\left\|x-t_{1} x_{n_{1}}-t_{2} x_{n_{2}}\right\| \leq 1 / 8$, and set $t_{3}=\left\|x-x_{n_{1}}-x_{n_{2}}\right\|$.

Proceeding in this way we obtain $0 \leq t_{k} \leq 1 / 2^{k}(k \in \mathbb{N})$ and a subsequence $\left(x_{n_{k}}\right)$ of the (1/2)-net. Taking $a=\left(a_{n}\right)$ with $a_{n_{k}}=t_{k}$ and $a_{n}=0$ otherwise, we obtain $a \in B_{\ell_{1}}$ such that $T a=x$, and the result is proved.

Let us show that $\mathcal{T}^{d}\left(L_{1}(0,1)\right)$ is not open in $\mathcal{L}\left(L_{1}(0,1)\right)$.
Theorem 3.5. There exists a cotauberian operator in the boundary of $\mathcal{T}^{d}\left(L_{1}(0,1)\right)$.
Proof. We write L_{1} instead of $L_{1}(0,1)$. Applying the arguments in the proof of Theorem 3.1 to the operators T_{n} and T given in Remark 3.3, we obtain the following push-out diagrams:

The operators $S_{n}:=\pi_{T_{n}} Q_{n}$ are not cotauberian, $S:=\pi_{T} Q$ is cotauberian, and S_{n}, S belong to $\mathcal{L}\left(L_{1}(0,1)\right)$. It remains to show that we can arrange the constructions so that $\left\|S_{n}-S\right\| \underset{n}{\longrightarrow} 0$.

To shorten the arguments, we denote $P B:=P B(T, B)$ and $P B_{n}:=$ $P B\left(T_{n}, B_{n}\right)$, and take $B_{n}=B$ for all n. So $P B=\operatorname{ker}(T-B)$ and $P B_{n}=$ $\operatorname{ker}\left(T_{n}-B\right)$ are closed subspaces of $\ell_{2}(Z) \oplus_{\infty} L_{1}$.

We fix a surjective operator $p: L_{1} \rightarrow \ell_{1}$, select a dense sequence $\left(u_{k}\right)$ in the unit sphere $S_{P B}$, and define $q: \ell_{1} \rightarrow P B$ by $q e_{k}:=u_{k}(k \in \mathbb{N})$, where $\left(e_{k}\right)$
is the unit vector basis of ℓ_{1}. The operator $Q:=q p: L_{1} \rightarrow P B$ is surjective (Lemma 3.4).

Since the operators $T-B$ and $T_{n}-B$ are surjective and $\left\|T_{n}-T\right\| \underset{n}{\longrightarrow} 0$, it follows from [15, Theorem 10.17] that the gap between the kernels satisfy

$$
\hat{\delta}\left(\operatorname{ker}\left(T_{n}-B\right), \operatorname{ker}(T-B)\right) \xrightarrow[n]{ } 0
$$

Let us denote $\delta_{n}:=\hat{\delta}\left(\operatorname{ker}\left(T_{n}-B\right), \operatorname{ker}(T-B)\right)$. Given M and N closed subspaces of a Banach space, for each $x \in S_{M}$ we have $\operatorname{dist}\left(x, S_{N}\right) \leq$ $2 \operatorname{dist}(x, N)$ [9, Lemma 3.2]. Therefore, for each $n \in \mathbb{N}$, we can select a sequence $\left(u_{n, k}\right)_{k \in \mathbb{N}}$ in $S_{P B_{n}}$ such that $\left\|u_{k}-u_{n, k}\right\| \leq 3 \delta_{n}$ for each k.

We define $q_{n}: \ell_{1} \rightarrow P B_{n}$ by $q_{n} e_{k}:=u_{n, k}(k \in \mathbb{N})$, and $Q_{n}:=q_{n} p: L_{1} \rightarrow$ $P B$.

We claim that the operator Q_{n} is surjective for n big enough. Indeed, for each v in $S_{P B_{n}}$ we can find u in $S_{P B}$ such that $\|v-u\| \leq 3 \delta_{n}$. Since $\left(u_{k}\right)$ is dense in $S_{P B}$, we can find $k \in \mathbb{N}$ such that $\left\|v-u_{n, k}\right\| \leq 7 \delta_{n}$. Thus $\left(u_{n, k}\right)_{k \in \mathbb{N}}$ is a $7 \delta_{n}$-net in $S_{P B_{n}}$, and the claim follows from Lemma 3.4.

Let $f \in L_{1}(0,1)$. Then

$$
\left\|S_{n} f-S f\right\|=\left\|\pi_{T_{n}} Q_{n} f-\pi_{T} Q f \leq\right\| Q_{n} f-Q f\|\leq\| q_{n}-q\| \| f \|
$$

Hence $\left\|S_{n}-S\right\| \leq\left\|q_{n}-q\right\|=\sup _{k \in \mathbb{N}}\left\|u_{k}-u_{n, k}\right\| \leq 3 \delta_{n} \underset{n}{\longrightarrow} 0$. Thus S is a cotauberian operator in the boundary of $\mathcal{T}^{d}\left(L_{1}(0,1)\right)$.

Corollary 3.6. There exists a tauberian operator in the boundary of $\mathcal{T}\left(L_{\infty}(0,1)\right)$.
Proof. It is enough to take the conjugate operator of the operator obtained in Theorem 3.5.

Remark 3.7. (a) It was proved in [7] that $\mathcal{T}\left(L_{1}(0,1)\right)$ is open in $\mathcal{L}\left(L_{1}(0,1)\right)$, and that $T \in \mathcal{T}\left(L_{1}(0,1)\right)$ implies $T^{* *}$ tauberian.
(b) Since reflexive quotients of $L_{\infty}(0,1)$ are superreflexive [12], it follows from Proposition 20 and Theorem 22 in [6] that $\mathcal{T}^{d}\left(L_{\infty}(0,1)\right)$ is open in $\mathcal{L}\left(L_{\infty}(0,1)\right)$, and applying [8, Proposition 6.6.5] we get that $T \in \mathcal{T}^{d}\left(L_{1}(0,1)\right)$ implies $T^{* *}$ cotauberian.

References

[1] P. Aiena, M. González, A. Martínez-Abejón. Operator semigroups in Banach space theory. Boll. Unione Mat. Ital. B (8) 4 (2001), 157-205.
[2] T. Alvarez, M. González. Some examples of tauberian operators. Proc. Amer. Math. Soc. 111 (1991), 1023-1027.
[3] J. Bourgain. ℓ^{∞} / c_{0} has no equivalent strictly convex norm. Proc. Amer. Math. Soc. 78 (1980), 225-226.
[4] J.M.F. Castillo, M. González. Three-space problems in Banach space theory. Lecture Notes in Math. 1667. Springer, 1997.
[5] W.J. Davis, T. Figiel, W.B. Johnson, A. Petczyński. Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311-327.
[6] M. González, A. Martínez-Abejón. Supertauberian operators and perturbations. Arch. Math. 64 (1995), 423-433.
[7] M. González, A. Martínez-Abejón. Tauberian operators on $L_{1}(\mu)$-spaces. Studia Math. 125 (1997), 289-303.
[8] M. González, A. Martínez-Abejón. Tauberian operators. Operator Theory: Advances and applications 194. Birkhäuser, 2010.
[9] M. González, A. Martínez-Abejón. Examples of tauberian operators acting on $C[0,1]$. J. Math. Anal. Appl. 410 (2014), 323-329.
[10] M. González, V.M. Onieva. Characterizations of tauberian operators and other semigroups of operators. Proc. Amer. Math. Soc. 108 (1990), 399-405.
[11] M. González, E. Saksman, H.-O. Tylli. Representing non-weakly compact operators. Studia Math. 113 (1995), 289-303.
[12] H. Jarchow. On weakly compact operators on C^{*}-algebras. Math. Ann. 273 (1986), 341-343.
[13] N. Kalton, A. Wilansky. Tauberian operators on Banach spaces. Proc. Amer. Math. Soc. 57 (1976), 251-255.
[14] J. Lindenstrauss, L. Tzafriri. Cassical Banach space I; Sequence spaces. Springer, 1977.
[15] V. Müller. Spectral theory for linear operators and spectral systems in Banach algebras, 2nd. ed. Operator Theory: Advances and applications 139. Birkhäuser, 2007.
[16] R. Neidinger. Properties of tauberian operators on Banach spaces. Ph. D. Univ. Texas Austin, 1984.
[17] R. Neidinger, H.P. Rosenthal. Norm attainment of linear functionals and characterizations of tauberian operators. Pacific J. Math. 118 (1985), 215228.
[18] W. Schachermayer. For a Banach space isomorphic to its square the RadonNikodym property and the Krein-Milman property are equivalent. Studia Math. 81 (1985), 329-339.
[19] D.G. Tacon. Generalized semi-Fredholm transformations. J. Austral. Math. Soc. 34 (1983), 60-70.

[^1]Antonio Martínez-Abejón
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oviedo, E33007 Oviedo, Spain
e-mail: ama@uniovi.es

[^0]: Supported in part by MICINN (Spain), Grant MTM2010-20190.
 2010 Mathematics Subject Classification. Primary: 46B03, 46B10.
 Keywords: cotauberian operator; lifting of operators.

[^1]: Manuel González
 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain
 e-mail: manuel.gonzalez@unican.es

